• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2002 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 // mathutil.h: Math and bit manipulation functions.
8 
9 #ifndef COMMON_MATHUTIL_H_
10 #define COMMON_MATHUTIL_H_
11 
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 #include <limits>
18 
19 #include <anglebase/numerics/safe_math.h>
20 
21 #include "common/debug.h"
22 #include "common/platform.h"
23 
24 namespace angle
25 {
26 using base::CheckedNumeric;
27 using base::IsValueInRangeForNumericType;
28 }  // namespace angle
29 
30 namespace gl
31 {
32 
33 const unsigned int Float32One   = 0x3F800000;
34 const unsigned short Float16One = 0x3C00;
35 
36 template <typename T>
isPow2(T x)37 inline constexpr bool isPow2(T x)
38 {
39     static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40     return (x & (x - 1)) == 0 && (x != 0);
41 }
42 
43 template <typename T>
log2(T x)44 inline int log2(T x)
45 {
46     static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
47     int r = 0;
48     while ((x >> r) > 1)
49         r++;
50     return r;
51 }
52 
ceilPow2(unsigned int x)53 inline unsigned int ceilPow2(unsigned int x)
54 {
55     if (x != 0)
56         x--;
57     x |= x >> 1;
58     x |= x >> 2;
59     x |= x >> 4;
60     x |= x >> 8;
61     x |= x >> 16;
62     x++;
63 
64     return x;
65 }
66 
67 template <typename DestT, typename SrcT>
clampCast(SrcT value)68 inline DestT clampCast(SrcT value)
69 {
70     // For floating-point types with denormalization, min returns the minimum positive normalized
71     // value. To find the value that has no values less than it, use numeric_limits::lowest.
72     constexpr const long double destLo =
73         static_cast<long double>(std::numeric_limits<DestT>::lowest());
74     constexpr const long double destHi =
75         static_cast<long double>(std::numeric_limits<DestT>::max());
76     constexpr const long double srcLo =
77         static_cast<long double>(std::numeric_limits<SrcT>::lowest());
78     constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
79 
80     if (destHi < srcHi)
81     {
82         DestT destMax = std::numeric_limits<DestT>::max();
83         if (value >= static_cast<SrcT>(destMax))
84         {
85             return destMax;
86         }
87     }
88 
89     if (destLo > srcLo)
90     {
91         DestT destLow = std::numeric_limits<DestT>::lowest();
92         if (value <= static_cast<SrcT>(destLow))
93         {
94             return destLow;
95         }
96     }
97 
98     return static_cast<DestT>(value);
99 }
100 
101 // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
102 // value is casted to the source type.
103 template <>
clampCast(bool value)104 inline unsigned int clampCast(bool value)
105 {
106     return static_cast<unsigned int>(value);
107 }
108 
109 template <>
clampCast(bool value)110 inline int clampCast(bool value)
111 {
112     return static_cast<int>(value);
113 }
114 
115 template <typename T, typename MIN, typename MAX>
clamp(T x,MIN min,MAX max)116 inline T clamp(T x, MIN min, MAX max)
117 {
118     // Since NaNs fail all comparison tests, a NaN value will default to min
119     return x > min ? (x > max ? max : x) : min;
120 }
121 
122 template <typename T>
clampForBitCount(T value,size_t bitCount)123 T clampForBitCount(T value, size_t bitCount)
124 {
125     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
126 
127     if (bitCount == 0)
128     {
129         constexpr T kZero = 0;
130         return kZero;
131     }
132     ASSERT(bitCount <= sizeof(T) * 8);
133 
134     constexpr bool kIsSigned = std::numeric_limits<T>::is_signed;
135     ASSERT((bitCount > 1) || !kIsSigned);
136 
137     T min = 0;
138     T max = 0;
139     if (bitCount == sizeof(T) * 8)
140     {
141         min = std::numeric_limits<T>::min();
142         max = std::numeric_limits<T>::max();
143     }
144     else
145     {
146         constexpr T kOne = 1;
147         min              = (kIsSigned) ? -1 * (kOne << (bitCount - 1)) : 0;
148         max              = (kIsSigned) ? (kOne << (bitCount - 1)) - 1 : (kOne << bitCount) - 1;
149     }
150 
151     return gl::clamp(value, min, max);
152 }
153 
clamp01(float x)154 inline float clamp01(float x)
155 {
156     return clamp(x, 0.0f, 1.0f);
157 }
158 
159 template <const int n>
unorm(float x)160 inline unsigned int unorm(float x)
161 {
162     const unsigned int max = 0xFFFFFFFF >> (32 - n);
163 
164     if (x > 1)
165     {
166         return max;
167     }
168     else if (x < 0)
169     {
170         return 0;
171     }
172     else
173     {
174         return (unsigned int)(max * x + 0.5f);
175     }
176 }
177 
supportsSSE2()178 inline bool supportsSSE2()
179 {
180 #if defined(ANGLE_USE_SSE)
181     static bool checked  = false;
182     static bool supports = false;
183 
184     if (checked)
185     {
186         return supports;
187     }
188 
189 #    if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
190     {
191         int info[4];
192         __cpuid(info, 0);
193 
194         if (info[0] >= 1)
195         {
196             __cpuid(info, 1);
197 
198             supports = (info[3] >> 26) & 1;
199         }
200     }
201 #    endif  // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
202     checked = true;
203     return supports;
204 #else  // defined(ANGLE_USE_SSE)
205     return false;
206 #endif
207 }
208 
209 template <typename destType, typename sourceType>
bitCast(const sourceType & source)210 destType bitCast(const sourceType &source)
211 {
212     size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
213     destType output;
214     memcpy(&output, &source, copySize);
215     return output;
216 }
217 
218 // https://stackoverflow.com/a/37581284
219 template <typename T>
normalize(T value)220 static constexpr double normalize(T value)
221 {
222     return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
223                      : static_cast<double>(value) / std::numeric_limits<T>::max();
224 }
225 
float32ToFloat16(float fp32)226 inline unsigned short float32ToFloat16(float fp32)
227 {
228     unsigned int fp32i = bitCast<unsigned int>(fp32);
229     unsigned int sign  = (fp32i & 0x80000000) >> 16;
230     unsigned int abs   = fp32i & 0x7FFFFFFF;
231 
232     if (abs > 0x7F800000)
233     {  // NaN
234         return 0x7FFF;
235     }
236     else if (abs > 0x47FFEFFF)
237     {  // Infinity
