1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <limits>
20 #include "android-base/thread_annotations.h"
21 #if defined(__BIONIC__) || defined(__GLIBC__)
22 #include <malloc.h> // For mallinfo()
23 #endif
24 #if defined(__BIONIC__) && defined(ART_TARGET)
25 #include <linux/userfaultfd.h>
26 #include <sys/ioctl.h>
27 #endif
28 #include <memory>
29 #include <random>
30 #include <unistd.h>
31 #include <sys/types.h>
32 #include <vector>
33
34 #include "android-base/stringprintf.h"
35
36 #include "allocation_listener.h"
37 #include "art_field-inl.h"
38 #include "backtrace_helper.h"
39 #include "base/allocator.h"
40 #include "base/arena_allocator.h"
41 #include "base/dumpable.h"
42 #include "base/file_utils.h"
43 #include "base/histogram-inl.h"
44 #include "base/logging.h" // For VLOG.
45 #include "base/memory_tool.h"
46 #include "base/mutex.h"
47 #include "base/os.h"
48 #include "base/stl_util.h"
49 #include "base/systrace.h"
50 #include "base/time_utils.h"
51 #include "base/utils.h"
52 #include "class_root-inl.h"
53 #include "common_throws.h"
54 #include "debugger.h"
55 #include "dex/dex_file-inl.h"
56 #include "entrypoints/quick/quick_alloc_entrypoints.h"
57 #include "gc/accounting/card_table-inl.h"
58 #include "gc/accounting/heap_bitmap-inl.h"
59 #include "gc/accounting/mod_union_table-inl.h"
60 #include "gc/accounting/read_barrier_table.h"
61 #include "gc/accounting/remembered_set.h"
62 #include "gc/accounting/space_bitmap-inl.h"
63 #include "gc/collector/concurrent_copying.h"
64 #include "gc/collector/mark_sweep.h"
65 #include "gc/collector/partial_mark_sweep.h"
66 #include "gc/collector/semi_space.h"
67 #include "gc/collector/sticky_mark_sweep.h"
68 #include "gc/racing_check.h"
69 #include "gc/reference_processor.h"
70 #include "gc/scoped_gc_critical_section.h"
71 #include "gc/space/bump_pointer_space.h"
72 #include "gc/space/dlmalloc_space-inl.h"
73 #include "gc/space/image_space.h"
74 #include "gc/space/large_object_space.h"
75 #include "gc/space/region_space.h"
76 #include "gc/space/rosalloc_space-inl.h"
77 #include "gc/space/space-inl.h"
78 #include "gc/space/zygote_space.h"
79 #include "gc/task_processor.h"
80 #include "gc/verification.h"
81 #include "gc_pause_listener.h"
82 #include "gc_root.h"
83 #include "handle_scope-inl.h"
84 #include "heap-inl.h"
85 #include "heap-visit-objects-inl.h"
86 #include "image.h"
87 #include "intern_table.h"
88 #include "jit/jit.h"
89 #include "jit/jit_code_cache.h"
90 #include "jni/java_vm_ext.h"
91 #include "mirror/class-inl.h"
92 #include "mirror/executable-inl.h"
93 #include "mirror/field.h"
94 #include "mirror/method_handle_impl.h"
95 #include "mirror/object-inl.h"
96 #include "mirror/object-refvisitor-inl.h"
97 #include "mirror/object_array-inl.h"
98 #include "mirror/reference-inl.h"
99 #include "mirror/var_handle.h"
100 #include "nativehelper/scoped_local_ref.h"
101 #include "obj_ptr-inl.h"
102 #ifdef ART_TARGET_ANDROID
103 #include "perfetto/heap_profile.h"
104 #endif
105 #include "reflection.h"
106 #include "runtime.h"
107 #include "javaheapprof/javaheapsampler.h"
108 #include "scoped_thread_state_change-inl.h"
109 #include "thread_list.h"
110 #include "verify_object-inl.h"
111 #include "well_known_classes.h"
112
113 namespace art {
114
115 #ifdef ART_TARGET_ANDROID
116 namespace {
117
118 // Enable the heap sampler Callback function used by Perfetto.
EnableHeapSamplerCallback(void * enable_ptr,const AHeapProfileEnableCallbackInfo * enable_info_ptr)119 void EnableHeapSamplerCallback(void* enable_ptr,
120 const AHeapProfileEnableCallbackInfo* enable_info_ptr) {
121 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(enable_ptr);
122 // Set the ART profiler sampling interval to the value from Perfetto.
123 uint64_t interval = AHeapProfileEnableCallbackInfo_getSamplingInterval(enable_info_ptr);
124 if (interval > 0) {
125 sampler_self->SetSamplingInterval(interval);
126 }
127 // Else default is 4K sampling interval. However, default case shouldn't happen for Perfetto API.
128 // AHeapProfileEnableCallbackInfo_getSamplingInterval should always give the requested
129 // (non-negative) sampling interval. It is a uint64_t and gets checked for != 0
130 // Do not call heap as a temp here, it will build but test run will silently fail.
131 // Heap is not fully constructed yet in some cases.
132 sampler_self->EnableHeapSampler();
133 }
134
135 // Disable the heap sampler Callback function used by Perfetto.
DisableHeapSamplerCallback(void * disable_ptr,const AHeapProfileDisableCallbackInfo * info_ptr ATTRIBUTE_UNUSED)136 void DisableHeapSamplerCallback(void* disable_ptr,
137 const AHeapProfileDisableCallbackInfo* info_ptr ATTRIBUTE_UNUSED) {
138 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(disable_ptr);
139 sampler_self->DisableHeapSampler();
140 }
141
142 } // namespace
143 #endif
144
145 namespace gc {
146
147 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
148
149 // Minimum amount of remaining bytes before a concurrent GC is triggered.
150 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
151 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
152 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
153 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
154 // threads (lower pauses, use less memory bandwidth).
GetStickyGcThroughputAdjustment(bool use_generational_cc)155 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
156 return use_generational_cc ? 0.5 : 1.0;
157 }
158 // Whether or not we compact the zygote in PreZygoteFork.
159 static constexpr bool kCompactZygote = kMovingCollector;
160 // How many reserve entries are at the end of the allocation stack, these are only needed if the
161 // allocation stack overflows.
162 static constexpr size_t kAllocationStackReserveSize = 1024;
163 // Default mark stack size in bytes.
164 static const size_t kDefaultMarkStackSize = 64 * KB;
165 // Define space name.
166 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
167 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
168 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
169 static const char* kNonMovingSpaceName = "non moving space";
170 static const char* kZygoteSpaceName = "zygote space";
171 static constexpr bool kGCALotMode = false;
172 // GC alot mode uses a small allocation stack to stress test a lot of GC.
173 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
174 sizeof(mirror::HeapReference<mirror::Object>);
175 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
176 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
177 sizeof(mirror::HeapReference<mirror::Object>);
178 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
179 sizeof(mirror::HeapReference<mirror::Object>);
180
181 // After a GC (due to allocation failure) we should retrieve at least this
182 // fraction of the current max heap size. Otherwise throw OOME.
183 static constexpr double kMinFreeHeapAfterGcForAlloc = 0.01;
184
185 // For deterministic compilation, we need the heap to be at a well-known address.
186 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
187 // Dump the rosalloc stats on SIGQUIT.
188 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
189
190 static const char* kRegionSpaceName = "main space (region space)";
191
192 // If true, we log all GCs in the both the foreground and background. Used for debugging.
193 static constexpr bool kLogAllGCs = false;
194
195 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
196 // allocate with relaxed ergonomics for that long.
197 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
198
199 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
200 // 300 MB (0x12c00000) - (default non-moving space capacity).
201 uint8_t* const Heap::kPreferredAllocSpaceBegin =
202 reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
203 #else
204 #ifdef __ANDROID__
205 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
206 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
207 #else
208 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
209 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
210 #endif
211 #endif
212
213 // Log GC on regular (but fairly large) intervals during GC stress mode.
214 // It is expected that the other runtime options will be used to reduce the usual logging.
215 // This allows us to make the logging much less verbose while still reporting some
216 // progress (biased towards expensive GCs), and while still reporting pathological cases.
217 static constexpr int64_t kGcStressModeGcLogSampleFrequencyNs = MsToNs(10000);
218
CareAboutPauseTimes()219 static inline bool CareAboutPauseTimes() {
220 return Runtime::Current()->InJankPerceptibleProcessState();
221 }
222
VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace * > & image_spaces)223 static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
224 uint32_t boot_image_size = 0u;
225 for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
226 const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
227 uint32_t reservation_size = image_header.GetImageReservationSize();
228 uint32_t image_count = image_header.GetImageSpaceCount();
229
230 CHECK_NE(image_count, 0u);
231 CHECK_LE(image_count, num_spaces - i);
232 CHECK_NE(reservation_size, 0u);
233 for (size_t j = 1u; j != image_count; ++j) {
234 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
235 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
236 }
237
238 // Check the start of the heap.
239 CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
240 // Check contiguous layout of images and oat files.
241 const uint8_t* current_heap = image_spaces[i]->Begin();
242 const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
243 for (size_t j = 0u; j != image_count; ++j) {
244 const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
245 CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
246 CHECK_EQ(current_oat, current_header.GetOatFileBegin());
247 current_heap += RoundUp(current_header.GetImageSize(), kPageSize);
248 CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
249 current_oat = current_header.GetOatFileEnd();
250 }
251 // Check that oat files start at the end of images.
252 CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
253 // Check that the reservation size equals the size of images and oat files.
254 CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
255
256 boot_image_size += reservation_size;
257 i += image_count;
258 }
259 }
260
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t stop_for_native_allocs,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::vector<int> & boot_class_path_fds,const std::vector<int> & boot_class_path_image_fds,const std::vector<int> & boot_class_path_vdex_fds,const std::vector<int> & boot_class_path_oat_fds,const std::vector<std::string> & image_file_names,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool always_log_explicit_gcs,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_cc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc)261 Heap::Heap(size_t initial_size,
262 size_t growth_limit,
263 size_t min_free,
264 size_t max_free,
265 double target_utilization,
266 double foreground_heap_growth_multiplier,
267 size_t stop_for_native_allocs,
268 size_t capacity,
269 size_t non_moving_space_capacity,
270 const std::vector<std::string>& boot_class_path,
271 const std::vector<std::string>& boot_class_path_locations,
272 const std::vector<int>& boot_class_path_fds,
273 const std::vector<int>& boot_class_path_image_fds,
274 const std::vector<int>& boot_class_path_vdex_fds,
275 const std::vector<int>& boot_class_path_oat_fds,
276 const std::vector<std::string>& image_file_names,
277 const InstructionSet image_instruction_set,
278 CollectorType foreground_collector_type,
279 CollectorType background_collector_type,
280 space::LargeObjectSpaceType large_object_space_type,
281 size_t large_object_threshold,
282 size_t parallel_gc_threads,
283 size_t conc_gc_threads,
284 bool low_memory_mode,
285 size_t long_pause_log_threshold,
286 size_t long_gc_log_threshold,
287 bool ignore_target_footprint,
288 bool always_log_explicit_gcs,
289 bool use_tlab,
290 bool verify_pre_gc_heap,
291 bool verify_pre_sweeping_heap,
292 bool verify_post_gc_heap,
293 bool verify_pre_gc_rosalloc,
294 bool verify_pre_sweeping_rosalloc,
295 bool verify_post_gc_rosalloc,
296 bool gc_stress_mode,
297 bool measure_gc_performance,
298 bool use_homogeneous_space_compaction_for_oom,
299 bool use_generational_cc,
300 uint64_t min_interval_homogeneous_space_compaction_by_oom,
301 bool dump_region_info_before_gc,
302 bool dump_region_info_after_gc)
303 : non_moving_space_(nullptr),
304 rosalloc_space_(nullptr),
305 dlmalloc_space_(nullptr),
306 main_space_(nullptr),
307 collector_type_(kCollectorTypeNone),
308 foreground_collector_type_(foreground_collector_type),
309 background_collector_type_(background_collector_type),
310 desired_collector_type_(foreground_collector_type_),
311 pending_task_lock_(nullptr),
312 parallel_gc_threads_(parallel_gc_threads),
313 conc_gc_threads_(conc_gc_threads),
314 low_memory_mode_(low_memory_mode),
315 long_pause_log_threshold_(long_pause_log_threshold),
316 long_gc_log_threshold_(long_gc_log_threshold),
317 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
318 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
319 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
320 pre_gc_weighted_allocated_bytes_(0.0),
321 post_gc_weighted_allocated_bytes_(0.0),
322 ignore_target_footprint_(ignore_target_footprint),
323 always_log_explicit_gcs_(always_log_explicit_gcs),
324 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
325 zygote_space_(nullptr),
326 large_object_threshold_(large_object_threshold),
327 disable_thread_flip_count_(0),
328 thread_flip_running_(false),
329 collector_type_running_(kCollectorTypeNone),
330 last_gc_cause_(kGcCauseNone),
331 thread_running_gc_(nullptr),
332 last_gc_type_(collector::kGcTypeNone),
333 next_gc_type_(collector::kGcTypePartial),
334 capacity_(capacity),
335 growth_limit_(growth_limit),
336 initial_heap_size_(initial_size),
337 target_footprint_(initial_size),
338 // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
339 // this one.
340 process_state_update_lock_("process state update lock", kPostMonitorLock),
341 min_foreground_target_footprint_(0),
342 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
343 total_bytes_freed_ever_(0),
344 total_objects_freed_ever_(0),
345 num_bytes_allocated_(0),
346 native_bytes_registered_(0),
347 old_native_bytes_allocated_(0),
348 native_objects_notified_(0),
349 num_bytes_freed_revoke_(0),
350 num_bytes_alive_after_gc_(0),
351 verify_missing_card_marks_(false),
352 verify_system_weaks_(false),
353 verify_pre_gc_heap_(verify_pre_gc_heap),
354 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
355 verify_post_gc_heap_(verify_post_gc_heap),
356 verify_mod_union_table_(false),
357 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
358 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
359 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
360 gc_stress_mode_(gc_stress_mode),
361 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
362 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
363 * verification is enabled, we limit the size of allocation stacks to speed up their
364 * searching.
365 */
366 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
367 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
368 kDefaultAllocationStackSize),
369 current_allocator_(kAllocatorTypeDlMalloc),
370 current_non_moving_allocator_(kAllocatorTypeNonMoving),
371 bump_pointer_space_(nullptr),
372 temp_space_(nullptr),
373 region_space_(nullptr),
374 min_free_(min_free),
375 max_free_(max_free),
376 target_utilization_(target_utilization),
377 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
378 stop_for_native_allocs_(stop_for_native_allocs),
379 total_wait_time_(0),
380 verify_object_mode_(kVerifyObjectModeDisabled),
381 disable_moving_gc_count_(0),
382 semi_space_collector_(nullptr),
383 active_concurrent_copying_collector_(nullptr),
384 young_concurrent_copying_collector_(nullptr),
385 concurrent_copying_collector_(nullptr),
386 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
387 use_tlab_(use_tlab),
388 main_space_backup_(nullptr),
389 min_interval_homogeneous_space_compaction_by_oom_(
390 min_interval_homogeneous_space_compaction_by_oom),
391 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
392 gcs_completed_(0u),
393 max_gc_requested_(0u),
394 pending_collector_transition_(nullptr),
395 pending_heap_trim_(nullptr),
396 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
397 use_generational_cc_(use_generational_cc),
398 running_collection_is_blocking_(false),
399 blocking_gc_count_(0U),
400 blocking_gc_time_(0U),
401 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
402 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
403 gc_count_last_window_(0U),
404 blocking_gc_count_last_window_(0U),
405 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
406 blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
407 kGcCountRateMaxBucketCount),
408 alloc_tracking_enabled_(false),
409 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
410 backtrace_lock_(nullptr),
411 seen_backtrace_count_(0u),
412 unique_backtrace_count_(0u),
413 uffd_(-1),
414 gc_disabled_for_shutdown_(false),
415 dump_region_info_before_gc_(dump_region_info_before_gc),
416 dump_region_info_after_gc_(dump_region_info_after_gc),
417 boot_image_spaces_(),
418 boot_images_start_address_(0u),
419 boot_images_size_(0u),
420 pre_oome_gc_count_(0u) {
421 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
422 LOG(INFO) << "Heap() entering";
423 }
424 if (kUseReadBarrier) {
425 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
426 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
427 } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
428 CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
429 << "Changing from " << foreground_collector_type_ << " to "
430 << background_collector_type_ << " (or visa versa) is not supported.";
431 }
432 verification_.reset(new Verification(this));
433 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
434 ScopedTrace trace(__FUNCTION__);
435 Runtime* const runtime = Runtime::Current();
436 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
437 // entrypoints.
438 const bool is_zygote = runtime->IsZygote();
439 if (!is_zygote) {
440 // Background compaction is currently not supported for command line runs.
441 if (background_collector_type_ != foreground_collector_type_) {
442 VLOG(heap) << "Disabling background compaction for non zygote";
443 background_collector_type_ = foreground_collector_type_;
444 }
445 }
446 ChangeCollector(desired_collector_type_);
447 live_bitmap_.reset(new accounting::HeapBitmap(this));
448 mark_bitmap_.reset(new accounting::HeapBitmap(this));
449
450 // We don't have hspace compaction enabled with CC.
451 if (foreground_collector_type_ == kCollectorTypeCC) {
452 use_homogeneous_space_compaction_for_oom_ = false;
453 }
454 bool support_homogeneous_space_compaction =
455 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
456 use_homogeneous_space_compaction_for_oom_;
457 // We may use the same space the main space for the non moving space if we don't need to compact
458 // from the main space.
459 // This is not the case if we support homogeneous compaction or have a moving background
460 // collector type.
461 bool separate_non_moving_space = is_zygote ||
462 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
463 IsMovingGc(background_collector_type_);
464
465 // Requested begin for the alloc space, to follow the mapped image and oat files
466 uint8_t* request_begin = nullptr;
467 // Calculate the extra space required after the boot image, see allocations below.
468 size_t heap_reservation_size = 0u;
469 if (separate_non_moving_space) {
470 heap_reservation_size = non_moving_space_capacity;
471 } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
472 heap_reservation_size = capacity_;
473 }
474 heap_reservation_size = RoundUp(heap_reservation_size, kPageSize);
475 // Load image space(s).
476 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
477 MemMap heap_reservation;
478 if (space::ImageSpace::LoadBootImage(boot_class_path,
479 boot_class_path_locations,
480 boot_class_path_fds,
481 boot_class_path_image_fds,
482 boot_class_path_vdex_fds,
483 boot_class_path_oat_fds,
484 image_file_names,
485 image_instruction_set,
486 runtime->ShouldRelocate(),
487 /*executable=*/ !runtime->IsAotCompiler(),
488 heap_reservation_size,
489 &boot_image_spaces,
490 &heap_reservation)) {
491 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
492 DCHECK(!boot_image_spaces.empty());
493 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
494 DCHECK_IMPLIES(heap_reservation.IsValid(), request_begin == heap_reservation.Begin())
495 << "request_begin=" << static_cast<const void*>(request_begin)
496 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
497 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
498 boot_image_spaces_.push_back(space.get());
499 AddSpace(space.release());
500 }
501 boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
502 uint32_t boot_images_end =
503 PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
504 boot_images_size_ = boot_images_end - boot_images_start_address_;
505 if (kIsDebugBuild) {
506 VerifyBootImagesContiguity(boot_image_spaces_);
507 }
508 } else {
509 if (foreground_collector_type_ == kCollectorTypeCC) {
510 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
511 // when there's no image (dex2oat for target).
512 request_begin = kPreferredAllocSpaceBegin;
513 }
514 // Gross hack to make dex2oat deterministic.
515 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
516 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
517 // b/26849108
518 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
519 }
520 }
521
522 /*
523 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
524 +- nonmoving space (non_moving_space_capacity)+-
525 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
526 +-????????????????????????????????????????????+-
527 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
528 +-main alloc space / bump space 1 (capacity_) +-
529 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
530 +-????????????????????????????????????????????+-
531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
532 +-main alloc space2 / bump space 2 (capacity_)+-
533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
534 */
535
536 MemMap main_mem_map_1;
537 MemMap main_mem_map_2;
538
539 std::string error_str;
540 MemMap non_moving_space_mem_map;
541 if (separate_non_moving_space) {
542 ScopedTrace trace2("Create separate non moving space");
543 // If we are the zygote, the non moving space becomes the zygote space when we run
544 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
545 // rename the mem map later.
546 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
547 // Reserve the non moving mem map before the other two since it needs to be at a specific
548 // address.
549 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
550 if (heap_reservation.IsValid()) {
551 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
552 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
553 } else {
554 non_moving_space_mem_map = MapAnonymousPreferredAddress(
555 space_name, request_begin, non_moving_space_capacity, &error_str);
556 }
557 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
558 DCHECK(!heap_reservation.IsValid());
559 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
560 request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
561 }
562 // Attempt to create 2 mem maps at or after the requested begin.
