1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm_vixl.h"
18
19 #include "arch/arm/asm_support_arm.h"
20 #include "arch/arm/instruction_set_features_arm.h"
21 #include "arch/arm/jni_frame_arm.h"
22 #include "art_method-inl.h"
23 #include "base/bit_utils.h"
24 #include "base/bit_utils_iterator.h"
25 #include "class_root-inl.h"
26 #include "class_table.h"
27 #include "code_generator_utils.h"
28 #include "common_arm.h"
29 #include "compiled_method.h"
30 #include "entrypoints/quick/quick_entrypoints.h"
31 #include "gc/accounting/card_table.h"
32 #include "gc/space/image_space.h"
33 #include "heap_poisoning.h"
34 #include "interpreter/mterp/nterp.h"
35 #include "intrinsics.h"
36 #include "intrinsics_arm_vixl.h"
37 #include "intrinsics_utils.h"
38 #include "linker/linker_patch.h"
39 #include "mirror/array-inl.h"
40 #include "mirror/class-inl.h"
41 #include "mirror/var_handle.h"
42 #include "scoped_thread_state_change-inl.h"
43 #include "thread.h"
44 #include "utils/arm/assembler_arm_vixl.h"
45 #include "utils/arm/managed_register_arm.h"
46 #include "utils/assembler.h"
47 #include "utils/stack_checks.h"
48
49 namespace art {
50 namespace arm {
51
52 namespace vixl32 = vixl::aarch32;
53 using namespace vixl32; // NOLINT(build/namespaces)
54
55 using helpers::DRegisterFrom;
56 using helpers::HighRegisterFrom;
57 using helpers::InputDRegisterAt;
58 using helpers::InputOperandAt;
59 using helpers::InputRegister;
60 using helpers::InputRegisterAt;
61 using helpers::InputSRegisterAt;
62 using helpers::InputVRegister;
63 using helpers::InputVRegisterAt;
64 using helpers::Int32ConstantFrom;
65 using helpers::Int64ConstantFrom;
66 using helpers::LocationFrom;
67 using helpers::LowRegisterFrom;
68 using helpers::LowSRegisterFrom;
69 using helpers::OperandFrom;
70 using helpers::OutputRegister;
71 using helpers::OutputSRegister;
72 using helpers::OutputVRegister;
73 using helpers::RegisterFrom;
74 using helpers::SRegisterFrom;
75 using helpers::Uint64ConstantFrom;
76
77 using vixl::EmissionCheckScope;
78 using vixl::ExactAssemblyScope;
79 using vixl::CodeBufferCheckScope;
80
81 using RegisterList = vixl32::RegisterList;
82
ExpectedPairLayout(Location location)83 static bool ExpectedPairLayout(Location location) {
84 // We expected this for both core and fpu register pairs.
85 return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
86 }
87 // Use a local definition to prevent copying mistakes.
88 static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize);
89 static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte;
90 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
91
92 // Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle
93 // offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions.
94 // For the Baker read barrier implementation using link-time generated thunks we need to split
95 // the offset explicitly.
96 constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB;
97
98 // Using a base helps identify when we hit Marking Register check breakpoints.
99 constexpr int kMarkingRegisterCheckBreakCodeBaseCode = 0x10;
100
101 #ifdef __
102 #error "ARM Codegen VIXL macro-assembler macro already defined."
103 #endif
104
105 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
106 #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()-> // NOLINT
107 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
108
109 // Marker that code is yet to be, and must, be implemented.
110 #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
111
CanEmitNarrowLdr(vixl32::Register rt,vixl32::Register rn,uint32_t offset)112 static inline bool CanEmitNarrowLdr(vixl32::Register rt, vixl32::Register rn, uint32_t offset) {
113 return rt.IsLow() && rn.IsLow() && offset < 32u;
114 }
115
116 class EmitAdrCode {
117 public:
EmitAdrCode(ArmVIXLMacroAssembler * assembler,vixl32::Register rd,vixl32::Label * label)118 EmitAdrCode(ArmVIXLMacroAssembler* assembler, vixl32::Register rd, vixl32::Label* label)
119 : assembler_(assembler), rd_(rd), label_(label) {
120 DCHECK(!assembler->AllowMacroInstructions()); // In ExactAssemblyScope.
121 adr_location_ = assembler->GetCursorOffset();
122 assembler->adr(EncodingSize(Wide), rd, label);
123 }
124
~EmitAdrCode()125 ~EmitAdrCode() {
126 DCHECK(label_->IsBound());
127 // The ADR emitted by the assembler does not set the Thumb mode bit we need.
128 // TODO: Maybe extend VIXL to allow ADR for return address?
129 uint8_t* raw_adr = assembler_->GetBuffer()->GetOffsetAddress<uint8_t*>(adr_location_);
130 // Expecting ADR encoding T3 with `(offset & 1) == 0`.
131 DCHECK_EQ(raw_adr[1] & 0xfbu, 0xf2u); // Check bits 24-31, except 26.
132 DCHECK_EQ(raw_adr[0] & 0xffu, 0x0fu); // Check bits 16-23.
133 DCHECK_EQ(raw_adr[3] & 0x8fu, rd_.GetCode()); // Check bits 8-11 and 15.
134 DCHECK_EQ(raw_adr[2] & 0x01u, 0x00u); // Check bit 0, i.e. the `offset & 1`.
135 // Add the Thumb mode bit.
136 raw_adr[2] |= 0x01u;
137 }
138
139 private:
140 ArmVIXLMacroAssembler* const assembler_;
141 vixl32::Register rd_;
142 vixl32::Label* const label_;
143 int32_t adr_location_;
144 };
145
OneRegInReferenceOutSaveEverythingCallerSaves()146 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
147 InvokeRuntimeCallingConventionARMVIXL calling_convention;
148 RegisterSet caller_saves = RegisterSet::Empty();
149 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
150 // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
151 // that the the kPrimNot result register is the same as the first argument register.
152 return caller_saves;
153 }
154
155 // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
156 // for each live D registers they treat two corresponding S registers as live ones.
157 //
158 // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
159 // from a list of contiguous S registers a list of contiguous D registers (processing first/last
160 // S registers corner cases) and save/restore this new list treating them as D registers.
161 // - decreasing code size
162 // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
163 // restored and then used in regular non SlowPath code as D register.
164 //
165 // For the following example (v means the S register is live):
166 // D names: | D0 | D1 | D2 | D4 | ...
167 // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
168 // Live? | | v | v | v | v | v | v | | ...
169 //
170 // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
171 // as D registers.
172 //
173 // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers
174 // for lists of floating-point registers.
SaveContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)175 static size_t SaveContiguousSRegisterList(size_t first,
176 size_t last,
177 CodeGenerator* codegen,
178 size_t stack_offset) {
179 static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
180 static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
181 DCHECK_LE(first, last);
182 if ((first == last) && (first == 0)) {
183 __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
184 return stack_offset + kSRegSizeInBytes;
185 }
186 if (first % 2 == 1) {
187 __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
188 stack_offset += kSRegSizeInBytes;
189 }
190
191 bool save_last = false;
192 if (last % 2 == 0) {
193 save_last = true;
194 --last;
195 }
196
197 if (first < last) {
198 vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
199 DCHECK_EQ((last - first + 1) % 2, 0u);
200 size_t number_of_d_regs = (last - first + 1) / 2;
201
202 if (number_of_d_regs == 1) {
203 __ Vstr(d_reg, MemOperand(sp, stack_offset));
204 } else if (number_of_d_regs > 1) {
205 UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
206 vixl32::Register base = sp;
207 if (stack_offset != 0) {
208 base = temps.Acquire();
209 __ Add(base, sp, Operand::From(stack_offset));
210 }
211 __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
212 }
213 stack_offset += number_of_d_regs * kDRegSizeInBytes;
214 }
215
216 if (save_last) {
217 __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
218 stack_offset += kSRegSizeInBytes;
219 }
220
221 return stack_offset;
222 }
223
RestoreContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)224 static size_t RestoreContiguousSRegisterList(size_t first,
225 size_t last,
226 CodeGenerator* codegen,
227 size_t stack_offset) {
228 static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
229 static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
230 DCHECK_LE(first, last);
231 if ((first == last) && (first == 0)) {
232 __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
233 return stack_offset + kSRegSizeInBytes;
234 }
235 if (first % 2 == 1) {
236 __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
237 stack_offset += kSRegSizeInBytes;
238 }
239
240 bool restore_last = false;
241 if (last % 2 == 0) {
242 restore_last = true;
243 --last;
244 }
245
246 if (first < last) {
247 vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
248 DCHECK_EQ((last - first + 1) % 2, 0u);
249 size_t number_of_d_regs = (last - first + 1) / 2;
250 if (number_of_d_regs == 1) {
251 __ Vldr(d_reg, MemOperand(sp, stack_offset));
252 } else if (number_of_d_regs > 1) {
253 UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
254 vixl32::Register base = sp;
255 if (stack_offset != 0) {
256 base = temps.Acquire();
257 __ Add(base, sp, Operand::From(stack_offset));
258 }
259 __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
260 }
261 stack_offset += number_of_d_regs * kDRegSizeInBytes;
262 }
263
264 if (restore_last) {
265 __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
266 stack_offset += kSRegSizeInBytes;
267 }
268
269 return stack_offset;
270 }
271
GetLoadOperandType(DataType::Type type)272 static LoadOperandType GetLoadOperandType(DataType::Type type) {
273 switch (type) {
274 case DataType::Type::kReference:
275 return kLoadWord;
276 case DataType::Type::kBool:
277 case DataType::Type::kUint8:
278 return kLoadUnsignedByte;
279 case DataType::Type::kInt8:
280 return kLoadSignedByte;
281 case DataType::Type::kUint16:
282 return kLoadUnsignedHalfword;
283 case DataType::Type::kInt16:
284 return kLoadSignedHalfword;
285 case DataType::Type::kInt32:
286 return kLoadWord;
287 case DataType::Type::kInt64:
288 return kLoadWordPair;
289 case DataType::Type::kFloat32:
290 return kLoadSWord;
291 case DataType::Type::kFloat64:
292 return kLoadDWord;
293 default:
294 LOG(FATAL) << "Unreachable type " << type;
295 UNREACHABLE();
296 }
297 }
298
GetStoreOperandType(DataType::Type type)299 static StoreOperandType GetStoreOperandType(DataType::Type type) {
300 switch (type) {
301 case DataType::Type::kReference:
302 return kStoreWord;
303 case DataType::Type::kBool:
304 case DataType::Type::kUint8:
305 case DataType::Type::kInt8:
306 return kStoreByte;
307 case DataType::Type::kUint16:
308 case DataType::Type::kInt16:
309 return kStoreHalfword;
310 case DataType::Type::kInt32:
311 return kStoreWord;
312 case DataType::Type::kInt64:
313 return kStoreWordPair;
314 case DataType::Type::kFloat32:
315 return kStoreSWord;
316 case DataType::Type::kFloat64:
317 return kStoreDWord;
318 default:
319 LOG(FATAL) << "Unreachable type " << type;
320 UNREACHABLE();
321 }
322 }
323
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)324 void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
325 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
326 size_t orig_offset = stack_offset;
327
328 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
329 for (uint32_t i : LowToHighBits(core_spills)) {
330 // If the register holds an object, update the stack mask.