238         return static_cast<uint16_t>(sign | 0x7C00);
239     }
240     else if (abs < 0x38800000)  // Denormal
241     {
242         unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
243         int e                 = 113 - (abs >> 23);
244 
245         if (e < 24)
246         {
247             abs = mantissa >> e;
248         }
249         else
250         {
251             abs = 0;
252         }
253 
254         return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
255     }
256     else
257     {
258         return static_cast<unsigned short>(
259             sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
260     }
261 }
262 
263 float float16ToFloat32(unsigned short h);
264 
265 unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
266 void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
267 
float32ToFloat11(float fp32)268 inline unsigned short float32ToFloat11(float fp32)
269 {
270     const unsigned int float32MantissaMask     = 0x7FFFFF;
271     const unsigned int float32ExponentMask     = 0x7F800000;
272     const unsigned int float32SignMask         = 0x80000000;
273     const unsigned int float32ValueMask        = ~float32SignMask;
274     const unsigned int float32ExponentFirstBit = 23;
275     const unsigned int float32ExponentBias     = 127;
276 
277     const unsigned short float11Max          = 0x7BF;
278     const unsigned short float11MantissaMask = 0x3F;
279     const unsigned short float11ExponentMask = 0x7C0;
280     const unsigned short float11BitMask      = 0x7FF;
281     const unsigned int float11ExponentBias   = 14;
282 
283     const unsigned int float32Maxfloat11       = 0x477E0000;
284     const unsigned int float32MinNormfloat11   = 0x38800000;
285     const unsigned int float32MinDenormfloat11 = 0x35000080;
286 
287     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
288     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
289 
290     unsigned int float32Val = float32Bits & float32ValueMask;
291 
292     if ((float32Val & float32ExponentMask) == float32ExponentMask)
293     {
294         // INF or NAN
295         if ((float32Val & float32MantissaMask) != 0)
296         {
297             return float11ExponentMask |
298                    (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
299                     float11MantissaMask);
300         }
301         else if (float32Sign)
302         {
303             // -INF is clamped to 0 since float11 is positive only
304             return 0;
305         }
306         else
307         {
308             return float11ExponentMask;
309         }
310     }
311     else if (float32Sign)
312     {
313         // float11 is positive only, so clamp to zero
314         return 0;
315     }
316     else if (float32Val > float32Maxfloat11)
317     {
318         // The number is too large to be represented as a float11, set to max
319         return float11Max;
320     }
321     else if (float32Val < float32MinDenormfloat11)
322     {
323         // The number is too small to be represented as a denormalized float11, set to 0
324         return 0;
325     }
326     else
327     {
328         if (float32Val < float32MinNormfloat11)
329         {
330             // The number is too small to be represented as a normalized float11
331             // Convert it to a denormalized value.
332             const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
333                                        (float32Val >> float32ExponentFirstBit);
334             ASSERT(shift < 32);
335             float32Val =
336                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
337         }
338         else
339         {
340             // Rebias the exponent to represent the value as a normalized float11
341             float32Val += 0xC8000000;
342         }
343 
344         return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
345     }
346 }
347 
float32ToFloat10(float fp32)348 inline unsigned short float32ToFloat10(float fp32)
349 {
350     const unsigned int float32MantissaMask     = 0x7FFFFF;
351     const unsigned int float32ExponentMask     = 0x7F800000;
352     const unsigned int float32SignMask         = 0x80000000;
353     const unsigned int float32ValueMask        = ~float32SignMask;
354     const unsigned int float32ExponentFirstBit = 23;
355     const unsigned int float32ExponentBias     = 127;
356 
357     const unsigned short float10Max          = 0x3DF;
358     const unsigned short float10MantissaMask = 0x1F;
359     const unsigned short float10ExponentMask = 0x3E0;
360     const unsigned short float10BitMask      = 0x3FF;
361     const unsigned int float10ExponentBias   = 14;
362 
363     const unsigned int float32Maxfloat10       = 0x477C0000;
364     const unsigned int float32MinNormfloat10   = 0x38800000;
365     const unsigned int float32MinDenormfloat10 = 0x35800040;
366 
367     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
368     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
369 
370     unsigned int float32Val = float32Bits & float32ValueMask;
371 
372     if ((float32Val & float32ExponentMask) == float32ExponentMask)
373     {
374         // INF or NAN
375         if ((float32Val & float32MantissaMask) != 0)
376         {
377             return float10ExponentMask |
378                    (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
379                     float10MantissaMask);
380         }
381         else if (float32Sign)
382         {
383             // -INF is clamped to 0 since float10 is positive only
384             return 0;
385         }
386         else
387         {
388             return float10ExponentMask;
389         }
390     }
391     else if (float32Sign)
392     {
393         // float10 is positive only, so clamp to zero
394         return 0;
395     }
396     else if (float32Val > float32Maxfloat10)
397     {
398         // The number is too large to be represented as a float10, set to max
399         return float10Max;
400     }
401     else if (float32Val < float32MinDenormfloat10)
402     {
403         // The number is too small to be represented as a denormalized float10, set to 0
404         return 0;
405     }
406     else
407     {
408         if (float32Val < float32MinNormfloat10)
409         {
410             // The number is too small to be represented as a normalized float10
411             // Convert it to a denormalized value.
