1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/trace_processor/dynamic/experimental_slice_layout_generator.h"
18 #include "perfetto/ext/base/optional.h"
19 #include "perfetto/ext/base/string_splitter.h"
20 #include "perfetto/ext/base/string_utils.h"
21 #include "src/trace_processor/sqlite/sqlite_utils.h"
22
23 namespace perfetto {
24 namespace trace_processor {
25 namespace {
26
27 struct GroupInfo {
GroupInfoperfetto::trace_processor::__anonb25907b10111::GroupInfo28 GroupInfo(int64_t _start, int64_t _end, uint32_t _max_height)
29 : start(_start), end(_end), max_height(_max_height) {}
30 int64_t start;
31 int64_t end;
32 uint32_t max_height;
33 uint32_t layout_depth;
34 };
35
36 } // namespace
37
ExperimentalSliceLayoutGenerator(StringPool * string_pool,const tables::SliceTable * table)38 ExperimentalSliceLayoutGenerator::ExperimentalSliceLayoutGenerator(
39 StringPool* string_pool,
40 const tables::SliceTable* table)
41 : string_pool_(string_pool),
42 slice_table_(table),
43 empty_string_id_(string_pool_->InternString("")) {}
44 ExperimentalSliceLayoutGenerator::~ExperimentalSliceLayoutGenerator() = default;
45
CreateSchema()46 Table::Schema ExperimentalSliceLayoutGenerator::CreateSchema() {
47 Table::Schema schema = tables::SliceTable::Schema();
48 schema.columns.emplace_back(Table::Schema::Column{
49 "layout_depth", SqlValue::Type::kLong, false /* is_id */,
50 false /* is_sorted */, false /* is_hidden */});
51 schema.columns.emplace_back(Table::Schema::Column{
52 "filter_track_ids", SqlValue::Type::kString, false /* is_id */,
53 false /* is_sorted */, true /* is_hidden */});
54 return schema;
55 }
56
TableName()57 std::string ExperimentalSliceLayoutGenerator::TableName() {
58 return "experimental_slice_layout";
59 }
60
EstimateRowCount()61 uint32_t ExperimentalSliceLayoutGenerator::EstimateRowCount() {
62 return slice_table_->row_count();
63 }
64
ValidateConstraints(const QueryConstraints & cs)65 base::Status ExperimentalSliceLayoutGenerator::ValidateConstraints(
66 const QueryConstraints& cs) {
67 for (const auto& c : cs.constraints()) {
68 if (c.column == kFilterTrackIdsColumnIndex && sqlite_utils::IsOpEq(c.op)) {
69 return base::OkStatus();
70 }
71 }
72 return base::ErrStatus(
73 "experimental_slice_layout must have filter_track_ids constraint");
74 }
75
ComputeTable(const std::vector<Constraint> & cs,const std::vector<Order> &,const BitVector &,std::unique_ptr<Table> & table_return)76 base::Status ExperimentalSliceLayoutGenerator::ComputeTable(
77 const std::vector<Constraint>& cs,
78 const std::vector<Order>&,
79 const BitVector&,
80 std::unique_ptr<Table>& table_return) {
81 std::set<TrackId> selected_tracks;
82 std::string filter_string = "";
83 for (const auto& c : cs) {
84 bool is_filter_track_ids = c.col_idx == kFilterTrackIdsColumnIndex;
85 bool is_equal = c.op == FilterOp::kEq;
86 bool is_string = c.value.type == SqlValue::kString;
87 if (is_filter_track_ids && is_equal && is_string) {
88 filter_string = c.value.AsString();
89 for (base::StringSplitter sp(filter_string, ','); sp.Next();) {
90 base::Optional<uint32_t> maybe = base::CStringToUInt32(sp.cur_token());
91 if (maybe) {
92 selected_tracks.insert(TrackId{maybe.value()});
93 }
94 }
95 }
96 }
97
98 StringPool::Id filter_id =
99 string_pool_->InternString(base::StringView(filter_string));
100
101 // Try and find the table in the cache.
102 auto it = layout_table_cache_.find(filter_id);
103 if (it != layout_table_cache_.end()) {
104 table_return.reset(new Table(it->second.Copy()));
105 return base::OkStatus();
106 }
107
108 // Find all the slices for the tracks we want to filter and create a RowMap
109 // out of them.