331 if (locations->RegisterContainsObject(i)) {
332 locations->SetStackBit(stack_offset / kVRegSize);
333 }
334 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
335 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
336 saved_core_stack_offsets_[i] = stack_offset;
337 stack_offset += kArmWordSize;
338 }
339
340 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
341 arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset);
342
343 uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
344 orig_offset = stack_offset;
345 for (uint32_t i : LowToHighBits(fp_spills)) {
346 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
347 saved_fpu_stack_offsets_[i] = stack_offset;
348 stack_offset += kArmWordSize;
349 }
350
351 stack_offset = orig_offset;
352 while (fp_spills != 0u) {
353 uint32_t begin = CTZ(fp_spills);
354 uint32_t tmp = fp_spills + (1u << begin);
355 fp_spills &= tmp; // Clear the contiguous range of 1s.
356 uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
357 stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
358 }
359 DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
360 }
361
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)362 void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
363 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
364 size_t orig_offset = stack_offset;
365
366 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
367 for (uint32_t i : LowToHighBits(core_spills)) {
368 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
369 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
370 stack_offset += kArmWordSize;
371 }
372
373 // TODO(VIXL): Check the coherency of stack_offset after this with a test.
374 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
375 arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset);
376
377 uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
378 while (fp_spills != 0u) {
379 uint32_t begin = CTZ(fp_spills);
380 uint32_t tmp = fp_spills + (1u << begin);
381 fp_spills &= tmp; // Clear the contiguous range of 1s.
382 uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
383 stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
384 }
385 DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
386 }
387
388 class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
389 public:
NullCheckSlowPathARMVIXL(HNullCheck * instruction)390 explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {}
391
EmitNativeCode(CodeGenerator * codegen)392 void EmitNativeCode(CodeGenerator* codegen) override {
393 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
394 __ Bind(GetEntryLabel());
395 if (instruction_->CanThrowIntoCatchBlock()) {
396 // Live registers will be restored in the catch block if caught.
397 SaveLiveRegisters(codegen, instruction_->GetLocations());
398 }
399 arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
400 instruction_,
401 instruction_->GetDexPc(),
402 this);
403 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
404 }
405
IsFatal() const406 bool IsFatal() const override { return true; }
407
GetDescription() const408 const char* GetDescription() const override { return "NullCheckSlowPathARMVIXL"; }
409
410 private:
411 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL);
412 };
413
414 class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
415 public:
DivZeroCheckSlowPathARMVIXL(HDivZeroCheck * instruction)416 explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
417 : SlowPathCodeARMVIXL(instruction) {}
418
EmitNativeCode(CodeGenerator * codegen)419 void EmitNativeCode(CodeGenerator* codegen) override {
420 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
421 __ Bind(GetEntryLabel());
422 arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
423 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
424 }
425
IsFatal() const426 bool IsFatal() const override { return true; }
427
GetDescription() const428 const char* GetDescription() const override { return "DivZeroCheckSlowPathARMVIXL"; }
429
430 private:
431 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
432 };
433
434 class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
435 public:
SuspendCheckSlowPathARMVIXL(HSuspendCheck * instruction,HBasicBlock * successor)436 SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor)
437 : SlowPathCodeARMVIXL(instruction), successor_(successor) {}
438
EmitNativeCode(CodeGenerator * codegen)439 void EmitNativeCode(CodeGenerator* codegen) override {
440 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
441 __ Bind(GetEntryLabel());
442 arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
443 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
444 if (successor_ == nullptr) {
445 __ B(GetReturnLabel());
446 } else {
447 __ B(arm_codegen->GetLabelOf(successor_));
448 }
449 }
450
GetReturnLabel()451 vixl32::Label* GetReturnLabel() {
452 DCHECK(successor_ == nullptr);
453 return &return_label_;
454 }
455
GetSuccessor() const456 HBasicBlock* GetSuccessor() const {
457 return successor_;
458 }
459
GetDescription() const460 const char* GetDescription() const override { return "SuspendCheckSlowPathARMVIXL"; }
461
462 private:
463 // If not null, the block to branch to after the suspend check.
464 HBasicBlock* const successor_;
465
466 // If `successor_` is null, the label to branch to after the suspend check.
467 vixl32::Label return_label_;
468
469 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL);
470 };
471
472 class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
473 public:
BoundsCheckSlowPathARMVIXL(HBoundsCheck * instruction)474 explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction)
475 : SlowPathCodeARMVIXL(instruction) {}
476
EmitNativeCode(CodeGenerator * codegen)477 void EmitNativeCode(CodeGenerator* codegen) override {
478 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
479 LocationSummary* locations = instruction_->GetLocations();
480
481 __ Bind(GetEntryLabel());
482 if (instruction_->CanThrowIntoCatchBlock()) {
483 // Live registers will be restored in the catch block if caught.
484 SaveLiveRegisters(codegen, instruction_->GetLocations());
485 }
486 // We're moving two locations to locations that could overlap, so we need a parallel
487 // move resolver.
488 InvokeRuntimeCallingConventionARMVIXL calling_convention;
489 codegen->EmitParallelMoves(
490 locations->InAt(0),
491 LocationFrom(calling_convention.GetRegisterAt(0)),
492 DataType::Type::kInt32,
493 locations->InAt(1),
494 LocationFrom(calling_convention.GetRegisterAt(1)),
495 DataType::Type::kInt32);
496 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
497 ? kQuickThrowStringBounds
498 : kQuickThrowArrayBounds;
499 arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
500 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
501 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
502 }
503
IsFatal() const504 bool IsFatal() const override { return true; }
505
GetDescription() const506 const char* GetDescription() const override { return "BoundsCheckSlowPathARMVIXL"; }
507
508 private:
509 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL);
510 };
511
512 class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL {
513 public:
LoadClassSlowPathARMVIXL(HLoadClass * cls,HInstruction * at)514 LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at)
515 : SlowPathCodeARMVIXL(at), cls_(cls) {
516 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
517 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
518 }
519
EmitNativeCode(CodeGenerator * codegen)520 void EmitNativeCode(CodeGenerator* codegen) override {
521 LocationSummary* locations = instruction_->GetLocations();
522 Location out = locations->Out();
523 const uint32_t dex_pc = instruction_->GetDexPc();
524 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
525 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
526
527 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
528 __ Bind(GetEntryLabel());
529 SaveLiveRegisters(codegen, locations);
530
531 InvokeRuntimeCallingConventionARMVIXL calling_convention;
532 if (must_resolve_type) {
533 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm_codegen->GetGraph()->GetDexFile()) ||
534 arm_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
535 ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
536 &cls_->GetDexFile()));
537 dex::TypeIndex type_index = cls_->GetTypeIndex();
538 __ Mov(calling_convention.GetRegisterAt(0), type_index.index_);
539 if (cls_->NeedsAccessCheck()) {
540 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
541 arm_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
542 } else {
543 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
544 arm_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
545 }
546 // If we also must_do_clinit, the resolved type is now in the correct register.
547 } else {
548 DCHECK(must_do_clinit);
549 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
550 arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), source);
551 }
552 if (must_do_clinit) {
553 arm_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
554 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
555 }
556
557 // Move the class to the desired location.
558 if (out.IsValid()) {
559 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
560 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
561 }
562 RestoreLiveRegisters(codegen, locations);
563 __ B(GetExitLabel());
564 }
565
GetDescription() const566 const char* GetDescription() const override { return "LoadClassSlowPathARMVIXL"; }
567
568 private:
569 // The class this slow path will load.
