1 //
2 // Copyright 2017 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 // IntermNode_util.cpp: High-level utilities for creating AST nodes and node hierarchies. Mostly
7 // meant to be used in AST transforms.
8
9 #include "compiler/translator/tree_util/IntermNode_util.h"
10
11 #include "compiler/translator/FunctionLookup.h"
12 #include "compiler/translator/SymbolTable.h"
13
14 namespace sh
15 {
16
17 namespace
18 {
19
LookUpBuiltInFunction(const char * name,const TIntermSequence * arguments,const TSymbolTable & symbolTable,int shaderVersion)20 const TFunction *LookUpBuiltInFunction(const char *name,
21 const TIntermSequence *arguments,
22 const TSymbolTable &symbolTable,
23 int shaderVersion)
24 {
25 const ImmutableString &mangledName = TFunctionLookup::GetMangledName(name, *arguments);
26 const TSymbol *symbol = symbolTable.findBuiltIn(mangledName, shaderVersion);
27 if (symbol)
28 {
29 ASSERT(symbol->isFunction());
30 return static_cast<const TFunction *>(symbol);
31 }
32 return nullptr;
33 }
34
35 } // anonymous namespace
36
CreateInternalFunctionPrototypeNode(const TFunction & func)37 TIntermFunctionPrototype *CreateInternalFunctionPrototypeNode(const TFunction &func)
38 {
39 return new TIntermFunctionPrototype(&func);
40 }
41
CreateInternalFunctionDefinitionNode(const TFunction & func,TIntermBlock * functionBody)42 TIntermFunctionDefinition *CreateInternalFunctionDefinitionNode(const TFunction &func,
43 TIntermBlock *functionBody)
44 {
45 return new TIntermFunctionDefinition(new TIntermFunctionPrototype(&func), functionBody);
46 }
47
CreateZeroNode(const TType & type)48 TIntermTyped *CreateZeroNode(const TType &type)
49 {
50 TType constType(type);
51 constType.setQualifier(EvqConst);
52
53 if (!type.isArray() && type.getBasicType() != EbtStruct)
54 {
55 size_t size = constType.getObjectSize();
56 TConstantUnion *u = new TConstantUnion[size];
57 for (size_t i = 0; i < size; ++i)
58 {
59 switch (type.getBasicType())
60 {
61 case EbtFloat:
62 u[i].setFConst(0.0f);
63 break;
64 case EbtInt:
65 u[i].setIConst(0);
66 break;
67 case EbtUInt:
68 u[i].setUConst(0u);
69 break;
70 case EbtBool:
71 u[i].setBConst(false);
72 break;
73 default:
74 // CreateZeroNode is called by ParseContext that keeps parsing even when an
75 // error occurs, so it is possible for CreateZeroNode to be called with
76 // non-basic types. This happens only on error condition but CreateZeroNode
77 // needs to return a value with the correct type to continue the type check.
78 // That's why we handle non-basic type by setting whatever value, we just need
79 // the type to be right.
80 u[i].setIConst(42);
81 break;
82 }
83 }
84
85 TIntermConstantUnion *node = new TIntermConstantUnion(u, constType);
86 return node;
87 }
88
89 TIntermSequence arguments;
90
91 if (type.isArray())
92 {
93 TType elementType(type);
94 elementType.toArrayElementType();
95
96 size_t arraySize = type.getOutermostArraySize();
97 for (size_t i = 0; i < arraySize; ++i)
98 {
99 arguments.push_back(CreateZeroNode(elementType));
100 }
101 }
102 else
103 {
104 ASSERT(type.getBasicType() == EbtStruct);
105
106 const TStructure *structure = type.getStruct();
107 for (const auto &field : structure->fields())
108 {
109 arguments.push_back(CreateZeroNode(*field->type()));
110 }
111 }
112
113 return TIntermAggregate::CreateConstructor(constType, &arguments);
114 }
115
CreateFloatNode(float value,TPrecision precision)116 TIntermConstantUnion *CreateFloatNode(float value, TPrecision precision)
117 {
118 TConstantUnion *u = new TConstantUnion[1];
119 u[0].setFConst(value);
120
121 TType type(EbtFloat, precision, EvqConst, 1);
122 return new TIntermConstantUnion(u, type);
123 }
124
