1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #include "tensorflow/lite/delegates/gpu/common/tasks/depthwise_conv_3x3.h"
17
18 #include <string>
19 #include <utility>
20
21 #include "absl/strings/match.h"
22 #include "tensorflow/lite/delegates/gpu/common/status.h"
23 #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h"
24
25 namespace tflite {
26 namespace gpu {
27
DepthwiseConv3x3(const OperationDef & definition,bool weights_are_buffer,bool local_mem_uploads,const GpuInfo & gpu_info)28 DepthwiseConv3x3::DepthwiseConv3x3(const OperationDef& definition,
29 bool weights_are_buffer,
30 bool local_mem_uploads,
31 const GpuInfo& gpu_info)
32 : GPUOperation(definition), local_mem_uploads_(local_mem_uploads) {
33 work_group_size_ = int3(8, 4, 1);
34 code_ = GenerateDepthwiseConvCode(definition_, weights_are_buffer,
35 local_mem_uploads_);
36
37 if (definition_.precision == CalculationsPrecision::F16 &&
38 gpu_info.IsPowerVR()) {
39 compiler_options_.push_back(CompilerOptions::kClFastRelaxedMath);
40 }
41 }
42
DepthwiseConv3x3(DepthwiseConv3x3 && operation)43 DepthwiseConv3x3::DepthwiseConv3x3(DepthwiseConv3x3&& operation)
44 : GPUOperation(std::move(operation)),
45 local_mem_uploads_(operation.local_mem_uploads_) {}
46
operator =(DepthwiseConv3x3 && operation)47 DepthwiseConv3x3& DepthwiseConv3x3::operator=(DepthwiseConv3x3&& operation) {
48 if (this != &operation) {
49 std::swap(local_mem_uploads_, operation.local_mem_uploads_);
50 GPUOperation::operator=(std::move(operation));
51 }
52 return *this;
53 }
54
GenerateDepthwiseConvCode(const OperationDef & op_def,bool weights_are_buffer,bool local_mem_uploads)55 std::string DepthwiseConv3x3::GenerateDepthwiseConvCode(
56 const OperationDef& op_def, bool weights_are_buffer,
57 bool local_mem_uploads) {
58 auto src_desc = op_def.src_tensors[0];
59 src_desc.SetAddressMode(AddressMode::kZero);
60 AddSrcTensor("src_tensor", src_desc);
61 AddDstTensor("dst_tensor", op_def.dst_tensors[0]);
62
63 const auto src_tensor_type = op_def.src_tensors[0].storage_type;
64
65 const bool manual_clamp = src_tensor_type == TensorStorageType::BUFFER ||
66 src_tensor_type == TensorStorageType::IMAGE_BUFFER;
67
68 std::string c;
69 if (local_mem_uploads) {
70 c += "__attribute__((reqd_work_group_size(8, 4, 1)))\n";
71 }
72 c += "MAIN_FUNCTION($0) {\n";
73 if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) {
74 c += " int linear_id = GLOBAL_ID_0;\n";
75 c += " int X = (linear_id / args.dst_tensor.Batch()) * 2;\n";
76 c += " int B = linear_id % args.dst_tensor.Batch();\n";
77 c += " args.dst_tensor.SetBatchRef(B);\n";
78 c += " args.src_tensor.SetBatchRef(B);\n";
79 } else {
80 c += " int X = GLOBAL_ID_0 * 2;\n";
81 }
82 c += " int Y = GLOBAL_ID_1 * 2;\n";