412             const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
413                                        (float32Val >> float32ExponentFirstBit);
414             ASSERT(shift < 32);
415             float32Val =
416                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
417         }
418         else
419         {
420             // Rebias the exponent to represent the value as a normalized float10
421             float32Val += 0xC8000000;
422         }
423 
424         return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
425     }
426 }
427 
float11ToFloat32(unsigned short fp11)428 inline float float11ToFloat32(unsigned short fp11)
429 {
430     unsigned short exponent = (fp11 >> 6) & 0x1F;
431     unsigned short mantissa = fp11 & 0x3F;
432 
433     if (exponent == 0x1F)
434     {
435         // INF or NAN
436         return bitCast<float>(0x7f800000 | (mantissa << 17));
437     }
438     else
439     {
440         if (exponent != 0)
441         {
442             // normalized
443         }
444         else if (mantissa != 0)
445         {
446             // The value is denormalized
447             exponent = 1;
448 
449             do
450             {
451                 exponent--;
452                 mantissa <<= 1;
453             } while ((mantissa & 0x40) == 0);
454 
455             mantissa = mantissa & 0x3F;
456         }
457         else  // The value is zero
458         {
459             exponent = static_cast<unsigned short>(-112);
460         }
461 
462         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
463     }
464 }
465 
float10ToFloat32(unsigned short fp10)466 inline float float10ToFloat32(unsigned short fp10)
467 {
468     unsigned short exponent = (fp10 >> 5) & 0x1F;
469     unsigned short mantissa = fp10 & 0x1F;
470 
471     if (exponent == 0x1F)
472     {
473         // INF or NAN
474         return bitCast<float>(0x7f800000 | (mantissa << 17));
475     }
476     else
477     {
478         if (exponent != 0)
479         {
480             // normalized
481         }
482         else if (mantissa != 0)
483         {
484             // The value is denormalized
485             exponent = 1;
486 
487             do
488             {
489                 exponent--;
490                 mantissa <<= 1;
491             } while ((mantissa & 0x20) == 0);
492 
493             mantissa = mantissa & 0x1F;
494         }
495         else  // The value is zero
496         {
497             exponent = static_cast<unsigned short>(-112);
498         }
499 
500         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
501     }
502 }
503 
504 // Converts to and from float and 16.16 fixed point format.
ConvertFixedToFloat(int32_t fixedInput)505 inline float ConvertFixedToFloat(int32_t fixedInput)
506 {
507     return static_cast<float>(fixedInput) / 65536.0f;
508 }
509 
ConvertFloatToFixed(float floatInput)510 inline uint32_t ConvertFloatToFixed(float floatInput)
511 {
512     static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
513     static constexpr uint32_t kLowest  = static_cast<uint32_t>(-32768 * 65536 + 65535);
514 
515     if (floatInput > 32767.65535)
516     {
517         return kHighest;
518     }
519     else if (floatInput < -32768.65535)
520     {
521         return kLowest;
522     }
523     else
524     {
525         return static_cast<uint32_t>(floatInput * 65536);
526     }
527 }
528 
529 template <typename T>
normalizedToFloat(T input)530 inline float normalizedToFloat(T input)
531 {
532     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
533 
534     if (sizeof(T) > 2)
535     {
536         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
537         constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
538         return static_cast<float>(input * inverseMax);
539     }
540     else
541     {
542         constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
543         return input * inverseMax;
544     }
545 }
546 
547 template <unsigned int inputBitCount, typename T>
normalizedToFloat(T input)548 inline float normalizedToFloat(T input)
549 {
550     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
551     static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
552     ASSERT((input & ~((1 << inputBitCount) - 1)) == 0);
553 
554     if (inputBitCount > 23)
555     {
556         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
557         constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
558         return static_cast<float>(input * inverseMax);
559     }
560     else
561     {
562         constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
563         return input * inverseMax;
564     }
565 }
566 
567 template <typename T>
floatToNormalized(float input)568 inline T floatToNormalized(float input)
569 {
570     if (sizeof(T) > 2)
571     {
572         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
573         return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
574     }
575     else
576     {
577         return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
578     }
579 }
580 
581 template <unsigned int outputBitCount, typename T>
floatToNormalized(float input)582 inline T floatToNormalized(float input)
583 {
584     static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
585 
586     if (outputBitCount > 23)
587     {
588         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
589         return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
590     }
591     else
592     {
593         return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
594     }
595 }
596 
597 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
getShiftedData(T input)598 inline T getShiftedData(T input)
599 {
600     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
601                   "T must have at least as many bits as inputBitCount + inputBitStart.");
602     const T mask = (1 << inputBitCount) - 1;
603     return (input >> inputBitStart) & mask;
604 }
605 
606 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
shiftData(T input)607 inline T shiftData(T input)
608 {
609     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
610                   "T must have at least as many bits as inputBitCount + inputBitStart.");
611     const T mask = (1 << inputBitCount) - 1;
612     return (input & mask) << inputBitStart;
613 }
614 
CountLeadingZeros(uint32_t x)615 inline unsigned int CountLeadingZeros(uint32_t x)
616 {
617     // Use binary search to find the amount of leading zeros.