570 HLoadClass* const cls_;
571
572 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL);
573 };
574
575 class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL {
576 public:
LoadStringSlowPathARMVIXL(HLoadString * instruction)577 explicit LoadStringSlowPathARMVIXL(HLoadString* instruction)
578 : SlowPathCodeARMVIXL(instruction) {}
579
EmitNativeCode(CodeGenerator * codegen)580 void EmitNativeCode(CodeGenerator* codegen) override {
581 DCHECK(instruction_->IsLoadString());
582 DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
583 LocationSummary* locations = instruction_->GetLocations();
584 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
585 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
586
587 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
588 __ Bind(GetEntryLabel());
589 SaveLiveRegisters(codegen, locations);
590
591 InvokeRuntimeCallingConventionARMVIXL calling_convention;
592 __ Mov(calling_convention.GetRegisterAt(0), string_index.index_);
593 arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
594 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
595
596 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
597 RestoreLiveRegisters(codegen, locations);
598
599 __ B(GetExitLabel());
600 }
601
GetDescription() const602 const char* GetDescription() const override { return "LoadStringSlowPathARMVIXL"; }
603
604 private:
605 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL);
606 };
607
608 class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
609 public:
TypeCheckSlowPathARMVIXL(HInstruction * instruction,bool is_fatal)610 TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal)
611 : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {}
612
EmitNativeCode(CodeGenerator * codegen)613 void EmitNativeCode(CodeGenerator* codegen) override {
614 LocationSummary* locations = instruction_->GetLocations();
615 DCHECK(instruction_->IsCheckCast()
616 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
617
618 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
619 __ Bind(GetEntryLabel());
620
621 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
622 SaveLiveRegisters(codegen, locations);
623 }
624
625 // We're moving two locations to locations that could overlap, so we need a parallel
626 // move resolver.
627 InvokeRuntimeCallingConventionARMVIXL calling_convention;
628
629 codegen->EmitParallelMoves(locations->InAt(0),
630 LocationFrom(calling_convention.GetRegisterAt(0)),
631 DataType::Type::kReference,
632 locations->InAt(1),
633 LocationFrom(calling_convention.GetRegisterAt(1)),
634 DataType::Type::kReference);
635 if (instruction_->IsInstanceOf()) {
636 arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
637 instruction_,
638 instruction_->GetDexPc(),
639 this);
640 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
641 arm_codegen->Move32(locations->Out(), LocationFrom(r0));
642 } else {
643 DCHECK(instruction_->IsCheckCast());
644 arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
645 instruction_,
646 instruction_->GetDexPc(),
647 this);
648 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
649 }
650
651 if (!is_fatal_) {
652 RestoreLiveRegisters(codegen, locations);
653 __ B(GetExitLabel());
654 }
655 }
656
GetDescription() const657 const char* GetDescription() const override { return "TypeCheckSlowPathARMVIXL"; }
658
IsFatal() const659 bool IsFatal() const override { return is_fatal_; }
660
661 private:
662 const bool is_fatal_;
663
664 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL);
665 };
666
667 class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL {
668 public:
DeoptimizationSlowPathARMVIXL(HDeoptimize * instruction)669 explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction)
670 : SlowPathCodeARMVIXL(instruction) {}
671
EmitNativeCode(CodeGenerator * codegen)672 void EmitNativeCode(CodeGenerator* codegen) override {
673 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
674 __ Bind(GetEntryLabel());
675 LocationSummary* locations = instruction_->GetLocations();
676 SaveLiveRegisters(codegen, locations);
677 InvokeRuntimeCallingConventionARMVIXL calling_convention;
678 __ Mov(calling_convention.GetRegisterAt(0),
679 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
680
681 arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
682 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
683 }
684
GetDescription() const685 const char* GetDescription() const override { return "DeoptimizationSlowPathARMVIXL"; }
686
687 private:
688 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL);
689 };
690
691 class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL {
692 public:
ArraySetSlowPathARMVIXL(HInstruction * instruction)693 explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {}
694
EmitNativeCode(CodeGenerator * codegen)695 void EmitNativeCode(CodeGenerator* codegen) override {
696 LocationSummary* locations = instruction_->GetLocations();
697 __ Bind(GetEntryLabel());
698 SaveLiveRegisters(codegen, locations);
699
700 InvokeRuntimeCallingConventionARMVIXL calling_convention;
701 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
702 parallel_move.AddMove(
703 locations->InAt(0),
704 LocationFrom(calling_convention.GetRegisterAt(0)),
705 DataType::Type::kReference,
706 nullptr);
707 parallel_move.AddMove(
708 locations->InAt(1),
709 LocationFrom(calling_convention.GetRegisterAt(1)),
710 DataType::Type::kInt32,
711 nullptr);
712 parallel_move.AddMove(
713 locations->InAt(2),
714 LocationFrom(calling_convention.GetRegisterAt(2)),
715 DataType::Type::kReference,
716 nullptr);
717 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
718
719 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
720 arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
721 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
722 RestoreLiveRegisters(codegen, locations);
723 __ B(GetExitLabel());
724 }
725
GetDescription() const726 const char* GetDescription() const override { return "ArraySetSlowPathARMVIXL"; }
727
728 private:
729 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL);
730 };
731
732 // Slow path generating a read barrier for a heap reference.
733 class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL {
734 public:
ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)735 ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction,
736 Location out,
737 Location ref,
738 Location obj,
739 uint32_t offset,
740 Location index)
741 : SlowPathCodeARMVIXL(instruction),
742 out_(out),
743 ref_(ref),
744 obj_(obj),
745 offset_(offset),
746 index_(index) {
747 DCHECK(kEmitCompilerReadBarrier);
748 // If `obj` is equal to `out` or `ref`, it means the initial object
749 // has been overwritten by (or after) the heap object reference load
750 // to be instrumented, e.g.:
751 //
752 // __ LoadFromOffset(kLoadWord, out, out, offset);
753 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
754 //
755 // In that case, we have lost the information about the original
756 // object, and the emitted read barrier cannot work properly.
757 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
758 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
759 }
760
EmitNativeCode(CodeGenerator * codegen)761 void EmitNativeCode(CodeGenerator* codegen) override {
762 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
763 LocationSummary* locations = instruction_->GetLocations();
764 vixl32::Register reg_out = RegisterFrom(out_);
765 DCHECK(locations->CanCall());
766 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
767 DCHECK(instruction_->IsInstanceFieldGet() ||
768 instruction_->IsPredicatedInstanceFieldGet() ||
769 instruction_->IsStaticFieldGet() ||
770 instruction_->IsArrayGet() ||
771 instruction_->IsInstanceOf() ||
772 instruction_->IsCheckCast() ||
773 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
774 << "Unexpected instruction in read barrier for heap reference slow path: "
775 << instruction_->DebugName();
776 // The read barrier instrumentation of object ArrayGet
777 // instructions does not support the HIntermediateAddress
778 // instruction.
779 DCHECK(!(instruction_->IsArrayGet() &&
780 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
781
782 __ Bind(GetEntryLabel());
783 SaveLiveRegisters(codegen, locations);
784
785 // We may have to change the index's value, but as `index_` is a
786 // constant member (like other "inputs" of this slow path),
787 // introduce a copy of it, `index`.
788 Location index = index_;
789 if (index_.IsValid()) {
790 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
791 if (instruction_->IsArrayGet()) {
792 // Compute the actual memory offset and store it in `index`.
793 vixl32::Register index_reg = RegisterFrom(index_);
794 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode()));
795 if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) {
796 // We are about to change the value of `index_reg` (see the
797 // calls to art::arm::ArmVIXLMacroAssembler::Lsl and
798 // art::arm::ArmVIXLMacroAssembler::Add below), but it has
799 // not been saved by the previous call to
800 // art::SlowPathCode::SaveLiveRegisters, as it is a
801 // callee-save register --
802 // art::SlowPathCode::SaveLiveRegisters does not consider
803 // callee-save registers, as it has been designed with the
804 // assumption that callee-save registers are supposed to be
805 // handled by the called function. So, as a callee-save
806 // register, `index_reg` _would_ eventually be saved onto
807 // the stack, but it would be too late: we would have
808 // changed its value earlier. Therefore, we manually save
809 // it here into another freely available register,
810 // `free_reg`, chosen of course among the caller-save
811 // registers (as a callee-save `free_reg` register would
812 // exhibit the same problem).
813 //
814 // Note we could have requested a temporary register from
815 // the register allocator instead; but we prefer not to, as
816 // this is a slow path, and we know we can find a
817 // caller-save register that is available.
818 vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen);
819 __ Mov(free_reg, index_reg);
820 index_reg = free_reg;
821 index = LocationFrom(index_reg);
822 } else {
823 // The initial register stored in `index_` has already been
824 // saved in the call to art::SlowPathCode::SaveLiveRegisters
825 // (as it is not a callee-save register), so we can freely
826 // use it.
827 }
828 // Shifting the index value contained in `index_reg` by the scale
829 // factor (2) cannot overflow in practice, as the runtime is
830 // unable to allocate object arrays with a size larger than
831 // 2^26 - 1 (that is, 2^28 - 4 bytes).
832 __ Lsl(index_reg, index_reg, TIMES_4);
833 static_assert(
834 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
835 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
836 __ Add(index_reg, index_reg, offset_);
837 } else {
838 // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
839 // (as in the case of ArrayGet), as it is actually an offset to an object field within an
840 // object.
841 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
842 DCHECK(instruction_->GetLocations()->Intrinsified());
843 HInvoke* invoke = instruction_->AsInvoke();
844 DCHECK(IsUnsafeGetObject(invoke) || IsVarHandleGet(invoke) || IsVarHandleCASFamily(invoke))
845 << invoke->GetIntrinsic();
846 DCHECK_EQ(offset_, 0U);
847 // Though UnsafeGet's offset location is a register pair, we only pass the low
848 // part (high part is irrelevant for 32-bit addresses) to the slow path.
849 // For VarHandle intrinsics, the index is always just a register.
850 DCHECK(index_.IsRegister());
851 index = index_;
852 }
853 }
854
855 // We're moving two or three locations to locations that could
856 // overlap, so we need a parallel move resolver.