83 c += " int S = GLOBAL_ID_2;\n";
84 c += " ACCUM_FLT4 r0 = INIT_ACCUM_FLT4(0.0f);\n";
85 c += " ACCUM_FLT4 r1 = INIT_ACCUM_FLT4(0.0f);\n";
86 c += " ACCUM_FLT4 r2 = INIT_ACCUM_FLT4(0.0f);\n";
87 c += " ACCUM_FLT4 r3 = INIT_ACCUM_FLT4(0.0f);\n";
88 if (!local_mem_uploads) {
89 c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() "
90 "|| S >= args.dst_tensor.Slices()) { \n";
91 c += " return; \n";
92 c += " } \n";
93 }
94 if (local_mem_uploads) {
95 c += " __local FLT4 f[10];\n";
96 c += " event_t e = async_work_group_copy(f, args.weights.GetPtr() + S * "
97 "10, 10, 0);\n";
98 c += " wait_group_events(1, &e);\n";
99 } else if (weights_are_buffer) {
100 c += " __global FLT4* f = args.weights.GetPtr() + S * 10;\n";
101 }
102 c += " FLT4 s0;\n";
103 c += " FLT4 s1;\n";
104 c += " FLT4 s2;\n";
105 c += " FLT4 s3;\n";
106 std::string W[9] = {"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8"};
107 std::string bias = "bias";
108 std::string xc[4] = {"X - 1", "X", "X + 1", "X + 2"};
109 std::string yc[4] = {"Y - 1", "Y", "Y + 1", "Y + 2"};
110 if (!weights_are_buffer) {
111 c += " FLT4 f0 = args.weights.Read(0, S);\n";
112 c += " FLT4 f1 = args.weights.Read(1, S);\n";
113 c += " FLT4 f2 = args.weights.Read(2, S);\n";
114 c += " FLT4 f3 = args.weights.Read(3, S);\n";
115 c += " FLT4 f4 = args.weights.Read(4, S);\n";
116 c += " FLT4 f5 = args.weights.Read(5, S);\n";
117 c += " FLT4 f6 = args.weights.Read(6, S);\n";
118 c += " FLT4 f7 = args.weights.Read(7, S);\n";
119 c += " FLT4 f8 = args.weights.Read(8, S);\n";
120 }
121 if (manual_clamp) {
122 c += " int x0 = X - 1;\n";
123 c += " int x1 = X;\n";
124 c += " int x2 = X + 1;\n";
125 c += " int x3 = X + 2;\n";
126 c += " int y0 = Y - 1;\n";
127 c += " int y1 = Y;\n";
128 c += " int y2 = Y + 1;\n";
129 c += " int y3 = Y + 2;\n";
130 c += " bool x0_in = x0 >= 0 && x0 < args.dst_tensor.Width();\n";
131 c += " bool x1_in = x1 >= 0 && x1 < args.dst_tensor.Width();\n";
132 c += " bool x2_in = x2 >= 0 && x2 < args.dst_tensor.Width();\n";
133 c += " bool x3_in = x3 >= 0 && x3 < args.dst_tensor.Width();\n";
134 c += " bool y0_in = y0 >= 0 && y0 < args.dst_tensor.Height();\n";
135 c += " bool y1_in = y1 >= 0 && y1 < args.dst_tensor.Height();\n";
136 c += " bool y2_in = y2 >= 0 && y2 < args.dst_tensor.Height();\n";
137 c += " bool y3_in = y3 >= 0 && y3 < args.dst_tensor.Height();\n";
138 c += " x0 = clamp(x0, 0, args.dst_tensor.Width() - 1);\n";
139 c += " x1 = clamp(x1, 0, args.dst_tensor.Width() - 1);\n";
140 c += " x2 = clamp(x2, 0, args.dst_tensor.Width() - 1);\n";
141 c += " x3 = clamp(x3, 0, args.dst_tensor.Width() - 1);\n";
142 c += " y0 = clamp(y0, 0, args.dst_tensor.Height() - 1);\n";
143 c += " y1 = clamp(y1, 0, args.dst_tensor.Height() - 1);\n";