618     unsigned int zeros = 32u;
619     uint32_t y;
620 
621     y = x >> 16u;
622     if (y != 0)
623     {
624         zeros = zeros - 16u;
625         x     = y;
626     }
627     y = x >> 8u;
628     if (y != 0)
629     {
630         zeros = zeros - 8u;
631         x     = y;
632     }
633     y = x >> 4u;
634     if (y != 0)
635     {
636         zeros = zeros - 4u;
637         x     = y;
638     }
639     y = x >> 2u;
640     if (y != 0)
641     {
642         zeros = zeros - 2u;
643         x     = y;
644     }
645     y = x >> 1u;
646     if (y != 0)
647     {
648         return zeros - 2u;
649     }
650     return zeros - x;
651 }
652 
average(unsigned char a,unsigned char b)653 inline unsigned char average(unsigned char a, unsigned char b)
654 {
655     return ((a ^ b) >> 1) + (a & b);
656 }
657 
average(signed char a,signed char b)658 inline signed char average(signed char a, signed char b)
659 {
660     return ((short)a + (short)b) / 2;
661 }
662 
average(unsigned short a,unsigned short b)663 inline unsigned short average(unsigned short a, unsigned short b)
664 {
665     return ((a ^ b) >> 1) + (a & b);
666 }
667 
average(signed short a,signed short b)668 inline signed short average(signed short a, signed short b)
669 {
670     return ((int)a + (int)b) / 2;
671 }
672 
average(unsigned int a,unsigned int b)673 inline unsigned int average(unsigned int a, unsigned int b)
674 {
675     return ((a ^ b) >> 1) + (a & b);
676 }
677 
average(int a,int b)678 inline int average(int a, int b)
679 {
680     long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
681     return static_cast<int>(average);
682 }
683 
average(float a,float b)684 inline float average(float a, float b)
685 {
686     return (a + b) * 0.5f;
687 }
688 
averageHalfFloat(unsigned short a,unsigned short b)689 inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
690 {
691     return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
692 }
693 
averageFloat11(unsigned int a,unsigned int b)694 inline unsigned int averageFloat11(unsigned int a, unsigned int b)
695 {
696     return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
697                              float11ToFloat32(static_cast<unsigned short>(b))) *
698                             0.5f);
699 }
700 
averageFloat10(unsigned int a,unsigned int b)701 inline unsigned int averageFloat10(unsigned int a, unsigned int b)
702 {
703     return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
704                              float10ToFloat32(static_cast<unsigned short>(b))) *
705                             0.5f);
706 }
707 
708 template <typename T>
709 class Range
710 {
711   public:
Range()712     Range() {}
Range(T lo,T hi)713     Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
714 
length()715     T length() const { return (empty() ? 0 : (mHigh - mLow)); }
716 
intersects(Range<T> other)717     bool intersects(Range<T> other)
718     {
719         if (mLow <= other.mLow)
720         {
721             return other.mLow < mHigh;
722         }
723         else
724         {
725             return mLow < other.mHigh;
726         }
727     }
728 
729     // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
extend(T value)730     void extend(T value)
731     {
732         mLow  = value < mLow ? value : mLow;
733         mHigh = value >= mHigh ? (value + 1) : mHigh;
734     }
735 
empty()736     bool empty() const { return mHigh <= mLow; }
737 
contains(T value)738     bool contains(T value) const { return value >= mLow && value < mHigh; }
739 
740     class Iterator final
741     {
742       public:
Iterator(T value)743         Iterator(T value) : mCurrent(value) {}
744 
745         Iterator &operator++()
746         {
747             mCurrent++;
748             return *this;
749         }
750         bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
751         bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
752         T operator*() const { return mCurrent; }
753 
754       private:
755         T mCurrent;
756     };
757 
begin()758     Iterator begin() const { return Iterator(mLow); }
759 
end()760     Iterator end() const { return Iterator(mHigh); }
761 
low()762     T low() const { return mLow; }
high()763     T high() const { return mHigh; }
764 
invalidate()765     void invalidate()
766     {
767         mLow  = std::numeric_limits<T>::max();
768         mHigh = std::numeric_limits<T>::min();
769     }
770 
771   private:
772     T mLow;
773     T mHigh;
774 };
775 
776 typedef Range<int> RangeI;
777 typedef Range<unsigned int> RangeUI;
778 
779 struct IndexRange
780 {
781     struct Undefined
782     {};
IndexRangeIndexRange783     IndexRange(Undefined) {}
IndexRangeIndexRange784     IndexRange() : IndexRange(0, 0, 0) {}
IndexRangeIndexRange785     IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
786         : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
787     {
788         ASSERT(start <= end);
789     }
790 
791     // Number of vertices in the range.
vertexCountIndexRange792     size_t vertexCount() const { return (end - start) + 1; }
793 
794     // Inclusive range of indices that are not primitive restart
795     size_t start;
796     size_t end;
797 
798     // Number of non-primitive restart indices
799     size_t vertexIndexCount;
800 };
801 
802 // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
803 // floating-point value. As in GLSL ldexp() built-in.