563 if (foreground_collector_type_ != kCollectorTypeCC) {
564 ScopedTrace trace2("Create main mem map");
565 if (separate_non_moving_space || !is_zygote) {
566 main_mem_map_1 = MapAnonymousPreferredAddress(
567 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
568 } else {
569 // If no separate non-moving space and we are the zygote, the main space must come right after
570 // the image space to avoid a gap. This is required since we want the zygote space to be
571 // adjacent to the image space.
572 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
573 main_mem_map_1 = MemMap::MapAnonymous(
574 kMemMapSpaceName[0],
575 request_begin,
576 capacity_,
577 PROT_READ | PROT_WRITE,
578 /* low_4gb= */ true,
579 /* reuse= */ false,
580 heap_reservation.IsValid() ? &heap_reservation : nullptr,
581 &error_str);
582 }
583 CHECK(main_mem_map_1.IsValid()) << error_str;
584 DCHECK(!heap_reservation.IsValid());
585 }
586 if (support_homogeneous_space_compaction ||
587 background_collector_type_ == kCollectorTypeSS ||
588 foreground_collector_type_ == kCollectorTypeSS) {
589 ScopedTrace trace2("Create main mem map 2");
590 main_mem_map_2 = MapAnonymousPreferredAddress(
591 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
592 CHECK(main_mem_map_2.IsValid()) << error_str;
593 }
594
595 // Create the non moving space first so that bitmaps don't take up the address range.
596 if (separate_non_moving_space) {
597 ScopedTrace trace2("Add non moving space");
598 // Non moving space is always dlmalloc since we currently don't have support for multiple
599 // active rosalloc spaces.
600 const size_t size = non_moving_space_mem_map.Size();
601 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
602 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
603 "zygote / non moving space",
604 kDefaultStartingSize,
605 initial_size,
606 size,
607 size,
608 /* can_move_objects= */ false);
609 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
610 << non_moving_space_mem_map_begin;
611 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
612 AddSpace(non_moving_space_);
613 }
614 // Create other spaces based on whether or not we have a moving GC.
615 if (foreground_collector_type_ == kCollectorTypeCC) {
616 CHECK(separate_non_moving_space);
617 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
618 MemMap region_space_mem_map =
619 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
620 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
621 region_space_ = space::RegionSpace::Create(
622 kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
623 AddSpace(region_space_);
624 } else if (IsMovingGc(foreground_collector_type_)) {
625 // Create bump pointer spaces.
626 // We only to create the bump pointer if the foreground collector is a compacting GC.
627 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
628 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
629 std::move(main_mem_map_1));
630 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
631 AddSpace(bump_pointer_space_);
632 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
633 std::move(main_mem_map_2));
634 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
635 AddSpace(temp_space_);
636 CHECK(separate_non_moving_space);
637 } else {
638 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
639 CHECK(main_space_ != nullptr);
640 AddSpace(main_space_);
641 if (!separate_non_moving_space) {
642 non_moving_space_ = main_space_;
643 CHECK(!non_moving_space_->CanMoveObjects());
644 }
645 if (main_mem_map_2.IsValid()) {
646 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
647 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
648 initial_size,
649 growth_limit_,
650 capacity_,
651 name,
652 /* can_move_objects= */ true));
653 CHECK(main_space_backup_.get() != nullptr);
654 // Add the space so its accounted for in the heap_begin and heap_end.
655 AddSpace(main_space_backup_.get());
656 }
657 }
658 CHECK(non_moving_space_ != nullptr);
659 CHECK(!non_moving_space_->CanMoveObjects());
660 // Allocate the large object space.
661 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
662 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
663 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
664 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
665 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
666 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
667 } else {
668 // Disable the large object space by making the cutoff excessively large.
669 large_object_threshold_ = std::numeric_limits<size_t>::max();
670 large_object_space_ = nullptr;
671 }
672 if (large_object_space_ != nullptr) {
673 AddSpace(large_object_space_);
674 }
675 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
676 CHECK(!continuous_spaces_.empty());
677 // Relies on the spaces being sorted.
678 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
679 uint8_t* heap_end = continuous_spaces_.back()->Limit();
680 size_t heap_capacity = heap_end - heap_begin;
681 // Remove the main backup space since it slows down the GC to have unused extra spaces.
682 // TODO: Avoid needing to do this.
683 if (main_space_backup_.get() != nullptr) {
684 RemoveSpace(main_space_backup_.get());
685 }
686 // Allocate the card table.
687 // We currently don't support dynamically resizing the card table.
688 // Since we don't know where in the low_4gb the app image will be located, make the card table
689 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
690 UNUSED(heap_capacity);
691 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
692 // reserved by the kernel.
693 static constexpr size_t kMinHeapAddress = 4 * KB;
694 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
695 4 * GB - kMinHeapAddress));
696 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
697 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
698 rb_table_.reset(new accounting::ReadBarrierTable());
699 DCHECK(rb_table_->IsAllCleared());
700 }
701 if (HasBootImageSpace()) {
702 // Don't add the image mod union table if we are running without an image, this can crash if
703 // we use the CardCache implementation.
704 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
705 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
706 "Image mod-union table", this, image_space);
707 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
708 AddModUnionTable(mod_union_table);
709 }
710 }
711 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
712 accounting::RememberedSet* non_moving_space_rem_set =
713 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
714 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
715 AddRememberedSet(non_moving_space_rem_set);
716 }
717 // TODO: Count objects in the image space here?
718 num_bytes_allocated_.store(0, std::memory_order_relaxed);
719 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
720 kDefaultMarkStackSize));
721 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
722 allocation_stack_.reset(accounting::ObjectStack::Create(
723 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
724 live_stack_.reset(accounting::ObjectStack::Create(
725 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
726 // It's still too early to take a lock because there are no threads yet, but we can create locks
727 // now. We don't create it earlier to make it clear that you can't use locks during heap
728 // initialization.
729 gc_complete_lock_ = new Mutex("GC complete lock");
730 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
731 *gc_complete_lock_));
732
733 thread_flip_lock_ = new Mutex("GC thread flip lock");
734 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
735 *thread_flip_lock_));
736 task_processor_.reset(new TaskProcessor());
737 reference_processor_.reset(new ReferenceProcessor());
738 pending_task_lock_ = new Mutex("Pending task lock");
739 if (ignore_target_footprint_) {
740 SetIdealFootprint(std::numeric_limits<size_t>::max());
741 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
742 }
743 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
744 // Create our garbage collectors.
745 for (size_t i = 0; i < 2; ++i) {
746 const bool concurrent = i != 0;
747 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
748 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
749 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
750 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
751 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
752 }
753 }
754 if (kMovingCollector) {
755 if (MayUseCollector(kCollectorTypeSS) ||
756 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
757 use_homogeneous_space_compaction_for_oom_) {
758 semi_space_collector_ = new collector::SemiSpace(this);
759 garbage_collectors_.push_back(semi_space_collector_);
760 }
761 if (MayUseCollector(kCollectorTypeCC)) {
762 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
763 /*young_gen=*/false,
764 use_generational_cc_,
765 "",
766 measure_gc_performance);
767 if (use_generational_cc_) {
768 young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
769 this,
770 /*young_gen=*/true,
771 use_generational_cc_,
772 "young",
773 measure_gc_performance);
774 }
775 active_concurrent_copying_collector_.store(concurrent_copying_collector_,
776 std::memory_order_relaxed);
777 DCHECK(region_space_ != nullptr);
778 concurrent_copying_collector_->SetRegionSpace(region_space_);
779 if (use_generational_cc_) {
780 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
781 // At this point, non-moving space should be created.
782 DCHECK(non_moving_space_ != nullptr);
783 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
784 }
785 garbage_collectors_.push_back(concurrent_copying_collector_);
786 if (use_generational_cc_) {
787 garbage_collectors_.push_back(young_concurrent_copying_collector_);
788 }
789 }
790 }
791 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
792 (is_zygote || separate_non_moving_space)) {
793 // Check that there's no gap between the image space and the non moving space so that the
794 // immune region won't break (eg. due to a large object allocated in the gap). This is only
795 // required when we're the zygote.
796 // Space with smallest Begin().
797 space::ImageSpace* first_space = nullptr;
798 for (space::ImageSpace* space : boot_image_spaces_) {
799 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
800 first_space = space;
801 }
802 }
803 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
804 if (!no_gap) {
805 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
806 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
807 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
808 }
809 }
810 // Perfetto Java Heap Profiler Support.
811 if (runtime->IsPerfettoJavaHeapStackProfEnabled()) {
812 // Perfetto Plugin is loaded and enabled, initialize the Java Heap Profiler.
813 InitPerfettoJavaHeapProf();
814 } else {
815 // Disable the Java Heap Profiler.
816 GetHeapSampler().DisableHeapSampler();
817 }
818
819 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
820 if (gc_stress_mode_) {
821 backtrace_lock_ = new Mutex("GC complete lock");
822 }
823 if (is_running_on_memory_tool_ || gc_stress_mode_) {
824 instrumentation->InstrumentQuickAllocEntryPoints();
825 }
826 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
827 LOG(INFO) << "Heap() exiting";
828 }
829 }
830
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)831 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
832 uint8_t* request_begin,
833 size_t capacity,
834 std::string* out_error_str) {
835 while (true) {
836 MemMap map = MemMap::MapAnonymous(name,
837 request_begin,
838 capacity,
839 PROT_READ | PROT_WRITE,
840 /*low_4gb=*/ true,
841 /*reuse=*/ false,
842 /*reservation=*/ nullptr,
843 out_error_str);
844 if (map.IsValid() || request_begin == nullptr) {
845 return map;
846 }
847 // Retry a second time with no specified request begin.
848 request_begin = nullptr;
849 }
850 }
851
MayUseCollector(CollectorType type) const852 bool Heap::MayUseCollector(CollectorType type) const {
853 return foreground_collector_type_ == type || background_collector_type_ == type;
854 }
855
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)856 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
857 size_t initial_size,
858 size_t growth_limit,
859 size_t capacity,
860 const char* name,
861 bool can_move_objects) {
862 space::MallocSpace* malloc_space = nullptr;
863 if (kUseRosAlloc) {
864 // Create rosalloc space.
865 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
866 name,
867 kDefaultStartingSize,
868 initial_size,
869 growth_limit,
870 capacity,
871 low_memory_mode_,
872 can_move_objects);
873 } else {
874 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
875 name,
876 kDefaultStartingSize,
877 initial_size,
878 growth_limit,
879 capacity,
880 can_move_objects);
881 }
882 if (collector::SemiSpace::kUseRememberedSet) {
883 accounting::RememberedSet* rem_set =
884 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
885 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
886 AddRememberedSet(rem_set);
887 }
888 CHECK(malloc_space != nullptr) << "Failed to create " << name;
889 malloc_space->SetFootprintLimit(malloc_space->Capacity());
890 return malloc_space;
891 }
892
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)893 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
894 size_t initial_size,
895 size_t growth_limit,
896 size_t capacity) {
897 // Is background compaction is enabled?
898 bool can_move_objects = IsMovingGc(background_collector_type_) !=
899 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
900 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
901 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
902 // from the main space to the zygote space. If background compaction is enabled, always pass in
903 // that we can move objets.
904 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
905 // After the zygote we want this to be false if we don't have background compaction enabled so
906 // that getting primitive array elements is faster.
907 can_move_objects = !HasZygoteSpace();
908 }
909 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
910 RemoveRememberedSet(main_space_);
911 }
912 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
913 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
914 initial_size,
915 growth_limit,
916 capacity, name,
917 can_move_objects);
918 SetSpaceAsDefault(main_space_);
919 VLOG(heap) << "Created main space " << main_space_;
920 }
921
ChangeAllocator(AllocatorType allocator)922 void Heap::ChangeAllocator(AllocatorType allocator) {
923 if (current_allocator_ != allocator) {
924 // These two allocators are only used internally and don't have any entrypoints.
925 CHECK_NE(allocator, kAllocatorTypeLOS);
926 CHECK_NE(allocator, kAllocatorTypeNonMoving);
927 current_allocator_ = allocator;
928 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
929 SetQuickAllocEntryPointsAllocator(current_allocator_);
930 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
931 }
932 }
933
IsCompilingBoot() const934 bool Heap::IsCompilingBoot() const {
935 if (!Runtime::Current()->IsAotCompiler()) {
936 return false;
937 }
938 ScopedObjectAccess soa(Thread::Current());
939 for (const auto& space : continuous_spaces_) {
940 if (space->IsImageSpace() || space->IsZygoteSpace()) {
941 return false;
942 }
943 }
944 return true;
945 }
946
IncrementDisableMovingGC(Thread * self)947 void Heap::IncrementDisableMovingGC(Thread* self) {
948 // Need to do this holding the lock to prevent races where the GC is about to run / running when
949 // we attempt to disable it.
950 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
951 MutexLock mu(self, *gc_complete_lock_);
952 ++disable_moving_gc_count_;
953 if (IsMovingGc(collector_type_running_)) {
954 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
955 }
956 }
957
DecrementDisableMovingGC(Thread * self)958 void Heap::DecrementDisableMovingGC(Thread* self) {
959 MutexLock mu(self, *gc_complete_lock_);
960 CHECK_GT(disable_moving_gc_count_, 0U);
961 --disable_moving_gc_count_;
962 }
963
IncrementDisableThreadFlip(Thread * self)964 void Heap::IncrementDisableThreadFlip(Thread* self) {
965 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
966 CHECK(kUseReadBarrier);
967 bool is_nested = self->GetDisableThreadFlipCount() > 0;
968 self->IncrementDisableThreadFlipCount();
969 if (is_nested) {
970 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
971 // counter. The global counter is incremented only once for a thread for the outermost enter.
972 return;
973 }
974 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
975 MutexLock mu(self, *thread_flip_lock_);
976 thread_flip_cond_->CheckSafeToWait(self);
977 bool has_waited = false;
978 uint64_t wait_start = 0;
979 if (thread_flip_running_) {
980 wait_start = NanoTime();
981 ScopedTrace trace("IncrementDisableThreadFlip");
982 while (thread_flip_running_) {
983 has_waited = true;
984 thread_flip_cond_->Wait(self);
985 }
986 }
987 ++disable_thread_flip_count_;
988 if (has_waited) {
989 uint64_t wait_time = NanoTime() - wait_start;
990 total_wait_time_ += wait_time;
991 if (wait_time > long_pause_log_threshold_) {
992 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
993 }
994 }
995 }
996
DecrementDisableThreadFlip(Thread * self)997 void Heap::DecrementDisableThreadFlip(Thread* self) {
998 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
999 // the GC waiting before doing a thread flip.
1000 CHECK(kUseReadBarrier);
1001 self->DecrementDisableThreadFlipCount();
1002 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
1003 if (!is_outermost) {
1004 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
1005 // The global counter is decremented only once for a thread for the outermost exit.
1006 return;
1007 }
1008 MutexLock mu(self, *thread_flip_lock_);
1009 CHECK_GT(disable_thread_flip_count_, 0U);
1010 --disable_thread_flip_count_;
1011 if (disable_thread_flip_count_ == 0) {
1012 // Potentially notify the GC thread blocking to begin a thread flip.
1013 thread_flip_cond_->Broadcast(self);
1014 }
1015 }
1016
ThreadFlipBegin(Thread * self)1017 void Heap::ThreadFlipBegin(Thread* self) {
1018 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
1019 // > 0, block. Otherwise, go ahead.
1020 CHECK(kUseReadBarrier);
1021 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1022 MutexLock mu(self, *thread_flip_lock_);
1023 thread_flip_cond_->CheckSafeToWait(self);
1024 bool has_waited = false;
1025 uint64_t wait_start = NanoTime();
1026 CHECK(!thread_flip_running_);
1027 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
1028 // GC. This like a writer preference of a reader-writer lock.
1029 thread_flip_running_ = true;
1030 while (disable_thread_flip_count_ > 0) {
1031 has_waited = true;
1032 thread_flip_cond_->Wait(self);
1033 }
1034 if (has_waited) {
1035 uint64_t wait_time = NanoTime() - wait_start;
1036 total_wait_time_ += wait_time;
1037 if (wait_time > long_pause_log_threshold_) {
1038 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1039 }
1040 }
1041 }
1042
ThreadFlipEnd(Thread * self)1043 void Heap::ThreadFlipEnd(Thread* self) {
1044 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
1045 // waiting before doing a JNI critical.
1046 CHECK(kUseReadBarrier);
1047 MutexLock mu(self, *thread_flip_lock_);
1048 CHECK(thread_flip_running_);
1049 thread_flip_running_ = false;
1050 // Potentially notify mutator threads blocking to enter a JNI critical section.
1051 thread_flip_cond_->Broadcast(self);
1052 }
1053
GrowHeapOnJankPerceptibleSwitch()1054 void Heap::GrowHeapOnJankPerceptibleSwitch() {
1055 MutexLock mu(Thread::Current(), process_state_update_lock_);
1056 size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
1057 if (orig_target_footprint < min_foreground_target_footprint_) {
1058 target_footprint_.compare_exchange_strong(orig_target_footprint,
1059 min_foreground_target_footprint_,
1060 std::memory_order_relaxed);
1061 }
1062 min_foreground_target_footprint_ = 0;
1063 }
1064
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)1065 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
1066 if (old_process_state != new_process_state) {
1067 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
1068 if (jank_perceptible) {
1069 // Transition back to foreground right away to prevent jank.
1070 RequestCollectorTransition(foreground_collector_type_, 0);
1071 GrowHeapOnJankPerceptibleSwitch();
1072 } else {
1073 // Don't delay for debug builds since we may want to stress test the GC.
1074 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
1075 // special handling which does a homogenous space compaction once but then doesn't transition
1076 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
1077 // transition the collector.
1078 RequestCollectorTransition(background_collector_type_,
1079 kStressCollectorTransition
1080 ? 0
1081 : kCollectorTransitionWait);
1082 }
1083 }
1084 }
1085
CreateThreadPool()1086 void Heap::CreateThreadPool() {
1087 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1088 if (num_threads != 0) {
1089 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
1090 }
1091 }
1092
MarkAllocStackAsLive(accounting::ObjectStack * stack)1093 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1094 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1095 space::ContinuousSpace* space2 = non_moving_space_;
1096 // TODO: Generalize this to n bitmaps?
1097 CHECK(space1 != nullptr);
1098 CHECK(space2 != nullptr);
1099 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1100 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1101 stack);
1102 }
1103
DeleteThreadPool()1104 void Heap::DeleteThreadPool() {
1105 thread_pool_.reset(nullptr);
1106 }
1107
AddSpace(space::Space * space)1108 void Heap::AddSpace(space::Space* space) {
1109 CHECK(space != nullptr);
1110 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1111 if (space->IsContinuousSpace()) {
1112 DCHECK(!space->IsDiscontinuousSpace());
1113 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1114 // Continuous spaces don't necessarily have bitmaps.
1115 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1116 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1117 // The region space bitmap is not added since VisitObjects visits the region space objects with
1118 // special handling.
1119 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1120 CHECK(mark_bitmap != nullptr);
1121 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1122 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1123 }
1124 continuous_spaces_.push_back(continuous_space);
1125 // Ensure that spaces remain sorted in increasing order of start address.
1126 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1127 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1128 return a->Begin() < b->Begin();
1129 });
1130 } else {
1131 CHECK(space->IsDiscontinuousSpace());
1132 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1133 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1134 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1135 discontinuous_spaces_.push_back(discontinuous_space);
1136 }
1137 if (space->IsAllocSpace()) {
1138 alloc_spaces_.push_back(space->AsAllocSpace());
1139 }
1140 }
1141
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1142 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1143 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1144 if (continuous_space->IsDlMallocSpace()) {
1145 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1146 } else if (continuous_space->IsRosAllocSpace()) {
1147 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1148 }
1149 }
1150
RemoveSpace(space::Space * space)1151 void Heap::RemoveSpace(space::Space* space) {
1152 DCHECK(space != nullptr);
1153 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1154 if (space->IsContinuousSpace()) {
1155 DCHECK(!space->IsDiscontinuousSpace());
1156 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1157 // Continuous spaces don't necessarily have bitmaps.
1158 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1159 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1160 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1161 DCHECK(mark_bitmap != nullptr);
1162 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1163 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1164 }
1165 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1166 DCHECK(it != continuous_spaces_.end());
1167 continuous_spaces_.erase(it);
1168 } else {
1169 DCHECK(space->IsDiscontinuousSpace());
1170 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1171 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1172 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1173 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1174 discontinuous_space);
1175 DCHECK(it != discontinuous_spaces_.end());
1176 discontinuous_spaces_.erase(it);
1177 }
1178 if (space->IsAllocSpace()) {
1179 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1180 DCHECK(it != alloc_spaces_.end());
1181 alloc_spaces_.erase(it);
1182 }
1183 }
1184
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1185 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1186 uint64_t current_process_cpu_time) const {
1187 uint64_t bytes_allocated = GetBytesAllocated();
1188 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1189 return weight * bytes_allocated;
1190 }
1191
CalculatePreGcWeightedAllocatedBytes()1192 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1193 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1194 pre_gc_weighted_allocated_bytes_ +=
1195 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1196 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1197 }
1198
CalculatePostGcWeightedAllocatedBytes()1199 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1200 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1201 post_gc_weighted_allocated_bytes_ +=
1202 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1203 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1204 }
1205
GetTotalGcCpuTime()1206 uint64_t Heap::GetTotalGcCpuTime() {
1207 uint64_t sum = 0;
1208 for (auto* collector : garbage_collectors_) {
1209 sum += collector->GetTotalCpuTime();
1210 }
1211 return sum;
1212 }
1213
DumpGcPerformanceInfo(std::ostream & os)1214 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1215 // Dump cumulative timings.