144 c += " y2 = clamp(y2, 0, args.dst_tensor.Height() - 1);\n";
145 c += " y3 = clamp(y3, 0, args.dst_tensor.Height() - 1);\n";
146 if (src_tensor_type == TensorStorageType::BUFFER) {
147 c += " __global FLT4* src_loc = "
148 "args.src_tensor.GetPtrWithSliceOffset(S);\n";
149 }
150 xc[0] = "x0";
151 xc[1] = "x1";
152 xc[2] = "x2";
153 xc[3] = "x3";
154 yc[0] = "y0";
155 yc[1] = "y1";
156 yc[2] = "y2";
157 yc[3] = "y3";
158 }
159 if (local_mem_uploads || weights_are_buffer) {
160 W[0] = "f[0]";
161 W[1] = "f[1]";
162 W[2] = "f[2]";
163 W[3] = "f[3]";
164 W[4] = "f[4]";
165 W[5] = "f[5]";
166 W[6] = "f[6]";
167 W[7] = "f[7]";
168 W[8] = "f[8]";
169 bias = "f[9]";
170 }
171 auto read_4x_line = [&](int y) {
172 if (src_tensor_type == TensorStorageType::BUFFER) {
173 const std::string y_in = "y" + std::to_string(y) + "_in";
174 c += " s0 = src_loc[args.src_tensor.GetWHOffset(" + xc[0] + ", " +
175 yc[y] + ")] * INIT_FLT(x0_in && " + y_in + ");\n";
176 c += " s1 = src_loc[args.src_tensor.GetWHOffset(" + xc[1] + ", " +
177 yc[y] + ")] * INIT_FLT(x1_in && " + y_in + ");\n";
178 c += " s2 = src_loc[args.src_tensor.GetWHOffset(" + xc[2] + ", " +
179 yc[y] + ")] * INIT_FLT(x2_in && " + y_in + ");\n";
180 c += " s3 = src_loc[args.src_tensor.GetWHOffset(" + xc[3] + ", " +
181 yc[y] + ")] * INIT_FLT(x3_in && " + y_in + ");\n";
182 } else if (src_tensor_type == TensorStorageType::IMAGE_BUFFER) {
183 const std::string y_in = "y" + std::to_string(y) + "_in";
184 c += " s0 = args.src_tensor.Read(" + xc[0] + ", " + yc[y] +
185 ", S) * INIT_FLT(x0_in && " + y_in + ");\n";
186 c += " s1 = args.src_tensor.Read(" + xc[1] + ", " + yc[y] +
187 ", S) * INIT_FLT(x1_in && " + y_in + ");\n";
188 c += " s2 = args.src_tensor.Read(" + xc[2] + ", " + yc[y] +
189 ", S) * INIT_FLT(x2_in && " + y_in + ");\n";
190 c += " s3 = args.src_tensor.Read(" + xc[3] + ", " + yc[y] +
191 ", S) * INIT_FLT(x3_in && " + y_in + ");\n";
192 } else {
193 c += " s0 = args.src_tensor.Read(" + xc[0] + ", " + yc[y] + ", S);\n";
194 c += " s1 = args.src_tensor.Read(" + xc[1] + ", " + yc[y] + ", S);\n";
195 c += " s2 = args.src_tensor.Read(" + xc[2] + ", " + yc[y] + ", S);\n";
196 c += " s3 = args.src_tensor.Read(" + xc[3] + ", " + yc[y] + ", S);\n";
197 }
198 };
199 c += " {\n";
200 read_4x_line(0);
201 c += " r0 += TO_ACCUM_TYPE(" + W[0] + " * s0);\n";
202 c += " r0 += TO_ACCUM_TYPE(" + W[1] + " * s1);\n";
203 c += " r1 += TO_ACCUM_TYPE(" + W[0] + " * s1);\n";
204 c += " r0 += TO_ACCUM_TYPE(" + W[2] + " * s2);\n";
205 c += " r1 += TO_ACCUM_TYPE(" + W[1] + " * s2);\n";
206 c += " r1 += TO_ACCUM_TYPE(" + W[2] + " * s3);\n";
207 c += " }\n";
208 c += " {\n";
209 read_4x_line(1);
210 c += " r0 += TO_ACCUM_TYPE(" + W[3] + " * s0);\n";
211 c += " r2 += TO_ACCUM_TYPE(" + W[0] + " * s0);\n";
