• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
28 #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
29 #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
30 #include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
31 #include "arm_compute/core/Helpers.h"
32 #include "arm_compute/core/TensorInfo.h"
33 #include "arm_compute/core/Types.h"
34 #include "arm_compute/core/Utils.h"
35 #include "arm_compute/core/Validate.h"
36 #include "arm_compute/core/Window.h"
37 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
38 #include "src/core/AccessWindowStatic.h"
39 #include "src/core/AccessWindowTranspose.h"
40 #include "src/core/helpers/AutoConfiguration.h"
41 #include "src/core/helpers/WindowHelpers.h"
42 #include "support/StringSupport.h"
43 
44 #include <set>
45 #include <string>
46 
47 using namespace arm_compute;
48 using namespace arm_compute::misc::shape_calculator;
49 
50 namespace
51 {
52 using ElementsProcessed = Steps;
53 
validate_arguments(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * output,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info)54 inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
55 {
56     ARM_COMPUTE_UNUSED(reshape_info);
57     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
58     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32);
59     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
60     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3");
61 
62     if(!is_interleaved_transposed)
63     {
64         ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));
65 
66         if(output->total_size() != 0)
67         {
68             ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
69             ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
70             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
71         }
72     }
73     else
74     {
75         const int m                         = reshape_info.m();
76         const int n                         = reshape_info.n();
77         const int k                         = reshape_info.k();
78         const int mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
79         const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
80 
81         TensorShape tensor_shape0{ input0->tensor_shape() };
82         tensor_shape0.set(0, k);
83         tensor_shape0.set(1, m);
84 
85         TensorShape tensor_shape1{ input1->tensor_shape() };
86         tensor_shape1.set(0, n);
87         tensor_shape1.set(1, k);
88 
89         const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
90         const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
91 
92         const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_interleaved_shape(tensor_info0, mult_interleave4x4_height));
93         const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width));
94 
95         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
96         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
97 
98         if(output->total_size() != 0)
99         {
100             ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
101             ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
102             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
103         }
104     }
105 
106     return Status{};
107 }
108 
validate_and_configure_window(ITensorInfo * input0,ITensorInfo * input1,ITensorInfo * output,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,GPUTarget gpu_target,ElementsProcessed & num_elements_processed)109 inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output,
110                                                                bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info,
111                                                                GPUTarget gpu_target, ElementsProcessed &num_elements_processed)
112 {
113     ARM_COMPUTE_UNUSED(gpu_target);
114 
115     // Output tensor auto inizialitation if not yet initialized
116     TensorShape tensor_shape{ input0->tensor_shape() };
117     tensor_shape.set(0, is_interleaved_transposed ? reshape_info.n() : input1->dimension(0));
118     tensor_shape.set(1, is_interleaved_transposed ? reshape_info.m() : input0->dimension(1));
119 
120     auto_init_if_empty(*output, input0->clone()->set_tensor_shape(tensor_shape));
121 
122     bool   window_changed = false;
123     Window win{};
124 
125     const DataType data_type                           = input0->data_type();
126     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
127     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
128 
129     if(is_interleaved_transposed)
130     {
131         // Configure window kernel
132         num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(data_type);
133         num_elems_processed_per_iteration_y = 4;
134 
135         win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
136 
137         AccessWindowRectangle input0_access(input0, 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f);
138         AccessWindowTranspose input1_access(input1, 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f);
139         AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
140 
141         update_window_and_padding(win, input0_access, input1_access, output_access);
142 
143         output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
144     }
145     else // The input tensors have not been reshaped
146     {
147         // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor.
