• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/GLES_COMPUTE/kernels/GCDepthwiseConvolutionLayer3x3Kernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
28 #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
29 #include "arm_compute/core/GLES_COMPUTE/IGCKernel.h"
30 #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
31 #include "arm_compute/core/Helpers.h"
32 #include "arm_compute/core/TensorInfo.h"
33 #include "arm_compute/core/Types.h"
34 #include "arm_compute/core/Utils.h"
35 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
36 #include "src/core/AccessWindowStatic.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 #include "support/StringSupport.h"
40 
41 using namespace arm_compute;
42 using namespace arm_compute::misc::shape_calculator;
43 
GCDepthwiseConvolutionLayer3x3Kernel()44 GCDepthwiseConvolutionLayer3x3Kernel::GCDepthwiseConvolutionLayer3x3Kernel()
45     : _border_size(0), _input(), _output(), _weights(), _biases(), _conv_stride_x(0), _conv_stride_y(0), _conv_pad_left(0), _conv_pad_top(0), _lws(gles::NDRange(1U, 1U, 1U))
46 {
47 }
48 
border_size() const49 BorderSize GCDepthwiseConvolutionLayer3x3Kernel::border_size() const
50 {
51     return _border_size;
52 }
53 
configure(const IGCTensor * input,const IGCTensor * weights,const IGCTensor * biases,IGCTensor * output,const PadStrideInfo & conv_info,unsigned int depth_multiplier)54 void GCDepthwiseConvolutionLayer3x3Kernel::configure(const IGCTensor *input, const IGCTensor *weights, const IGCTensor *biases, IGCTensor *output, const PadStrideInfo &conv_info,
55                                                      unsigned int depth_multiplier)
56 {
57     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16);
58     ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
59     ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != 3 || weights->info()->dimension(1) != 3);
60 
61     if(biases != nullptr)
62     {
63         ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
64         ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(2));
65         ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
66     }
67 
68     // Get convolved dimensions
69     const TensorShape output_shape = compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier);
70 
71     // Output auto inizialitation if not yet initialized
72     auto_init_if_empty(*output->info(),
73                        output_shape,
74                        1,
75                        input->info()->data_type());
76 
77     ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
78     ARM_COMPUTE_ERROR_ON(output->info()->dimension(2) != weights->info()->dimension(2));
79 
80     _input         = input;
81     _output        = output;
82     _weights       = weights;
83     _biases        = biases;
84     _conv_stride_x = conv_info.stride().first;
85     _conv_stride_y = conv_info.stride().second;
86     _conv_pad_left = conv_info.pad_left();
87     _conv_pad_top  = conv_info.pad_top();
88     _border_size   = BorderSize(_conv_pad_top, conv_info.pad_right(), conv_info.pad_bottom(), _conv_pad_left);
89 
90     // Set build options
91     ARM_COMPUTE_ERROR_ON(_conv_stride_x < 1 || _conv_stride_x > 3);
92     std::set<std::string> options;
93 
94     options.emplace("#define DEPTH_MULTIPLIER " + support::cpp11::to_string(depth_multiplier));
95     options.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(_lws[0]));
96     options.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(_lws[1]));
97     options.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(_lws[2]));
98     options.emplace("#define STRIDE_X " + support::cpp11::to_string(_conv_stride_x));
99     options.emplace("#define STRIDE_Y " + support::cpp11::to_string(_conv_stride_y));
100 
101     std::string dt_name = (input->info()->data_type() == DataType::F32) ? "DATA_TYPE_FP32" : "DATA_TYPE_FP16";
102     options.emplace(("#define " + dt_name));
103 
104     unsigned int num_elems_read_per_iteration_x    = 8;
105     unsigned int num_elems_read_per_iteration_y    = 1;
106     unsigned int num_elems_written_per_iteration_x = 4;
107     unsigned int num_elems_written_per_iteration_y = 1;
108     unsigned int num_elems_written_per_iteration_z = 1;
109 
110     if((_conv_stride_x == 1) && (_conv_stride_y == 1))
111     {
112         switch(input->info()->data_type())
113         {
114 #define PROCESS_4X_3Y_1Z
115 
116             case DataType::F16:
117 #if defined(PROCESS_4X_3Y_1Z)
118                 options.emplace("#define PROCESS_4X_3Y_1Z");
119                 num_elems_read_per_iteration_y    = 5;
120                 num_elems_written_per_iteration_y = 3;
121 #endif /* PROCESS_4X_3Y_1Z */
122 #undef PROCESS_4X_3Y_1Z
123                 break;
124 
125             default:
126                 ARM_COMPUTE_ERROR("Current data type is not supported");
127                 break;
128         }
129     }
130     else
131     {
132         switch(input->info()->data_type())
133         {
134             case DataType::F16:
135                 options.emplace("#define PROCESS_4X_1Y_1Z");
136                 break;
137 
138             default:
139                 ARM_COMPUTE_ERROR("Current data type is not supported");