Ldexp(float x,int exp)804 inline float Ldexp(float x, int exp)
805 {
806     if (exp > 128)
807     {
808         return std::numeric_limits<float>::infinity();
809     }
810     if (exp < -126)
811     {
812         return 0.0f;
813     }
814     double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
815     return static_cast<float>(result);
816 }
817 
818 // First, both normalized floating-point values are converted into 16-bit integer values.
819 // Then, the results are packed into the returned 32-bit unsigned integer.
820 // The first float value will be written to the least significant bits of the output;
821 // the last float value will be written to the most significant bits.
822 // The conversion of each value to fixed point is done as follows :
823 // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
packSnorm2x16(float f1,float f2)824 inline uint32_t packSnorm2x16(float f1, float f2)
825 {
826     int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
827     int16_t mostSignificantBits  = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
828     return static_cast<uint32_t>(mostSignificantBits) << 16 |
829            (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
830 }
831 
832 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
833 // each component is converted to a normalized floating-point value to generate the returned two
834 // float values. The first float value will be extracted from the least significant bits of the
835 // input; the last float value will be extracted from the most-significant bits. The conversion for
836 // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
837 // 32767.0, -1, +1)
unpackSnorm2x16(uint32_t u,float * f1,float * f2)838 inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
839 {
840     int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
841     int16_t mostSignificantBits  = static_cast<int16_t>(u >> 16);
842     *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
843     *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
844 }
845 
846 // First, both normalized floating-point values are converted into 16-bit integer values.
847 // Then, the results are packed into the returned 32-bit unsigned integer.
848 // The first float value will be written to the least significant bits of the output;
849 // the last float value will be written to the most significant bits.
850 // The conversion of each value to fixed point is done as follows:
851 // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
packUnorm2x16(float f1,float f2)852 inline uint32_t packUnorm2x16(float f1, float f2)
853 {
854     uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
855     uint16_t mostSignificantBits  = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
856     return static_cast<uint32_t>(mostSignificantBits) << 16 |
857            static_cast<uint32_t>(leastSignificantBits);
858 }
859 
860 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
861 // each component is converted to a normalized floating-point value to generate the returned two
862 // float values. The first float value will be extracted from the least significant bits of the
863 // input; the last float value will be extracted from the most-significant bits. The conversion for
864 // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
unpackUnorm2x16(uint32_t u,float * f1,float * f2)865 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
866 {
867     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
868     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
869     *f1                           = static_cast<float>(leastSignificantBits) / 65535.0f;
870     *f2                           = static_cast<float>(mostSignificantBits) / 65535.0f;
871 }
872 
873 // Helper functions intended to be used only here.
874 namespace priv
875 {
876 
ToPackedUnorm8(float f)877 inline uint8_t ToPackedUnorm8(float f)
878 {
879     return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
880 }
881 
ToPackedSnorm8(float f)882 inline int8_t ToPackedSnorm8(float f)
883 {
884     return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
885 }
886 
887 }  // namespace priv
888 
889 // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
890 // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
891 // unsigned integer starting from the least significant bits.
PackUnorm4x8(float f1,float f2,float f3,float f4)892 inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
893 {
894     uint8_t bits[4];
895     bits[0]         = priv::ToPackedUnorm8(f1);
896     bits[1]         = priv::ToPackedUnorm8(f2);
897     bits[2]         = priv::ToPackedUnorm8(f3);
898     bits[3]         = priv::ToPackedUnorm8(f4);
899     uint32_t result = 0u;
900     for (int i = 0; i < 4; ++i)
901     {
902         int shift = i * 8;
903         result |= (static_cast<uint32_t>(bits[i]) << shift);
904     }
905     return result;
906 }
907 
908 // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
909 // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
910 // bits.
UnpackUnorm4x8(uint32_t u,float * f)911 inline void UnpackUnorm4x8(uint32_t u, float *f)
912 {
913     for (int i = 0; i < 4; ++i)
914     {
915         int shift    = i * 8;
916         uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
917         f[i]         = static_cast<float>(bits) / 255.0f;
918     }
919 }
920 
921 // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
922 // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
923 // significant bits.
PackSnorm4x8(float f1,float f2,float f3,float f4)924 inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
925 {
926     int8_t bits[4];
927     bits[0]         = priv::ToPackedSnorm8(f1);
928     bits[1]         = priv::ToPackedSnorm8(f2);
929     bits[2]         = priv::ToPackedSnorm8(f3);
930     bits[3]         = priv::ToPackedSnorm8(f4);
931     uint32_t result = 0u;
932     for (int i = 0; i < 4; ++i)
933     {
934         int shift = i * 8;
935         result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
936     }
937     return result;
938 }
939 
940 // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
941 // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
942 // bits, and clamped to the range -1.0 to 1.0.
UnpackSnorm4x8(uint32_t u,float * f)943 inline void UnpackSnorm4x8(uint32_t u, float *f)
944 {
945     for (int i = 0; i < 4; ++i)
946     {
947         int shift   = i * 8;
948         int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
949         f[i]        = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
950     }
951 }
952 
953 // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
954 // floating-point representation found in the OpenGL ES Specification, and then packing these
955 // two 16-bit integers into a 32-bit unsigned integer.