1216 os << "Dumping cumulative Gc timings\n";
1217 uint64_t total_duration = 0;
1218 // Dump cumulative loggers for each GC type.
1219 uint64_t total_paused_time = 0;
1220 for (auto* collector : garbage_collectors_) {
1221 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1222 total_paused_time += collector->GetTotalPausedTimeNs();
1223 collector->DumpPerformanceInfo(os);
1224 }
1225 if (total_duration != 0) {
1226 const double total_seconds = total_duration / 1.0e9;
1227 const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
1228 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1229 os << "Mean GC size throughput: "
1230 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
1231 << " per cpu-time: "
1232 << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
1233 os << "Mean GC object throughput: "
1234 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1235 }
1236 uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1237 os << "Total number of allocations " << total_objects_allocated << "\n";
1238 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1239 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1240 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1241 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1242 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1243 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1244 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1245 if (HasZygoteSpace()) {
1246 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1247 }
1248 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1249 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1250 os << "Total GC count: " << GetGcCount() << "\n";
1251 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1252 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1253 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1254 os << "Total pre-OOME GC count: " << GetPreOomeGcCount() << "\n";
1255 {
1256 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1257 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1258 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1259 gc_count_rate_histogram_.DumpBins(os);
1260 os << "\n";
1261 }
1262 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1263 os << "Histogram of blocking GC count per "
1264 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1265 blocking_gc_count_rate_histogram_.DumpBins(os);
1266 os << "\n";
1267 }
1268 }
1269
1270 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1271 rosalloc_space_->DumpStats(os);
1272 }
1273
1274 os << "Native bytes total: " << GetNativeBytes()
1275 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1276
1277 os << "Total native bytes at last GC: "
1278 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1279
1280 BaseMutex::DumpAll(os);
1281 }
1282
ResetGcPerformanceInfo()1283 void Heap::ResetGcPerformanceInfo() {
1284 for (auto* collector : garbage_collectors_) {
1285 collector->ResetMeasurements();
1286 }
1287
1288 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1289
1290 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1291 pre_gc_weighted_allocated_bytes_ = 0u;
1292
1293 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1294 post_gc_weighted_allocated_bytes_ = 0u;
1295
1296 total_bytes_freed_ever_.store(0);
1297 total_objects_freed_ever_.store(0);
1298 total_wait_time_ = 0;
1299 blocking_gc_count_ = 0;
1300 blocking_gc_time_ = 0;
1301 pre_oome_gc_count_.store(0, std::memory_order_relaxed);
1302 gc_count_last_window_ = 0;
1303 blocking_gc_count_last_window_ = 0;
1304 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1305 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1306 {
1307 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1308 gc_count_rate_histogram_.Reset();
1309 blocking_gc_count_rate_histogram_.Reset();
1310 }
1311 }
1312
GetGcCount() const1313 uint64_t Heap::GetGcCount() const {
1314 uint64_t gc_count = 0U;
1315 for (auto* collector : garbage_collectors_) {
1316 gc_count += collector->GetCumulativeTimings().GetIterations();
1317 }
1318 return gc_count;
1319 }
1320
GetGcTime() const1321 uint64_t Heap::GetGcTime() const {
1322 uint64_t gc_time = 0U;
1323 for (auto* collector : garbage_collectors_) {
1324 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1325 }
1326 return gc_time;
1327 }
1328
GetBlockingGcCount() const1329 uint64_t Heap::GetBlockingGcCount() const {
1330 return blocking_gc_count_;
1331 }
1332
GetBlockingGcTime() const1333 uint64_t Heap::GetBlockingGcTime() const {
1334 return blocking_gc_time_;
1335 }
1336
DumpGcCountRateHistogram(std::ostream & os) const1337 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1338 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1339 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1340 gc_count_rate_histogram_.DumpBins(os);
1341 }
1342 }
1343
DumpBlockingGcCountRateHistogram(std::ostream & os) const1344 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1345 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1346 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1347 blocking_gc_count_rate_histogram_.DumpBins(os);
1348 }
1349 }
1350
GetPreOomeGcCount() const1351 uint64_t Heap::GetPreOomeGcCount() const {
1352 return pre_oome_gc_count_.load(std::memory_order_relaxed);
1353 }
1354
1355 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1356 static inline AllocationListener* GetAndOverwriteAllocationListener(
1357 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1358 return storage->exchange(new_value);
1359 }
1360
~Heap()1361 Heap::~Heap() {
1362 VLOG(heap) << "Starting ~Heap()";
1363 STLDeleteElements(&garbage_collectors_);
1364 // If we don't reset then the mark stack complains in its destructor.
1365 allocation_stack_->Reset();
1366 allocation_records_.reset();
1367 live_stack_->Reset();
1368 STLDeleteValues(&mod_union_tables_);
1369 STLDeleteValues(&remembered_sets_);
1370 STLDeleteElements(&continuous_spaces_);
1371 STLDeleteElements(&discontinuous_spaces_);
1372 delete gc_complete_lock_;
1373 delete thread_flip_lock_;
1374 delete pending_task_lock_;
1375 delete backtrace_lock_;
1376 uint64_t unique_count = unique_backtrace_count_.load();
1377 uint64_t seen_count = seen_backtrace_count_.load();
1378 if (unique_count != 0 || seen_count != 0) {
1379 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1380 }
1381 VLOG(heap) << "Finished ~Heap()";
1382 }
1383
1384
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1385 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1386 for (const auto& space : continuous_spaces_) {
1387 if (space->Contains(addr)) {
1388 return space;
1389 }
1390 }
1391 return nullptr;
1392 }
1393
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1394 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1395 bool fail_ok) const {
1396 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1397 if (space != nullptr) {
1398 return space;
1399 }
1400 if (!fail_ok) {
1401 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1402 }
1403 return nullptr;
1404 }
1405
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1406 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1407 bool fail_ok) const {
1408 for (const auto& space : discontinuous_spaces_) {
1409 if (space->Contains(obj.Ptr())) {
1410 return space;
1411 }
1412 }
1413 if (!fail_ok) {
1414 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1415 }
1416 return nullptr;
1417 }
1418
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1419 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1420 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1421 if (result != nullptr) {
1422 return result;
1423 }
1424 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1425 }
1426
FindSpaceFromAddress(const void * addr) const1427 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1428 for (const auto& space : continuous_spaces_) {
1429 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1430 return space;
1431 }
1432 }
1433 for (const auto& space : discontinuous_spaces_) {
1434 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1435 return space;
1436 }
1437 }
1438 return nullptr;
1439 }
1440
DumpSpaceNameFromAddress(const void * addr) const1441 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1442 space::Space* space = FindSpaceFromAddress(addr);
1443 return (space != nullptr) ? space->GetName() : "no space";
1444 }
1445
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1446 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1447 // If we're in a stack overflow, do not create a new exception. It would require running the
1448 // constructor, which will of course still be in a stack overflow.
1449 if (self->IsHandlingStackOverflow()) {
1450 self->SetException(
1451 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1452 return;
1453 }
1454
1455 std::ostringstream oss;
1456 size_t total_bytes_free = GetFreeMemory();
1457 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1458 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1459 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1460 << ", growth limit "
1461 << growth_limit_;
1462 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1463 if (total_bytes_free >= byte_count) {
1464 space::AllocSpace* space = nullptr;
1465 if (allocator_type == kAllocatorTypeNonMoving) {
1466 space = non_moving_space_;
1467 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1468 allocator_type == kAllocatorTypeDlMalloc) {
1469 space = main_space_;
1470 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1471 allocator_type == kAllocatorTypeTLAB) {
1472 space = bump_pointer_space_;
1473 } else if (allocator_type == kAllocatorTypeRegion ||
1474 allocator_type == kAllocatorTypeRegionTLAB) {
1475 space = region_space_;
1476 }
1477
1478 // There is no fragmentation info to log for large-object space.
1479 if (allocator_type != kAllocatorTypeLOS) {
1480 CHECK(space != nullptr) << "allocator_type:" << allocator_type
1481 << " byte_count:" << byte_count
1482 << " total_bytes_free:" << total_bytes_free;
1483 // LogFragmentationAllocFailure returns true if byte_count is greater than
1484 // the largest free contiguous chunk in the space. Return value false
1485 // means that we are throwing OOME because the amount of free heap after
1486 // GC is less than kMinFreeHeapAfterGcForAlloc in proportion of the heap-size.
1487 // Log an appropriate message in that case.
1488 if (!space->LogFragmentationAllocFailure(oss, byte_count)) {
1489 oss << "; giving up on allocation because <"
1490 << kMinFreeHeapAfterGcForAlloc * 100
1491 << "% of heap free after GC.";
1492 }
1493 }
1494 }
1495 self->ThrowOutOfMemoryError(oss.str().c_str());
1496 }
1497
DoPendingCollectorTransition()1498 void Heap::DoPendingCollectorTransition() {
1499 CollectorType desired_collector_type = desired_collector_type_;
1500 // Launch homogeneous space compaction if it is desired.
1501 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1502 if (!CareAboutPauseTimes()) {
1503 PerformHomogeneousSpaceCompact();
1504 } else {
1505 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1506 }
1507 } else if (desired_collector_type == kCollectorTypeCCBackground) {
1508 DCHECK(kUseReadBarrier);
1509 if (!CareAboutPauseTimes()) {
1510 // Invoke CC full compaction.
1511 CollectGarbageInternal(collector::kGcTypeFull,
1512 kGcCauseCollectorTransition,
1513 /*clear_soft_references=*/false, GC_NUM_ANY);
1514 } else {
1515 VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
1516 }
1517 } else {
1518 CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
1519 }
1520 }
1521
Trim(Thread * self)1522 void Heap::Trim(Thread* self) {
1523 Runtime* const runtime = Runtime::Current();
1524 if (!CareAboutPauseTimes()) {
1525 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1526 // about pauses.
1527 ScopedTrace trace("Deflating monitors");
1528 // Avoid race conditions on the lock word for CC.
1529 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1530 ScopedSuspendAll ssa(__FUNCTION__);
1531 uint64_t start_time = NanoTime();
1532 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1533 VLOG(heap) << "Deflating " << count << " monitors took "
1534 << PrettyDuration(NanoTime() - start_time);
1535 }
1536 TrimIndirectReferenceTables(self);
1537 TrimSpaces(self);
1538 // Trim arenas that may have been used by JIT or verifier.
1539 runtime->GetArenaPool()->TrimMaps();
1540 }
1541
1542 class TrimIndirectReferenceTableClosure : public Closure {
1543 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1544 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1545 }
Run(Thread * thread)1546 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1547 thread->GetJniEnv()->TrimLocals();
1548 // If thread is a running mutator, then act on behalf of the trim thread.
1549 // See the code in ThreadList::RunCheckpoint.
1550 barrier_->Pass(Thread::Current());
1551 }
1552
1553 private:
1554 Barrier* const barrier_;
1555 };
1556
TrimIndirectReferenceTables(Thread * self)1557 void Heap::TrimIndirectReferenceTables(Thread* self) {
1558 ScopedObjectAccess soa(self);
1559 ScopedTrace trace(__PRETTY_FUNCTION__);
1560 JavaVMExt* vm = soa.Vm();
1561 // Trim globals indirect reference table.
1562 vm->TrimGlobals();
1563 // Trim locals indirect reference tables.
1564 // TODO: May also want to look for entirely empty pages maintained by SmallIrtAllocator.
1565 Barrier barrier(0);
1566 TrimIndirectReferenceTableClosure closure(&barrier);
1567 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1568 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1569 if (barrier_count != 0) {
1570 barrier.Increment(self, barrier_count);
1571 }
1572 }
1573
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1574 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1575 // Need to do this before acquiring the locks since we don't want to get suspended while
1576 // holding any locks.
1577 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
1578 MutexLock mu(self, *gc_complete_lock_);
1579 // Ensure there is only one GC at a time.
1580 WaitForGcToCompleteLocked(cause, self);
1581 collector_type_running_ = collector_type;
1582 last_gc_cause_ = cause;
1583 thread_running_gc_ = self;
1584 }
1585
TrimSpaces(Thread * self)1586 void Heap::TrimSpaces(Thread* self) {
1587 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1588 // trimming.
1589 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1590 ScopedTrace trace(__PRETTY_FUNCTION__);
1591 const uint64_t start_ns = NanoTime();
1592 // Trim the managed spaces.
1593 uint64_t total_alloc_space_allocated = 0;
1594 uint64_t total_alloc_space_size = 0;
1595 uint64_t managed_reclaimed = 0;
1596 {
1597 ScopedObjectAccess soa(self);
1598 for (const auto& space : continuous_spaces_) {
1599 if (space->IsMallocSpace()) {
1600 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1601 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1602 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1603 // for a long period of time.
1604 managed_reclaimed += malloc_space->Trim();
1605 }
1606 total_alloc_space_size += malloc_space->Size();
1607 }
1608 }
1609 }
1610 total_alloc_space_allocated = GetBytesAllocated();
1611 if (large_object_space_ != nullptr) {
1612 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1613 }
1614 if (bump_pointer_space_ != nullptr) {
1615 total_alloc_space_allocated -= bump_pointer_space_->Size();
1616 }
1617 if (region_space_ != nullptr) {
1618 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1619 }
1620 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1621 static_cast<float>(total_alloc_space_size);
1622 uint64_t gc_heap_end_ns = NanoTime();
1623 // We never move things in the native heap, so we can finish the GC at this point.
1624 FinishGC(self, collector::kGcTypeNone);
1625
1626 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1627 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1628 << static_cast<int>(100 * managed_utilization) << "%.";
1629 }
1630
IsValidObjectAddress(const void * addr) const1631 bool Heap::IsValidObjectAddress(const void* addr) const {
1632 if (addr == nullptr) {
1633 return true;
1634 }
1635 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1636 }
1637
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1638 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1639 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1640 }
1641
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1642 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1643 bool search_allocation_stack,
1644 bool search_live_stack,
1645 bool sorted) {
1646 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1647 return false;
1648 }
1649 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1650 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1651 if (obj == klass) {
1652 // This case happens for java.lang.Class.
1653 return true;
1654 }
1655 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1656 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1657 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1658 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1659 return temp_space_->Contains(obj.Ptr());
1660 }
1661 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1662 return true;
1663 }
1664 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1665 space::DiscontinuousSpace* d_space = nullptr;
1666 if (c_space != nullptr) {
1667 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1668 return true;
1669 }
1670 } else {
1671 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1672 if (d_space != nullptr) {
1673 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1674 return true;
1675 }
1676 }
1677 }
1678 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1679 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1680 if (i > 0) {
1681 NanoSleep(MsToNs(10));
1682 }
1683 if (search_allocation_stack) {
1684 if (sorted) {
1685 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1686 return true;
1687 }
1688 } else if (allocation_stack_->Contains(obj.Ptr())) {
1689 return true;
1690 }
1691 }
1692
1693 if (search_live_stack) {
1694 if (sorted) {
1695 if (live_stack_->ContainsSorted(obj.Ptr())) {
1696 return true;
1697 }
1698 } else if (live_stack_->Contains(obj.Ptr())) {
1699 return true;
1700 }
1701 }
1702 }
1703 // We need to check the bitmaps again since there is a race where we mark something as live and
1704 // then clear the stack containing it.
1705 if (c_space != nullptr) {
1706 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1707 return true;
1708 }
1709 } else {
1710 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1711 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1712 return true;
1713 }
1714 }
1715 return false;
1716 }
1717
DumpSpaces() const1718 std::string Heap::DumpSpaces() const {
1719 std::ostringstream oss;
1720 DumpSpaces(oss);
1721 return oss.str();
1722 }
1723
DumpSpaces(std::ostream & stream) const1724 void Heap::DumpSpaces(std::ostream& stream) const {
1725 for (const auto& space : continuous_spaces_) {
1726 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1727 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1728 stream << space << " " << *space << "\n";
1729 if (live_bitmap != nullptr) {
1730 stream << live_bitmap << " " << *live_bitmap << "\n";
1731 }
1732 if (mark_bitmap != nullptr) {
1733 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1734 }
1735 }
1736 for (const auto& space : discontinuous_spaces_) {
1737 stream << space << " " << *space << "\n";
1738 }
1739 }
1740
VerifyObjectBody(ObjPtr<mirror::Object> obj)1741 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1742 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1743 return;
1744 }
1745
1746 // Ignore early dawn of the universe verifications.
1747 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1748 return;
1749 }
1750 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1751 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1752 CHECK(c != nullptr) << "Null class in object " << obj;
1753 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1754 CHECK(VerifyClassClass(c));
1755
1756 if (verify_object_mode_ > kVerifyObjectModeFast) {
1757 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1758 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1759 }
1760 }
1761
VerifyHeap()1762 void Heap::VerifyHeap() {
1763 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1764 auto visitor = [&](mirror::Object* obj) {
1765 VerifyObjectBody(obj);
1766 };
1767 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1768 // NO_THREAD_SAFETY_ANALYSIS.
1769 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1770 GetLiveBitmap()->Visit(visitor);
1771 };
1772 no_thread_safety_analysis();
1773 }
1774
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1775 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1776 // Use signed comparison since freed bytes can be negative when background compaction foreground
1777 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1778 // free list backed space, which may increase memory footprint due to padding and binning.
1779 RACING_DCHECK_LE(freed_bytes,
1780 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1781 // Note: This relies on 2s complement for handling negative freed_bytes.
1782 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1783 if (Runtime::Current()->HasStatsEnabled()) {
1784 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1785 thread_stats->freed_objects += freed_objects;
1786 thread_stats->freed_bytes += freed_bytes;
1787 // TODO: Do this concurrently.
1788 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1789 global_stats->freed_objects += freed_objects;
1790 global_stats->freed_bytes += freed_bytes;
1791 }
1792 }
1793
RecordFreeRevoke()1794 void Heap::RecordFreeRevoke() {
1795 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1796 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1797 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1798 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1799 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1800 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1801 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1802 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1803 bytes_freed) << "num_bytes_allocated_ underflow";
1804 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1805 }
1806
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1807 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1808 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1809 return rosalloc_space_;
1810 }
1811 for (const auto& space : continuous_spaces_) {
1812 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1813 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1814 return space->AsContinuousSpace()->AsRosAllocSpace();
1815 }
1816 }
1817 }
1818 return nullptr;
1819 }
1820
EntrypointsInstrumented()1821 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1822 instrumentation::Instrumentation* const instrumentation =
1823 Runtime::Current()->GetInstrumentation();
1824 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1825 }
1826
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1827 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1828 AllocatorType allocator,
1829 bool instrumented,
1830 size_t alloc_size,
1831 size_t* bytes_allocated,
1832 size_t* usable_size,
1833 size_t* bytes_tl_bulk_allocated,
1834 ObjPtr<mirror::Class>* klass) {
1835 bool was_default_allocator = allocator == GetCurrentAllocator();
1836 // Make sure there is no pending exception since we may need to throw an OOME.
1837 self->AssertNoPendingException();
1838 DCHECK(klass != nullptr);
1839
1840 StackHandleScope<1> hs(self);
1841 HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
1842
1843 auto send_object_pre_alloc =
1844 [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
1845 if (UNLIKELY(instrumented)) {
1846 AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
1847 if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
1848 l->PreObjectAllocated(self, h_klass, &alloc_size);
1849 }
1850 }
1851 };
1852 #define PERFORM_SUSPENDING_OPERATION(op) \
1853 [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
1854 ScopedAllowThreadSuspension ats; \
1855 auto res = (op); \
1856 send_object_pre_alloc(); \
1857 return res; \
1858 }()
1859
1860 // The allocation failed. If the GC is running, block until it completes, and then retry the
1861 // allocation.
1862 collector::GcType last_gc =
1863 PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
1864 // If we were the default allocator but the allocator changed while we were suspended,
1865 // abort the allocation.
1866 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1867 (!instrumented && EntrypointsInstrumented())) {
1868 return nullptr;
1869 }
1870 uint32_t starting_gc_num = GetCurrentGcNum();
1871 if (last_gc != collector::kGcTypeNone) {
1872 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1873 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1874 usable_size, bytes_tl_bulk_allocated);
1875 if (ptr != nullptr) {
1876 return ptr;
1877 }
1878 }
1879
1880 auto have_reclaimed_enough = [&]() {
1881 size_t curr_bytes_allocated = GetBytesAllocated();
1882 double curr_free_heap =
1883 static_cast<double>(growth_limit_ - curr_bytes_allocated) / growth_limit_;
1884 return curr_free_heap >= kMinFreeHeapAfterGcForAlloc;
1885 };
1886 // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization),
1887 // if it's not already tried. If that doesn't succeed then go for the most
1888 // exhaustive option. Perform a full-heap collection including clearing
1889 // SoftReferences. In case of ConcurrentCopying, it will also ensure that
1890 // all regions are evacuated. If allocation doesn't succeed even after that
1891 // then there is no hope, so we throw OOME.