857 InvokeRuntimeCallingConventionARMVIXL calling_convention;
858 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
859 parallel_move.AddMove(ref_,
860 LocationFrom(calling_convention.GetRegisterAt(0)),
861 DataType::Type::kReference,
862 nullptr);
863 parallel_move.AddMove(obj_,
864 LocationFrom(calling_convention.GetRegisterAt(1)),
865 DataType::Type::kReference,
866 nullptr);
867 if (index.IsValid()) {
868 parallel_move.AddMove(index,
869 LocationFrom(calling_convention.GetRegisterAt(2)),
870 DataType::Type::kInt32,
871 nullptr);
872 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
873 } else {
874 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
875 __ Mov(calling_convention.GetRegisterAt(2), offset_);
876 }
877 arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
878 CheckEntrypointTypes<
879 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
880 arm_codegen->Move32(out_, LocationFrom(r0));
881
882 RestoreLiveRegisters(codegen, locations);
883 __ B(GetExitLabel());
884 }
885
GetDescription() const886 const char* GetDescription() const override {
887 return "ReadBarrierForHeapReferenceSlowPathARMVIXL";
888 }
889
890 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)891 vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
892 uint32_t ref = RegisterFrom(ref_).GetCode();
893 uint32_t obj = RegisterFrom(obj_).GetCode();
894 for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
895 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
896 return vixl32::Register(i);
897 }
898 }
899 // We shall never fail to find a free caller-save register, as
900 // there are more than two core caller-save registers on ARM
901 // (meaning it is possible to find one which is different from
902 // `ref` and `obj`).
903 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
904 LOG(FATAL) << "Could not find a free caller-save register";
905 UNREACHABLE();
906 }
907
908 const Location out_;
909 const Location ref_;
910 const Location obj_;
911 const uint32_t offset_;
912 // An additional location containing an index to an array.
913 // Only used for HArrayGet and the UnsafeGetObject &
914 // UnsafeGetObjectVolatile intrinsics.
915 const Location index_;
916
917 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL);
918 };
919
920 // Slow path generating a read barrier for a GC root.
921 class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL {
922 public:
ReadBarrierForRootSlowPathARMVIXL(HInstruction * instruction,Location out,Location root)923 ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root)
924 : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) {
925 DCHECK(kEmitCompilerReadBarrier);
926 }
927
EmitNativeCode(CodeGenerator * codegen)928 void EmitNativeCode(CodeGenerator* codegen) override {
929 LocationSummary* locations = instruction_->GetLocations();
930 vixl32::Register reg_out = RegisterFrom(out_);
931 DCHECK(locations->CanCall());
932 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
933 DCHECK(instruction_->IsLoadClass() ||
934 instruction_->IsLoadString() ||
935 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
936 << "Unexpected instruction in read barrier for GC root slow path: "
937 << instruction_->DebugName();
938
939 __ Bind(GetEntryLabel());
940 SaveLiveRegisters(codegen, locations);
941
942 InvokeRuntimeCallingConventionARMVIXL calling_convention;
943 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
944 arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_);
945 arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
946 instruction_,
947 instruction_->GetDexPc(),
948 this);
949 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
950 arm_codegen->Move32(out_, LocationFrom(r0));
951
952 RestoreLiveRegisters(codegen, locations);
953 __ B(GetExitLabel());
954 }
955
GetDescription() const956 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARMVIXL"; }
957
958 private:
959 const Location out_;
960 const Location root_;
961
962 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL);
963 };
964
965 class MethodEntryExitHooksSlowPathARMVIXL : public SlowPathCodeARMVIXL {
966 public:
MethodEntryExitHooksSlowPathARMVIXL(HInstruction * instruction)967 explicit MethodEntryExitHooksSlowPathARMVIXL(HInstruction* instruction)
968 : SlowPathCodeARMVIXL(instruction) {}
969
EmitNativeCode(CodeGenerator * codegen)970 void EmitNativeCode(CodeGenerator* codegen) override {
971 LocationSummary* locations = instruction_->GetLocations();
972 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
973 QuickEntrypointEnum entry_point =
974 (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
975 __ Bind(GetEntryLabel());
976 SaveLiveRegisters(codegen, locations);
977 arm_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
978 RestoreLiveRegisters(codegen, locations);
979 __ B(GetExitLabel());
980 }
981
GetDescription() const982 const char* GetDescription() const override {
983 return "MethodEntryExitHooksSlowPath";
984 }
985
986 private:
987 DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARMVIXL);
988 };
989
990 class CompileOptimizedSlowPathARMVIXL : public SlowPathCodeARMVIXL {
991 public:
CompileOptimizedSlowPathARMVIXL()992 CompileOptimizedSlowPathARMVIXL() : SlowPathCodeARMVIXL(/* instruction= */ nullptr) {}
993
EmitNativeCode(CodeGenerator * codegen)994 void EmitNativeCode(CodeGenerator* codegen) override {
995 uint32_t entry_point_offset =
996 GetThreadOffset<kArmPointerSize>(kQuickCompileOptimized).Int32Value();
997 __ Bind(GetEntryLabel());
998 __ Ldr(lr, MemOperand(tr, entry_point_offset));
999 // Note: we don't record the call here (and therefore don't generate a stack
1000 // map), as the entrypoint should never be suspended.
1001 __ Blx(lr);
1002 __ B(GetExitLabel());
1003 }
1004
GetDescription() const1005 const char* GetDescription() const override {
1006 return "CompileOptimizedSlowPath";
1007 }
1008
1009 private:
1010 DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARMVIXL);
1011 };
1012
ARMCondition(IfCondition cond)1013 inline vixl32::Condition ARMCondition(IfCondition cond) {
1014 switch (cond) {
1015 case kCondEQ: return eq;
1016 case kCondNE: return ne;
1017 case kCondLT: return lt;
1018 case kCondLE: return le;
1019 case kCondGT: return gt;
1020 case kCondGE: return ge;
1021 case kCondB: return lo;
1022 case kCondBE: return ls;
1023 case kCondA: return hi;
1024 case kCondAE: return hs;
1025 }
1026 LOG(FATAL) << "Unreachable";
1027 UNREACHABLE();
1028 }
1029
1030 // Maps signed condition to unsigned condition.
ARMUnsignedCondition(IfCondition cond)1031 inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
1032 switch (cond) {
1033 case kCondEQ: return eq;
1034 case kCondNE: return ne;
1035 // Signed to unsigned.
1036 case kCondLT: return lo;
1037 case kCondLE: return ls;
1038 case kCondGT: return hi;
1039 case kCondGE: return hs;
1040 // Unsigned remain unchanged.
1041 case kCondB: return lo;
1042 case kCondBE: return ls;
1043 case kCondA: return hi;
1044 case kCondAE: return hs;
1045 }
1046 LOG(FATAL) << "Unreachable";
1047 UNREACHABLE();
1048 }
1049
ARMFPCondition(IfCondition cond,bool gt_bias)1050 inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
1051 // The ARM condition codes can express all the necessary branches, see the
1052 // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
1053 // There is no dex instruction or HIR that would need the missing conditions
1054 // "equal or unordered" or "not equal".
1055 switch (cond) {
1056 case kCondEQ: return eq;
1057 case kCondNE: return ne /* unordered */;
1058 case kCondLT: return gt_bias ? cc : lt /* unordered */;
1059 case kCondLE: return gt_bias ? ls : le /* unordered */;
1060 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
1061 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
1062 default:
1063 LOG(FATAL) << "UNREACHABLE";
1064 UNREACHABLE();
1065 }
1066 }
1067
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)1068 inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
1069 switch (op_kind) {
1070 case HDataProcWithShifterOp::kASR: return ShiftType::ASR;
1071 case HDataProcWithShifterOp::kLSL: return ShiftType::LSL;
1072 case HDataProcWithShifterOp::kLSR: return ShiftType::LSR;
1073 default:
1074 LOG(FATAL) << "Unexpected op kind " << op_kind;
1075 UNREACHABLE();
1076 }
1077 }
1078
DumpCoreRegister(std::ostream & stream,int reg) const1079 void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
1080 stream << vixl32::Register(reg);
1081 }
1082
DumpFloatingPointRegister(std::ostream & stream,int reg) const1083 void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1084 stream << vixl32::SRegister(reg);
1085 }
1086
GetInstructionSetFeatures() const1087 const ArmInstructionSetFeatures& CodeGeneratorARMVIXL::GetInstructionSetFeatures() const {
1088 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArmInstructionSetFeatures();
1089 }
1090
ComputeSRegisterListMask(const SRegisterList & regs)1091 static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) {
1092 uint32_t mask = 0;
1093 for (uint32_t i = regs.GetFirstSRegister().GetCode();
1094 i <= regs.GetLastSRegister().GetCode();
1095 ++i) {
1096 mask |= (1 << i);
1097 }
1098 return mask;
1099 }
1100
1101 // Saves the register in the stack. Returns the size taken on stack.
SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1102 size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1103 uint32_t reg_id ATTRIBUTE_UNUSED) {
1104 TODO_VIXL32(FATAL);
1105 UNREACHABLE();
1106 }
1107
1108 // Restores the register from the stack. Returns the size taken on stack.
RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1109 size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1110 uint32_t reg_id ATTRIBUTE_UNUSED) {
1111 TODO_VIXL32(FATAL);
1112 UNREACHABLE();
1113 }
1114
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1115 size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1116 uint32_t reg_id ATTRIBUTE_UNUSED) {
1117 TODO_VIXL32(FATAL);
1118 UNREACHABLE();
1119 }
1120
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1121 size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1122 uint32_t reg_id ATTRIBUTE_UNUSED) {
1123 TODO_VIXL32(FATAL);
1124 UNREACHABLE();
1125 }
1126
GenerateDataProcInstruction(HInstruction::InstructionKind kind,vixl32::Register out,vixl32::Register first,const Operand & second,CodeGeneratorARMVIXL * codegen)1127 static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
1128 vixl32::Register out,
1129 vixl32::Register first,
1130 const Operand& second,
1131 CodeGeneratorARMVIXL* codegen) {
1132 if (second.IsImmediate() && second.GetImmediate() == 0) {
1133 const Operand in = kind == HInstruction::kAnd
1134 ? Operand(0)
1135 : Operand(first);
1136
1137 __ Mov(out, in);
1138 } else {
1139 switch (kind) {
1140 case HInstruction::kAdd:
1141 __ Add(out, first, second);
1142 break;
1143 case HInstruction::kAnd:
1144 __ And(out, first, second);
1145 break;
1146 case HInstruction::kOr:
1147 __ Orr(out, first, second);
1148 break;
1149 case HInstruction::kSub:
1150 __ Sub(out, first, second);
1151 break;
1152 case HInstruction::kXor:
1153 __ Eor(out, first, second);
1154 break;
1155 default:
1156 LOG(FATAL) << "Unexpected instruction kind: " << kind;
1157 UNREACHABLE();
1158 }
1159 }
1160 }
1161
GenerateDataProc(HInstruction::InstructionKind kind,const Location & out,const Location & first,const Operand & second_lo,const Operand & second_hi,CodeGeneratorARMVIXL * codegen)1162 static void GenerateDataProc(HInstruction::InstructionKind kind,
1163 const Location& out,
1164 const Location& first,
1165 const Operand& second_lo,
1166 const Operand& second_hi,
1167 CodeGeneratorARMVIXL* codegen) {
1168 const vixl32::Register first_hi = HighRegisterFrom(first);
1169 const vixl32::Register first_lo = LowRegisterFrom(first);
1170 const vixl32::Register out_hi = HighRegisterFrom(out);
1171 const vixl32::Register out_lo = LowRegisterFrom(out);
1172
1173 if (kind == HInstruction::kAdd) {
1174 __ Adds(out_lo, first_lo, second_lo);
1175 __ Adc(out_hi, first_hi, second_hi);
1176 } else if (kind == HInstruction::kSub) {
1177 __ Subs(out_lo, first_lo, second_lo);
1178 __ Sbc(out_hi, first_hi, second_hi);
1179 } else {
1180 GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
1181 GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
1182 }
1183 }
1184
GetShifterOperand(vixl32::Register rm,ShiftType shift,uint32_t shift_imm)1185 static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) {
1186 return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm);
1187 }
1188
GenerateLongDataProc(HDataProcWithShifterOp * instruction,CodeGeneratorARMVIXL * codegen)1189 static void GenerateLongDataProc(HDataProcWithShifterOp* instruction,
1190 CodeGeneratorARMVIXL* codegen) {
1191 DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
1192 DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
1193
1194 const LocationSummary* const locations = instruction->GetLocations();
1195 const uint32_t shift_value = instruction->GetShiftAmount();
1196 const HInstruction::InstructionKind kind = instruction->GetInstrKind();
1197 const Location first = locations->InAt(0);
1198 const Location second = locations->InAt(1);
1199 const Location out = locations->Out();
1200 const vixl32::Register first_hi = HighRegisterFrom(first);
1201 const vixl32::Register first_lo = LowRegisterFrom(first);
1202 const vixl32::Register out_hi = HighRegisterFrom(out);
1203 const vixl32::Register out_lo = LowRegisterFrom(out);
1204 const vixl32::Register second_hi = HighRegisterFrom(second);
1205 const vixl32::Register second_lo = LowRegisterFrom(second);
1206 const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind());
1207
1208 if (shift_value >= 32) {
1209 if (shift == ShiftType::LSL) {
1210 GenerateDataProcInstruction(kind,
1211 out_hi,
1212 first_hi,
1213 Operand(second_lo, ShiftType::LSL, shift_value - 32),
1214 codegen);
1215 GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen);
1216 } else if (shift == ShiftType::ASR) {
1217 GenerateDataProc(kind,
1218 out,
1219 first,
1220 GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32),
1221 Operand(second_hi, ShiftType::ASR, 31),
1222 codegen);
1223 } else {
1224 DCHECK_EQ(shift, ShiftType::LSR);
1225 GenerateDataProc(kind,
1226 out,
1227 first,
1228 GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32),
1229 0,
1230 codegen);
1231 }
1232 } else {
1233 DCHECK_GT(shift_value, 1U);
1234 DCHECK_LT(shift_value, 32U);
1235
1236 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1237
1238 if (shift == ShiftType::LSL) {
1239 // We are not doing this for HInstruction::kAdd because the output will require
1240 // Location::kOutputOverlap; not applicable to other cases.
1241 if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1242 GenerateDataProcInstruction(kind,
1243 out_hi,
1244 first_hi,
1245 Operand(second_hi, ShiftType::LSL, shift_value),
1246 codegen);
1247 GenerateDataProcInstruction(kind,
1248 out_hi,
1249 out_hi,
1250 Operand(second_lo, ShiftType::LSR, 32 - shift_value),
1251 codegen);
1252 GenerateDataProcInstruction(kind,
1253 out_lo,
1254 first_lo,
1255 Operand(second_lo, ShiftType::LSL, shift_value),
1256 codegen);
1257 } else {
1258 const vixl32::Register temp = temps.Acquire();
1259
1260 __ Lsl(temp, second_hi, shift_value);
1261 __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value));
1262 GenerateDataProc(kind,
1263 out,
1264 first,
1265 Operand(second_lo, ShiftType::LSL, shift_value),
1266 temp,
1267 codegen);
1268 }
1269 } else {
1270 DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR);
1271
1272 // We are not doing this for HInstruction::kAdd because the output will require
1273 // Location::kOutputOverlap; not applicable to other cases.
1274 if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1275 GenerateDataProcInstruction(kind,
1276 out_lo,
1277 first_lo,
1278 Operand(second_lo, ShiftType::LSR, shift_value),
1279 codegen);
1280 GenerateDataProcInstruction(kind,
1281 out_lo,
1282 out_lo,
1283 Operand(second_hi, ShiftType::LSL, 32 - shift_value),
1284 codegen);
1285 GenerateDataProcInstruction(kind,
1286 out_hi,
1287 first_hi,
1288 Operand(second_hi, shift, shift_value),
1289 codegen);
1290 } else {
1291 const vixl32::Register temp = temps.Acquire();
1292
1293 __ Lsr(temp, second_lo, shift_value);
1294 __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value));
1295 GenerateDataProc(kind,
1296 out,
1297 first,
1298 temp,
1299 Operand(second_hi, shift, shift_value),
1300 codegen);
1301 }
1302 }
1303 }
1304 }
1305
GenerateVcmp(HInstruction * instruction,CodeGeneratorARMVIXL * codegen)1306 static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) {
1307 const Location rhs_loc = instruction->GetLocations()->InAt(1);
1308 if (rhs_loc.IsConstant()) {
1309 // 0.0 is the only immediate that can be encoded directly in
1310 // a VCMP instruction.
1311 //
1312 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1313 // specify that in a floating-point comparison, positive zero
1314 // and negative zero are considered equal, so we can use the
1315 // literal 0.0 for both cases here.
1316 //
1317 // Note however that some methods (Float.equal, Float.compare,
1318 // Float.compareTo, Double.equal, Double.compare,
1319 // Double.compareTo, Math.max, Math.min, StrictMath.max,
1320 // StrictMath.min) consider 0.0 to be (strictly) greater than
1321 // -0.0. So if we ever translate calls to these methods into a
1322 // HCompare instruction, we must handle the -0.0 case with
1323 // care here.
1324 DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1325
1326 const DataType::Type type = instruction->InputAt(0)->GetType();
1327
1328 if (type == DataType::Type::kFloat32) {
1329 __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
1330 } else {
1331 DCHECK_EQ(type, DataType::Type::kFloat64);
1332 __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0);
1333 }
1334 } else {
1335 __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1));
1336 }
1337 }
1338
AdjustConstantForCondition(int64_t value,IfCondition * condition,IfCondition * opposite)1339 static int64_t AdjustConstantForCondition(int64_t value,
1340 IfCondition* condition,
1341 IfCondition* opposite) {
1342 if (value == 1) {
1343 if (*condition == kCondB) {
1344 value = 0;
1345 *condition = kCondEQ;
1346 *opposite = kCondNE;
1347 } else if (*condition == kCondAE) {
1348 value = 0;
1349 *condition = kCondNE;
1350 *opposite = kCondEQ;
1351 }
1352 } else if (value == -1) {
1353 if (*condition == kCondGT) {
1354 value = 0;
1355 *condition = kCondGE;
1356 *opposite = kCondLT;
1357 } else if (*condition == kCondLE) {
1358 value = 0;
1359 *condition = kCondLT;
1360 *opposite = kCondGE;
1361 }
1362 }
1363
1364 return value;
1365 }
1366
GenerateLongTestConstant(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1367 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTestConstant(
1368 HCondition* condition,
1369 bool invert,
1370 CodeGeneratorARMVIXL* codegen) {
1371 DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1372
1373 const LocationSummary* const locations = condition->GetLocations();
1374 IfCondition cond = condition->GetCondition();
1375 IfCondition opposite = condition->GetOppositeCondition();
1376
1377 if (invert) {
1378 std::swap(cond, opposite);
1379 }
1380
1381 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1382 const Location left = locations->InAt(0);
1383 const Location right = locations->InAt(1);
1384
1385 DCHECK(right.IsConstant());
1386
1387 const vixl32::Register left_high = HighRegisterFrom(left);
1388 const vixl32::Register left_low = LowRegisterFrom(left);
1389 int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &cond, &opposite);
1390 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1391
1392 // Comparisons against 0 are common enough to deserve special attention.