212 c += " r0 += TO_ACCUM_TYPE(" + W[4] + " * s1);\n";
213 c += " r1 += TO_ACCUM_TYPE(" + W[3] + " * s1);\n";
214 c += " r2 += TO_ACCUM_TYPE(" + W[1] + " * s1);\n";
215 c += " r3 += TO_ACCUM_TYPE(" + W[0] + " * s1);\n";
216 c += " r0 += TO_ACCUM_TYPE(" + W[5] + " * s2);\n";
217 c += " r1 += TO_ACCUM_TYPE(" + W[4] + " * s2);\n";
218 c += " r2 += TO_ACCUM_TYPE(" + W[2] + " * s2);\n";
219 c += " r3 += TO_ACCUM_TYPE(" + W[1] + " * s2);\n";
220 c += " r1 += TO_ACCUM_TYPE(" + W[5] + " * s3);\n";
221 c += " r3 += TO_ACCUM_TYPE(" + W[2] + " * s3);\n";
222 c += " }\n";
223 c += " {\n";
224 read_4x_line(2);
225 c += " r0 += TO_ACCUM_TYPE(" + W[6] + " * s0);\n";
226 c += " r2 += TO_ACCUM_TYPE(" + W[3] + " * s0);\n";
227 c += " r0 += TO_ACCUM_TYPE(" + W[7] + " * s1);\n";
228 c += " r1 += TO_ACCUM_TYPE(" + W[6] + " * s1);\n";
229 c += " r2 += TO_ACCUM_TYPE(" + W[4] + " * s1);\n";
230 c += " r3 += TO_ACCUM_TYPE(" + W[3] + " * s1);\n";
231 c += " r0 += TO_ACCUM_TYPE(" + W[8] + " * s2);\n";
232 c += " r1 += TO_ACCUM_TYPE(" + W[7] + " * s2);\n";
233 c += " r2 += TO_ACCUM_TYPE(" + W[5] + " * s2);\n";
234 c += " r3 += TO_ACCUM_TYPE(" + W[4] + " * s2);\n";
235 c += " r1 += TO_ACCUM_TYPE(" + W[8] + " * s3);\n";
236 c += " r3 += TO_ACCUM_TYPE(" + W[5] + " * s3);\n";
237 c += " }\n";
238 c += " {\n";
239 read_4x_line(3);
240 c += " r2 += TO_ACCUM_TYPE(" + W[6] + " * s0);\n";
241 c += " r2 += TO_ACCUM_TYPE(" + W[7] + " * s1);\n";
242 c += " r3 += TO_ACCUM_TYPE(" + W[6] + " * s1);\n";
243 c += " r2 += TO_ACCUM_TYPE(" + W[8] + " * s2);\n";
244 c += " r3 += TO_ACCUM_TYPE(" + W[7] + " * s2);\n";
245 c += " r3 += TO_ACCUM_TYPE(" + W[8] + " * s3);\n";
246 c += " }\n";
247 if (!weights_are_buffer) {
248 c += " FLT4 bias = args.weights.Read(9, S);\n";
249 }
250 c += " r0 += TO_ACCUM_TYPE(" + bias + ");\n";
251 c += " r1 += TO_ACCUM_TYPE(" + bias + ");\n";
252 c += " r2 += TO_ACCUM_TYPE(" + bias + ");\n";
253 c += " r3 += TO_ACCUM_TYPE(" + bias + ");\n";
254 if (local_mem_uploads) {
255 c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() "
256 "|| S >= args.dst_tensor.Slices()) { \n";
257 c += " return; \n";
258 c += " } \n";
259 }
260 c += " if(X + 0 < args.dst_tensor.Width() && Y + 0 < "
261 "args.dst_tensor.Height()) {\n";
262 c += " FLT4 result = TO_FLT4(r0);\n";
263 c += " args.dst_tensor.Write(result, X + 0, Y + 0, S);\n";
264 c += " }\n";
265 c += " if(X + 1 < args.dst_tensor.Width() && Y + 0 < "
266 "args.dst_tensor.Height()) {\n";
267 c += " FLT4 result = TO_FLT4(r1);\n";
268 c += " args.dst_tensor.Write(result, X + 1, Y + 0, S);\n";
269 c += " }\n";
270 c += " if(X + 0 < args.dst_tensor.Width() && Y + 1 < "
271 "args.dst_tensor.Height()) {\n";
272 c += " FLT4 result = TO_FLT4(r2);\n";