1892 collector::GcType tried_type = next_gc_type_;
1893 if (last_gc < tried_type) {
1894 const bool gc_ran = PERFORM_SUSPENDING_OPERATION(
1895 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false, starting_gc_num + 1)
1896 != collector::kGcTypeNone);
1897
1898 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1899 (!instrumented && EntrypointsInstrumented())) {
1900 return nullptr;
1901 }
1902 if (gc_ran && have_reclaimed_enough()) {
1903 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator,
1904 alloc_size, bytes_allocated,
1905 usable_size, bytes_tl_bulk_allocated);
1906 if (ptr != nullptr) {
1907 return ptr;
1908 }
1909 }
1910 }
1911 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1912 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1913 // VM spec requires that all SoftReferences have been collected and cleared before throwing
1914 // OOME.
1915 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1916 << " allocation";
1917 // TODO: Run finalization, but this may cause more allocations to occur.
1918 // We don't need a WaitForGcToComplete here either.
1919 // TODO: Should check whether another thread already just ran a GC with soft
1920 // references.
1921 DCHECK(!gc_plan_.empty());
1922 pre_oome_gc_count_.fetch_add(1, std::memory_order_relaxed);
1923 PERFORM_SUSPENDING_OPERATION(
1924 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true, GC_NUM_ANY));
1925 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1926 (!instrumented && EntrypointsInstrumented())) {
1927 return nullptr;
1928 }
1929 mirror::Object* ptr = nullptr;
1930 if (have_reclaimed_enough()) {
1931 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1932 usable_size, bytes_tl_bulk_allocated);
1933 }
1934
1935 if (ptr == nullptr) {
1936 const uint64_t current_time = NanoTime();
1937 switch (allocator) {
1938 case kAllocatorTypeRosAlloc:
1939 // Fall-through.
1940 case kAllocatorTypeDlMalloc: {
1941 if (use_homogeneous_space_compaction_for_oom_ &&
1942 current_time - last_time_homogeneous_space_compaction_by_oom_ >
1943 min_interval_homogeneous_space_compaction_by_oom_) {
1944 last_time_homogeneous_space_compaction_by_oom_ = current_time;
1945 HomogeneousSpaceCompactResult result =
1946 PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact());
1947 // Thread suspension could have occurred.
1948 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1949 (!instrumented && EntrypointsInstrumented())) {
1950 return nullptr;
1951 }
1952 switch (result) {
1953 case HomogeneousSpaceCompactResult::kSuccess:
1954 // If the allocation succeeded, we delayed an oom.
1955 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1956 usable_size, bytes_tl_bulk_allocated);
1957 if (ptr != nullptr) {
1958 count_delayed_oom_++;
1959 }
1960 break;
1961 case HomogeneousSpaceCompactResult::kErrorReject:
1962 // Reject due to disabled moving GC.
1963 break;
1964 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1965 // Throw OOM by default.
1966 break;
1967 default: {
1968 UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1969 << static_cast<size_t>(result);
1970 UNREACHABLE();
1971 }
1972 }
1973 // Always print that we ran homogeneous space compation since this can cause jank.
1974 VLOG(heap) << "Ran heap homogeneous space compaction, "
1975 << " requested defragmentation "
1976 << count_requested_homogeneous_space_compaction_.load()
1977 << " performed defragmentation "
1978 << count_performed_homogeneous_space_compaction_.load()
1979 << " ignored homogeneous space compaction "
1980 << count_ignored_homogeneous_space_compaction_.load()
1981 << " delayed count = "
1982 << count_delayed_oom_.load();
1983 }
1984 break;
1985 }
1986 default: {
1987 // Do nothing for others allocators.
1988 }
1989 }
1990 }
1991 #undef PERFORM_SUSPENDING_OPERATION
1992 // If the allocation hasn't succeeded by this point, throw an OOM error.
1993 if (ptr == nullptr) {
1994 ScopedAllowThreadSuspension ats;
1995 ThrowOutOfMemoryError(self, alloc_size, allocator);
1996 }
1997 return ptr;
1998 }
1999
SetTargetHeapUtilization(float target)2000 void Heap::SetTargetHeapUtilization(float target) {
2001 DCHECK_GT(target, 0.1f); // asserted in Java code
2002 DCHECK_LT(target, 1.0f);
2003 target_utilization_ = target;
2004 }
2005
GetObjectsAllocated() const2006 size_t Heap::GetObjectsAllocated() const {
2007 Thread* const self = Thread::Current();
2008 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGetObjectsAllocated);
2009 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
2010 // us to suspend while we are doing SuspendAll. b/35232978
2011 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2012 gc::kGcCauseGetObjectsAllocated,
2013 gc::kCollectorTypeGetObjectsAllocated);
2014 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
2015 ScopedSuspendAll ssa(__FUNCTION__);
2016 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2017 size_t total = 0;
2018 for (space::AllocSpace* space : alloc_spaces_) {
2019 total += space->GetObjectsAllocated();
2020 }
2021 return total;
2022 }
2023
GetObjectsAllocatedEver() const2024 uint64_t Heap::GetObjectsAllocatedEver() const {
2025 uint64_t total = GetObjectsFreedEver();
2026 // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
2027 if (Thread::Current() != nullptr) {
2028 total += GetObjectsAllocated();
2029 }
2030 return total;
2031 }
2032
GetBytesAllocatedEver() const2033 uint64_t Heap::GetBytesAllocatedEver() const {
2034 // Force the returned value to be monotonically increasing, in the sense that if this is called
2035 // at A and B, such that A happens-before B, then the call at B returns a value no smaller than
2036 // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
2037 // and total_bytes_freed_ever_ is incremented later.
2038 static std::atomic<uint64_t> max_bytes_so_far(0);
2039 uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
2040 uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire);
2041 current_bytes += GetBytesAllocated();
2042 do {
2043 if (current_bytes <= so_far) {
2044 return so_far;
2045 }
2046 } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
2047 current_bytes, std::memory_order_relaxed));
2048 return current_bytes;
2049 }
2050
2051 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)2052 static bool MatchesClass(mirror::Object* obj,
2053 Handle<mirror::Class> h_class,
2054 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
2055 mirror::Class* instance_class = obj->GetClass();
2056 CHECK(instance_class != nullptr);
2057 ObjPtr<mirror::Class> klass = h_class.Get();
2058 if (use_is_assignable_from) {
2059 return klass != nullptr && klass->IsAssignableFrom(instance_class);
2060 }
2061 return instance_class == klass;
2062 }
2063
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)2064 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
2065 bool use_is_assignable_from,
2066 uint64_t* counts) {
2067 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2068 for (size_t i = 0; i < classes.size(); ++i) {
2069 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
2070 ++counts[i];
2071 }
2072 }
2073 };
2074 VisitObjects(instance_counter);
2075 }
2076
CollectGarbage(bool clear_soft_references,GcCause cause)2077 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2078 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2079 // last GC will not have necessarily been cleared.
2080 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references, GC_NUM_ANY);
2081 }
2082
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2083 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2084 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2085 foreground_collector_type_ == kCollectorTypeCMS;
2086 }
2087
PerformHomogeneousSpaceCompact()2088 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2089 Thread* self = Thread::Current();
2090 // Inc requested homogeneous space compaction.
2091 count_requested_homogeneous_space_compaction_++;
2092 // Store performed homogeneous space compaction at a new request arrival.
2093 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2094 Locks::mutator_lock_->AssertNotHeld(self);
2095 {
2096 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2097 MutexLock mu(self, *gc_complete_lock_);
2098 // Ensure there is only one GC at a time.
2099 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2100 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2101 // count is non zero.
2102 // If the collector type changed to something which doesn't benefit from homogeneous space
2103 // compaction, exit.
2104 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2105 !main_space_->CanMoveObjects()) {
2106 return kErrorReject;
2107 }
2108 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2109 return kErrorUnsupported;
2110 }
2111 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2112 }
2113 if (Runtime::Current()->IsShuttingDown(self)) {
2114 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2115 // cause objects to get finalized.
2116 FinishGC(self, collector::kGcTypeNone);
2117 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2118 }
2119 collector::GarbageCollector* collector;
2120 {
2121 ScopedSuspendAll ssa(__FUNCTION__);
2122 uint64_t start_time = NanoTime();
2123 // Launch compaction.
2124 space::MallocSpace* to_space = main_space_backup_.release();
2125 space::MallocSpace* from_space = main_space_;
2126 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2127 const uint64_t space_size_before_compaction = from_space->Size();
2128 AddSpace(to_space);
2129 // Make sure that we will have enough room to copy.
2130 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2131 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2132 const uint64_t space_size_after_compaction = to_space->Size();
2133 main_space_ = to_space;
2134 main_space_backup_.reset(from_space);
2135 RemoveSpace(from_space);
2136 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2137 // Update performed homogeneous space compaction count.
2138 count_performed_homogeneous_space_compaction_++;
2139 // Print statics log and resume all threads.
2140 uint64_t duration = NanoTime() - start_time;
2141 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2142 << PrettySize(space_size_before_compaction) << " -> "
2143 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2144 << std::fixed << static_cast<double>(space_size_after_compaction) /
2145 static_cast<double>(space_size_before_compaction);
2146 }
2147 // Finish GC.
2148 // Get the references we need to enqueue.
2149 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2150 GrowForUtilization(semi_space_collector_);
2151 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2152 FinishGC(self, collector::kGcTypeFull);
2153 // Enqueue any references after losing the GC locks.
2154 clear->Run(self);
2155 clear->Finalize();
2156 {
2157 ScopedObjectAccess soa(self);
2158 soa.Vm()->UnloadNativeLibraries();
2159 }
2160 return HomogeneousSpaceCompactResult::kSuccess;
2161 }
2162
SetDefaultConcurrentStartBytes()2163 void Heap::SetDefaultConcurrentStartBytes() {
2164 MutexLock mu(Thread::Current(), *gc_complete_lock_);
2165 if (collector_type_running_ != kCollectorTypeNone) {
2166 // If a collector is already running, just let it set concurrent_start_bytes_ .
2167 return;
2168 }
2169 SetDefaultConcurrentStartBytesLocked();
2170 }
2171
SetDefaultConcurrentStartBytesLocked()2172 void Heap::SetDefaultConcurrentStartBytesLocked() {
2173 if (IsGcConcurrent()) {
2174 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
2175 size_t reserve_bytes = target_footprint / 4;
2176 reserve_bytes = std::min(reserve_bytes, kMaxConcurrentRemainingBytes);
2177 reserve_bytes = std::max(reserve_bytes, kMinConcurrentRemainingBytes);
2178 concurrent_start_bytes_ = UnsignedDifference(target_footprint, reserve_bytes);
2179 } else {
2180 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2181 }
2182 }
2183
ChangeCollector(CollectorType collector_type)2184 void Heap::ChangeCollector(CollectorType collector_type) {
2185 // TODO: Only do this with all mutators suspended to avoid races.
2186 if (collector_type != collector_type_) {
2187 collector_type_ = collector_type;
2188 gc_plan_.clear();
2189 switch (collector_type_) {
2190 case kCollectorTypeCC: {
2191 if (use_generational_cc_) {
2192 gc_plan_.push_back(collector::kGcTypeSticky);
2193 }
2194 gc_plan_.push_back(collector::kGcTypeFull);
2195 if (use_tlab_) {
2196 ChangeAllocator(kAllocatorTypeRegionTLAB);
2197 } else {
2198 ChangeAllocator(kAllocatorTypeRegion);
2199 }
2200 break;
2201 }
2202 case kCollectorTypeSS: {
2203 gc_plan_.push_back(collector::kGcTypeFull);
2204 if (use_tlab_) {
2205 ChangeAllocator(kAllocatorTypeTLAB);
2206 } else {
2207 ChangeAllocator(kAllocatorTypeBumpPointer);
2208 }
2209 break;
2210 }
2211 case kCollectorTypeMS: {
2212 gc_plan_.push_back(collector::kGcTypeSticky);
2213 gc_plan_.push_back(collector::kGcTypePartial);
2214 gc_plan_.push_back(collector::kGcTypeFull);
2215 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2216 break;
2217 }
2218 case kCollectorTypeCMS: {
2219 gc_plan_.push_back(collector::kGcTypeSticky);
2220 gc_plan_.push_back(collector::kGcTypePartial);
2221 gc_plan_.push_back(collector::kGcTypeFull);
2222 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2223 break;
2224 }
2225 default: {
2226 UNIMPLEMENTED(FATAL);
2227 UNREACHABLE();
2228 }
2229 }
2230 SetDefaultConcurrentStartBytesLocked();
2231 }
2232 }
2233
2234 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2235 class ZygoteCompactingCollector final : public collector::SemiSpace {
2236 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2237 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2238 : SemiSpace(heap, "zygote collector"),
2239 bin_live_bitmap_(nullptr),
2240 bin_mark_bitmap_(nullptr),
2241 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2242
BuildBins(space::ContinuousSpace * space)2243 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2244 bin_live_bitmap_ = space->GetLiveBitmap();
2245 bin_mark_bitmap_ = space->GetMarkBitmap();
2246 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2247 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2248 // Note: This requires traversing the space in increasing order of object addresses.
2249 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2250 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2251 size_t bin_size = object_addr - prev;
2252 // Add the bin consisting of the end of the previous object to the start of the current object.
2253 AddBin(bin_size, prev);
2254 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2255 };
2256 bin_live_bitmap_->Walk(visitor);
2257 // Add the last bin which spans after the last object to the end of the space.
2258 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2259 }
2260
2261 private:
2262 // Maps from bin sizes to locations.
2263 std::multimap<size_t, uintptr_t> bins_;
2264 // Live bitmap of the space which contains the bins.
2265 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2266 // Mark bitmap of the space which contains the bins.
2267 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2268 const bool is_running_on_memory_tool_;
2269
AddBin(size_t size,uintptr_t position)2270 void AddBin(size_t size, uintptr_t position) {
2271 if (is_running_on_memory_tool_) {
2272 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2273 }
2274 if (size != 0) {
2275 bins_.insert(std::make_pair(size, position));
2276 }
2277 }
2278
ShouldSweepSpace(space::ContinuousSpace * space ATTRIBUTE_UNUSED) const2279 bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override {
2280 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2281 // allocator.
2282 return false;
2283 }
2284
MarkNonForwardedObject(mirror::Object * obj)2285 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2286 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2287 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2288 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2289 mirror::Object* forward_address;
2290 // Find the smallest bin which we can move obj in.
2291 auto it = bins_.lower_bound(alloc_size);
2292 if (it == bins_.end()) {
2293 // No available space in the bins, place it in the target space instead (grows the zygote
2294 // space).
2295 size_t bytes_allocated, unused_bytes_tl_bulk_allocated;
2296 forward_address = to_space_->Alloc(
2297 self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated);
2298 if (to_space_live_bitmap_ != nullptr) {
2299 to_space_live_bitmap_->Set(forward_address);
2300 } else {
2301 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2302 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2303 }
2304 } else {
2305 size_t size = it->first;
2306 uintptr_t pos = it->second;
2307 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2308 forward_address = reinterpret_cast<mirror::Object*>(pos);
2309 // Set the live and mark bits so that sweeping system weaks works properly.
2310 bin_live_bitmap_->Set(forward_address);
2311 bin_mark_bitmap_->Set(forward_address);
2312 DCHECK_GE(size, alloc_size);
2313 // Add a new bin with the remaining space.
2314 AddBin(size - alloc_size, pos + alloc_size);
2315 }
2316 // Copy the object over to its new location.
2317 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2318 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2319 if (kUseBakerReadBarrier) {
2320 obj->AssertReadBarrierState();
2321 forward_address->AssertReadBarrierState();
2322 }
2323 return forward_address;
2324 }
2325 };
2326
UnBindBitmaps()2327 void Heap::UnBindBitmaps() {
2328 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2329 for (const auto& space : GetContinuousSpaces()) {
2330 if (space->IsContinuousMemMapAllocSpace()) {
2331 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2332 if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
2333 alloc_space->UnBindBitmaps();
2334 }
2335 }
2336 }
2337 }
2338
IncrementFreedEver()2339 void Heap::IncrementFreedEver() {
2340 // Counters are updated only by us, but may be read concurrently.
2341 // The updates should become visible after the corresponding live object info.
2342 total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
2343 + GetCurrentGcIteration()->GetFreedObjects()
2344 + GetCurrentGcIteration()->GetFreedLargeObjects(),
2345 std::memory_order_release);
2346 total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
2347 + GetCurrentGcIteration()->GetFreedBytes()
2348 + GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
2349 std::memory_order_release);
2350 }
2351
2352 #pragma clang diagnostic push
2353 #if !ART_USE_FUTEXES
2354 // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
2355 # pragma clang diagnostic ignored "-Wframe-larger-than="
2356 #endif
2357 // This has a large frame, but shouldn't be run anywhere near the stack limit.
2358 // FIXME: BUT it did exceed... http://b/197647048
2359 # pragma clang diagnostic ignored "-Wframe-larger-than="
PreZygoteFork()2360 void Heap::PreZygoteFork() {
2361 if (!HasZygoteSpace()) {
2362 // We still want to GC in case there is some unreachable non moving objects that could cause a
2363 // suboptimal bin packing when we compact the zygote space.
2364 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false, GC_NUM_ANY);
2365 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2366 // the trim process may require locking the mutator lock.
2367 non_moving_space_->Trim();
2368 }
2369 // We need to close userfaultfd fd for app/webview zygotes to avoid getattr
2370 // (stat) on the fd during fork.
2371 if (uffd_ >= 0) {
2372 close(uffd_);
2373 uffd_ = -1;
2374 }
2375 Thread* self = Thread::Current();
2376 MutexLock mu(self, zygote_creation_lock_);
2377 // Try to see if we have any Zygote spaces.
2378 if (HasZygoteSpace()) {
2379 return;
2380 }
2381 Runtime::Current()->GetInternTable()->AddNewTable();
2382 Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2383 VLOG(heap) << "Starting PreZygoteFork";
2384 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2385 // there.
2386 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2387 const bool same_space = non_moving_space_ == main_space_;
2388 if (kCompactZygote) {
2389 // Temporarily disable rosalloc verification because the zygote
2390 // compaction will mess up the rosalloc internal metadata.
2391 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2392 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2393 zygote_collector.BuildBins(non_moving_space_);
2394 // Create a new bump pointer space which we will compact into.
2395 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2396 non_moving_space_->Limit());
2397 // Compact the bump pointer space to a new zygote bump pointer space.
2398 bool reset_main_space = false;
2399 if (IsMovingGc(collector_type_)) {
2400 if (collector_type_ == kCollectorTypeCC) {
2401 zygote_collector.SetFromSpace(region_space_);
2402 } else {
2403 zygote_collector.SetFromSpace(bump_pointer_space_);
2404 }
2405 } else {
2406 CHECK(main_space_ != nullptr);
2407 CHECK_NE(main_space_, non_moving_space_)
2408 << "Does not make sense to compact within the same space";
2409 // Copy from the main space.
2410 zygote_collector.SetFromSpace(main_space_);
2411 reset_main_space = true;
2412 }
2413 zygote_collector.SetToSpace(&target_space);
2414 zygote_collector.SetSwapSemiSpaces(false);
2415 zygote_collector.Run(kGcCauseCollectorTransition, false);
2416 if (reset_main_space) {
2417 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2418 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2419 MemMap mem_map = main_space_->ReleaseMemMap();
2420 RemoveSpace(main_space_);
2421 space::Space* old_main_space = main_space_;
2422 CreateMainMallocSpace(std::move(mem_map),
2423 kDefaultInitialSize,
2424 std::min(mem_map.Size(), growth_limit_),
2425 mem_map.Size());
2426 delete old_main_space;
2427 AddSpace(main_space_);
2428 } else {
2429 if (collector_type_ == kCollectorTypeCC) {
2430 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2431 // Evacuated everything out of the region space, clear the mark bitmap.
2432 region_space_->GetMarkBitmap()->Clear();
2433 } else {
2434 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2435 }
2436 }
2437 if (temp_space_ != nullptr) {
2438 CHECK(temp_space_->IsEmpty());
2439 }
2440 IncrementFreedEver();
2441 // Update the end and write out image.
2442 non_moving_space_->SetEnd(target_space.End());
2443 non_moving_space_->SetLimit(target_space.Limit());
2444 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2445 }
2446 // Change the collector to the post zygote one.
2447 ChangeCollector(foreground_collector_type_);
2448 // Save the old space so that we can remove it after we complete creating the zygote space.
2449 space::MallocSpace* old_alloc_space = non_moving_space_;
2450 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2451 // the remaining available space.
2452 // Remove the old space before creating the zygote space since creating the zygote space sets
2453 // the old alloc space's bitmaps to null.
2454 RemoveSpace(old_alloc_space);
2455 if (collector::SemiSpace::kUseRememberedSet) {
2456 // Consistency bound check.
2457 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2458 // Remove the remembered set for the now zygote space (the old
2459 // non-moving space). Note now that we have compacted objects into
2460 // the zygote space, the data in the remembered set is no longer
2461 // needed. The zygote space will instead have a mod-union table
2462 // from this point on.