CreateVecNode(const float values[],unsigned int vecSize,TPrecision precision)125 TIntermConstantUnion *CreateVecNode(const float values[],
126 unsigned int vecSize,
127 TPrecision precision)
128 {
129 TConstantUnion *u = new TConstantUnion[vecSize];
130 for (unsigned int channel = 0; channel < vecSize; ++channel)
131 {
132 u[channel].setFConst(values[channel]);
133 }
134
135 TType type(EbtFloat, precision, EvqConst, static_cast<uint8_t>(vecSize));
136 return new TIntermConstantUnion(u, type);
137 }
138
CreateIndexNode(int index)139 TIntermConstantUnion *CreateIndexNode(int index)
140 {
141 TConstantUnion *u = new TConstantUnion[1];
142 u[0].setIConst(index);
143
144 TType type(EbtInt, EbpHigh, EvqConst, 1);
145 return new TIntermConstantUnion(u, type);
146 }
147
CreateUIntNode(unsigned int value)148 TIntermConstantUnion *CreateUIntNode(unsigned int value)
149 {
150 TConstantUnion *u = new TConstantUnion[1];
151 u[0].setUConst(value);
152
153 TType type(EbtUInt, EbpHigh, EvqConst, 1);
154 return new TIntermConstantUnion(u, type);
155 }
156
CreateBoolNode(bool value)157 TIntermConstantUnion *CreateBoolNode(bool value)
158 {
159 TConstantUnion *u = new TConstantUnion[1];
160 u[0].setBConst(value);
161
162 TType type(EbtBool, EbpUndefined, EvqConst, 1);
163 return new TIntermConstantUnion(u, type);
164 }
165
CreateTempVariable(TSymbolTable * symbolTable,const TType * type)166 TVariable *CreateTempVariable(TSymbolTable *symbolTable, const TType *type)
167 {
168 ASSERT(symbolTable != nullptr);
169 // TODO(oetuaho): Might be useful to sanitize layout qualifier etc. on the type of the created
170 // variable. This might need to be done in other places as well.
171 return new TVariable(symbolTable, kEmptyImmutableString, type, SymbolType::AngleInternal);
172 }
173
CreateTempVariable(TSymbolTable * symbolTable,const TType * type,TQualifier qualifier)174 TVariable *CreateTempVariable(TSymbolTable *symbolTable, const TType *type, TQualifier qualifier)
175 {
176 ASSERT(symbolTable != nullptr);
177 if (type->getQualifier() == qualifier)
178 {
179 return CreateTempVariable(symbolTable, type);
180 }
181 TType *typeWithQualifier = new TType(*type);
182 typeWithQualifier->setQualifier(qualifier);
183 return CreateTempVariable(symbolTable, typeWithQualifier);
184 }
185
CreateTempSymbolNode(const TVariable * tempVariable)186 TIntermSymbol *CreateTempSymbolNode(const TVariable *tempVariable)
187 {
188 ASSERT(tempVariable->symbolType() == SymbolType::AngleInternal);
189 ASSERT(tempVariable->getType().getQualifier() == EvqTemporary ||
190 tempVariable->getType().getQualifier() == EvqConst ||
191 tempVariable->getType().getQualifier() == EvqGlobal);
192 return new TIntermSymbol(tempVariable);
193 }
194
CreateTempDeclarationNode(const TVariable * tempVariable)195 TIntermDeclaration *CreateTempDeclarationNode(const TVariable *tempVariable)
196 {
197 TIntermDeclaration *tempDeclaration = new TIntermDeclaration();
198 tempDeclaration->appendDeclarator(CreateTempSymbolNode(tempVariable));
199 return tempDeclaration;
200 }
201
CreateTempInitDeclarationNode(const TVariable * tempVariable,TIntermTyped * initializer)202 TIntermDeclaration *CreateTempInitDeclarationNode(const TVariable *tempVariable,
203 TIntermTyped *initializer)
204 {
205 ASSERT(initializer != nullptr);
206 TIntermSymbol *tempSymbol = CreateTempSymbolNode(tempVariable);
207 TIntermDeclaration *tempDeclaration = new TIntermDeclaration();
208 TIntermBinary *tempInit = new TIntermBinary(EOpInitialize, tempSymbol, initializer);
209 tempDeclaration->appendDeclarator(tempInit);
210 return tempDeclaration;
211 }
212
CreateTempAssignmentNode(const TVariable * tempVariable,TIntermTyped * rightNode)213 TIntermBinary *CreateTempAssignmentNode(const TVariable *tempVariable, TIntermTyped *rightNode)
214 {