956 // f1: The 16 least-significant bits of the result;
957 // f2: The 16 most-significant bits.
packHalf2x16(float f1,float f2)958 inline uint32_t packHalf2x16(float f1, float f2)
959 {
960     uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
961     uint16_t mostSignificantBits  = static_cast<uint16_t>(float32ToFloat16(f2));
962     return static_cast<uint32_t>(mostSignificantBits) << 16 |
963            static_cast<uint32_t>(leastSignificantBits);
964 }
965 
966 // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
967 // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
968 // ES Specification, and converting them to 32-bit floating-point values. The first float value is
969 // obtained from the 16 least-significant bits of u; the second component is obtained from the 16
970 // most-significant bits of u.
unpackHalf2x16(uint32_t u,float * f1,float * f2)971 inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
972 {
973     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
974     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
975 
976     *f1 = float16ToFloat32(leastSignificantBits);
977     *f2 = float16ToFloat32(mostSignificantBits);
978 }
979 
sRGBToLinear(uint8_t srgbValue)980 inline uint8_t sRGBToLinear(uint8_t srgbValue)
981 {
982     float value = srgbValue / 255.0f;
983     if (value <= 0.04045f)
984     {
985         value = value / 12.92f;
986     }
987     else
988     {
989         value = std::pow((value + 0.055f) / 1.055f, 2.4f);
990     }
991     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
992 }
993 
linearToSRGB(uint8_t linearValue)994 inline uint8_t linearToSRGB(uint8_t linearValue)
995 {
996     float value = linearValue / 255.0f;
997     if (value <= 0.0f)
998     {
999         value = 0.0f;
1000     }
1001     else if (value < 0.0031308f)
1002     {
1003         value = value * 12.92f;
1004     }
1005     else if (value < 1.0f)
1006     {
1007         value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
1008     }
1009     else
1010     {
1011         value = 1.0f;
1012     }
1013     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
1014 }
1015 
1016 // Reverse the order of the bits.
BitfieldReverse(uint32_t value)1017 inline uint32_t BitfieldReverse(uint32_t value)
1018 {
1019     // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
1020     // for this, and right now it's not used in performance-critical paths.
1021     uint32_t result = 0u;
1022     for (size_t j = 0u; j < 32u; ++j)
1023     {
1024         result |= (((value >> j) & 1u) << (31u - j));
1025     }
1026     return result;
1027 }
1028 
1029 // Count the 1 bits.
1030 #if defined(_MSC_VER) && !defined(__clang__)
1031 #    if defined(_M_IX86) || defined(_M_X64)
1032 namespace priv
1033 {
1034 // Check POPCNT instruction support and cache the result.
1035 // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
1036 static const bool kHasPopcnt = [] {
1037     int info[4];
1038     __cpuid(&info[0], 1);
1039     return static_cast<bool>(info[2] & 0x800000);
1040 }();
1041 }  // namespace priv
1042 
1043 // Polyfills for x86/x64 CPUs without POPCNT.
1044 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
BitCountPolyfill(uint32_t bits)1045 inline int BitCountPolyfill(uint32_t bits)
1046 {
1047     bits = bits - ((bits >> 1) & 0x55555555);
1048     bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
1049     bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
1050     return static_cast<int>(bits);
1051 }
1052 
BitCountPolyfill(uint64_t bits)1053 inline int BitCountPolyfill(uint64_t bits)
1054 {
1055     bits = bits - ((bits >> 1) & 0x5555555555555555ull);
1056     bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
1057     bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
1058     return static_cast<int>(bits);
1059 }
1060 
BitCount(uint32_t bits)1061 inline int BitCount(uint32_t bits)
1062 {
1063     if (priv::kHasPopcnt)
1064     {
1065         return static_cast<int>(__popcnt(bits));
1066     }
1067     return BitCountPolyfill(bits);
1068 }
1069 
BitCount(uint64_t bits)1070 inline int BitCount(uint64_t bits)
1071 {
1072     if (priv::kHasPopcnt)
1073     {
1074 #        if defined(_M_X64)
1075         return static_cast<int>(__popcnt64(bits));
1076 #        else   // x86
1077         return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
1078                                 __popcnt(static_cast<uint32_t>(bits)));
1079 #        endif  // defined(_M_X64)
1080     }
1081     return BitCountPolyfill(bits);
1082 }
1083 
1084 #    elif defined(_M_ARM) || defined(_M_ARM64)
1085 
1086 // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
1087 // NEON instructions.
1088 
BitCount(uint32_t bits)1089 inline int BitCount(uint32_t bits)
1090 {
1091     // cast bits to 8x8 datatype and use VCNT on it
1092     const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
1093 
1094     // pairwise sums: 8x8 -> 16x4 -> 32x2
1095     return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
1096 }
1097 
BitCount(uint64_t bits)1098 inline int BitCount(uint64_t bits)
1099 {
1100     // cast bits to 8x8 datatype and use VCNT on it
1101     const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
1102 
1103     // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
1104     return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
1105 }
1106 #    endif  // defined(_M_IX86) || defined(_M_X64)
1107 #endif      // defined(_MSC_VER) && !defined(__clang__)
1108 
1109 #if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
BitCount(uint32_t bits)1110 inline int BitCount(uint32_t bits)
1111 {
1112     return __builtin_popcount(bits);
1113 }
1114 
BitCount(uint64_t bits)1115 inline int BitCount(uint64_t bits)
1116 {
1117     return __builtin_popcountll(bits);
1118 }
1119 #endif  // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
1120 
BitCount(uint8_t bits)1121 inline int BitCount(uint8_t bits)
1122 {
1123     return BitCount(static_cast<uint32_t>(bits));
1124 }
1125 
BitCount(uint16_t bits)1126 inline int BitCount(uint16_t bits)
1127 {
1128     return BitCount(static_cast<uint32_t>(bits));
1129 }
1130 
1131 #if defined(ANGLE_PLATFORM_WINDOWS)
1132 // Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1133 // significant bit. Implemented for different bit widths on different platforms.