2463 RemoveRememberedSet(old_alloc_space);
2464 }
2465 // Remaining space becomes the new non moving space.
2466 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2467 &non_moving_space_);
2468 CHECK(!non_moving_space_->CanMoveObjects());
2469 if (same_space) {
2470 main_space_ = non_moving_space_;
2471 SetSpaceAsDefault(main_space_);
2472 }
2473 delete old_alloc_space;
2474 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2475 AddSpace(zygote_space_);
2476 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2477 AddSpace(non_moving_space_);
2478 constexpr bool set_mark_bit = kUseBakerReadBarrier
2479 && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
2480 if (set_mark_bit) {
2481 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2482 // safe since we mark all of the objects that may reference non immune objects as gray.
2483 zygote_space_->SetMarkBitInLiveObjects();
2484 }
2485
2486 // Create the zygote space mod union table.
2487 accounting::ModUnionTable* mod_union_table =
2488 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2489 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2490
2491 if (collector_type_ != kCollectorTypeCC) {
2492 // Set all the cards in the mod-union table since we don't know which objects contain references
2493 // to large objects.
2494 mod_union_table->SetCards();
2495 } else {
2496 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2497 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2498 // necessary to have marked since the zygote space may not refer to any objects not in the
2499 // zygote or image spaces at this point.
2500 mod_union_table->ProcessCards();
2501 mod_union_table->ClearTable();
2502
2503 // For CC we never collect zygote large objects. This means we do not need to set the cards for
2504 // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
2505 // The existing mod-union tables are only for image spaces and may only reference zygote and
2506 // image objects.
2507 for (auto& pair : mod_union_tables_) {
2508 CHECK(pair.first->IsImageSpace());
2509 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2510 accounting::ModUnionTable* table = pair.second;
2511 table->ClearTable();
2512 }
2513 }
2514 AddModUnionTable(mod_union_table);
2515 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
2516 if (collector::SemiSpace::kUseRememberedSet) {
2517 // Add a new remembered set for the post-zygote non-moving space.
2518 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2519 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2520 non_moving_space_);
2521 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2522 << "Failed to create post-zygote non-moving space remembered set";
2523 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2524 }
2525 }
2526 #pragma clang diagnostic pop
2527
FlushAllocStack()2528 void Heap::FlushAllocStack() {
2529 MarkAllocStackAsLive(allocation_stack_.get());
2530 allocation_stack_->Reset();
2531 }
2532
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2533 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2534 accounting::ContinuousSpaceBitmap* bitmap2,
2535 accounting::LargeObjectBitmap* large_objects,
2536 accounting::ObjectStack* stack) {
2537 DCHECK(bitmap1 != nullptr);
2538 DCHECK(bitmap2 != nullptr);
2539 const auto* limit = stack->End();
2540 for (auto* it = stack->Begin(); it != limit; ++it) {
2541 const mirror::Object* obj = it->AsMirrorPtr();
2542 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2543 if (bitmap1->HasAddress(obj)) {
2544 bitmap1->Set(obj);
2545 } else if (bitmap2->HasAddress(obj)) {
2546 bitmap2->Set(obj);
2547 } else {
2548 DCHECK(large_objects != nullptr);
2549 large_objects->Set(obj);
2550 }
2551 }
2552 }
2553 }
2554
SwapSemiSpaces()2555 void Heap::SwapSemiSpaces() {
2556 CHECK(bump_pointer_space_ != nullptr);
2557 CHECK(temp_space_ != nullptr);
2558 std::swap(bump_pointer_space_, temp_space_);
2559 }
2560
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2561 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2562 space::ContinuousMemMapAllocSpace* source_space,
2563 GcCause gc_cause) {
2564 CHECK(kMovingCollector);
2565 if (target_space != source_space) {
2566 // Don't swap spaces since this isn't a typical semi space collection.
2567 semi_space_collector_->SetSwapSemiSpaces(false);
2568 semi_space_collector_->SetFromSpace(source_space);
2569 semi_space_collector_->SetToSpace(target_space);
2570 semi_space_collector_->Run(gc_cause, false);
2571 return semi_space_collector_;
2572 }
2573 LOG(FATAL) << "Unsupported";
2574 UNREACHABLE();
2575 }
2576
TraceHeapSize(size_t heap_size)2577 void Heap::TraceHeapSize(size_t heap_size) {
2578 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2579 }
2580
2581 #if defined(__GLIBC__)
2582 # define IF_GLIBC(x) x
2583 #else
2584 # define IF_GLIBC(x)
2585 #endif
2586
GetNativeBytes()2587 size_t Heap::GetNativeBytes() {
2588 size_t malloc_bytes;
2589 #if defined(__BIONIC__) || defined(__GLIBC__)
2590 IF_GLIBC(size_t mmapped_bytes;)
2591 struct mallinfo mi = mallinfo();
2592 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2593 // and it is thread-safe.
2594 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2595 // Shouldn't happen, but glibc declares uordblks as int.
2596 // Avoiding sign extension gets us correct behavior for another 2 GB.
2597 malloc_bytes = (unsigned int)mi.uordblks;
2598 IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
2599 } else {
2600 malloc_bytes = mi.uordblks;
2601 IF_GLIBC(mmapped_bytes = mi.hblkhd;)
2602 }
2603 // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
2604 // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
2605 // However, malloc implementations seem to interpret hblkhd differently, namely as
2606 // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
2607 // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
2608 // previously helped, and which appears to use a reading of the spec compatible
2609 // with our adjustment.
2610 #if defined(__GLIBC__)
2611 if (mmapped_bytes > malloc_bytes) {
2612 malloc_bytes = mmapped_bytes;
2613 }
2614 #endif // GLIBC
2615 #else // Neither Bionic nor Glibc
2616 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2617 // disable GC triggering based on malloc().
2618 malloc_bytes = 1000;
2619 #endif
2620 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2621 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2622 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2623 // However it would change as pages are unmapped and remapped due to memory pressure, among
2624 // other things. It seems risky to trigger GCs as a result of such changes.
2625 }
2626
GCNumberLt(uint32_t gc_num1,uint32_t gc_num2)2627 static inline bool GCNumberLt(uint32_t gc_num1, uint32_t gc_num2) {
2628 // unsigned comparison, assuming a non-huge difference, but dealing correctly with wrapping.
2629 uint32_t difference = gc_num2 - gc_num1;
2630 bool completed_more_than_requested = difference > 0x80000000;
2631 return difference > 0 && !completed_more_than_requested;
2632 }
2633
2634
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references,uint32_t requested_gc_num)2635 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2636 GcCause gc_cause,
2637 bool clear_soft_references,
2638 uint32_t requested_gc_num) {
2639 Thread* self = Thread::Current();
2640 Runtime* runtime = Runtime::Current();
2641 // If the heap can't run the GC, silently fail and return that no GC was run.
2642 switch (gc_type) {
2643 case collector::kGcTypePartial: {
2644 if (!HasZygoteSpace()) {
2645 // Do not increment gcs_completed_ . We should retry with kGcTypeFull.
2646 return collector::kGcTypeNone;
2647 }
2648 break;
2649 }
2650 default: {
2651 // Other GC types don't have any special cases which makes them not runnable. The main case
2652 // here is full GC.
2653 }
2654 }
2655 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2656 Locks::mutator_lock_->AssertNotHeld(self);
2657 if (self->IsHandlingStackOverflow()) {
2658 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2659 // space to run the GC.
2660 // Count this as a GC in case someone is waiting for it to complete.
2661 gcs_completed_.fetch_add(1, std::memory_order_release);
2662 return collector::kGcTypeNone;
2663 }
2664 bool compacting_gc;
2665 {
2666 gc_complete_lock_->AssertNotHeld(self);
2667 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2668 MutexLock mu(self, *gc_complete_lock_);
2669 // Ensure there is only one GC at a time.
2670 WaitForGcToCompleteLocked(gc_cause, self);
2671 if (requested_gc_num != GC_NUM_ANY && !GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
2672 // The appropriate GC was already triggered elsewhere.
2673 return collector::kGcTypeNone;
2674 }
2675 compacting_gc = IsMovingGc(collector_type_);
2676 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2677 if (compacting_gc && disable_moving_gc_count_ != 0) {
2678 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2679 // Again count this as a GC.
2680 gcs_completed_.fetch_add(1, std::memory_order_release);
2681 return collector::kGcTypeNone;
2682 }
2683 if (gc_disabled_for_shutdown_) {
2684 gcs_completed_.fetch_add(1, std::memory_order_release);
2685 return collector::kGcTypeNone;
2686 }
2687 collector_type_running_ = collector_type_;
2688 last_gc_cause_ = gc_cause;
2689 }
2690 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2691 ++runtime->GetStats()->gc_for_alloc_count;
2692 ++self->GetStats()->gc_for_alloc_count;
2693 }
2694 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2695
2696 DCHECK_LT(gc_type, collector::kGcTypeMax);
2697 DCHECK_NE(gc_type, collector::kGcTypeNone);
2698
2699 collector::GarbageCollector* collector = nullptr;
2700 // TODO: Clean this up.
2701 if (compacting_gc) {
2702 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2703 current_allocator_ == kAllocatorTypeTLAB ||
2704 current_allocator_ == kAllocatorTypeRegion ||
2705 current_allocator_ == kAllocatorTypeRegionTLAB);
2706 switch (collector_type_) {
2707 case kCollectorTypeSS:
2708 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2709 semi_space_collector_->SetToSpace(temp_space_);
2710 semi_space_collector_->SetSwapSemiSpaces(true);
2711 collector = semi_space_collector_;
2712 break;
2713 case kCollectorTypeCC:
2714 collector::ConcurrentCopying* active_cc_collector;
2715 if (use_generational_cc_) {
2716 // TODO: Other threads must do the flip checkpoint before they start poking at
2717 // active_concurrent_copying_collector_. So we should not concurrency here.
2718 active_cc_collector = (gc_type == collector::kGcTypeSticky) ?
2719 young_concurrent_copying_collector_ : concurrent_copying_collector_;
2720 active_concurrent_copying_collector_.store(active_cc_collector,
2721 std::memory_order_relaxed);
2722 DCHECK(active_cc_collector->RegionSpace() == region_space_);
2723 collector = active_cc_collector;
2724 } else {
2725 collector = active_concurrent_copying_collector_.load(std::memory_order_relaxed);
2726 }
2727 break;
2728 default:
2729 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2730 }
2731 if (collector != active_concurrent_copying_collector_.load(std::memory_order_relaxed)) {
2732 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2733 if (kIsDebugBuild) {
2734 // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2735 temp_space_->GetMemMap()->TryReadable();
2736 }
2737 CHECK(temp_space_->IsEmpty());
2738 }
2739 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2740 current_allocator_ == kAllocatorTypeDlMalloc) {
2741 collector = FindCollectorByGcType(gc_type);
2742 } else {
2743 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2744 }
2745
2746 CHECK(collector != nullptr)
2747 << "Could not find garbage collector with collector_type="
2748 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2749 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2750 IncrementFreedEver();
2751 RequestTrim(self);
2752 // Collect cleared references.
2753 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2754 // Grow the heap so that we know when to perform the next GC.
2755 GrowForUtilization(collector, bytes_allocated_before_gc);
2756 old_native_bytes_allocated_.store(GetNativeBytes());
2757 LogGC(gc_cause, collector);
2758 FinishGC(self, gc_type);
2759 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2760 // otherwise we can deadlock.
2761 clear->Run(self);
2762 clear->Finalize();
2763 // Inform DDMS that a GC completed.
2764 Dbg::GcDidFinish();
2765
2766 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2767 // deadlocks in case the JNI_OnUnload function does allocations.
2768 {
2769 ScopedObjectAccess soa(self);
2770 soa.Vm()->UnloadNativeLibraries();
2771 }
2772 return gc_type;
2773 }
2774
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2775 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2776 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2777 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2778 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2779 // (mutator time blocked >= long_pause_log_threshold_).
2780 bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_);
2781 if (!log_gc && CareAboutPauseTimes()) {
2782 // GC for alloc pauses the allocating thread, so consider it as a pause.
2783 log_gc = duration > long_gc_log_threshold_ ||
2784 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2785 for (uint64_t pause : pause_times) {
2786 log_gc = log_gc || pause >= long_pause_log_threshold_;
2787 }
2788 }
2789 bool is_sampled = false;
2790 if (UNLIKELY(gc_stress_mode_)) {
2791 static std::atomic_int64_t accumulated_duration_ns = 0;
2792 accumulated_duration_ns += duration;
2793 if (accumulated_duration_ns >= kGcStressModeGcLogSampleFrequencyNs) {
2794 accumulated_duration_ns -= kGcStressModeGcLogSampleFrequencyNs;
2795 log_gc = true;
2796 is_sampled = true;
2797 }
2798 }
2799 if (log_gc) {
2800 const size_t percent_free = GetPercentFree();
2801 const size_t current_heap_size = GetBytesAllocated();
2802 const size_t total_memory = GetTotalMemory();
2803 std::ostringstream pause_string;
2804 for (size_t i = 0; i < pause_times.size(); ++i) {
2805 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2806 << ((i != pause_times.size() - 1) ? "," : "");
2807 }
2808 LOG(INFO) << gc_cause << " " << collector->GetName()
2809 << (is_sampled ? " (sampled)" : "")
2810 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
2811 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2812 << current_gc_iteration_.GetFreedLargeObjects() << "("
2813 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2814 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2815 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2816 << " total " << PrettyDuration((duration / 1000) * 1000);
2817 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2818 }
2819 }
2820
FinishGC(Thread * self,collector::GcType gc_type)2821 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2822 MutexLock mu(self, *gc_complete_lock_);
2823 collector_type_running_ = kCollectorTypeNone;
2824 if (gc_type != collector::kGcTypeNone) {
2825 last_gc_type_ = gc_type;
2826
2827 // Update stats.
2828 ++gc_count_last_window_;
2829 if (running_collection_is_blocking_) {
2830 // If the currently running collection was a blocking one,
2831 // increment the counters and reset the flag.
2832 ++blocking_gc_count_;
2833 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2834 ++blocking_gc_count_last_window_;
2835 }
2836 // Update the gc count rate histograms if due.
2837 UpdateGcCountRateHistograms();
2838 }
2839 // Reset.
2840 running_collection_is_blocking_ = false;
2841 thread_running_gc_ = nullptr;
2842 if (gc_type != collector::kGcTypeNone) {
2843 gcs_completed_.fetch_add(1, std::memory_order_release);
2844 }
2845 // Wake anyone who may have been waiting for the GC to complete.
2846 gc_complete_cond_->Broadcast(self);
2847 }
2848
UpdateGcCountRateHistograms()2849 void Heap::UpdateGcCountRateHistograms() {
2850 // Invariant: if the time since the last update includes more than
2851 // one windows, all the GC runs (if > 0) must have happened in first
2852 // window because otherwise the update must have already taken place
2853 // at an earlier GC run. So, we report the non-first windows with
2854 // zero counts to the histograms.
2855 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2856 uint64_t now = NanoTime();
2857 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2858 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2859 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2860
2861 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
2862 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
2863 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
2864 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
2865 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
2866 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
2867 }
2868
2869 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2870 // Record the first window.
2871 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
2872 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2873 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2874 // Record the other windows (with zero counts).
2875 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2876 gc_count_rate_histogram_.AddValue(0);
2877 blocking_gc_count_rate_histogram_.AddValue(0);
2878 }
2879 // Update the last update time and reset the counters.
2880 last_update_time_gc_count_rate_histograms_ =
2881 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2882 gc_count_last_window_ = 1; // Include the current run.
2883 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2884 }
2885 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2886 }
2887
2888 class RootMatchesObjectVisitor : public SingleRootVisitor {
2889 public:
RootMatchesObjectVisitor(const mirror::Object * obj)2890 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2891
VisitRoot(mirror::Object * root,const RootInfo & info)2892 void VisitRoot(mirror::Object* root, const RootInfo& info)
2893 override REQUIRES_SHARED(Locks::mutator_lock_) {
2894 if (root == obj_) {
2895 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2896 }
2897 }
2898
2899 private:
2900 const mirror::Object* const obj_;
2901 };
2902
2903
2904 class ScanVisitor {
2905 public:
operator ()(const mirror::Object * obj) const2906 void operator()(const mirror::Object* obj) const {
2907 LOG(ERROR) << "Would have rescanned object " << obj;
2908 }
2909 };
2910
2911 // Verify a reference from an object.
2912 class VerifyReferenceVisitor : public SingleRootVisitor {
2913 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)2914 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
2915 REQUIRES_SHARED(Locks::mutator_lock_)
2916 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2917 CHECK_EQ(self_, Thread::Current());
2918 }
2919
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2920 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
2921 REQUIRES_SHARED(Locks::mutator_lock_) {
2922 if (verify_referent_) {
2923 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
2924 }
2925 }
2926
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2927 void operator()(ObjPtr<mirror::Object> obj,
2928 MemberOffset offset,
2929 bool is_static ATTRIBUTE_UNUSED) const
2930 REQUIRES_SHARED(Locks::mutator_lock_) {
2931 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
2932 }
2933
IsLive(ObjPtr<mirror::Object> obj) const2934 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
2935 return heap_->IsLiveObjectLocked(obj, true, false, true);
2936 }
2937
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2938 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2939 REQUIRES_SHARED(Locks::mutator_lock_) {
2940 if (!root->IsNull()) {
2941 VisitRoot(root);
2942 }
2943 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2944 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2945 REQUIRES_SHARED(Locks::mutator_lock_) {
2946 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2947 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2948 }
2949
VisitRoot(mirror::Object * root,const RootInfo & root_info)2950 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
2951 REQUIRES_SHARED(Locks::mutator_lock_) {
2952 if (root == nullptr) {
2953 LOG(ERROR) << "Root is null with info " << root_info.GetType();
2954 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2955 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
2956 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2957 }
2958 }
2959
2960 private:
2961 // TODO: Fix the no thread safety analysis.
2962 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2963 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2964 NO_THREAD_SAFETY_ANALYSIS {
2965 if (ref == nullptr || IsLive(ref)) {
2966 // Verify that the reference is live.
2967 return true;
2968 }
2969 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
2970 *fail_count_ += 1;
2971 if (*fail_count_ == 1) {
2972 // Only print message for the first failure to prevent spam.
2973 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2974 }
2975 if (obj != nullptr) {
2976 // Only do this part for non roots.
2977 accounting::CardTable* card_table = heap_->GetCardTable();
2978 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2979 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2980 uint8_t* card_addr = card_table->CardFromAddr(obj);
2981 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2982 << offset << "\n card value = " << static_cast<int>(*card_addr);
2983 if (heap_->IsValidObjectAddress(obj->GetClass())) {
2984 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
2985 } else {
2986 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2987 }
2988
2989 // Attempt to find the class inside of the recently freed objects.
2990 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2991 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2992 space::MallocSpace* space = ref_space->AsMallocSpace();
2993 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2994 if (ref_class != nullptr) {
2995 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2996 << ref_class->PrettyClass();
2997 } else {
2998 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2999 }
3000 }
3001
3002 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
3003 ref->GetClass()->IsClass()) {
3004 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
3005 } else {
3006 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
3007 << ") is not a valid heap address";
3008 }
3009
3010 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
3011 void* cover_begin = card_table->AddrFromCard(card_addr);
3012 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
3013 accounting::CardTable::kCardSize);
3014 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
3015 << "-" << cover_end;
3016 accounting::ContinuousSpaceBitmap* bitmap =
3017 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
3018
3019 if (bitmap == nullptr) {
3020 LOG(ERROR) << "Object " << obj << " has no bitmap";
3021 if (!VerifyClassClass(obj->GetClass())) {
3022 LOG(ERROR) << "Object " << obj << " failed class verification!";
3023 }
3024 } else {
3025 // Print out how the object is live.
3026 if (bitmap->Test(obj)) {
3027 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3028 }
3029 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
3030 LOG(ERROR) << "Object " << obj << " found in allocation stack";
3031 }
3032 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
3033 LOG(ERROR) << "Object " << obj << " found in live stack";
3034 }
3035 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
3036 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
3037 }
3038 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
3039 LOG(ERROR) << "Ref " << ref << " found in live stack";
3040 }
3041 // Attempt to see if the card table missed the reference.
3042 ScanVisitor scan_visitor;
3043 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
3044 card_table->Scan<false>(bitmap, byte_cover_begin,
3045 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
3046 }
3047
3048 // Search to see if any of the roots reference our object.
3049 RootMatchesObjectVisitor visitor1(obj);
3050 Runtime::Current()->VisitRoots(&visitor1);
3051 // Search to see if any of the roots reference our reference.
3052 RootMatchesObjectVisitor visitor2(ref);
3053 Runtime::Current()->VisitRoots(&visitor2);
3054 }
3055 return false;
3056 }
3057
3058 Thread* const self_;
3059 Heap* const heap_;
3060 size_t* const fail_count_;
3061 const bool verify_referent_;
3062 };
3063
3064 // Verify all references within an object, for use with HeapBitmap::Visit.