215 ASSERT(rightNode != nullptr);
216 TIntermSymbol *tempSymbol = CreateTempSymbolNode(tempVariable);
217 return new TIntermBinary(EOpAssign, tempSymbol, rightNode);
218 }
219
DeclareTempVariable(TSymbolTable * symbolTable,const TType * type,TQualifier qualifier,TIntermDeclaration ** declarationOut)220 TVariable *DeclareTempVariable(TSymbolTable *symbolTable,
221 const TType *type,
222 TQualifier qualifier,
223 TIntermDeclaration **declarationOut)
224 {
225 TVariable *variable = CreateTempVariable(symbolTable, type, qualifier);
226 *declarationOut = CreateTempDeclarationNode(variable);
227 return variable;
228 }
229
DeclareTempVariable(TSymbolTable * symbolTable,TIntermTyped * initializer,TQualifier qualifier,TIntermDeclaration ** declarationOut)230 TVariable *DeclareTempVariable(TSymbolTable *symbolTable,
231 TIntermTyped *initializer,
232 TQualifier qualifier,
233 TIntermDeclaration **declarationOut)
234 {
235 TVariable *variable =
236 CreateTempVariable(symbolTable, new TType(initializer->getType()), qualifier);
237 *declarationOut = CreateTempInitDeclarationNode(variable, initializer);
238 return variable;
239 }
240
DeclareStructure(TIntermBlock * root,TSymbolTable * symbolTable,TFieldList * fieldList,TQualifier qualifier,const TMemoryQualifier & memoryQualifier,uint32_t arraySize,const ImmutableString & structTypeName,const ImmutableString * structInstanceName)241 std::pair<const TVariable *, const TVariable *> DeclareStructure(
242 TIntermBlock *root,
243 TSymbolTable *symbolTable,
244 TFieldList *fieldList,
245 TQualifier qualifier,
246 const TMemoryQualifier &memoryQualifier,
247 uint32_t arraySize,
248 const ImmutableString &structTypeName,
249 const ImmutableString *structInstanceName)
250 {
251 TStructure *structure =
252 new TStructure(symbolTable, structTypeName, fieldList, SymbolType::AngleInternal);
253
254 auto makeStructureType = [&](bool isStructSpecifier) {
255 TType *structureType = new TType(structure, isStructSpecifier);
256 structureType->setQualifier(qualifier);
257 structureType->setMemoryQualifier(memoryQualifier);
258 if (arraySize > 0)
259 {
260 structureType->makeArray(arraySize);
261 }
262 return structureType;
263 };
264
265 TIntermSequence insertSequence;
266
267 TVariable *typeVar = new TVariable(symbolTable, kEmptyImmutableString, makeStructureType(true),
268 SymbolType::Empty);
269 insertSequence.push_back(new TIntermDeclaration{typeVar});
270
271 TVariable *instanceVar = nullptr;
272 if (structInstanceName)
273 {
274 instanceVar = new TVariable(symbolTable, *structInstanceName, makeStructureType(false),
275 SymbolType::AngleInternal);
276 insertSequence.push_back(new TIntermDeclaration{instanceVar});
277 }
278
279 size_t firstFunctionIndex = FindFirstFunctionDefinitionIndex(root);
280 root->insertChildNodes(firstFunctionIndex, insertSequence);
281
282 return {typeVar, instanceVar};
283 }
284
DeclareInterfaceBlock(TIntermBlock * root,TSymbolTable * symbolTable,TFieldList * fieldList,TQualifier qualifier,const TLayoutQualifier & layoutQualifier,const TMemoryQualifier & memoryQualifier,uint32_t arraySize,const ImmutableString & blockTypeName,const ImmutableString & blockVariableName)285 const TVariable *DeclareInterfaceBlock(TIntermBlock *root,
286 TSymbolTable *symbolTable,
287 TFieldList *fieldList,
288 TQualifier qualifier,
289 const TLayoutQualifier &layoutQualifier,
290 const TMemoryQualifier &memoryQualifier,
291 uint32_t arraySize,
292 const ImmutableString &blockTypeName,
293 const ImmutableString &blockVariableName)
294 {
295 // Define an interface block.
296 TInterfaceBlock *interfaceBlock = new TInterfaceBlock(
297 symbolTable, blockTypeName, fieldList, layoutQualifier, SymbolType::AngleInternal);
298
299 // Turn the inteface block into a declaration.