140                 break;
141         }
142     }
143 
144     if(_biases != nullptr)
145     {
146         options.emplace("#define BIAS");
147     }
148 
149     // Create kernel
150     std::string kernel_name = "depthwise_convolution_3x3";
151     _kernel                 = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel(kernel_name, options));
152 
153     // Calculate output right and bottom border
154     const int output_width          = output->info()->dimension(0);
155     const int output_height         = output->info()->dimension(1);
156     const int output_padding_right  = ceil_to_multiple(output_width, num_elems_written_per_iteration_x * _lws[0]) - output_width;
157     const int output_padding_bottom = ceil_to_multiple(output_height, num_elems_written_per_iteration_y * _lws[1]) - output_height;
158 
159     // Calculate input right and bottom border
160     const int input_width  = input->info()->dimension(0);
161     const int input_height = input->info()->dimension(1);
162 
163     const int input_total_width  = std::max(int(input->info()->padding().left), int(_conv_pad_left)) + input_width + std::max(int(input->info()->padding().right), int(_conv_pad_left));
164     const int input_total_height = std::max(int(input->info()->padding().top), int(_conv_pad_top)) + input_height + std::max(int(input->info()->padding().bottom), int(_conv_pad_top));
165 
166     const int input_padding_right  = ceil_to_multiple(input_total_width, num_elems_read_per_iteration_x * _lws[0]) - input_width - _conv_pad_left;
167     const int input_padding_bottom = ceil_to_multiple(input_total_height, num_elems_read_per_iteration_y * _lws[1]) - input_height - _conv_pad_top;
168 
169     BorderSize border = BorderSize(0, output_padding_right, output_padding_bottom, 0);
170 
171     Window win = calculate_max_enlarged_window(*output->info(), Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y, num_elems_written_per_iteration_z), border);
172 
173     AccessWindowStatic input_access(input->info(), -_conv_pad_left, -_conv_pad_top, input_width + input_padding_right, input_height + input_padding_bottom);
174     AccessWindowStatic weights_access = AccessWindowStatic(nullptr, 0, 0, 0, 0);
175     AccessWindowStatic bias_access    = AccessWindowStatic(nullptr, 0, 0, 0, 1);
176 
177     switch(weights->info()->data_type())
178     {
179         case DataType::F16:
180             weights_access = AccessWindowStatic(weights->info(), 0, 0, 4, 3);
181             if(_biases != nullptr)
182             {
183                 bias_access = AccessWindowStatic(_biases->info(), 0, 0, _biases->info()->dimension(0) + 1, 1);
184             }
185             break;
186 
187         default:
188             ARM_COMPUTE_ERROR("Current data type is not supported");
189             break;
190     }
191 
192     AccessWindowStatic output_access(output->info(), 0, 0, output_width + output_padding_right, output_height + output_padding_bottom);
193 
194     if(_biases != nullptr)
195     {
196         update_window_and_padding(win, input_access, weights_access, bias_access, output_access);
197     }
198     else
199     {
200         update_window_and_padding(win, input_access, weights_access, output_access);
201     }
202 
203     output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
204 
205     IGCKernel::configure(win);
206 }
207 
run(const Window & window)208 void GCDepthwiseConvolutionLayer3x3Kernel::run(const Window &window)
209 {
210     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
211     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
212 
213     _kernel.use();
214 
215     _output->set_needs_shifting(true);
216 
217     // Create input window and adjust
218     Window win_in = window;
219     win_in.adjust(Window::DimX, -_conv_pad_left, true);
220     win_in.adjust(Window::DimY, -_conv_pad_top, true);
221     win_in.set_dimension_step(Window::DimX, window.x().step() * _conv_stride_x);
222     win_in.set_dimension_step(Window::DimY, window.y().step() * _conv_stride_y);
223 
224     Window slice_in      = win_in.first_slice_window_3D();
225     Window slice_out     = window.first_slice_window_3D();
226     Window slice_weights = window.first_slice_window_3D();
227     slice_weights.set_dimension_step(Window::DimX, 0);
228     slice_weights.set_dimension_step(Window::DimY, 0);
229 
230     // Set biases
231     if(_biases != nullptr)
232     {
233         unsigned int idx = 3 * num_arguments_per_3D_tensor();
234         Window       slice_biases;
235         slice_biases.use_tensor_dimensions(_biases->info()->tensor_shape());
236         add_1D_tensor_argument(idx, _biases, 4, slice_biases);
237     }
238 
239     slice_out.shift(Window::DimX, -(_output->info()->padding()).left);
240 
241     do
242     {
243         unsigned int idx = 0;
244         add_3D_tensor_argument(idx, _input, 1, slice_in);
245         add_3D_tensor_argument(idx, _output, 2, slice_out);
246         add_3D_tensor_argument(idx, _weights, 3, slice_weights);
247 
248         _kernel.update_shader_params();
249         enqueue(*this, slice_out, _lws);
250     }
251     while(window.slide_window_slice_3D(slice_out) && win_in.slide_window_slice_3D(slice_in));
252 }
253