3065 class VerifyObjectVisitor {
3066 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3067 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3068 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
3069
operator ()(mirror::Object * obj)3070 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3071 // Note: we are verifying the references in obj but not obj itself, this is because obj must
3072 // be live or else how did we find it in the live bitmap?
3073 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3074 // The class doesn't count as a reference but we should verify it anyways.
3075 obj->VisitReferences(visitor, visitor);
3076 }
3077
VerifyRoots()3078 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
3079 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3080 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3081 Runtime::Current()->VisitRoots(&visitor);
3082 }
3083
GetFailureCount() const3084 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
3085 CHECK_EQ(self_, Thread::Current());
3086 return *fail_count_;
3087 }
3088
3089 private:
3090 Thread* const self_;
3091 Heap* const heap_;
3092 size_t* const fail_count_;
3093 const bool verify_referent_;
3094 };
3095
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3096 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3097 // Slow path, the allocation stack push back must have already failed.
3098 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3099 do {
3100 // TODO: Add handle VerifyObject.
3101 StackHandleScope<1> hs(self);
3102 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3103 // Push our object into the reserve region of the allocation stack. This is only required due
3104 // to heap verification requiring that roots are live (either in the live bitmap or in the
3105 // allocation stack).
3106 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3107 CollectGarbageInternal(collector::kGcTypeSticky,
3108 kGcCauseForAlloc,
3109 false,
3110 GetCurrentGcNum() + 1);
3111 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3112 }
3113
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3114 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3115 ObjPtr<mirror::Object>* obj) {
3116 // Slow path, the allocation stack push back must have already failed.
3117 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3118 StackReference<mirror::Object>* start_address;
3119 StackReference<mirror::Object>* end_address;
3120 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3121 &end_address)) {
3122 // TODO: Add handle VerifyObject.
3123 StackHandleScope<1> hs(self);
3124 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3125 // Push our object into the reserve region of the allocaiton stack. This is only required due
3126 // to heap verification requiring that roots are live (either in the live bitmap or in the
3127 // allocation stack).
3128 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3129 // Push into the reserve allocation stack.
3130 CollectGarbageInternal(collector::kGcTypeSticky,
3131 kGcCauseForAlloc,
3132 false,
3133 GetCurrentGcNum() + 1);
3134 }
3135 self->SetThreadLocalAllocationStack(start_address, end_address);
3136 // Retry on the new thread-local allocation stack.
3137 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3138 }
3139
3140 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3141 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3142 Thread* self = Thread::Current();
3143 Locks::mutator_lock_->AssertExclusiveHeld(self);
3144 // Lets sort our allocation stacks so that we can efficiently binary search them.
3145 allocation_stack_->Sort();
3146 live_stack_->Sort();
3147 // Since we sorted the allocation stack content, need to revoke all
3148 // thread-local allocation stacks.
3149 RevokeAllThreadLocalAllocationStacks(self);
3150 size_t fail_count = 0;
3151 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3152 // Verify objects in the allocation stack since these will be objects which were:
3153 // 1. Allocated prior to the GC (pre GC verification).
3154 // 2. Allocated during the GC (pre sweep GC verification).
3155 // We don't want to verify the objects in the live stack since they themselves may be
3156 // pointing to dead objects if they are not reachable.
3157 VisitObjectsPaused(visitor);
3158 // Verify the roots:
3159 visitor.VerifyRoots();
3160 if (visitor.GetFailureCount() > 0) {
3161 // Dump mod-union tables.
3162 for (const auto& table_pair : mod_union_tables_) {
3163 accounting::ModUnionTable* mod_union_table = table_pair.second;
3164 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3165 }
3166 // Dump remembered sets.
3167 for (const auto& table_pair : remembered_sets_) {
3168 accounting::RememberedSet* remembered_set = table_pair.second;
3169 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3170 }
3171 DumpSpaces(LOG_STREAM(ERROR));
3172 }
3173 return visitor.GetFailureCount();
3174 }
3175
3176 class VerifyReferenceCardVisitor {
3177 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3178 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3179 REQUIRES_SHARED(Locks::mutator_lock_,
3180 Locks::heap_bitmap_lock_)
3181 : heap_(heap), failed_(failed) {
3182 }
3183
3184 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3185 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3186 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3187 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3188
3189 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3190 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3191 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3192 NO_THREAD_SAFETY_ANALYSIS {
3193 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3194 // Filter out class references since changing an object's class does not mark the card as dirty.
3195 // Also handles large objects, since the only reference they hold is a class reference.
3196 if (ref != nullptr && !ref->IsClass()) {
3197 accounting::CardTable* card_table = heap_->GetCardTable();
3198 // If the object is not dirty and it is referencing something in the live stack other than
3199 // class, then it must be on a dirty card.
3200 if (!card_table->AddrIsInCardTable(obj)) {
3201 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3202 *failed_ = true;
3203 } else if (!card_table->IsDirty(obj)) {
3204 // TODO: Check mod-union tables.
3205 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3206 // kCardDirty - 1 if it didnt get touched since we aged it.
3207 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3208 if (live_stack->ContainsSorted(ref)) {
3209 if (live_stack->ContainsSorted(obj)) {
3210 LOG(ERROR) << "Object " << obj << " found in live stack";
3211 }
3212 if (heap_->GetLiveBitmap()->Test(obj)) {
3213 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3214 }
3215 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3216 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3217 << " in live stack";
3218
3219 // Print which field of the object is dead.
3220 if (!obj->IsObjectArray()) {
3221 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3222 CHECK(klass != nullptr);
3223 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3224 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3225 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3226 << field.PrettyField();
3227 break;
3228 }
3229 }
3230 } else {
3231 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3232 obj->AsObjectArray<mirror::Object>();
3233 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3234 if (object_array->Get(i) == ref) {
3235 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3236 }
3237 }
3238 }
3239
3240 *failed_ = true;
3241 }
3242 }
3243 }
3244 }
3245
3246 private:
3247 Heap* const heap_;
3248 bool* const failed_;
3249 };
3250
3251 class VerifyLiveStackReferences {
3252 public:
VerifyLiveStackReferences(Heap * heap)3253 explicit VerifyLiveStackReferences(Heap* heap)
3254 : heap_(heap),
3255 failed_(false) {}
3256
operator ()(mirror::Object * obj) const3257 void operator()(mirror::Object* obj) const
3258 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3259 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3260 obj->VisitReferences(visitor, VoidFunctor());
3261 }
3262
Failed() const3263 bool Failed() const {
3264 return failed_;
3265 }
3266
3267 private:
3268 Heap* const heap_;
3269 bool failed_;
3270 };
3271
VerifyMissingCardMarks()3272 bool Heap::VerifyMissingCardMarks() {
3273 Thread* self = Thread::Current();
3274 Locks::mutator_lock_->AssertExclusiveHeld(self);
3275 // We need to sort the live stack since we binary search it.
3276 live_stack_->Sort();
3277 // Since we sorted the allocation stack content, need to revoke all
3278 // thread-local allocation stacks.
3279 RevokeAllThreadLocalAllocationStacks(self);
3280 VerifyLiveStackReferences visitor(this);
3281 GetLiveBitmap()->Visit(visitor);
3282 // We can verify objects in the live stack since none of these should reference dead objects.
3283 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3284 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3285 visitor(it->AsMirrorPtr());
3286 }
3287 }
3288 return !visitor.Failed();
3289 }
3290
SwapStacks()3291 void Heap::SwapStacks() {
3292 if (kUseThreadLocalAllocationStack) {
3293 live_stack_->AssertAllZero();
3294 }
3295 allocation_stack_.swap(live_stack_);
3296 }
3297
RevokeAllThreadLocalAllocationStacks(Thread * self)3298 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3299 // This must be called only during the pause.
3300 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3301 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3302 MutexLock mu2(self, *Locks::thread_list_lock_);
3303 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3304 for (Thread* t : thread_list) {
3305 t->RevokeThreadLocalAllocationStack();
3306 }
3307 }
3308
AssertThreadLocalBuffersAreRevoked(Thread * thread)3309 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3310 if (kIsDebugBuild) {
3311 if (rosalloc_space_ != nullptr) {
3312 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3313 }
3314 if (bump_pointer_space_ != nullptr) {
3315 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3316 }
3317 }
3318 }
3319
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3320 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3321 if (kIsDebugBuild) {
3322 if (bump_pointer_space_ != nullptr) {
3323 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3324 }
3325 }
3326 }
3327
FindModUnionTableFromSpace(space::Space * space)3328 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3329 auto it = mod_union_tables_.find(space);
3330 if (it == mod_union_tables_.end()) {
3331 return nullptr;
3332 }
3333 return it->second;
3334 }
3335
FindRememberedSetFromSpace(space::Space * space)3336 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3337 auto it = remembered_sets_.find(space);
3338 if (it == remembered_sets_.end()) {
3339 return nullptr;
3340 }
3341 return it->second;
3342 }
3343
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3344 void Heap::ProcessCards(TimingLogger* timings,
3345 bool use_rem_sets,
3346 bool process_alloc_space_cards,
3347 bool clear_alloc_space_cards) {
3348 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3349 // Clear cards and keep track of cards cleared in the mod-union table.
3350 for (const auto& space : continuous_spaces_) {
3351 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3352 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3353 if (table != nullptr) {
3354 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3355 "ImageModUnionClearCards";
3356 TimingLogger::ScopedTiming t2(name, timings);
3357 table->ProcessCards();
3358 } else if (use_rem_sets && rem_set != nullptr) {
3359 DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
3360 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3361 rem_set->ClearCards();
3362 } else if (process_alloc_space_cards) {
3363 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3364 if (clear_alloc_space_cards) {
3365 uint8_t* end = space->End();
3366 if (space->IsImageSpace()) {
3367 // Image space end is the end of the mirror objects, it is not necessarily page or card
3368 // aligned. Align up so that the check in ClearCardRange does not fail.
3369 end = AlignUp(end, accounting::CardTable::kCardSize);
3370 }
3371 card_table_->ClearCardRange(space->Begin(), end);
3372 } else {
3373 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3374 // cards were dirty before the GC started.
3375 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3376 // -> clean(cleaning thread).
3377 // The races are we either end up with: Aged card, unaged card. Since we have the
3378 // checkpoint roots and then we scan / update mod union tables after. We will always
3379 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3380 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3381 VoidFunctor());
3382 }
3383 }
3384 }
3385 }
3386
3387 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3388 mirror::Object* MarkObject(mirror::Object* obj) override {
3389 return obj;
3390 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3391 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3392 }
3393 };
3394
PreGcVerificationPaused(collector::GarbageCollector * gc)3395 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3396 Thread* const self = Thread::Current();
3397 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3398 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3399 if (verify_pre_gc_heap_) {
3400 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3401 size_t failures = VerifyHeapReferences();
3402 if (failures > 0) {
3403 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3404 << " failures";
3405 }
3406 }
3407 // Check that all objects which reference things in the live stack are on dirty cards.
3408 if (verify_missing_card_marks_) {
3409 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3410 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3411 SwapStacks();
3412 // Sort the live stack so that we can quickly binary search it later.
3413 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3414 << " missing card mark verification failed\n" << DumpSpaces();
3415 SwapStacks();
3416 }
3417 if (verify_mod_union_table_) {
3418 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3419 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3420 for (const auto& table_pair : mod_union_tables_) {
3421 accounting::ModUnionTable* mod_union_table = table_pair.second;
3422 IdentityMarkHeapReferenceVisitor visitor;
3423 mod_union_table->UpdateAndMarkReferences(&visitor);
3424 mod_union_table->Verify();
3425 }
3426 }
3427 }
3428
PreGcVerification(collector::GarbageCollector * gc)3429 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3430 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3431 collector::GarbageCollector::ScopedPause pause(gc, false);
3432 PreGcVerificationPaused(gc);
3433 }
3434 }
3435
PrePauseRosAllocVerification(collector::GarbageCollector * gc ATTRIBUTE_UNUSED)3436 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3437 // TODO: Add a new runtime option for this?
3438 if (verify_pre_gc_rosalloc_) {
3439 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3440 }
3441 }
3442
PreSweepingGcVerification(collector::GarbageCollector * gc)3443 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3444 Thread* const self = Thread::Current();
3445 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3446 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3447 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3448 // reachable objects.
3449 if (verify_pre_sweeping_heap_) {
3450 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3451 CHECK_NE(self->GetState(), ThreadState::kRunnable);
3452 {
3453 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3454 // Swapping bound bitmaps does nothing.
3455 gc->SwapBitmaps();
3456 }
3457 // Pass in false since concurrent reference processing can mean that the reference referents
3458 // may point to dead objects at the point which PreSweepingGcVerification is called.
3459 size_t failures = VerifyHeapReferences(false);
3460 if (failures > 0) {
3461 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3462 << " failures";
3463 }
3464 {
3465 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3466 gc->SwapBitmaps();
3467 }
3468 }
3469 if (verify_pre_sweeping_rosalloc_) {
3470 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3471 }
3472 }
3473
PostGcVerificationPaused(collector::GarbageCollector * gc)3474 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3475 // Only pause if we have to do some verification.
3476 Thread* const self = Thread::Current();
3477 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3478 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3479 if (verify_system_weaks_) {
3480 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3481 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3482 mark_sweep->VerifySystemWeaks();
3483 }
3484 if (verify_post_gc_rosalloc_) {
3485 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3486 }
3487 if (verify_post_gc_heap_) {
3488 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3489 size_t failures = VerifyHeapReferences();
3490 if (failures > 0) {
3491 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3492 << " failures";
3493 }
3494 }
3495 }
3496
PostGcVerification(collector::GarbageCollector * gc)3497 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3498 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3499 collector::GarbageCollector::ScopedPause pause(gc, false);
3500 PostGcVerificationPaused(gc);
3501 }
3502 }
3503
RosAllocVerification(TimingLogger * timings,const char * name)3504 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3505 TimingLogger::ScopedTiming t(name, timings);
3506 for (const auto& space : continuous_spaces_) {
3507 if (space->IsRosAllocSpace()) {
3508 VLOG(heap) << name << " : " << space->GetName();
3509 space->AsRosAllocSpace()->Verify();
3510 }
3511 }
3512 }
3513
WaitForGcToComplete(GcCause cause,Thread * self)3514 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3515 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
3516 MutexLock mu(self, *gc_complete_lock_);
3517 return WaitForGcToCompleteLocked(cause, self);
3518 }
3519
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3520 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3521 gc_complete_cond_->CheckSafeToWait(self);
3522 collector::GcType last_gc_type = collector::kGcTypeNone;
3523 GcCause last_gc_cause = kGcCauseNone;
3524 uint64_t wait_start = NanoTime();
3525 while (collector_type_running_ != kCollectorTypeNone) {
3526 if (self != task_processor_->GetRunningThread()) {
3527 // The current thread is about to wait for a currently running
3528 // collection to finish. If the waiting thread is not the heap
3529 // task daemon thread, the currently running collection is
3530 // considered as a blocking GC.
3531 running_collection_is_blocking_ = true;
3532 VLOG(gc) << "Waiting for a blocking GC " << cause;
3533 }
3534 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3535 // We must wait, change thread state then sleep on gc_complete_cond_;
3536 gc_complete_cond_->Wait(self);
3537 last_gc_type = last_gc_type_;
3538 last_gc_cause = last_gc_cause_;
3539 }
3540 uint64_t wait_time = NanoTime() - wait_start;
3541 total_wait_time_ += wait_time;
3542 if (wait_time > long_pause_log_threshold_) {
3543 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3544 << PrettyDuration(wait_time);
3545 }
3546 if (self != task_processor_->GetRunningThread()) {
3547 // The current thread is about to run a collection. If the thread
3548 // is not the heap task daemon thread, it's considered as a
3549 // blocking GC (i.e., blocking itself).
3550 running_collection_is_blocking_ = true;
3551 // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3552 // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3553 if (cause == kGcCauseForAlloc ||
3554 cause == kGcCauseDisableMovingGc) {
3555 VLOG(gc) << "Starting a blocking GC " << cause;
3556 }
3557 }
3558 return last_gc_type;
3559 }
3560
DumpForSigQuit(std::ostream & os)3561 void Heap::DumpForSigQuit(std::ostream& os) {
3562 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3563 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3564 DumpGcPerformanceInfo(os);
3565 }
3566
GetPercentFree()3567 size_t Heap::GetPercentFree() {
3568 return static_cast<size_t>(100.0f * static_cast<float>(
3569 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3570 }
3571
SetIdealFootprint(size_t target_footprint)3572 void Heap::SetIdealFootprint(size_t target_footprint) {
3573 if (target_footprint > GetMaxMemory()) {
3574 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3575 << PrettySize(GetMaxMemory());
3576 target_footprint = GetMaxMemory();
3577 }
3578 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3579 }
3580
IsMovableObject(ObjPtr<mirror::Object> obj) const3581 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3582 if (kMovingCollector) {
3583 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3584 if (space != nullptr) {
3585 // TODO: Check large object?
3586 return space->CanMoveObjects();
3587 }
3588 }
3589 return false;
3590 }
3591
FindCollectorByGcType(collector::GcType gc_type)3592 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3593 for (auto* collector : garbage_collectors_) {
3594 if (collector->GetCollectorType() == collector_type_ &&
3595 collector->GetGcType() == gc_type) {
3596 return collector;
3597 }
3598 }
3599 return nullptr;
3600 }
3601
HeapGrowthMultiplier() const3602 double Heap::HeapGrowthMultiplier() const {
3603 // If we don't care about pause times we are background, so return 1.0.
3604 if (!CareAboutPauseTimes()) {
3605 return 1.0;
3606 }
3607 return foreground_heap_growth_multiplier_;
3608 }
3609
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3610 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3611 size_t bytes_allocated_before_gc) {
3612 // We're running in the thread that set collector_type_running_ to something other than none,
3613 // thus ensuring that there is only one of us running. Thus
3614 // collector_type_running_ != kCollectorTypeNone, but that's a little tricky to turn into a
3615 // DCHECK.
3616
3617 // We know what our utilization is at this moment.
3618 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3619 const size_t bytes_allocated = GetBytesAllocated();
3620 // Trace the new heap size after the GC is finished.
3621 TraceHeapSize(bytes_allocated);
3622 uint64_t target_size, grow_bytes;
3623 collector::GcType gc_type = collector_ran->GetGcType();
3624 MutexLock mu(Thread::Current(), process_state_update_lock_);
3625 // Use the multiplier to grow more for foreground.
3626 const double multiplier = HeapGrowthMultiplier();
3627 if (gc_type != collector::kGcTypeSticky) {
3628 // Grow the heap for non sticky GC.
3629 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3630 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3631 << " target_utilization_=" << target_utilization_;
3632 grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
3633 grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
3634 target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
3635 next_gc_type_ = collector::kGcTypeSticky;
3636 } else {
3637 collector::GcType non_sticky_gc_type = NonStickyGcType();
3638 // Find what the next non sticky collector will be.
3639 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3640 if (use_generational_cc_) {
3641 if (non_sticky_collector == nullptr) {
3642 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3643 }
3644 CHECK(non_sticky_collector != nullptr);
3645 }
3646 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
3647
3648 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3649 // do another sticky collection next.
3650 // We also check that the bytes allocated aren't over the target_footprint, or
3651 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3652 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3653 // if the sticky GC throughput always remained >= the full/partial throughput.
3654 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3655 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3656 non_sticky_collector->GetEstimatedMeanThroughput() &&
3657 non_sticky_collector->NumberOfIterations() > 0 &&
3658 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3659 next_gc_type_ = collector::kGcTypeSticky;
3660 } else {
3661 next_gc_type_ = non_sticky_gc_type;
3662 }
3663 // If we have freed enough memory, shrink the heap back down.
3664 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3665 if (bytes_allocated + adjusted_max_free < target_footprint) {
3666 target_size = bytes_allocated + adjusted_max_free;
3667 grow_bytes = max_free_;
3668 } else {
3669 target_size = std::max(bytes_allocated, target_footprint);
3670 // The same whether jank perceptible or not; just avoid the adjustment.
3671 grow_bytes = 0;
3672 }
3673 }
3674 CHECK_LE(target_size, std::numeric_limits<size_t>::max());
3675 if (!ignore_target_footprint_) {
3676 SetIdealFootprint(target_size);
3677 // Store target size (computed with foreground heap growth multiplier) for updating
3678 // target_footprint_ when process state switches to foreground.
3679 // target_size = 0 ensures that target_footprint_ is not updated on
3680 // process-state switch.
3681 min_foreground_target_footprint_ =
3682 (multiplier <= 1.0 && grow_bytes > 0)
3683 ? bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_)
3684 : 0;
3685
3686 if (IsGcConcurrent()) {
3687 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3688 current_gc_iteration_.GetFreedLargeObjectBytes() +
3689 current_gc_iteration_.GetFreedRevokeBytes();
3690 // Records the number of bytes allocated at the time of GC finish,excluding the number of
3691 // bytes allocated during GC.
3692 num_bytes_alive_after_gc_ = UnsignedDifference(bytes_allocated_before_gc, freed_bytes);
3693 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3694 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3695 // Almost always bytes_allocated + freed_bytes >= bytes_allocated_before_gc.