300 TType *interfaceBlockType = new TType(interfaceBlock, qualifier, layoutQualifier);
301 interfaceBlockType->setMemoryQualifier(memoryQualifier);
302 if (arraySize > 0)
303 {
304 interfaceBlockType->makeArray(arraySize);
305 }
306
307 TIntermDeclaration *interfaceBlockDecl = new TIntermDeclaration;
308 TVariable *interfaceBlockVar =
309 new TVariable(symbolTable, blockVariableName, interfaceBlockType,
310 blockVariableName.empty() ? SymbolType::Empty : SymbolType::AngleInternal);
311 TIntermSymbol *interfaceBlockDeclarator = new TIntermSymbol(interfaceBlockVar);
312 interfaceBlockDecl->appendDeclarator(interfaceBlockDeclarator);
313
314 // Insert the declarations before the first function.
315 TIntermSequence insertSequence;
316 insertSequence.push_back(interfaceBlockDecl);
317
318 size_t firstFunctionIndex = FindFirstFunctionDefinitionIndex(root);
319 root->insertChildNodes(firstFunctionIndex, insertSequence);
320
321 return interfaceBlockVar;
322 }
323
EnsureBlock(TIntermNode * node)324 TIntermBlock *EnsureBlock(TIntermNode *node)
325 {
326 if (node == nullptr)
327 return nullptr;
328 TIntermBlock *blockNode = node->getAsBlock();
329 if (blockNode != nullptr)
330 return blockNode;
331
332 blockNode = new TIntermBlock();
333 blockNode->setLine(node->getLine());
334 blockNode->appendStatement(node);
335 return blockNode;
336 }
337
ReferenceGlobalVariable(const ImmutableString & name,const TSymbolTable & symbolTable)338 TIntermSymbol *ReferenceGlobalVariable(const ImmutableString &name, const TSymbolTable &symbolTable)
339 {
340 const TSymbol *symbol = symbolTable.findGlobal(name);
341 ASSERT(symbol && symbol->isVariable());
342 return new TIntermSymbol(static_cast<const TVariable *>(symbol));
343 }
344
ReferenceBuiltInVariable(const ImmutableString & name,const TSymbolTable & symbolTable,int shaderVersion)345 TIntermSymbol *ReferenceBuiltInVariable(const ImmutableString &name,
346 const TSymbolTable &symbolTable,
347 int shaderVersion)
348 {
349 const TVariable *var =
350 static_cast<const TVariable *>(symbolTable.findBuiltIn(name, shaderVersion));
351 ASSERT(var);
352 return new TIntermSymbol(var);
353 }
354
CreateBuiltInFunctionCallNode(const char * name,TIntermSequence * arguments,const TSymbolTable & symbolTable,int shaderVersion)355 TIntermTyped *CreateBuiltInFunctionCallNode(const char *name,
356 TIntermSequence *arguments,
357 const TSymbolTable &symbolTable,
358 int shaderVersion)
359 {
360 const TFunction *fn = LookUpBuiltInFunction(name, arguments, symbolTable, shaderVersion);
361 ASSERT(fn);
362 TOperator op = fn->getBuiltInOp();
363 if (BuiltInGroup::IsMath(op) && arguments->size() == 1)
364 {
365 return new TIntermUnary(op, arguments->at(0)->getAsTyped(), fn);
366 }
367 return TIntermAggregate::CreateBuiltInFunctionCall(*fn, arguments);
368 }
369
CreateBuiltInUnaryFunctionCallNode(const char * name,TIntermTyped * argument,const TSymbolTable & symbolTable,int shaderVersion)370 TIntermTyped *CreateBuiltInUnaryFunctionCallNode(const char *name,
371 TIntermTyped *argument,
372 const TSymbolTable &symbolTable,
373 int shaderVersion)
374 {
375 TIntermSequence seq = {argument};
376 return CreateBuiltInFunctionCallNode(name, &seq, symbolTable, shaderVersion);
377 }
378
379 // Returns true if a block ends in a branch (break, continue, return, etc). This is only correct
380 // after PruneNoOps, because it expects empty blocks after a branch to have been already pruned,
381 // i.e. a block can only end in a branch if its last statement is a branch or is a block ending in
382 // branch.
EndsInBranch(TIntermBlock * block)383 bool EndsInBranch(TIntermBlock *block)
384 {
385 while (block != nullptr)
386 {
387 // Get the last statement of the block.
388 TIntermSequence &statements = *block->getSequence();
389 if (statements.empty())
390 {
391 return false;
392 }
393
394 TIntermNode *lastStatement = statements.back();
395
396 // If it's a branch itself, we have the answer.
397 if (lastStatement->getAsBranchNode())
398 {
399 return true;
400 }
401
402 // Otherwise, see if it's a block that ends in a branch
403 block = lastStatement->getAsBlock();
404 }
405
406 return false;
407 }
408
409 } // namespace sh
410