ScanForward(uint32_t bits)1134 inline unsigned long ScanForward(uint32_t bits)
1135 {
1136     ASSERT(bits != 0u);
1137     unsigned long firstBitIndex = 0ul;
1138     unsigned char ret           = _BitScanForward(&firstBitIndex, bits);
1139     ASSERT(ret != 0u);
1140     return firstBitIndex;
1141 }
1142 
ScanForward(uint64_t bits)1143 inline unsigned long ScanForward(uint64_t bits)
1144 {
1145     ASSERT(bits != 0u);
1146     unsigned long firstBitIndex = 0ul;
1147 #    if defined(ANGLE_IS_64_BIT_CPU)
1148     unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1149 #    else
1150     unsigned char ret;
1151     if (static_cast<uint32_t>(bits) == 0)
1152     {
1153         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
1154         firstBitIndex += 32ul;
1155     }
1156     else
1157     {
1158         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
1159     }
1160 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1161     ASSERT(ret != 0u);
1162     return firstBitIndex;
1163 }
1164 
1165 // Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1166 // significant bit.
ScanReverse(uint32_t bits)1167 inline unsigned long ScanReverse(uint32_t bits)
1168 {
1169     ASSERT(bits != 0u);
1170     unsigned long lastBitIndex = 0ul;
1171     unsigned char ret          = _BitScanReverse(&lastBitIndex, bits);
1172     ASSERT(ret != 0u);
1173     return lastBitIndex;
1174 }
1175 
ScanReverse(uint64_t bits)1176 inline unsigned long ScanReverse(uint64_t bits)
1177 {
1178     ASSERT(bits != 0u);
1179     unsigned long lastBitIndex = 0ul;
1180 #    if defined(ANGLE_IS_64_BIT_CPU)
1181     unsigned char ret = _BitScanReverse64(&lastBitIndex, bits);
1182 #    else
1183     unsigned char ret;
1184     if (static_cast<uint32_t>(bits >> 32) == 0)
1185     {
1186         ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits));
1187     }
1188     else
1189     {
1190         ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits >> 32));
1191         lastBitIndex += 32ul;
1192     }
1193 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1194     ASSERT(ret != 0u);
1195     return lastBitIndex;
1196 }
1197 #endif  // defined(ANGLE_PLATFORM_WINDOWS)
1198 
1199 #if defined(ANGLE_PLATFORM_POSIX)
ScanForward(uint32_t bits)1200 inline unsigned long ScanForward(uint32_t bits)
1201 {
1202     ASSERT(bits != 0u);
1203     return static_cast<unsigned long>(__builtin_ctz(bits));
1204 }
1205 
ScanForward(uint64_t bits)1206 inline unsigned long ScanForward(uint64_t bits)
1207 {
1208     ASSERT(bits != 0u);
1209 #    if defined(ANGLE_IS_64_BIT_CPU)
1210     return static_cast<unsigned long>(__builtin_ctzll(bits));
1211 #    else
1212     return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
1213                                           ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
1214                                           : __builtin_ctz(static_cast<uint32_t>(bits)));
1215 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1216 }
1217 
ScanReverse(uint32_t bits)1218 inline unsigned long ScanReverse(uint32_t bits)
1219 {
1220     ASSERT(bits != 0u);
1221     return static_cast<unsigned long>(sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(bits));
1222 }
1223 
ScanReverse(uint64_t bits)1224 inline unsigned long ScanReverse(uint64_t bits)
1225 {
1226     ASSERT(bits != 0u);
1227 #    if defined(ANGLE_IS_64_BIT_CPU)
1228     return static_cast<unsigned long>(sizeof(uint64_t) * CHAR_BIT - 1 - __builtin_clzll(bits));
1229 #    else
1230     if (static_cast<uint32_t>(bits >> 32) == 0)
1231     {
1232         return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits));
1233     }
1234     else
1235     {
1236         return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits >> 32)) +
1237                32;
1238     }
1239 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1240 }
1241 #endif  // defined(ANGLE_PLATFORM_POSIX)
1242 
ScanForward(uint8_t bits)1243 inline unsigned long ScanForward(uint8_t bits)
1244 {
1245     return ScanForward(static_cast<uint32_t>(bits));
1246 }
1247 
ScanForward(uint16_t bits)1248 inline unsigned long ScanForward(uint16_t bits)
1249 {
1250     return ScanForward(static_cast<uint32_t>(bits));
1251 }
1252 
ScanReverse(uint8_t bits)1253 inline unsigned long ScanReverse(uint8_t bits)
1254 {
1255     return ScanReverse(static_cast<uint32_t>(bits));
1256 }
1257 
ScanReverse(uint16_t bits)1258 inline unsigned long ScanReverse(uint16_t bits)
1259 {
1260     return ScanReverse(static_cast<uint32_t>(bits));
1261 }
1262 
1263 // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1264 template <typename T>
FindLSB(T bits)1265 int FindLSB(T bits)
1266 {
1267     static_assert(std::is_integral<T>::value, "must be integral type.");
1268     if (bits == 0u)
1269     {
1270         return -1;
1271     }
1272     else
1273     {
1274         return static_cast<int>(ScanForward(bits));
1275     }
1276 }
1277 
1278 // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1279 template <typename T>
FindMSB(T bits)1280 int FindMSB(T bits)
1281 {
1282     static_assert(std::is_integral<T>::value, "must be integral type.");
1283     if (bits == 0u)
1284     {
1285         return -1;
1286     }
1287     else
1288     {
1289         return static_cast<int>(ScanReverse(bits));
1290     }
1291 }
1292 
1293 // Returns whether the argument is Not a Number.
