• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "ClLstmFloatWorkload.hpp"
7 #include <cl/ClTensorHandle.hpp>
8 #include <backendsCommon/CpuTensorHandle.hpp>
9 #include <cl/ClLayerSupport.hpp>
10 #include <aclCommon/ArmComputeTensorUtils.hpp>
11 
12 #include <armnn/utility/NumericCast.hpp>
13 
14 #include <arm_compute/runtime/CL/functions/CLLSTMLayer.h>
15 
16 #include "ClWorkloadUtils.hpp"
17 
18 namespace armnn
19 {
20 using namespace armcomputetensorutils;
21 
ClLstmFloatWorkload(const LstmQueueDescriptor & descriptor,const WorkloadInfo & info)22 ClLstmFloatWorkload::ClLstmFloatWorkload(const LstmQueueDescriptor &descriptor, const WorkloadInfo &info)
23         : FloatWorkload<LstmQueueDescriptor>(descriptor, info)
24 {
25     arm_compute::LSTMParams<arm_compute::ICLTensor> lstm_param;
26 
27     // Basic parameters
28     m_InputToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
29     BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
30 
31     m_InputToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
32     BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
33 
34     m_InputToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
35     BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
36 
37     m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
38     BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
39 
40     m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
41     BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
42 
43     m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
44     BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
45 
46     m_ForgetGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
47     BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
48 
49     m_CellBiasTensor = std::make_unique<arm_compute::CLTensor>();
50     BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
51 
52     m_OutputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
53     BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
54 
55     // for future reference: check the AndroidNN API for the logic here
56     if (!m_Data.m_Parameters.m_CifgEnabled)
57     {
58         m_InputToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
59         BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
60 
61         m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
62         BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
63 
64         m_CellToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
65         if (m_Data.m_CellToInputWeights != nullptr)
66         {
67             BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
68         }
69 
70         m_InputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
71         BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
72 
73         lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
74                                    m_RecurrentToInputWeightsTensor.get(),
75                                    m_Data.m_CellToInputWeights != nullptr ? m_CellToInputWeightsTensor.get() : nullptr,
76                                    m_InputGateBiasTensor.get());
77     }
78 
79     if (m_Data.m_Parameters.m_ProjectionEnabled)
80     {
81         m_ProjectionWeightsTensor = std::make_unique<arm_compute::CLTensor>();
82         BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
83 
84         m_ProjectionBiasTensor = std::make_unique<arm_compute::CLTensor>();
85         if (m_Data.m_ProjectionBias != nullptr)
86         {
87             BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
88         }
89 
90         lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
91                                          m_Data.m_ProjectionBias != nullptr ? m_ProjectionBiasTensor.get() : nullptr);
92     }
93 
94     if (m_Data.m_Parameters.m_PeepholeEnabled)
95     {
96         m_CellToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
97         BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
98 
99         m_CellToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
100         BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
101 
102         lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
103     }
104 
105     if (m_Data.m_Parameters.m_LayerNormEnabled)
106     {
107         m_InputLayerNormWeightsTensor  = std::make_unique<arm_compute::CLTensor>();
108         m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
109         m_CellLayerNormWeightsTensor   = std::make_unique<arm_compute::CLTensor>();
110         m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
111 
112         if (!m_Data.m_Parameters.m_CifgEnabled)
113         {
114             BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
115         }
116         BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
117         BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
118         BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
119 
120         lstm_param.set_layer_normalization_params(m_Data.m_Parameters.m_CifgEnabled ? nullptr :
121                                                   m_InputLayerNormWeightsTensor.get(),
122                                                   m_ForgetLayerNormWeightsTensor.get(),
123                                                   m_CellLayerNormWeightsTensor.get(),
124                                                   m_OutputLayerNormWeightsTensor.get());
125     }
126 
127     const arm_compute::ICLTensor& input           = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
128     const arm_compute::ICLTensor& output_state_in = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