110 // TODO(lalitm): Update this to use iterator (as this code will be slow after
111 // the event table is implemented).
112 // TODO(lalitm): consider generalising this by adding OR constraint support to
113 // Constraint and Table::Filter. We definitely want to wait until we have more
114 // usecases before implementing that though because it will be a significant
115 // amount of work.
116 RowMap rm;
117 for (uint32_t i = 0; i < slice_table_->row_count(); ++i) {
118 if (selected_tracks.count(slice_table_->track_id()[i]) > 0) {
119 rm.Insert(i);
120 }
121 }
122
123 // Apply the row map to the table to cut down on the number of rows we have to
124 // go through.
125 Table filtered_table = slice_table_->Apply(std::move(rm));
126
127 // Compute the table and add it to the cache for future use.
128 Table layout_table = ComputeLayoutTable(filtered_table, filter_id);
129 auto res = layout_table_cache_.emplace(filter_id, std::move(layout_table));
130
131 table_return.reset(new Table(res.first->second.Copy()));
132 return base::OkStatus();
133 }
134
135 // Build up a table of slice id -> root slice id by observing each
136 // (id, opt_parent_id) pair in order.
InsertSlice(std::map<tables::SliceTable::Id,tables::SliceTable::Id> & id_map,tables::SliceTable::Id id,base::Optional<tables::SliceTable::Id> parent_id)137 tables::SliceTable::Id ExperimentalSliceLayoutGenerator::InsertSlice(
138 std::map<tables::SliceTable::Id, tables::SliceTable::Id>& id_map,
139 tables::SliceTable::Id id,
140 base::Optional<tables::SliceTable::Id> parent_id) {
141 if (parent_id) {
142 tables::SliceTable::Id root_id = id_map[parent_id.value()];
143 id_map[id] = root_id;
144 return root_id;
145 } else {
146 id_map[id] = id;
147 return id;
148 }
149 }
150
151 // The problem we're trying to solve is this: given a number of tracks each of
152 // which contain a number of 'stalactites' - depth 0 slices and all their
153 // children - layout the stalactites to minimize vertical depth without
154 // changing the horizontal (time) position. So given two tracks:
155 // Track A:
156 // aaaaaaaaa aaa
157 // aa
158 // a
159 // Track B:
160 // bbb bbb bbb
161 // b b b
162 // The result could be something like:
163 // aaaaaaaaa bbb aaa
164 // b aa
165 // bbb a
166 // b
167 // bbb
168 // b
169 // We do this by computing an additional column: layout_depth. layout_depth
170 // tells us the vertical position of each slice in each stalactite.
171 //
172 // The algorithm works in three passes:
173 // 1. For each stalactite find the 'bounding box' (start, end, & max depth)
174 // 2. Considering each stalactite bounding box in start ts order pick a
175 // layout_depth for the root slice of stalactite to avoid collisions with
176 // all previous stalactite's we've considered.
177 // 3. Go though each slice and give it a layout_depth by summing it's
178 // current depth and the root layout_depth of the stalactite it belongs to.