273 c += " args.dst_tensor.Write(result, X + 0, Y + 1, S);\n";
274 c += " }\n";
275 c += " if(X + 1 < args.dst_tensor.Width() && Y + 1 < "
276 "args.dst_tensor.Height()) {\n";
277 c += " FLT4 result = TO_FLT4(r3);\n";
278 c += " args.dst_tensor.Write(result, X + 1, Y + 1, S);\n";
279 c += " }\n";
280 c += "}\n";
281
282 return c;
283 }
284
GetGridSize() const285 int3 DepthwiseConv3x3::GetGridSize() const {
286 const int grid_x = DivideRoundUp(dst_[0]->Width(), 2) * dst_[0]->Batch();
287 const int grid_y = DivideRoundUp(dst_[0]->Height(), 2);
288 const int grid_z = dst_[0]->Slices();
289 return int3(grid_x, grid_y, grid_z);
290 }
291
GetPossibleKernelWorkGroups(TuningType tuning_type,const GpuInfo & gpu_info,const KernelInfo & kernel_info,std::vector<int3> * work_groups) const292 void DepthwiseConv3x3::GetPossibleKernelWorkGroups(
293 TuningType tuning_type, const GpuInfo& gpu_info,
294 const KernelInfo& kernel_info, std::vector<int3>* work_groups) const {
295 if (local_mem_uploads_) {
296 work_groups->push_back(work_group_size_);
297 } else {
298 GetPossibleWorkGroups(tuning_type, gpu_info, kernel_info, grid_size_,
299 work_groups);
300 }
301 }
302
IsDepthwiseConv3x3Supported(const GpuInfo & gpu_info,const DepthwiseConvolution2DAttributes & attr)303 bool IsDepthwiseConv3x3Supported(const GpuInfo& gpu_info,
304 const DepthwiseConvolution2DAttributes& attr) {
305 if (gpu_info.IsApiOpenCl() && gpu_info.IsAdreno()) {
306 const std::string kBadDriver =
307 "OpenCL 2.0 QUALCOMM build: commit #7daed58 changeid #I7ece6fe30d "
308 "Date: 10/19/16";
309 if (absl::StrContains(gpu_info.opencl_info.platform_version, kBadDriver)) {
310 return false;
311 }
312 }
313 return attr.weights.shape.o == 1 && attr.dilations.w == 1 &&
314 attr.dilations.h == 1 && attr.weights.shape.w == 3 &&
315 attr.weights.shape.h == 3 && attr.strides.w == 1 &&
316 attr.strides.h == 1 && attr.padding.prepended.w == 1 &&
317 attr.padding.prepended.h == 1 && attr.padding.appended.w == 1 &&
318 attr.padding.appended.h == 1;
319 }
320
CreateDepthwiseConv3x3(const GpuInfo & gpu_info,const OperationDef & definition,const DepthwiseConvolution2DAttributes & attr)321 DepthwiseConv3x3 CreateDepthwiseConv3x3(
322 const GpuInfo& gpu_info, const OperationDef& definition,
323 const DepthwiseConvolution2DAttributes& attr) {
324 bool weights_are_buffer = !gpu_info.SupportsImages() ||
325 gpu_info.IsPowerVR() || gpu_info.IsMali() ||
326 gpu_info.IsApple();
327 bool local_mem_uploads = weights_are_buffer && gpu_info.IsPowerVR();
328 DepthwiseConv3x3 result(definition, weights_are_buffer, local_mem_uploads,
329 gpu_info);
330 result.UploadWeightsAndBiases(attr.weights, attr.bias, weights_are_buffer);
331 return result;
332 }
333
334 } // namespace gpu
335 } // namespace tflite
336