1393 if (value == 0) {
1394 switch (cond) {
1395 case kCondNE:
1396 // x > 0 iff x != 0 when the comparison is unsigned.
1397 case kCondA:
1398 ret = std::make_pair(ne, eq);
1399 FALLTHROUGH_INTENDED;
1400 case kCondEQ:
1401 // x <= 0 iff x == 0 when the comparison is unsigned.
1402 case kCondBE:
1403 __ Orrs(temps.Acquire(), left_low, left_high);
1404 return ret;
1405 case kCondLT:
1406 case kCondGE:
1407 __ Cmp(left_high, 0);
1408 return std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1409 // Trivially true or false.
1410 case kCondB:
1411 ret = std::make_pair(ne, eq);
1412 FALLTHROUGH_INTENDED;
1413 case kCondAE:
1414 __ Cmp(left_low, left_low);
1415 return ret;
1416 default:
1417 break;
1418 }
1419 }
1420
1421 switch (cond) {
1422 case kCondEQ:
1423 case kCondNE:
1424 case kCondB:
1425 case kCondBE:
1426 case kCondA:
1427 case kCondAE: {
1428 const uint32_t value_low = Low32Bits(value);
1429 Operand operand_low(value_low);
1430
1431 __ Cmp(left_high, High32Bits(value));
1432
1433 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1434 // we must ensure that the operands corresponding to the least significant
1435 // halves of the inputs fit into a 16-bit CMP encoding.
1436 if (!left_low.IsLow() || !IsUint<8>(value_low)) {
1437 operand_low = Operand(temps.Acquire());
1438 __ Mov(LeaveFlags, operand_low.GetBaseRegister(), value_low);
1439 }
1440
1441 // We use the scope because of the IT block that follows.
1442 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1443 2 * vixl32::k16BitT32InstructionSizeInBytes,
1444 CodeBufferCheckScope::kExactSize);
1445
1446 __ it(eq);
1447 __ cmp(eq, left_low, operand_low);
1448 ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1449 break;
1450 }
1451 case kCondLE:
1452 case kCondGT:
1453 // Trivially true or false.
1454 if (value == std::numeric_limits<int64_t>::max()) {
1455 __ Cmp(left_low, left_low);
1456 ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
1457 break;
1458 }
1459
1460 if (cond == kCondLE) {
1461 DCHECK_EQ(opposite, kCondGT);
1462 cond = kCondLT;
1463 opposite = kCondGE;
1464 } else {
1465 DCHECK_EQ(cond, kCondGT);
1466 DCHECK_EQ(opposite, kCondLE);
1467 cond = kCondGE;
1468 opposite = kCondLT;
1469 }
1470
1471 value++;
1472 FALLTHROUGH_INTENDED;
1473 case kCondGE:
1474 case kCondLT: {
1475 __ Cmp(left_low, Low32Bits(value));
1476 __ Sbcs(temps.Acquire(), left_high, High32Bits(value));
1477 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1478 break;
1479 }
1480 default:
1481 LOG(FATAL) << "Unreachable";
1482 UNREACHABLE();
1483 }
1484
1485 return ret;
1486 }
1487
GenerateLongTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1488 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTest(
1489 HCondition* condition,
1490 bool invert,
1491 CodeGeneratorARMVIXL* codegen) {
1492 DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1493
1494 const LocationSummary* const locations = condition->GetLocations();
1495 IfCondition cond = condition->GetCondition();
1496 IfCondition opposite = condition->GetOppositeCondition();
1497
1498 if (invert) {
1499 std::swap(cond, opposite);
1500 }
1501
1502 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1503 Location left = locations->InAt(0);
1504 Location right = locations->InAt(1);
1505
1506 DCHECK(right.IsRegisterPair());
1507
1508 switch (cond) {
1509 case kCondEQ:
1510 case kCondNE:
1511 case kCondB:
1512 case kCondBE:
1513 case kCondA:
1514 case kCondAE: {
1515 __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));
1516
1517 // We use the scope because of the IT block that follows.
1518 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1519 2 * vixl32::k16BitT32InstructionSizeInBytes,
1520 CodeBufferCheckScope::kExactSize);
1521
1522 __ it(eq);
1523 __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right));
1524 ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1525 break;
1526 }
1527 case kCondLE:
1528 case kCondGT:
1529 if (cond == kCondLE) {
1530 DCHECK_EQ(opposite, kCondGT);
1531 cond = kCondGE;
1532 opposite = kCondLT;
1533 } else {
1534 DCHECK_EQ(cond, kCondGT);
1535 DCHECK_EQ(opposite, kCondLE);
1536 cond = kCondLT;
1537 opposite = kCondGE;
1538 }
1539
1540 std::swap(left, right);
1541 FALLTHROUGH_INTENDED;
1542 case kCondGE:
1543 case kCondLT: {
1544 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1545
1546 __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));
1547 __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right));
1548 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1549 break;
1550 }
1551 default:
1552 LOG(FATAL) << "Unreachable";
1553 UNREACHABLE();
1554 }
1555
1556 return ret;
1557 }
1558
GenerateTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1559 static std::pair<vixl32::Condition, vixl32::Condition> GenerateTest(HCondition* condition,
1560 bool invert,
1561 CodeGeneratorARMVIXL* codegen) {
1562 const DataType::Type type = condition->GetLeft()->GetType();
1563 IfCondition cond = condition->GetCondition();
1564 IfCondition opposite = condition->GetOppositeCondition();
1565 std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1566
1567 if (invert) {
1568 std::swap(cond, opposite);
1569 }
1570
1571 if (type == DataType::Type::kInt64) {
1572 ret = condition->GetLocations()->InAt(1).IsConstant()
1573 ? GenerateLongTestConstant(condition, invert, codegen)
1574 : GenerateLongTest(condition, invert, codegen);
1575 } else if (DataType::IsFloatingPointType(type)) {
1576 GenerateVcmp(condition, codegen);
1577 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
1578 ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
1579 ARMFPCondition(opposite, condition->IsGtBias()));
1580 } else {
1581 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1582 __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1));
1583 ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1584 }
1585
1586 return ret;
1587 }
1588
GenerateConditionGeneric(HCondition * cond,CodeGeneratorARMVIXL * codegen)1589 static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1590 const vixl32::Register out = OutputRegister(cond);
1591 const auto condition = GenerateTest(cond, false, codegen);
1592
1593 __ Mov(LeaveFlags, out, 0);
1594
1595 if (out.IsLow()) {
1596 // We use the scope because of the IT block that follows.
1597 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1598 2 * vixl32::k16BitT32InstructionSizeInBytes,
1599 CodeBufferCheckScope::kExactSize);
1600
1601 __ it(condition.first);
1602 __ mov(condition.first, out, 1);
1603 } else {
1604 vixl32::Label done_label;
1605 vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
1606
1607 __ B(condition.second, final_label, /* is_far_target= */ false);
1608 __ Mov(out, 1);
1609
1610 if (done_label.IsReferenced()) {
1611 __ Bind(&done_label);
1612 }
1613 }
1614 }
1615
GenerateEqualLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1616 static void GenerateEqualLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1617 DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1618
1619 const LocationSummary* const locations = cond->GetLocations();
1620 IfCondition condition = cond->GetCondition();
1621 const vixl32::Register out = OutputRegister(cond);
1622 const Location left = locations->InAt(0);
1623 const Location right = locations->InAt(1);
1624 vixl32::Register left_high = HighRegisterFrom(left);
1625 vixl32::Register left_low = LowRegisterFrom(left);
1626 vixl32::Register temp;
1627 UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1628
1629 if (right.IsConstant()) {
1630 IfCondition opposite = cond->GetOppositeCondition();
1631 const int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right),
1632 &condition,
1633 &opposite);
1634 Operand right_high = High32Bits(value);
1635 Operand right_low = Low32Bits(value);
1636
1637 // The output uses Location::kNoOutputOverlap.
1638 if (out.Is(left_high)) {
1639 std::swap(left_low, left_high);
1640 std::swap(right_low, right_high);
1641 }
1642
1643 __ Sub(out, left_low, right_low);
1644 temp = temps.Acquire();
1645 __ Sub(temp, left_high, right_high);
1646 } else {
1647 DCHECK(right.IsRegisterPair());
1648 temp = temps.Acquire();
1649 __ Sub(temp, left_high, HighRegisterFrom(right));
1650 __ Sub(out, left_low, LowRegisterFrom(right));
1651 }
1652
1653 // Need to check after calling AdjustConstantForCondition().
1654 DCHECK(condition == kCondEQ || condition == kCondNE) << condition;
1655
1656 if (condition == kCondNE && out.IsLow()) {
1657 __ Orrs(out, out, temp);
1658
1659 // We use the scope because of the IT block that follows.
1660 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1661 2 * vixl32::k16BitT32InstructionSizeInBytes,
1662 CodeBufferCheckScope::kExactSize);
1663
1664 __ it(ne);
1665 __ mov(ne, out, 1);
1666 } else {
1667 __ Orr(out, out, temp);
1668 codegen->GenerateConditionWithZero(condition, out, out, temp);
1669 }
1670 }
1671
GenerateConditionLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1672 static void GenerateConditionLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1673 DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1674
1675 const LocationSummary* const locations = cond->GetLocations();
1676 IfCondition condition = cond->GetCondition();
1677 const vixl32::Register out = OutputRegister(cond);
1678 const Location left = locations->InAt(0);
1679 const Location right = locations->InAt(1);
1680
1681 if (right.IsConstant()) {
1682 IfCondition opposite = cond->GetOppositeCondition();
1683
1684 // Comparisons against 0 are common enough to deserve special attention.