129     arm_compute::ICLTensor& cell_state_in         = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
130 
131     arm_compute::ICLTensor& output_state_out      = static_cast<IClTensorHandle*>(m_Data.m_Outputs[1])->GetTensor();
132     arm_compute::ICLTensor& cell_state_out        = static_cast<IClTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
133     arm_compute::ICLTensor& output                = static_cast<IClTensorHandle*>(m_Data.m_Outputs[3])->GetTensor();
134 
135     // Get the batch_size and the num_units from the cellStateIn dimensions
136     const TensorInfo& inputTensorInfo = info.m_InputTensorInfos[2];
137     const unsigned int batch_size = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[0]);
138     const unsigned int num_units  = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[1]);
139 
140     m_ScratchBuffer = std::make_unique<arm_compute::CLTensor>();
141     if (m_Data.m_Parameters.m_CifgEnabled)
142     {
143         // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
144         armnn::TensorInfo scratchBuffer1({ batch_size, num_units * 3 }, DataType::Float32);
145         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer1);
146     }
147     else
148     {
149         // scratch_buffer [num_units * 4, batch_size] without CIFG
150         armnn::TensorInfo scratchBuffer2({ batch_size, num_units * 4 }, DataType::Float32);
151         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer2);
152     }
153 
154     float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
155     float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
156 
157     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
158     arm_compute::ActivationLayerInfo activationLayerInfo;
159     if (m_Data.m_Parameters.m_ActivationFunc == 0)
160     {
161         // no activation, do nothing
162     }
163     else if (m_Data.m_Parameters.m_ActivationFunc == 1)
164     {
165         activationLayerInfo = arm_compute::ActivationLayerInfo(
166                 arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
167     }
168     else if (m_Data.m_Parameters.m_ActivationFunc == 3)
169     {
170         activationLayerInfo = arm_compute::ActivationLayerInfo(
171                 arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
172     }
173     else if (m_Data.m_Parameters.m_ActivationFunc == 4)
174     {
175         activationLayerInfo =  arm_compute::ActivationLayerInfo(
176                 arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
177     }
178     else if (m_Data.m_Parameters.m_ActivationFunc == 6)
179     {
180         activationLayerInfo =  arm_compute::ActivationLayerInfo(
181                 arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
182     }
183     else
184     {
185         throw armnn::Exception("Wrong Type of Activation Function!");
186     }
187 
188     m_LstmLayer.configure(&input, m_InputToForgetWeightsTensor.get(), m_InputToCellWeightsTensor.get(),
189                           m_InputToOutputWeightsTensor.get(), m_RecurrentToForgetWeightsTensor.get(),
190                           m_RecurrentToCellWeightsTensor.get(), m_RecurrentToOutputWeightsTensor.get(),
191                           m_ForgetGateBiasTensor.get(), m_CellBiasTensor.get(), m_OutputGateBiasTensor.get(),
192                           &output_state_in, &cell_state_in, m_ScratchBuffer.get(), &output_state_out,
193                           &cell_state_out, &output, lstm_param, activationLayerInfo,
194                           cell_threshold, projection_threshold);
195 
196     armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
197 
198     InitializeArmComputeClTensorData(*m_InputToForgetWeightsTensor,     m_Data.m_InputToForgetWeights);
199     InitializeArmComputeClTensorData(*m_InputToCellWeightsTensor,       m_Data.m_InputToCellWeights);
200     InitializeArmComputeClTensorData(*m_InputToOutputWeightsTensor,     m_Data.m_InputToOutputWeights);
201     InitializeArmComputeClTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
202     InitializeArmComputeClTensorData(*m_RecurrentToCellWeightsTensor,   m_Data.m_RecurrentToCellWeights);
203     InitializeArmComputeClTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
204     InitializeArmComputeClTensorData(*m_ForgetGateBiasTensor,           m_Data.m_ForgetGateBias);
205     InitializeArmComputeClTensorData(*m_CellBiasTensor,                 m_Data.m_CellBias);
206     InitializeArmComputeClTensorData(*m_OutputGateBiasTensor,           m_Data.m_OutputGateBias);
207 
208     if (!m_Data.m_Parameters.m_CifgEnabled)
209     {
210         InitializeArmComputeClTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
211         InitializeArmComputeClTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
212         if (m_Data.m_CellToInputWeights != nullptr)
213         {
214             InitializeArmComputeClTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
215         }
216         InitializeArmComputeClTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
217     }
218 
219     if (m_Data.m_Parameters.m_ProjectionEnabled)
220     {
221         InitializeArmComputeClTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
222         if (m_Data.m_ProjectionBias != nullptr)
223         {
224             InitializeArmComputeClTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
225         }
226     }
227 
228     if (m_Data.m_Parameters.m_PeepholeEnabled)
229     {
230         InitializeArmComputeClTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
231         InitializeArmComputeClTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