1294 // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1295 // non-zero.
isNaN(float f)1296 inline bool isNaN(float f)
1297 {
1298     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1299     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1300     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1301            (bitCast<uint32_t>(f) & 0x7fffffu);
1302 }
1303 
1304 // Returns whether the argument is infinity.
1305 // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1306 // zero.
isInf(float f)1307 inline bool isInf(float f)
1308 {
1309     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1310     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1311     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1312            !(bitCast<uint32_t>(f) & 0x7fffffu);
1313 }
1314 
1315 namespace priv
1316 {
1317 template <unsigned int N, unsigned int R>
1318 struct iSquareRoot
1319 {
solveiSquareRoot1320     static constexpr unsigned int solve()
1321     {
1322         return (R * R > N)
1323                    ? 0
1324                    : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1325     }
1326     enum Result
1327     {
1328         value = iSquareRoot::solve()
1329     };
1330 };
1331 
1332 template <unsigned int N>
1333 struct iSquareRoot<N, N>
1334 {
1335     enum result
1336     {
1337         value = N
1338     };
1339 };
1340 
1341 }  // namespace priv
1342 
1343 template <unsigned int N>
1344 constexpr unsigned int iSquareRoot()
1345 {
1346     return priv::iSquareRoot<N, 1>::value;
1347 }
1348 
1349 // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1350 //
1351 // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1352 // behavior is undefined.
1353 
1354 template <typename T>
1355 inline T WrappingSum(T lhs, T rhs)
1356 {
1357     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1358     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1359     return static_cast<T>(lhsUnsigned + rhsUnsigned);
1360 }
1361 
1362 template <typename T>
1363 inline T WrappingDiff(T lhs, T rhs)
1364 {
1365     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1366     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1367     return static_cast<T>(lhsUnsigned - rhsUnsigned);
1368 }
1369 
1370 inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1371 {
1372     int64_t lhsWide = static_cast<int64_t>(lhs);
1373     int64_t rhsWide = static_cast<int64_t>(rhs);
1374     // The multiplication is guaranteed not to overflow.
1375     int64_t resultWide = lhsWide * rhsWide;
1376     // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1377     resultWide = resultWide & 0xffffffffll;
1378     // Casting to a narrower signed type is fine since the casted value is representable in the
1379     // narrower type.
1380     return static_cast<int32_t>(resultWide);
1381 }
1382 
1383 inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1384 {
1385     return 2.0f * dimensionScreen / viewportDimension;
1386 }
1387 
1388 inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1389 {
1390     float halfShifted = coordinateScreen / viewportDimension;
1391     return 2.0f * (halfShifted - 0.5f);
1392 }
1393 
1394 }  // namespace gl
1395 
1396 namespace rx
1397 {
1398 
1399 template <typename T>
1400 T roundUp(const T value, const T alignment)
1401 {
1402     auto temp = value + alignment - static_cast<T>(1);
1403     return temp - temp % alignment;
1404 }
1405 
1406 template <typename T>
1407 constexpr T roundUpPow2(const T value, const T alignment)
1408 {
1409     ASSERT(gl::isPow2(alignment));
1410     return (value + alignment - 1) & ~(alignment - 1);
1411 }
1412 
1413 template <typename T>
1414 constexpr T roundDownPow2(const T value, const T alignment)
1415 {
1416     ASSERT(gl::isPow2(alignment));
1417     return value & ~(alignment - 1);
1418 }
1419 
1420 template <typename T>
1421 angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1422 {
1423     angle::CheckedNumeric<T> checkedValue(value);
1424     angle::CheckedNumeric<T> checkedAlignment(alignment);
1425     return roundUp(checkedValue, checkedAlignment);
1426 }
1427 
1428 inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1429 {
1430     unsigned int divided = value / divisor;
1431     return (divided + ((value % divisor == 0) ? 0 : 1));
1432 }
1433 
1434 #if defined(__has_builtin)
1435 #    define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
1436 #else
1437 #    define ANGLE_HAS_BUILTIN(x) 0
1438 #endif
1439 
1440 #if defined(_MSC_VER)
1441 
1442 #    define ANGLE_ROTL(x, y) _rotl(x, y)
1443 #    define ANGLE_ROTL64(x, y) _rotl64(x, y)
1444 #    define ANGLE_ROTR16(x, y) _rotr16(x, y)
1445 
1446 #elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
1447     ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
1448 
1449 #    define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
1450 #    define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
1451 #    define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
1452 
1453 #else
1454 
1455 inline uint32_t RotL(uint32_t x, int8_t r)
1456 {
1457     return (x << r) | (x >> (32 - r));
1458 }
1459 
1460 inline uint64_t RotL64(uint64_t x, int8_t r)
1461 {
1462     return (x << r) | (x >> (64 - r));
1463 }
1464 
1465 inline uint16_t RotR16(uint16_t x, int8_t r)
1466 {
1467     return (x >> r) | (x << (16 - r));
1468 }
1469 
1470 #    define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1471 #    define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
1472 #    define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1473 
1474 #endif  // namespace rx
1475 
1476 constexpr unsigned int Log2(unsigned int bytes)
1477 {
1478     return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1479 }
1480 }  // namespace rx
1481 
1482 #endif  // COMMON_MATHUTIL_H_
1483