1685 if (AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite) == 0) {
1686 switch (condition) {
1687 case kCondNE:
1688 case kCondA:
1689 if (out.IsLow()) {
1690 // We only care if both input registers are 0 or not.
1691 __ Orrs(out, LowRegisterFrom(left), HighRegisterFrom(left));
1692
1693 // We use the scope because of the IT block that follows.
1694 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1695 2 * vixl32::k16BitT32InstructionSizeInBytes,
1696 CodeBufferCheckScope::kExactSize);
1697
1698 __ it(ne);
1699 __ mov(ne, out, 1);
1700 return;
1701 }
1702
1703 FALLTHROUGH_INTENDED;
1704 case kCondEQ:
1705 case kCondBE:
1706 // We only care if both input registers are 0 or not.
1707 __ Orr(out, LowRegisterFrom(left), HighRegisterFrom(left));
1708 codegen->GenerateConditionWithZero(condition, out, out);
1709 return;
1710 case kCondLT:
1711 case kCondGE:
1712 // We only care about the sign bit.
1713 FALLTHROUGH_INTENDED;
1714 case kCondAE:
1715 case kCondB:
1716 codegen->GenerateConditionWithZero(condition, out, HighRegisterFrom(left));
1717 return;
1718 case kCondLE:
1719 case kCondGT:
1720 default:
1721 break;
1722 }
1723 }
1724 }
1725
1726 // If `out` is a low register, then the GenerateConditionGeneric()
1727 // function generates a shorter code sequence that is still branchless.
1728 if ((condition == kCondEQ || condition == kCondNE) && !out.IsLow()) {
1729 GenerateEqualLong(cond, codegen);
1730 return;
1731 }
1732
1733 GenerateConditionGeneric(cond, codegen);
1734 }
1735
GenerateConditionIntegralOrNonPrimitive(HCondition * cond,CodeGeneratorARMVIXL * codegen)1736 static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond,
1737 CodeGeneratorARMVIXL* codegen) {
1738 const DataType::Type type = cond->GetLeft()->GetType();
1739
1740 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1741
1742 if (type == DataType::Type::kInt64) {
1743 GenerateConditionLong(cond, codegen);
1744 return;
1745 }
1746
1747 IfCondition condition = cond->GetCondition();
1748 vixl32::Register in = InputRegisterAt(cond, 0);
1749 const vixl32::Register out = OutputRegister(cond);
1750 const Location right = cond->GetLocations()->InAt(1);
1751 int64_t value;
1752
1753 if (right.IsConstant()) {
1754 IfCondition opposite = cond->GetOppositeCondition();
1755
1756 value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite);
1757
1758 // Comparisons against 0 are common enough to deserve special attention.
1759 if (value == 0) {
1760 switch (condition) {
1761 case kCondNE:
1762 case kCondA:
1763 if (out.IsLow() && out.Is(in)) {
1764 __ Cmp(out, 0);
1765
1766 // We use the scope because of the IT block that follows.
1767 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1768 2 * vixl32::k16BitT32InstructionSizeInBytes,
1769 CodeBufferCheckScope::kExactSize);
1770
1771 __ it(ne);
1772 __ mov(ne, out, 1);
1773 return;
1774 }
1775
1776 FALLTHROUGH_INTENDED;
1777 case kCondEQ:
1778 case kCondBE:
1779 case kCondLT:
1780 case kCondGE:
1781 case kCondAE:
1782 case kCondB:
1783 codegen->GenerateConditionWithZero(condition, out, in);
1784 return;
1785 case kCondLE:
1786 case kCondGT:
1787 default:
1788 break;
1789 }
1790 }
1791 }
1792
1793 if (condition == kCondEQ || condition == kCondNE) {
1794 Operand operand(0);
1795
1796 if (right.IsConstant()) {
1797 operand = Operand::From(value);
1798 } else if (out.Is(RegisterFrom(right))) {
1799 // Avoid 32-bit instructions if possible.
1800 operand = InputOperandAt(cond, 0);
1801 in = RegisterFrom(right);
1802 } else {
1803 operand = InputOperandAt(cond, 1);
1804 }
1805
1806 if (condition == kCondNE && out.IsLow()) {
1807 __ Subs(out, in, operand);
1808
1809 // We use the scope because of the IT block that follows.
1810 ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1811 2 * vixl32::k16BitT32InstructionSizeInBytes,
1812 CodeBufferCheckScope::kExactSize);
1813
1814 __ it(ne);
1815 __ mov(ne, out, 1);
1816 } else {
1817 __ Sub(out, in, operand);
1818 codegen->GenerateConditionWithZero(condition, out, out);
1819 }
1820
1821 return;
1822 }
1823
1824 GenerateConditionGeneric(cond, codegen);
1825 }
1826
CanEncodeConstantAs8BitImmediate(HConstant * constant)1827 static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
1828 const DataType::Type type = constant->GetType();
1829 bool ret = false;
1830
1831 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1832
1833 if (type == DataType::Type::kInt64) {
1834 const uint64_t value = Uint64ConstantFrom(constant);
1835
1836 ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
1837 } else {
1838 ret = IsUint<8>(Int32ConstantFrom(constant));
1839 }
1840
1841 return ret;
1842 }
1843
Arm8BitEncodableConstantOrRegister(HInstruction * constant)1844 static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
1845 DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
1846
1847 if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
1848 return Location::ConstantLocation(constant->AsConstant());
1849 }
1850
1851 return Location::RequiresRegister();
1852 }
1853
CanGenerateConditionalMove(const Location & out,const Location & src)1854 static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
1855 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1856 // we check that we are not dealing with floating-point output (there is no
1857 // 16-bit VMOV encoding).
1858 if (!out.IsRegister() && !out.IsRegisterPair()) {
1859 return false;
1860 }
1861
1862 // For constants, we also check that the output is in one or two low registers,
1863 // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
1864 // MOV encoding can be used.
1865 if (src.IsConstant()) {
1866 if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
1867 return false;
1868 }
1869
1870 if (out.IsRegister()) {
1871 if (!RegisterFrom(out).IsLow()) {
1872 return false;
1873 }
1874 } else {
1875 DCHECK(out.IsRegisterPair());
1876
1877 if (!HighRegisterFrom(out).IsLow()) {
1878 return false;
1879 }
1880 }
1881 }
1882
1883 return true;
1884 }
1885
1886 #undef __
1887
GetFinalLabel(HInstruction * instruction,vixl32::Label * final_label)1888 vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction,
1889 vixl32::Label* final_label) {
1890 DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
1891 DCHECK_IMPLIES(instruction->IsInvoke(), !instruction->GetLocations()->CanCall());
1892
1893 const HBasicBlock* const block = instruction->GetBlock();
1894 const HLoopInformation* const info = block->GetLoopInformation();
1895 HInstruction* const next = instruction->GetNext();
1896
1897 // Avoid a branch to a branch.
1898 if (next->IsGoto() && (info == nullptr ||
1899 !info->IsBackEdge(*block) ||
1900 !info->HasSuspendCheck())) {
1901 final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
1902 }
1903
1904 return final_label;
1905 }
1906
CodeGeneratorARMVIXL(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1907 CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
1908 const CompilerOptions& compiler_options,
1909 OptimizingCompilerStats* stats)
1910 : CodeGenerator(graph,
1911 kNumberOfCoreRegisters,
1912 kNumberOfSRegisters,
1913 kNumberOfRegisterPairs,
1914 kCoreCalleeSaves.GetList(),
1915 ComputeSRegisterListMask(kFpuCalleeSaves),
1916 compiler_options,
1917 stats),
1918 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1919 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1920 location_builder_(graph, this),
1921 instruction_visitor_(graph, this),
1922 move_resolver_(graph->GetAllocator(), this),
1923 assembler_(graph->GetAllocator()),
1924 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1925 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1926 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1927 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1928 public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1929 package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1930 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1931 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1932 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1933 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1934 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1935 uint32_literals_(std::less<uint32_t>(),
1936 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1937 jit_string_patches_(StringReferenceValueComparator(),
1938 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1939 jit_class_patches_(TypeReferenceValueComparator(),
1940 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1941 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1942 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1943 // Always save the LR register to mimic Quick.
1944 AddAllocatedRegister(Location::RegisterLocation(LR));
1945 // Give D30 and D31 as scratch register to VIXL. The register allocator only works on
1946 // S0-S31, which alias to D0-D15.
1947 GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31);
1948 GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30);
1949 }
1950
EmitTable(CodeGeneratorARMVIXL * codegen)1951 void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) {
1952 uint32_t num_entries = switch_instr_->GetNumEntries();
1953 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1954
1955 // We are about to use the assembler to place literals directly. Make sure we have enough
1956 // underlying code buffer and we have generated a jump table of the right size, using
1957 // codegen->GetVIXLAssembler()->GetBuffer().Align();
1958 ExactAssemblyScope aas(codegen->GetVIXLAssembler(),
1959 num_entries * sizeof(int32_t),
1960 CodeBufferCheckScope::kMaximumSize);
1961 // TODO(VIXL): Check that using lower case bind is fine here.
1962 codegen->GetVIXLAssembler()->bind(&table_start_);
1963 for (uint32_t i = 0; i < num_entries; i++) {
1964 codegen->GetVIXLAssembler()->place(bb_addresses_[i].get());
1965 }
1966 }
1967
FixTable(CodeGeneratorARMVIXL * codegen)1968 void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) {
1969 uint32_t num_entries = switch_instr_->GetNumEntries();
1970 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1971
1972 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
1973 for (uint32_t i = 0; i < num_entries; i++) {
1974 vixl32::Label* target_label = codegen->GetLabelOf(successors[i]);
1975 DCHECK(target_label->IsBound());
1976 int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
1977 // When doing BX to address we need to have lower bit set to 1 in T32.