232     }
233 
234     if (m_Data.m_Parameters.m_LayerNormEnabled)
235     {
236         if (!m_Data.m_Parameters.m_CifgEnabled)
237         {
238             InitializeArmComputeClTensorData(*m_InputLayerNormWeightsTensor,  m_Data.m_InputLayerNormWeights);
239         }
240 
241         InitializeArmComputeClTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
242         InitializeArmComputeClTensorData(*m_CellLayerNormWeightsTensor,   m_Data.m_CellLayerNormWeights);
243         InitializeArmComputeClTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
244     }
245 
246     // Force Compute Library to perform the necessary copying and reshaping, after which
247     // delete all the input tensors that will no longer be needed
248     m_LstmLayer.prepare();
249     FreeUnusedTensors();
250 }
251 
Execute() const252 void ClLstmFloatWorkload::Execute() const
253 {
254     ARMNN_SCOPED_PROFILING_EVENT_CL("ClLstmFloatWorkload_Execute");
255     RunClFunction(m_LstmLayer, CHECK_LOCATION());
256 }
257 
ClLstmFloatWorkloadValidate(const TensorInfo & input,const TensorInfo & outputStateIn,const TensorInfo & cellStateIn,const TensorInfo & scratchBuffer,const TensorInfo & outputStateOut,const TensorInfo & cellStateOut,const TensorInfo & output,const LstmDescriptor & descriptor,const LstmInputParamsInfo & paramsInfo)258 arm_compute::Status ClLstmFloatWorkloadValidate(const TensorInfo& input, const TensorInfo& outputStateIn,
259                                                 const TensorInfo& cellStateIn, const TensorInfo& scratchBuffer,
260                                                 const TensorInfo& outputStateOut, const TensorInfo& cellStateOut,
261                                                 const TensorInfo& output, const LstmDescriptor& descriptor,
262                                                 const LstmInputParamsInfo& paramsInfo)
263 {
264     arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
265 
266     // The inputs and the outputs
267     const arm_compute::TensorInfo aclInputInfo  = BuildArmComputeTensorInfo(input);
268     const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
269     const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
270     const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
271     const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
272     const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
273     const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output);
274 
275     // Basic parameters
276     const arm_compute::TensorInfo aclInputToForgetWeightsInfo
277                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
278     const arm_compute::TensorInfo aclInputToCellWeightsInfo
279                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
280     const arm_compute::TensorInfo aclInputToOutputWeightsInfo
281                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
282     const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
283                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
284     const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
285                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
286     const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
287                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
288     const arm_compute::TensorInfo aclForgetGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
289     const arm_compute::TensorInfo aclCellBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
290     const arm_compute::TensorInfo aclOutputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
291 
292     arm_compute::TensorInfo aclInputToInputWeightsInfo;
293     arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
294     arm_compute::TensorInfo aclCellToInputWeightsInfo;
295     arm_compute::TensorInfo aclInputGateBiasInfo;
296     arm_compute::TensorInfo aclProjectionWeightsInfo;
297     arm_compute::TensorInfo aclProjectionBiasInfo;
298     arm_compute::TensorInfo aclCellToForgetWeightsInfo;
299     arm_compute::TensorInfo aclCellToOutputWeightsInfo;
300     arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
301     arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
302     arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
303     arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
304 
305     if (!descriptor.m_CifgEnabled)
306     {
307         aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
308         aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
309 
310         if (paramsInfo.m_CellToInputWeights != nullptr)
311         {
312             aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
313         }
314         aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
315         lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo, &aclRecurrentToInputWeightsInfo,
316                                          paramsInfo.m_CellToInputWeights != nullptr ?
317                                          &aclCellToInputWeightsInfo: nullptr,
318                                          &aclInputGateBiasInfo);
319     }
320 
321     if (descriptor.m_ProjectionEnabled)
322     {
323         aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
324 
325         if (paramsInfo.m_ProjectionBias != nullptr)
326         {
327             aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
328         }
329         lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
330                                                paramsInfo.m_ProjectionBias != nullptr ?