3696 const size_t bytes_allocated_during_gc =
3697 UnsignedDifference(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3698 // Calculate when to perform the next ConcurrentGC.
3699 // Estimate how many remaining bytes we will have when we need to start the next GC.
3700 size_t remaining_bytes = bytes_allocated_during_gc;
3701 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3702 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3703 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3704 if (UNLIKELY(remaining_bytes > target_footprint)) {
3705 // A never going to happen situation that from the estimated allocation rate we will exceed
3706 // the applications entire footprint with the given estimated allocation rate. Schedule
3707 // another GC nearly straight away.
3708 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3709 }
3710 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3711 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3712 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3713 // right away.
3714 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3715 }
3716 }
3717 }
3718
ClampGrowthLimit()3719 void Heap::ClampGrowthLimit() {
3720 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3721 ScopedObjectAccess soa(Thread::Current());
3722 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3723 capacity_ = growth_limit_;
3724 for (const auto& space : continuous_spaces_) {
3725 if (space->IsMallocSpace()) {
3726 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3727 malloc_space->ClampGrowthLimit();
3728 }
3729 }
3730 if (collector_type_ == kCollectorTypeCC) {
3731 DCHECK(region_space_ != nullptr);
3732 // Twice the capacity as CC needs extra space for evacuating objects.
3733 region_space_->ClampGrowthLimit(2 * capacity_);
3734 }
3735 // This space isn't added for performance reasons.
3736 if (main_space_backup_.get() != nullptr) {
3737 main_space_backup_->ClampGrowthLimit();
3738 }
3739 }
3740
ClearGrowthLimit()3741 void Heap::ClearGrowthLimit() {
3742 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3743 && growth_limit_ < capacity_) {
3744 target_footprint_.store(capacity_, std::memory_order_relaxed);
3745 SetDefaultConcurrentStartBytes();
3746 }
3747 growth_limit_ = capacity_;
3748 ScopedObjectAccess soa(Thread::Current());
3749 for (const auto& space : continuous_spaces_) {
3750 if (space->IsMallocSpace()) {
3751 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3752 malloc_space->ClearGrowthLimit();
3753 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3754 }
3755 }
3756 // This space isn't added for performance reasons.
3757 if (main_space_backup_.get() != nullptr) {
3758 main_space_backup_->ClearGrowthLimit();
3759 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3760 }
3761 }
3762
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3763 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3764 ScopedObjectAccess soa(self);
3765 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3766 jvalue args[1];
3767 args[0].l = arg.get();
3768 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3769 // Restore object in case it gets moved.
3770 *object = soa.Decode<mirror::Object>(arg.get());
3771 }
3772
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,uint32_t observed_gc_num,ObjPtr<mirror::Object> * obj)3773 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3774 bool force_full,
3775 uint32_t observed_gc_num,
3776 ObjPtr<mirror::Object>* obj) {
3777 StackHandleScope<1> hs(self);
3778 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3779 RequestConcurrentGC(self, kGcCauseBackground, force_full, observed_gc_num);
3780 }
3781
3782 class Heap::ConcurrentGCTask : public HeapTask {
3783 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full,uint32_t gc_num)3784 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full, uint32_t gc_num)
3785 : HeapTask(target_time), cause_(cause), force_full_(force_full), my_gc_num_(gc_num) {}
Run(Thread * self)3786 void Run(Thread* self) override {
3787 Runtime* runtime = Runtime::Current();
3788 gc::Heap* heap = runtime->GetHeap();
3789 DCHECK(GCNumberLt(my_gc_num_, heap->GetCurrentGcNum() + 2)); // <= current_gc_num + 1
3790 heap->ConcurrentGC(self, cause_, force_full_, my_gc_num_);
3791 CHECK_IMPLIES(GCNumberLt(heap->GetCurrentGcNum(), my_gc_num_), runtime->IsShuttingDown(self));
3792 }
3793
3794 private:
3795 const GcCause cause_;
3796 const bool force_full_; // If true, force full (or partial) collection.
3797 const uint32_t my_gc_num_; // Sequence number of requested GC.
3798 };
3799
CanAddHeapTask(Thread * self)3800 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3801 Runtime* runtime = Runtime::Current();
3802 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3803 !self->IsHandlingStackOverflow();
3804 }
3805
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t observed_gc_num)3806 bool Heap::RequestConcurrentGC(Thread* self,
3807 GcCause cause,
3808 bool force_full,
3809 uint32_t observed_gc_num) {
3810 uint32_t max_gc_requested = max_gc_requested_.load(std::memory_order_relaxed);
3811 if (!GCNumberLt(observed_gc_num, max_gc_requested)) {
3812 // observed_gc_num >= max_gc_requested: Nobody beat us to requesting the next gc.
3813 if (CanAddHeapTask(self)) {
3814 // Since observed_gc_num >= max_gc_requested, this increases max_gc_requested_, if successful.
3815 if (max_gc_requested_.CompareAndSetStrongRelaxed(max_gc_requested, observed_gc_num + 1)) {
3816 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
3817 cause,
3818 force_full,
3819 observed_gc_num + 1));
3820 }
3821 DCHECK(GCNumberLt(observed_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
3822 // If we increased max_gc_requested_, then we added a task that will eventually cause
3823 // gcs_completed_ to be incremented (to at least observed_gc_num + 1).
3824 // If the CAS failed, somebody else did.
3825 return true;
3826 }
3827 return false;
3828 }
3829 return true; // Vacuously.
3830 }
3831
3832 #if defined(__BIONIC__) && defined(ART_TARGET)
MaybePerformUffdIoctls(GcCause cause,uint32_t requested_gc_num) const3833 void Heap::MaybePerformUffdIoctls(GcCause cause, uint32_t requested_gc_num) const {
3834 if (uffd_ >= 0
3835 && cause == kGcCauseBackground
3836 && (requested_gc_num < 5 || requested_gc_num % 5 == 0)) {
3837 // Attempt to use all userfaultfd ioctls that we intend to use.
3838 // Register ioctl
3839 {
3840 struct uffdio_register uffd_register;
3841 uffd_register.range.start = 0;
3842 uffd_register.range.len = 0;
3843 uffd_register.mode = UFFDIO_REGISTER_MODE_MISSING;
3844 int ret = ioctl(uffd_, UFFDIO_REGISTER, &uffd_register);
3845 CHECK_EQ(ret, -1);
3846 CHECK_EQ(errno, EINVAL);
3847 }
3848 // Copy ioctl
3849 {
3850 struct uffdio_copy uffd_copy = {.src = 0, .dst = 0, .len = 0, .mode = 0};
3851 int ret = ioctl(uffd_, UFFDIO_COPY, &uffd_copy);
3852 CHECK_EQ(ret, -1);
3853 CHECK_EQ(errno, EINVAL);
3854 }
3855 // Zeropage ioctl
3856 {
3857 struct uffdio_zeropage uffd_zeropage;
3858 uffd_zeropage.range.start = 0;
3859 uffd_zeropage.range.len = 0;
3860 uffd_zeropage.mode = 0;
3861 int ret = ioctl(uffd_, UFFDIO_ZEROPAGE, &uffd_zeropage);
3862 CHECK_EQ(ret, -1);
3863 CHECK_EQ(errno, EINVAL);
3864 }
3865 // Continue ioctl
3866 {
3867 struct uffdio_continue uffd_continue;
3868 uffd_continue.range.start = 0;
3869 uffd_continue.range.len = 0;
3870 uffd_continue.mode = 0;
3871 int ret = ioctl(uffd_, UFFDIO_CONTINUE, &uffd_continue);
3872 CHECK_EQ(ret, -1);
3873 CHECK_EQ(errno, EINVAL);
3874 }
3875 // Wake ioctl
3876 {
3877 struct uffdio_range uffd_range = {.start = 0, .len = 0};
3878 int ret = ioctl(uffd_, UFFDIO_WAKE, &uffd_range);
3879 CHECK_EQ(ret, -1);
3880 CHECK_EQ(errno, EINVAL);
3881 }
3882 // Unregister ioctl
3883 {
3884 struct uffdio_range uffd_range = {.start = 0, .len = 0};
3885 int ret = ioctl(uffd_, UFFDIO_UNREGISTER, &uffd_range);
3886 CHECK_EQ(ret, -1);
3887 CHECK_EQ(errno, EINVAL);
3888 }
3889 }
3890 }
3891 #else
MaybePerformUffdIoctls(GcCause cause ATTRIBUTE_UNUSED,uint32_t requested_gc_num ATTRIBUTE_UNUSED) const3892 void Heap::MaybePerformUffdIoctls(GcCause cause ATTRIBUTE_UNUSED,
3893 uint32_t requested_gc_num ATTRIBUTE_UNUSED) const {}
3894 #endif
3895
ConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t requested_gc_num)3896 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) {
3897 if (!Runtime::Current()->IsShuttingDown(self)) {
3898 // Wait for any GCs currently running to finish. If this incremented GC number, we're done.
3899 WaitForGcToComplete(cause, self);
3900 if (GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
3901 collector::GcType next_gc_type = next_gc_type_;
3902 // If forcing full and next gc type is sticky, override with a non-sticky type.
3903 if (force_full && next_gc_type == collector::kGcTypeSticky) {
3904 next_gc_type = NonStickyGcType();
3905 }
3906 // If we can't run the GC type we wanted to run, find the next appropriate one and try
3907 // that instead. E.g. can't do partial, so do full instead.
3908 // We must ensure that we run something that ends up inrementing gcs_completed_.
3909 // In the kGcTypePartial case, the initial CollectGarbageInternal call may not have that
3910 // effect, but the subsequent KGcTypeFull call will.
3911 if (CollectGarbageInternal(next_gc_type, cause, false, requested_gc_num)
3912 == collector::kGcTypeNone) {
3913 for (collector::GcType gc_type : gc_plan_) {
3914 if (!GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
3915 // Somebody did it for us.
3916 break;
3917 }
3918 // Attempt to run the collector, if we succeed, we are done.
3919 if (gc_type > next_gc_type &&
3920 CollectGarbageInternal(gc_type, cause, false, requested_gc_num)
3921 != collector::kGcTypeNone) {
3922 MaybePerformUffdIoctls(cause, requested_gc_num);
3923 break;
3924 }
3925 }
3926 } else {
3927 MaybePerformUffdIoctls(cause, requested_gc_num);
3928 }
3929 }
3930 }
3931 }
3932
3933 class Heap::CollectorTransitionTask : public HeapTask {
3934 public:
CollectorTransitionTask(uint64_t target_time)3935 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3936
Run(Thread * self)3937 void Run(Thread* self) override {
3938 gc::Heap* heap = Runtime::Current()->GetHeap();
3939 heap->DoPendingCollectorTransition();
3940 heap->ClearPendingCollectorTransition(self);
3941 }
3942 };
3943
ClearPendingCollectorTransition(Thread * self)3944 void Heap::ClearPendingCollectorTransition(Thread* self) {
3945 MutexLock mu(self, *pending_task_lock_);
3946 pending_collector_transition_ = nullptr;
3947 }
3948
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3949 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3950 Thread* self = Thread::Current();
3951 desired_collector_type_ = desired_collector_type;
3952 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3953 return;
3954 }
3955 if (collector_type_ == kCollectorTypeCC) {
3956 // For CC, we invoke a full compaction when going to the background, but the collector type
3957 // doesn't change.
3958 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
3959 // App's allocations (since last GC) more than the threshold then do TransitionGC
3960 // when the app was in background. If not then don't do TransitionGC.
3961 size_t num_bytes_allocated_since_gc = GetBytesAllocated() - num_bytes_alive_after_gc_;
3962 if (num_bytes_allocated_since_gc <
3963 (UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
3964 num_bytes_alive_after_gc_)/4)
3965 && !kStressCollectorTransition
3966 && !IsLowMemoryMode()) {
3967 return;
3968 }
3969 }
3970 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
3971 CollectorTransitionTask* added_task = nullptr;
3972 const uint64_t target_time = NanoTime() + delta_time;
3973 {
3974 MutexLock mu(self, *pending_task_lock_);
3975 // If we have an existing collector transition, update the target time to be the new target.
3976 if (pending_collector_transition_ != nullptr) {
3977 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3978 return;
3979 }
3980 added_task = new CollectorTransitionTask(target_time);
3981 pending_collector_transition_ = added_task;
3982 }
3983 task_processor_->AddTask(self, added_task);
3984 }
3985
3986 class Heap::HeapTrimTask : public HeapTask {
3987 public:
HeapTrimTask(uint64_t delta_time)3988 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3989 void Run(Thread* self) override {
3990 gc::Heap* heap = Runtime::Current()->GetHeap();
3991 heap->Trim(self);
3992 heap->ClearPendingTrim(self);
3993 }
3994 };
3995
ClearPendingTrim(Thread * self)3996 void Heap::ClearPendingTrim(Thread* self) {
3997 MutexLock mu(self, *pending_task_lock_);
3998 pending_heap_trim_ = nullptr;
3999 }
4000
RequestTrim(Thread * self)4001 void Heap::RequestTrim(Thread* self) {
4002 if (!CanAddHeapTask(self)) {
4003 return;
4004 }
4005 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
4006 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
4007 // a space it will hold its lock and can become a cause of jank.
4008 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
4009 // forking.
4010
4011 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
4012 // because that only marks object heads, so a large array looks like lots of empty space. We
4013 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
4014 // to utilization (which is probably inversely proportional to how much benefit we can expect).
4015 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
4016 // not how much use we're making of those pages.
4017 HeapTrimTask* added_task = nullptr;
4018 {
4019 MutexLock mu(self, *pending_task_lock_);
4020 if (pending_heap_trim_ != nullptr) {
4021 // Already have a heap trim request in task processor, ignore this request.
4022 return;
4023 }
4024 added_task = new HeapTrimTask(kHeapTrimWait);
4025 pending_heap_trim_ = added_task;
4026 }
4027 task_processor_->AddTask(self, added_task);
4028 }
4029
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)4030 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
4031 size_t previous_num_bytes_freed_revoke =
4032 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
4033 // Check the updated value is less than the number of bytes allocated. There is a risk of
4034 // execution being suspended between the increment above and the CHECK below, leading to
4035 // the use of previous_num_bytes_freed_revoke in the comparison.
4036 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
4037 previous_num_bytes_freed_revoke + freed_bytes_revoke);
4038 }
4039
RevokeThreadLocalBuffers(Thread * thread)4040 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
4041 if (rosalloc_space_ != nullptr) {
4042 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4043 if (freed_bytes_revoke > 0U) {
4044 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4045 }
4046 }
4047 if (bump_pointer_space_ != nullptr) {
4048 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
4049 }
4050 if (region_space_ != nullptr) {
4051 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
4052 }
4053 }
4054
RevokeRosAllocThreadLocalBuffers(Thread * thread)4055 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
4056 if (rosalloc_space_ != nullptr) {
4057 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4058 if (freed_bytes_revoke > 0U) {
4059 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4060 }
4061 }
4062 }
4063
RevokeAllThreadLocalBuffers()4064 void Heap::RevokeAllThreadLocalBuffers() {
4065 if (rosalloc_space_ != nullptr) {
4066 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
4067 if (freed_bytes_revoke > 0U) {
4068 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4069 }
4070 }
4071 if (bump_pointer_space_ != nullptr) {
4072 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
4073 }
4074 if (region_space_ != nullptr) {
4075 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
4076 }
4077 }
4078
RunFinalization(JNIEnv * env,uint64_t timeout)4079 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
4080 env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
4081 WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
4082 static_cast<jlong>(timeout));
4083 }
4084
4085 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
4086 // different fractions of Java allocations.
4087 // For now, we essentially do not count old native allocations at all, so that we can preserve the
4088 // existing behavior of not limiting native heap size. If we seriously considered it, we would
4089 // have to adjust collection thresholds when we encounter large amounts of old native memory,
4090 // and handle native out-of-memory situations.
4091
4092 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
4093 static constexpr size_t kNewNativeDiscountFactor = 2;
4094
4095 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
4096 // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
4097 // running out of memory.
4098 static constexpr float kStopForNativeFactor = 4.0;
4099
4100 // Return the ratio of the weighted native + java allocated bytes to its target value.
4101 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
4102 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)4103 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
4104 // Collection check for native allocation. Does not enforce Java heap bounds.
4105 // With adj_start_bytes defined below, effectively checks
4106 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
4107 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
4108 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
4109 if (old_native_bytes > current_native_bytes) {
4110 // Net decrease; skip the check, but update old value.
4111 // It's OK to lose an update if two stores race.
4112 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
4113 return 0.0;
4114 } else {
4115 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
4116 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
4117 + old_native_bytes / kOldNativeDiscountFactor;
4118 size_t add_bytes_allowed = static_cast<size_t>(
4119 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
4120 size_t java_gc_start_bytes = is_gc_concurrent
4121 ? concurrent_start_bytes_
4122 : target_footprint_.load(std::memory_order_relaxed);
4123 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
4124 add_bytes_allowed / kNewNativeDiscountFactor);
4125 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
4126 / static_cast<float>(adj_start_bytes);
4127 }
4128 }
4129
CheckGCForNative(Thread * self)4130 inline void Heap::CheckGCForNative(Thread* self) {
4131 bool is_gc_concurrent = IsGcConcurrent();
4132 uint32_t starting_gc_num = GetCurrentGcNum();
4133 size_t current_native_bytes = GetNativeBytes();
4134 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
4135 if (UNLIKELY(gc_urgency >= 1.0)) {
4136 if (is_gc_concurrent) {
4137 bool requested =
4138 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true, starting_gc_num);
4139 if (requested && gc_urgency > kStopForNativeFactor
4140 && current_native_bytes > stop_for_native_allocs_) {
4141 // We're in danger of running out of memory due to rampant native allocation.
4142 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
4143 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
4144 }
4145 // Count how many times we do this, so we can warn if this becomes excessive.
4146 // Stop after a while, out of excessive caution.
4147 static constexpr int kGcWaitIters = 20;
4148 for (int i = 1; i <= kGcWaitIters; ++i) {
4149 if (!GCNumberLt(GetCurrentGcNum(), max_gc_requested_.load(std::memory_order_relaxed))
4150 || WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
4151 break;
4152 }
4153 CHECK(GCNumberLt(starting_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
4154 if (i % 10 == 0) {
4155 LOG(WARNING) << "Slept " << i << " times in native allocation, waiting for GC";
4156 }
4157 static constexpr int kGcWaitSleepMicros = 2000;
4158 usleep(kGcWaitSleepMicros); // Encourage our requested GC to start.
4159 }
4160 }
4161 } else {
4162 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false, starting_gc_num + 1);
4163 }
4164 }
4165 }
4166
4167 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)4168 void Heap::NotifyNativeAllocations(JNIEnv* env) {
4169 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
4170 CheckGCForNative(ThreadForEnv(env));
4171 }
4172
4173 // Register a native allocation with an explicit size.
4174 // This should only be done for large allocations of non-malloc memory, which we wouldn't
4175 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)4176 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
4177 // Cautiously check for a wrapped negative bytes argument.
4178 DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
4179 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
4180 uint32_t objects_notified =
4181 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
4182 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
4183 || bytes > kCheckImmediatelyThreshold) {
4184 CheckGCForNative(ThreadForEnv(env));
4185 }
4186 // Heap profiler treats this as a Java allocation with a null object.
4187 JHPCheckNonTlabSampleAllocation(Thread::Current(), nullptr, bytes);
4188 }
4189
RegisterNativeFree(JNIEnv *,size_t bytes)4190 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
4191 size_t allocated;
4192 size_t new_freed_bytes;
4193 do {
4194 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
4195 new_freed_bytes = std::min(allocated, bytes);
4196 // We should not be registering more free than allocated bytes.
4197 // But correctly keep going in non-debug builds.
4198 DCHECK_EQ(new_freed_bytes, bytes);
4199 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
4200 allocated - new_freed_bytes));
4201 }
4202
GetTotalMemory() const4203 size_t Heap::GetTotalMemory() const {
4204 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
4205 }
4206
AddModUnionTable(accounting::ModUnionTable * mod_union_table)4207 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
4208 DCHECK(mod_union_table != nullptr);
4209 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
4210 }
4211
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)4212 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
4213 // Compare rounded sizes since the allocation may have been retried after rounding the size.
4214 // See b/37885600
4215 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
4216 (c->IsVariableSize() ||
4217 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
4218 RoundUp(byte_count, kObjectAlignment)))
4219 << "ClassFlags=" << c->GetClassFlags()
4220 << " IsClassClass=" << c->IsClassClass()
4221 << " byte_count=" << byte_count
4222 << " IsVariableSize=" << c->IsVariableSize()
4223 << " ObjectSize=" << c->GetObjectSize()
4224 << " sizeof(Class)=" << sizeof(mirror::Class)
4225 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4226 CHECK_GE(byte_count, sizeof(mirror::Object));
4227 }
4228
AddRememberedSet(accounting::RememberedSet * remembered_set)4229 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4230 CHECK(remembered_set != nullptr);
4231 space::Space* space = remembered_set->GetSpace();
4232 CHECK(space != nullptr);
4233 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4234 remembered_sets_.Put(space, remembered_set);
4235 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4236 }
4237
RemoveRememberedSet(space::Space * space)4238 void Heap::RemoveRememberedSet(space::Space* space) {
4239 CHECK(space != nullptr);
4240 auto it = remembered_sets_.find(space);
4241 CHECK(it != remembered_sets_.end());
4242 delete it->second;
4243 remembered_sets_.erase(it);
4244 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4245 }
4246
ClearMarkedObjects()4247 void Heap::ClearMarkedObjects() {
4248 // Clear all of the spaces' mark bitmaps.