148         num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 4);
149 
150         switch(data_type)
151         {
152             case DataType::F16:
153                 num_elems_processed_per_iteration_x = 4;
154                 break;
155 
156             case DataType::F32:
157                 num_elems_processed_per_iteration_x = max_gc_vector_width / data_size_from_type(data_type);
158                 break;
159 
160             default:
161                 ARM_COMPUTE_ERROR("Current data type is not supported");
162                 break;
163         }
164 
165         win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
166 
167         AccessWindowStatic    input0_access(input0, 0, 0, ceil_to_multiple(input0->dimension(0), 8), ceil_to_multiple(input0->dimension(1), num_elems_processed_per_iteration_y));
168         AccessWindowStatic    input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
169         AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
170 
171         update_window_and_padding(win, input0_access, input1_access, output_access);
172 
173         Coordinates coord;
174         coord.set_num_dimensions(output->num_dimensions());
175         output_access.set_valid_region(win, ValidRegion(coord, output->tensor_shape()));
176     }
177 
178     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
179     return std::make_pair(err, win);
180 }
181 } // namespace
182 
GCGEMMMatrixMultiplyKernel()183 GCGEMMMatrixMultiplyKernel::GCGEMMMatrixMultiplyKernel()
184     : _input0(nullptr), _input1(nullptr), _output(nullptr)
185 {
186 }
187 
configure(const IGCTensor * input0,const IGCTensor * input1,IGCTensor * output,float alpha,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info)188 void GCGEMMMatrixMultiplyKernel::configure(const IGCTensor *input0, const IGCTensor *input1, IGCTensor *output, float alpha, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
189 {
190     ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
191 
192     // Perform validate step
193     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info));
194 
195     _input0 = input0;
196     _input1 = input1;
197     _output = output;
198 
199     // Get target architecture
200     GPUTarget gpu_target = get_target();
201 
202     ElementsProcessed num_elements_processed{};
203 
204     // Configure kernel window
205     auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info, gpu_target, num_elements_processed);
206     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
207     IGCKernel::configure(win_config.second);
208 
209     // Create build options
210     std::set<std::string> build_opts;
211     std::string           kernel_name;
212 
213     build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1));
214     build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
215     build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
216     build_opts.emplace("#define COLS_A " + support::cpp11::to_string(input0->info()->dimension(0)));
217     build_opts.emplace("#define COLS_B " + support::cpp11::to_string(input1->info()->dimension(0)));
218     build_opts.emplace("#define ALPHA " + float_to_string_with_full_precision(alpha));
219 
220     // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
221     if(is_interleaved_transposed)
222     {
223         const int mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
224         const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
225 
226         build_opts.emplace("#define MULT_TRANSPOSE1XW_WIDTH " + support::cpp11::to_string(mult_transpose1xW_width));
227         build_opts.emplace("#define MULT_INTERLEAVE4X4_HEIGHT " + support::cpp11::to_string(mult_interleave4x4_height));
228 
229         switch(input0->info()->data_type())
230         {
231             case DataType::F16:
232                 build_opts.emplace("#define DATA_TYPE_FP16");
233                 break;
234 
235             case DataType::F32:
236                 build_opts.emplace("#define DATA_TYPE_FP32");
237                 break;
238 
239             default:
240                 ARM_COMPUTE_ERROR("Current data type is not supported");
241                 break;
242         }
243 
244         build_opts.emplace("#define GEMM_MM_INTERLEAVED_TRANSPOSED");
245 
246         kernel_name = "gemm_mm_interleaved_transposed";
247     }
248     else
249     {
250         // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor
251 
252         GPUTarget arch_target = get_arch_from_target(gpu_target);
253         switch(input0->info()->data_type())
254         {
255             case DataType::F16:
256                 build_opts.emplace("#define DATA_TYPE_FP16");
257                 build_opts.emplace("#define MM_PROCESS_4X_OPTIMIZED");
258                 build_opts.emplace("#define GEMM_MM_FLOATING_POINT");
259                 break;
260 
261             case DataType::F32:
262                 build_opts.emplace("#define DATA_TYPE_FP32");
263 
264                 if(arch_target == GPUTarget::BIFROST && input0->info()->num_dimensions() != 1)
265                 {
266                     build_opts.emplace("#define GEMM_MM_FLOATING_POINT_BIFROST");
267                 }
268                 else
269                 {
270                     build_opts.emplace("#define GEMM_MM_FLOATING_POINT");
271                 }
272                 break;
273 
274             default:
275                 ARM_COMPUTE_ERROR("Current data type is not supported");
276                 break;
277         }
278 
279         build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_X " + support::cpp11::to_string(num_elements_processed.x()));
280         build_opts.emplace("#define NUM_ELEMS_PROCESSED_PER_THREAD_Y " + support::cpp11::to_string(num_elements_processed.y()));
281 
282         kernel_name = "gemm_mm_floating_point";
283     }
284 
285     // Create kernel
286     _kernel = GCKernelLibrary::get().create_kernel(kernel_name, build_opts);
287 }
288 
validate(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * output,float alpha,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,GPUTarget gpu_target)289 Status GCGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved_transposed,
290                                             const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target)
291 {
292     ARM_COMPUTE_UNUSED(alpha);
293     ElementsProcessed num_elements_processed{};
294     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, is_interleaved_transposed, reshape_info));
295     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
296                                                               input1->clone().get(),
297                                                               output->clone().get(),
298                                                               is_interleaved_transposed,
299                                                               reshape_info,
300                                                               gpu_target,
301                                                               num_elements_processed)
302                                 .first);
303     return Status{};
304 }
305 
run(const Window & window)306 void GCGEMMMatrixMultiplyKernel::run(const Window &window)
307 {
308     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
309     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IGCKernel::window(), window);
310 
311     _kernel.use();
312 
313     Window slice          = window.first_slice_window_2D();
314     Window slice_matrix_b = slice;
315 
316     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
317     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
318 
319     do
320     {
321         Window slice_b = slice;
322         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
323         // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
324         if(_input1->info()->num_dimensions() < 3)
325         {
326             slice_b = slice_matrix_b;
327         }
328 
329         unsigned int idx = 0;
330 
331         add_2D_tensor_argument(idx, _input0, 1, slice);
332         add_2D_tensor_argument(idx, _input1, 2, slice_b);
333         add_2D_tensor_argument(idx, _output, 3, slice);
334         _kernel.update_shader_params();
335         enqueue(*this, slice);
336     }
337     while(window.slide_window_slice_2D(slice));
338 }
339