331                                                &aclProjectionBiasInfo: nullptr);
332     }
333 
334     if (descriptor.m_PeepholeEnabled)
335     {
336         aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
337         aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
338         lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
339     }
340 
341     float cell_threshold = descriptor.m_ClippingThresCell;
342     float projection_threshold = descriptor.m_ClippingThresProj;
343 
344     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
345     arm_compute::ActivationLayerInfo activationLayerInfo;
346     if (descriptor.m_ActivationFunc == 0)
347     {
348         // no activation, do nothing
349     }
350     else if (descriptor.m_ActivationFunc == 1)
351     {
352         activationLayerInfo = arm_compute::ActivationLayerInfo(
353                 arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
354     }
355     else if (descriptor.m_ActivationFunc == 3)
356     {
357         activationLayerInfo = arm_compute::ActivationLayerInfo(
358                 arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
359     }
360     else if (descriptor.m_ActivationFunc == 4)
361     {
362         activationLayerInfo =  arm_compute::ActivationLayerInfo(
363                 arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
364     }
365     else if (descriptor.m_ActivationFunc == 6)
366     {
367         activationLayerInfo =  arm_compute::ActivationLayerInfo(
368                 arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
369     }
370     else
371     {
372         throw armnn::Exception("Wrong Type of Activation Function!");
373     }
374 
375     if (descriptor.m_LayerNormEnabled)
376     {
377         if (!descriptor.m_CifgEnabled)
378         {
379             aclInputLayerNormWeightsInfo  = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
380         }
381 
382         aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
383 
384         aclCellLayerNormWeightsInfo   = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
385 
386         aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
387 
388         lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ?
389                                                         nullptr : &aclInputLayerNormWeightsInfo,
390                                                         &aclForgetLayerNormWeightsInfo,
391                                                         &aclCellLayerNormWeightsInfo,
392                                                         &aclOutputLayerNormWeightsInfo);
393     }
394 
395     return arm_compute::CLLSTMLayer::validate(&aclInputInfo, &aclInputToForgetWeightsInfo,
396                                               &aclInputToCellWeightsInfo,
397                                               &aclInputToOutputWeightsInfo,
398                                               &aclRecurrentToForgetWeightsInfo,
399                                               &aclRecurrentToCellWeightsInfo,
400                                               &aclRecurrentToOutputWeightsInfo,
401                                               &aclForgetGateBiasInfo,
402                                               &aclCellBiasInfo,
403                                               &aclOutputGateBiasInfo,
404                                               &aclOutputStateInInfo, &aclCellStateInInfo,
405                                               &aclScratchBufferInfo, &aclOutputStateOutInfo,
406                                               &aclCellStateOutInfo, &aclOutputInfo,
407                                               lstm_params_info, activationLayerInfo,
408                                               cell_threshold, projection_threshold);
409 }
410 
FreeUnusedTensors()411 void ClLstmFloatWorkload::FreeUnusedTensors()
412 {
413     FreeTensorIfUnused(m_InputToInputWeightsTensor);
414     FreeTensorIfUnused(m_InputToForgetWeightsTensor);
415     FreeTensorIfUnused(m_InputToCellWeightsTensor);
416     FreeTensorIfUnused(m_InputToOutputWeightsTensor);
417     FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
418     FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
419     FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
420     FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
421     FreeTensorIfUnused(m_CellToInputWeightsTensor);
422     FreeTensorIfUnused(m_CellToForgetWeightsTensor);
423     FreeTensorIfUnused(m_CellToOutputWeightsTensor);
424     FreeTensorIfUnused(m_InputGateBiasTensor);
425     FreeTensorIfUnused(m_ForgetGateBiasTensor);
426     FreeTensorIfUnused(m_CellBiasTensor);
427     FreeTensorIfUnused(m_OutputGateBiasTensor);
428     FreeTensorIfUnused(m_ProjectionWeightsTensor);
429     FreeTensorIfUnused(m_ProjectionBiasTensor);
430     FreeTensorIfUnused(m_ScratchBuffer);
431     FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
432     FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
433     FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
434     FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
435 }
436 
437 } //namespace armnn
438