4249 for (const auto& space : GetContinuousSpaces()) {
4250 if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
4251 space->GetMarkBitmap()->Clear();
4252 }
4253 }
4254 // Clear the marked objects in the discontinous space object sets.
4255 for (const auto& space : GetDiscontinuousSpaces()) {
4256 space->GetMarkBitmap()->Clear();
4257 }
4258 }
4259
SetAllocationRecords(AllocRecordObjectMap * records)4260 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4261 allocation_records_.reset(records);
4262 }
4263
VisitAllocationRecords(RootVisitor * visitor) const4264 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4265 if (IsAllocTrackingEnabled()) {
4266 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4267 if (IsAllocTrackingEnabled()) {
4268 GetAllocationRecords()->VisitRoots(visitor);
4269 }
4270 }
4271 }
4272
SweepAllocationRecords(IsMarkedVisitor * visitor) const4273 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4274 if (IsAllocTrackingEnabled()) {
4275 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4276 if (IsAllocTrackingEnabled()) {
4277 GetAllocationRecords()->SweepAllocationRecords(visitor);
4278 }
4279 }
4280 }
4281
AllowNewAllocationRecords() const4282 void Heap::AllowNewAllocationRecords() const {
4283 CHECK(!kUseReadBarrier);
4284 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4285 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4286 if (allocation_records != nullptr) {
4287 allocation_records->AllowNewAllocationRecords();
4288 }
4289 }
4290
DisallowNewAllocationRecords() const4291 void Heap::DisallowNewAllocationRecords() const {
4292 CHECK(!kUseReadBarrier);
4293 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4294 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4295 if (allocation_records != nullptr) {
4296 allocation_records->DisallowNewAllocationRecords();
4297 }
4298 }
4299
BroadcastForNewAllocationRecords() const4300 void Heap::BroadcastForNewAllocationRecords() const {
4301 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4302 // be set to false while some threads are waiting for system weak access in
4303 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4304 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4305 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4306 if (allocation_records != nullptr) {
4307 allocation_records->BroadcastForNewAllocationRecords();
4308 }
4309 }
4310
4311 // Perfetto Java Heap Profiler Support.
4312
4313 // Perfetto initialization.
InitPerfettoJavaHeapProf()4314 void Heap::InitPerfettoJavaHeapProf() {
4315 // Initialize Perfetto Heap info and Heap id.
4316 uint32_t heap_id = 1; // Initialize to 1, to be overwritten by Perfetto heap id.
4317 #ifdef ART_TARGET_ANDROID
4318 // Register the heap and create the heapid.
4319 // Use a Perfetto heap name = "com.android.art" for the Java Heap Profiler.
4320 AHeapInfo* info = AHeapInfo_create("com.android.art");
4321 // Set the Enable Callback, there is no callback data ("nullptr").
4322 AHeapInfo_setEnabledCallback(info, &EnableHeapSamplerCallback, &heap_sampler_);
4323 // Set the Disable Callback.
4324 AHeapInfo_setDisabledCallback(info, &DisableHeapSamplerCallback, &heap_sampler_);
4325 heap_id = AHeapProfile_registerHeap(info);
4326 // Do not enable the Java Heap Profiler in this case, wait for Perfetto to enable it through
4327 // the callback function.
4328 #else
4329 // This is the host case, enable the Java Heap Profiler for host testing.
4330 // Perfetto API is currently not available on host.
4331 heap_sampler_.EnableHeapSampler();
4332 #endif
4333 heap_sampler_.SetHeapID(heap_id);
4334 VLOG(heap) << "Java Heap Profiler Initialized";
4335 }
4336
4337 // Check if the Java Heap Profiler is enabled and initialized.
CheckPerfettoJHPEnabled()4338 int Heap::CheckPerfettoJHPEnabled() {
4339 return GetHeapSampler().IsEnabled();
4340 }
4341
JHPCheckNonTlabSampleAllocation(Thread * self,mirror::Object * obj,size_t alloc_size)4342 void Heap::JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* obj, size_t alloc_size) {
4343 bool take_sample = false;
4344 size_t bytes_until_sample = 0;
4345 HeapSampler& prof_heap_sampler = GetHeapSampler();
4346 if (prof_heap_sampler.IsEnabled()) {
4347 // An allocation occurred, sample it, even if non-Tlab.
4348 // In case take_sample is already set from the previous GetSampleOffset
4349 // because we tried the Tlab allocation first, we will not use this value.
4350 // A new value is generated below. Also bytes_until_sample will be updated.
4351 // Note that we are not using the return value from the GetSampleOffset in
4352 // the NonTlab case here.
4353 prof_heap_sampler.GetSampleOffset(alloc_size,
4354 self->GetTlabPosOffset(),
4355 &take_sample,
4356 &bytes_until_sample);
4357 prof_heap_sampler.SetBytesUntilSample(bytes_until_sample);
4358 if (take_sample) {
4359 prof_heap_sampler.ReportSample(obj, alloc_size);
4360 }
4361 VLOG(heap) << "JHP:NonTlab Non-moving or Large Allocation or RegisterNativeAllocation";
4362 }
4363 }
4364
JHPCalculateNextTlabSize(Thread * self,size_t jhp_def_tlab_size,size_t alloc_size,bool * take_sample,size_t * bytes_until_sample)4365 size_t Heap::JHPCalculateNextTlabSize(Thread* self,
4366 size_t jhp_def_tlab_size,
4367 size_t alloc_size,
4368 bool* take_sample,
4369 size_t* bytes_until_sample) {
4370 size_t next_tlab_size = jhp_def_tlab_size;
4371 if (CheckPerfettoJHPEnabled()) {
4372 size_t next_sample_point =
4373 GetHeapSampler().GetSampleOffset(alloc_size,
4374 self->GetTlabPosOffset(),
4375 take_sample,
4376 bytes_until_sample);
4377 next_tlab_size = std::min(next_sample_point, jhp_def_tlab_size);
4378 }
4379 return next_tlab_size;
4380 }
4381
AdjustSampleOffset(size_t adjustment)4382 void Heap::AdjustSampleOffset(size_t adjustment) {
4383 GetHeapSampler().AdjustSampleOffset(adjustment);
4384 }
4385
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4386 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4387 DCHECK(gc_stress_mode_);
4388 auto* const runtime = Runtime::Current();
4389 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4390 // Check if we should GC.
4391 bool new_backtrace = false;
4392 {
4393 static constexpr size_t kMaxFrames = 16u;
4394 MutexLock mu(self, *backtrace_lock_);
4395 FixedSizeBacktrace<kMaxFrames> backtrace;
4396 backtrace.Collect(/* skip_count= */ 2);
4397 uint64_t hash = backtrace.Hash();
4398 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4399 if (new_backtrace) {
4400 seen_backtraces_.insert(hash);
4401 }
4402 }
4403 if (new_backtrace) {
4404 StackHandleScope<1> hs(self);
4405 auto h = hs.NewHandleWrapper(obj);
4406 CollectGarbage(/* clear_soft_references= */ false);
4407 unique_backtrace_count_.fetch_add(1);
4408 } else {
4409 seen_backtrace_count_.fetch_add(1);
4410 }
4411 }
4412 }
4413
DisableGCForShutdown()4414 void Heap::DisableGCForShutdown() {
4415 Thread* const self = Thread::Current();
4416 CHECK(Runtime::Current()->IsShuttingDown(self));
4417 MutexLock mu(self, *gc_complete_lock_);
4418 gc_disabled_for_shutdown_ = true;
4419 }
4420
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4421 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4422 DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
4423 any_of(boot_image_spaces_.begin(),
4424 boot_image_spaces_.end(),
4425 [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4426 return space->HasAddress(obj.Ptr());
4427 }));
4428 return IsBootImageAddress(obj.Ptr());
4429 }
4430
IsInBootImageOatFile(const void * p) const4431 bool Heap::IsInBootImageOatFile(const void* p) const {
4432 DCHECK_EQ(IsBootImageAddress(p),
4433 any_of(boot_image_spaces_.begin(),
4434 boot_image_spaces_.end(),
4435 [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4436 return space->GetOatFile()->Contains(p);
4437 }));
4438 return IsBootImageAddress(p);
4439 }
4440
SetAllocationListener(AllocationListener * l)4441 void Heap::SetAllocationListener(AllocationListener* l) {
4442 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4443
4444 if (old == nullptr) {
4445 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4446 }
4447 }
4448
RemoveAllocationListener()4449 void Heap::RemoveAllocationListener() {
4450 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4451
4452 if (old != nullptr) {
4453 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4454 }
4455 }
4456
SetGcPauseListener(GcPauseListener * l)4457 void Heap::SetGcPauseListener(GcPauseListener* l) {
4458 gc_pause_listener_.store(l, std::memory_order_relaxed);
4459 }
4460
RemoveGcPauseListener()4461 void Heap::RemoveGcPauseListener() {
4462 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4463 }
4464
AllocWithNewTLAB(Thread * self,AllocatorType allocator_type,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4465 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4466 AllocatorType allocator_type,
4467 size_t alloc_size,
4468 bool grow,
4469 size_t* bytes_allocated,
4470 size_t* usable_size,
4471 size_t* bytes_tl_bulk_allocated) {
4472 mirror::Object* ret = nullptr;
4473 bool take_sample = false;
4474 size_t bytes_until_sample = 0;
4475
4476 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4477 DCHECK_GT(alloc_size, self->TlabSize());
4478 // There is enough space if we grow the TLAB. Lets do that. This increases the
4479 // TLAB bytes.
4480 const size_t min_expand_size = alloc_size - self->TlabSize();
4481 size_t next_tlab_size = JHPCalculateNextTlabSize(self,
4482 kPartialTlabSize,
4483 alloc_size,
4484 &take_sample,
4485 &bytes_until_sample);
4486 const size_t expand_bytes = std::max(
4487 min_expand_size,
4488 std::min(self->TlabRemainingCapacity() - self->TlabSize(), next_tlab_size));
4489 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4490 return nullptr;
4491 }
4492 *bytes_tl_bulk_allocated = expand_bytes;
4493 self->ExpandTlab(expand_bytes);
4494 DCHECK_LE(alloc_size, self->TlabSize());
4495 } else if (allocator_type == kAllocatorTypeTLAB) {
4496 DCHECK(bump_pointer_space_ != nullptr);
4497 size_t next_tlab_size = JHPCalculateNextTlabSize(self,
4498 kDefaultTLABSize,
4499 alloc_size,
4500 &take_sample,
4501 &bytes_until_sample);
4502 const size_t new_tlab_size = alloc_size + next_tlab_size;
4503 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4504 return nullptr;
4505 }
4506 // Try allocating a new thread local buffer, if the allocation fails the space must be
4507 // full so return null.
4508 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
4509 return nullptr;
4510 }
4511 *bytes_tl_bulk_allocated = new_tlab_size;
4512 if (CheckPerfettoJHPEnabled()) {
4513 VLOG(heap) << "JHP:kAllocatorTypeTLAB, New Tlab bytes allocated= " << new_tlab_size;
4514 }
4515 } else {
4516 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4517 DCHECK(region_space_ != nullptr);
4518 if (space::RegionSpace::kRegionSize >= alloc_size) {
4519 // Non-large. Check OOME for a tlab.
4520 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4521 space::RegionSpace::kRegionSize,
4522 grow))) {
4523 size_t def_pr_tlab_size = kUsePartialTlabs
4524 ? kPartialTlabSize
4525 : gc::space::RegionSpace::kRegionSize;
4526 size_t next_pr_tlab_size = JHPCalculateNextTlabSize(self,
4527 def_pr_tlab_size,
4528 alloc_size,
4529 &take_sample,
4530 &bytes_until_sample);
4531 const size_t new_tlab_size = kUsePartialTlabs
4532 ? std::max(alloc_size, next_pr_tlab_size)
4533 : next_pr_tlab_size;
4534 // Try to allocate a tlab.
4535 if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4536 // Failed to allocate a tlab. Try non-tlab.
4537 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4538 bytes_allocated,
4539 usable_size,
4540 bytes_tl_bulk_allocated);
4541 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4542 return ret;
4543 }
4544 // Fall-through to using the TLAB below.
4545 } else {
4546 // Check OOME for a non-tlab allocation.
4547 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4548 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4549 bytes_allocated,
4550 usable_size,
4551 bytes_tl_bulk_allocated);
4552 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4553 return ret;
4554 }
4555 // Neither tlab or non-tlab works. Give up.
4556 return nullptr;
4557 }
4558 } else {
4559 // Large. Check OOME.
4560 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4561 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4562 bytes_allocated,
4563 usable_size,
4564 bytes_tl_bulk_allocated);
4565 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4566 return ret;
4567 }
4568 return nullptr;
4569 }
4570 }
4571 // Refilled TLAB, return.
4572 ret = self->AllocTlab(alloc_size);
4573 DCHECK(ret != nullptr);
4574 *bytes_allocated = alloc_size;
4575 *usable_size = alloc_size;
4576
4577 // JavaHeapProfiler: Send the thread information about this allocation in case a sample is
4578 // requested.
4579 // This is the fallthrough from both the if and else if above cases => Cases that use TLAB.
4580 if (CheckPerfettoJHPEnabled()) {
4581 if (take_sample) {
4582 GetHeapSampler().ReportSample(ret, alloc_size);
4583 // Update the bytes_until_sample now that the allocation is already done.
4584 GetHeapSampler().SetBytesUntilSample(bytes_until_sample);
4585 }
4586 VLOG(heap) << "JHP:Fallthrough Tlab allocation";
4587 }
4588
4589 return ret;
4590 }
4591
GetVerification() const4592 const Verification* Heap::GetVerification() const {
4593 return verification_.get();
4594 }
4595
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4596 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4597 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4598 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4599 }
4600
4601 // Run a gc if we haven't run one since initial_gc_num. This forces processes to
4602 // reclaim memory allocated during startup, even if they don't do much
4603 // allocation post startup. If the process is actively allocating and triggering
4604 // GCs, or has moved to the background and hence forced a GC, this does nothing.
4605 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4606 public:
TriggerPostForkCCGcTask(uint64_t target_time,uint32_t initial_gc_num)4607 explicit TriggerPostForkCCGcTask(uint64_t target_time, uint32_t initial_gc_num) :
4608 HeapTask(target_time), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4609 void Run(Thread* self) override {
4610 gc::Heap* heap = Runtime::Current()->GetHeap();
4611 if (heap->GetCurrentGcNum() == initial_gc_num_) {
4612 if (kLogAllGCs) {
4613 LOG(INFO) << "Forcing GC for allocation-inactive process";
4614 }
4615 heap->RequestConcurrentGC(self, kGcCauseBackground, false, initial_gc_num_);
4616 }
4617 }
4618 private:
4619 uint32_t initial_gc_num_;
4620 };
4621
4622 // Reduce target footprint, if no GC has occurred since initial_gc_num.
4623 // If a GC already occurred, it will have done this for us.
4624 class Heap::ReduceTargetFootprintTask : public HeapTask {
4625 public:
ReduceTargetFootprintTask(uint64_t target_time,size_t new_target_sz,uint32_t initial_gc_num)4626 explicit ReduceTargetFootprintTask(uint64_t target_time, size_t new_target_sz,
4627 uint32_t initial_gc_num) :
4628 HeapTask(target_time), new_target_sz_(new_target_sz), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4629 void Run(Thread* self) override {
4630 gc::Heap* heap = Runtime::Current()->GetHeap();
4631 MutexLock mu(self, *(heap->gc_complete_lock_));
4632 if (heap->GetCurrentGcNum() == initial_gc_num_
4633 && heap->collector_type_running_ == kCollectorTypeNone) {
4634 size_t target_footprint = heap->target_footprint_.load(std::memory_order_relaxed);
4635 if (target_footprint > new_target_sz_) {
4636 if (heap->target_footprint_.CompareAndSetStrongRelaxed(target_footprint, new_target_sz_)) {
4637 heap->SetDefaultConcurrentStartBytesLocked();
4638 }
4639 }
4640 }
4641 }
4642 private:
4643 size_t new_target_sz_;
4644 uint32_t initial_gc_num_;
4645 };
4646
4647 // Return a pseudo-random integer between 0 and 19999, using the uid as a seed. We want this to
4648 // be deterministic for a given process, but to vary randomly across processes. Empirically, the
4649 // uids for processes for which this matters are distinct.
GetPseudoRandomFromUid()4650 static uint32_t GetPseudoRandomFromUid() {
4651 std::default_random_engine rng(getuid());
4652 std::uniform_int_distribution<int> dist(0, 19999);
4653 return dist(rng);
4654 }
4655
PostForkChildAction(Thread * self)4656 void Heap::PostForkChildAction(Thread* self) {
4657 uint32_t starting_gc_num = GetCurrentGcNum();
4658 uint64_t last_adj_time = NanoTime();
4659 next_gc_type_ = NonStickyGcType(); // Always start with a full gc.
4660
4661 #if defined(__BIONIC__) && defined(ART_TARGET)
4662 uffd_ = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK | UFFD_USER_MODE_ONLY);
4663 if (uffd_ >= 0) {
4664 struct uffdio_api api = {.api = UFFD_API, .features = 0};
4665 int ret = ioctl(uffd_, UFFDIO_API, &api);
4666 CHECK_EQ(ret, 0) << "ioctl_userfaultfd: API: " << strerror(errno);
4667 } else {
4668 // The syscall should fail only if it doesn't exist in the kernel or if it's
4669 // denied by SELinux.
4670 CHECK(errno == ENOSYS || errno == EACCES) << "userfaultfd: " << strerror(errno);
4671 }
4672 #endif
4673
4674 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4675 // max values to avoid GC during app launch.
4676 if (!IsLowMemoryMode()) {
4677 // Set target_footprint_ to the largest allowed value.
4678 SetIdealFootprint(growth_limit_);
4679 SetDefaultConcurrentStartBytes();
4680
4681 // Shrink heap after kPostForkMaxHeapDurationMS, to force a memory hog process to GC.
4682 // This remains high enough that many processes will continue without a GC.
4683 if (initial_heap_size_ < growth_limit_) {
4684 size_t first_shrink_size = std::max(growth_limit_ / 4, initial_heap_size_);
4685 last_adj_time += MsToNs(kPostForkMaxHeapDurationMS);
4686 GetTaskProcessor()->AddTask(
4687 self, new ReduceTargetFootprintTask(last_adj_time, first_shrink_size, starting_gc_num));
4688 // Shrink to a small value after a substantial time period. This will typically force a
4689 // GC if none has occurred yet. Has no effect if there was a GC before this anyway, which
4690 // is commonly the case, e.g. because of a process transition.
4691 if (initial_heap_size_ < first_shrink_size) {
4692 last_adj_time += MsToNs(4 * kPostForkMaxHeapDurationMS);
4693 GetTaskProcessor()->AddTask(
4694 self,
4695 new ReduceTargetFootprintTask(last_adj_time, initial_heap_size_, starting_gc_num));
4696 }
4697 }
4698 }
4699 // Schedule a GC after a substantial period of time. This will become a no-op if another GC is
4700 // scheduled in the interim. If not, we want to avoid holding onto start-up garbage.
4701 uint64_t post_fork_gc_time = last_adj_time
4702 + MsToNs(4 * kPostForkMaxHeapDurationMS + GetPseudoRandomFromUid());
4703 GetTaskProcessor()->AddTask(self,
4704 new TriggerPostForkCCGcTask(post_fork_gc_time, starting_gc_num));
4705 }
4706
VisitReflectiveTargets(ReflectiveValueVisitor * visit)4707 void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
4708 VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
4709 art::ObjPtr<mirror::Class> klass(ref->GetClass());
4710 // All these classes are in the BootstrapClassLoader.
4711 if (!klass->IsBootStrapClassLoaded()) {
4712 return;
4713 }
4714 if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
4715 GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
4716 down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
4717 } else if (art::GetClassRoot<art::mirror::Field>() == klass) {
4718 down_cast<mirror::Field*>(ref)->VisitTarget(visit);
4719 } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
4720 down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
4721 } else if (art::GetClassRoot<art::mirror::StaticFieldVarHandle>()->IsAssignableFrom(klass)) {
4722 down_cast<mirror::StaticFieldVarHandle*>(ref)->VisitTarget(visit);
4723 } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
4724 down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
4725 } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
4726 down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
4727 }
4728 });
4729 }
4730
AddHeapTask(gc::HeapTask * task)4731 bool Heap::AddHeapTask(gc::HeapTask* task) {
4732 Thread* const self = Thread::Current();
4733 if (!CanAddHeapTask(self)) {
4734 return false;
4735 }
4736 GetTaskProcessor()->AddTask(self, task);
4737 return true;
4738 }
4739
4740 } // namespace gc
4741 } // namespace art
4742