179 //
ComputeLayoutTable(const Table & table,StringPool::Id filter_id)180 Table ExperimentalSliceLayoutGenerator::ComputeLayoutTable(
181 const Table& table,
182 StringPool::Id filter_id) {
183 std::map<tables::SliceTable::Id, GroupInfo> groups;
184 // Map of id -> root_id
185 std::map<tables::SliceTable::Id, tables::SliceTable::Id> id_map;
186
187 const auto& id_col = table.GetIdColumnByName<tables::SliceTable::Id>("id");
188 const auto& parent_id_col =
189 table.GetTypedColumnByName<base::Optional<tables::SliceTable::Id>>(
190 "parent_id");
191 const auto& depth_col = table.GetTypedColumnByName<uint32_t>("depth");
192 const auto& ts_col = table.GetTypedColumnByName<int64_t>("ts");
193 const auto& dur_col = table.GetTypedColumnByName<int64_t>("dur");
194
195 // Step 1:
196 // Find the bounding box (start ts, end ts, and max depth) for each group
197 // TODO(lalitm): Update this to use iterator (as this code will be slow after
198 // the event table is implemented)
199 for (uint32_t i = 0; i < table.row_count(); ++i) {
200 tables::SliceTable::Id id = id_col[i];
201 base::Optional<tables::SliceTable::Id> parent_id = parent_id_col[i];
202 uint32_t depth = depth_col[i];
203 int64_t start = ts_col[i];
204 int64_t dur = dur_col[i];
205 int64_t end = dur == -1 ? std::numeric_limits<int64_t>::max() : start + dur;
206 InsertSlice(id_map, id, parent_id);
207 std::map<tables::SliceTable::Id, GroupInfo>::iterator it;
208 bool inserted;
209 std::tie(it, inserted) = groups.emplace(
210 std::piecewise_construct, std::forward_as_tuple(id_map[id]),
211 std::forward_as_tuple(start, end, depth + 1));
212 if (!inserted) {
213 it->second.max_height = std::max(it->second.max_height, depth + 1);
214 it->second.end = std::max(it->second.end, end);
215 }
216 }
217
218 // Sort the groups by ts
219 std::vector<GroupInfo*> sorted_groups;
220 sorted_groups.resize(groups.size());
221 size_t idx = 0;
222 for (auto& group : groups) {
223 sorted_groups[idx++] = &group.second;
224 }
225 std::sort(std::begin(sorted_groups), std::end(sorted_groups),
226 [](const GroupInfo* group1, const GroupInfo* group2) {
227 return group1->start < group2->start;
228 });
229
230 // Step 2:
231 // Go though each group and choose a depth for the root slice.
232 // We keep track of those groups where the start time has passed but the
233 // end time has not in this vector:
234 std::vector<GroupInfo*> still_open;
235 for (GroupInfo* group : sorted_groups) {
236 int64_t start = group->start;
237 uint32_t max_height = group->max_height;
238
239 // Discard all 'closed' groups where that groups end_ts is < our start_ts:
240 {
241 auto it = still_open.begin();
242 while (it != still_open.end()) {
243 if ((*it)->end <= start) {
244 it = still_open.erase(it);
245 } else {
246 ++it;
247 }
248 }
249 }
250
251 // Find a start layout depth for this group s.t. our start depth +
252 // our max depth will not intersect with the start depth + max depth for
253 // any of the open groups:
254 uint32_t layout_depth = 0;
255 bool done = false;
256 while (!done) {
257 done = true;
258 uint32_t start_depth = layout_depth;
259 uint32_t end_depth = layout_depth + max_height;
260 for (const auto& open : still_open) {
261 bool top = open->layout_depth <= start_depth &&
262 start_depth < open->layout_depth + open->max_height;
263 bool bottom = open->layout_depth < end_depth &&
264 end_depth <= open->layout_depth + open->max_height;
265 if (top || bottom) {
266 // This is extremely dumb, we can make a much better guess for what
267 // depth to try next but it is a little complicated to get right.
268 layout_depth++;
269 done = false;
270 break;
271 }
272 }
273 }
274
275 // Add this group to the open groups & re
276 still_open.push_back(group);
277
278 // Set our root layout depth:
279 group->layout_depth = layout_depth;
280 }
281
282 // Step 3: Add the two new columns layout_depth and filter_track_ids:
283 std::unique_ptr<NullableVector<int64_t>> layout_depth_column(
284 new NullableVector<int64_t>());
285 std::unique_ptr<NullableVector<StringPool::Id>> filter_column(
286 new NullableVector<StringPool::Id>());
287
288 for (uint32_t i = 0; i < table.row_count(); ++i) {
289 tables::SliceTable::Id id = id_col[i];
290 uint32_t depth = depth_col[i];
291 // Each slice depth is it's current slice depth + root slice depth of the
292 // group:
293 layout_depth_column->Append(depth + groups.at(id_map[id]).layout_depth);
294 // We must set this to the value we got in the constraint to ensure our
295 // rows are not filtered out:
296 filter_column->Append(filter_id);
297 }
298 return table
299 .ExtendWithColumn("layout_depth", std::move(layout_depth_column),
300 TypedColumn<int64_t>::default_flags())
301 .ExtendWithColumn("filter_track_ids", std::move(filter_column),
302 TypedColumn<StringPool::Id>::default_flags());
303 }
304
305 } // namespace trace_processor
306 } // namespace perfetto
307