1978 if (codegen->GetVIXLAssembler()->IsUsingT32()) {
1979 jump_offset++;
1980 }
1981 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
1982 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
1983
1984 bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer());
1985 }
1986 }
1987
FixJumpTables()1988 void CodeGeneratorARMVIXL::FixJumpTables() {
1989 for (auto&& jump_table : jump_tables_) {
1990 jump_table->FixTable(this);
1991 }
1992 }
1993
1994 #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()-> // NOLINT
1995
Finalize(CodeAllocator * allocator)1996 void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
1997 FixJumpTables();
1998
1999 // Emit JIT baker read barrier slow paths.
2000 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
2001 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
2002 uint32_t encoded_data = entry.first;
2003 vixl::aarch32::Label* slow_path_entry = &entry.second.label;
2004 __ Bind(slow_path_entry);
2005 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
2006 }
2007
2008 GetAssembler()->FinalizeCode();
2009 CodeGenerator::Finalize(allocator);
2010
2011 // Verify Baker read barrier linker patches.
2012 if (kIsDebugBuild) {
2013 ArrayRef<const uint8_t> code = allocator->GetMemory();
2014 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
2015 DCHECK(info.label.IsBound());
2016 uint32_t literal_offset = info.label.GetLocation();
2017 DCHECK_ALIGNED(literal_offset, 2u);
2018
2019 auto GetInsn16 = [&code](uint32_t offset) {
2020 DCHECK_ALIGNED(offset, 2u);
2021 return (static_cast<uint32_t>(code[offset + 0]) << 0) +
2022 (static_cast<uint32_t>(code[offset + 1]) << 8);
2023 };
2024 auto GetInsn32 = [=](uint32_t offset) {
2025 return (GetInsn16(offset) << 16) + (GetInsn16(offset + 2u) << 0);
2026 };
2027
2028 uint32_t encoded_data = info.custom_data;
2029 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
2030 // Check that the next instruction matches the expected LDR.
2031 switch (kind) {
2032 case BakerReadBarrierKind::kField: {
2033 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
2034 if (width == BakerReadBarrierWidth::kWide) {
2035 DCHECK_GE(code.size() - literal_offset, 8u);
2036 uint32_t next_insn = GetInsn32(literal_offset + 4u);
2037 // LDR (immediate), encoding T3, with correct base_reg.
2038 CheckValidReg((next_insn >> 12) & 0xfu); // Check destination register.
2039 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2040 CHECK_EQ(next_insn & 0xffff0000u, 0xf8d00000u | (base_reg << 16));
2041 } else {
2042 DCHECK_GE(code.size() - literal_offset, 6u);
2043 uint32_t next_insn = GetInsn16(literal_offset + 4u);
2044 // LDR (immediate), encoding T1, with correct base_reg.
2045 CheckValidReg(next_insn & 0x7u); // Check destination register.
2046 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2047 CHECK_EQ(next_insn & 0xf838u, 0x6800u | (base_reg << 3));
2048 }
2049 break;
2050 }
2051 case BakerReadBarrierKind::kArray: {
2052 DCHECK_GE(code.size() - literal_offset, 8u);
2053 uint32_t next_insn = GetInsn32(literal_offset + 4u);
2054 // LDR (register) with correct base_reg, S=1 and option=011 (LDR Wt, [Xn, Xm, LSL #2]).
2055 CheckValidReg((next_insn >> 12) & 0xfu); // Check destination register.
2056 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2057 CHECK_EQ(next_insn & 0xffff0ff0u, 0xf8500020u | (base_reg << 16));
2058 CheckValidReg(next_insn & 0xf); // Check index register
2059 break;
2060 }
2061 case BakerReadBarrierKind::kGcRoot: {
2062 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
2063 if (width == BakerReadBarrierWidth::kWide) {
2064 DCHECK_GE(literal_offset, 4u);
2065 uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2066 // LDR (immediate), encoding T3, with correct root_reg.
2067 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2068 CHECK_EQ(prev_insn & 0xfff0f000u, 0xf8d00000u | (root_reg << 12));
2069 } else {
2070 DCHECK_GE(literal_offset, 2u);
2071 uint32_t prev_insn = GetInsn16(literal_offset - 2u);
2072 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2073 // Usually LDR (immediate), encoding T1, with correct root_reg but we may have
2074 // a `MOV marked, old_value` for intrinsic CAS where `marked` is a low register.
2075 if ((prev_insn & 0xff87u) != (0x4600 | root_reg)) {
2076 CHECK_EQ(prev_insn & 0xf807u, 0x6800u | root_reg);
2077 }
2078 }
2079 break;
2080 }
2081 case BakerReadBarrierKind::kIntrinsicCas: {
2082 DCHECK_GE(literal_offset, 4u);
2083 uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2084 // MOV (register), encoding T3, with correct root_reg.
2085 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2086 DCHECK_GE(root_reg, 8u); // Used only for high registers.
2087 CHECK_EQ(prev_insn & 0xfffffff0u, 0xea4f0000u | (root_reg << 8));
2088 break;
2089 }
2090 default:
2091 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
2092 UNREACHABLE();
2093 }
2094 }
2095 }
2096 }
2097
SetupBlockedRegisters() const2098 void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
2099 // Stack register, LR and PC are always reserved.
2100 blocked_core_registers_[SP] = true;
2101 blocked_core_registers_[LR] = true;
2102 blocked_core_registers_[PC] = true;
2103
2104 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2105 // Reserve marking register.
2106 blocked_core_registers_[MR] = true;
2107 }
2108
2109 // Reserve thread register.
2110 blocked_core_registers_[TR] = true;
2111
2112 // Reserve temp register.
2113 blocked_core_registers_[IP] = true;
2114
2115 if (GetGraph()->IsDebuggable()) {
2116 // Stubs do not save callee-save floating point registers. If the graph
2117 // is debuggable, we need to deal with these registers differently. For
2118 // now, just block them.
2119 for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
2120 i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
2121 ++i) {
2122 blocked_fpu_registers_[i] = true;
2123 }
2124 }
2125 }
2126
InstructionCodeGeneratorARMVIXL(HGraph * graph,CodeGeneratorARMVIXL * codegen)2127 InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
2128 CodeGeneratorARMVIXL* codegen)
2129 : InstructionCodeGenerator(graph, codegen),
2130 assembler_(codegen->GetAssembler()),
2131 codegen_(codegen) {}
2132
ComputeSpillMask()2133 void CodeGeneratorARMVIXL::ComputeSpillMask() {
2134 core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
2135 DCHECK_NE(core_spill_mask_ & (1u << kLrCode), 0u)
2136 << "At least the return address register must be saved";
2137 // 16-bit PUSH/POP (T1) can save/restore just the LR/PC.
2138 DCHECK(GetVIXLAssembler()->IsUsingT32());
2139 fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
2140 // We use vpush and vpop for saving and restoring floating point registers, which take
2141 // a SRegister and the number of registers to save/restore after that SRegister. We
2142 // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
2143 // but in the range.
2144 if (fpu_spill_mask_ != 0) {
2145 uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
2146 uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
2147 for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
2148 fpu_spill_mask_ |= (1 << i);
2149 }
2150 }
2151 }
2152
VisitMethodExitHook(HMethodExitHook * method_hook)2153 void LocationsBuilderARMVIXL::VisitMethodExitHook(HMethodExitHook* method_hook) {
2154 LocationSummary* locations = new (GetGraph()->GetAllocator())
2155 LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
2156 locations->SetInAt(0, parameter_visitor_.GetReturnLocation(method_hook->InputAt(0)->GetType()));
2157 }
2158
GenerateMethodEntryExitHook(HInstruction * instruction)2159 void InstructionCodeGeneratorARMVIXL::GenerateMethodEntryExitHook(HInstruction* instruction) {
2160 UseScratchRegisterScope temps(GetVIXLAssembler());
2161 vixl32::Register temp = temps.Acquire();
2162
2163 SlowPathCodeARMVIXL* slow_path =
2164 new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARMVIXL(instruction);
2165 codegen_->AddSlowPath(slow_path);
2166
2167 int offset = instrumentation::Instrumentation::NeedsEntryExitHooksOffset().Int32Value();
2168 uint32_t address = reinterpret_cast32<uint32_t>(Runtime::Current()->GetInstrumentation());
2169 __ Mov(temp, address + offset);
2170 __ Ldrb(temp, MemOperand(temp, 0));
2171 __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
2172 __ Bind(slow_path->GetExitLabel());
2173 }
2174
VisitMethodExitHook(HMethodExitHook * instruction)2175 void InstructionCodeGeneratorARMVIXL::VisitMethodExitHook(HMethodExitHook* instruction) {
2176 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
2177 DCHECK(codegen_->RequiresCurrentMethod());
2178 GenerateMethodEntryExitHook(instruction);
2179 }
2180
VisitMethodEntryHook(HMethodEntryHook * method_hook)2181 void LocationsBuilderARMVIXL::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
2182 new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
2183 }
2184
VisitMethodEntryHook(HMethodEntryHook * instruction)2185 void InstructionCodeGeneratorARMVIXL::VisitMethodEntryHook(HMethodEntryHook* instruction) {
2186 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
2187 DCHECK(codegen_->RequiresCurrentMethod());
2188 GenerateMethodEntryExitHook(instruction);
2189 }
2190
MaybeIncrementHotness(bool is_frame_entry)2191 void CodeGeneratorARMVIXL::MaybeIncrementHotness(bool is_frame_entry) {
2192 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
2193 UseScratchRegisterScope temps(GetVIXLAssembler());
2194 vixl32::Register temp = temps.Acquire();
2195 static_assert(ArtMethod::MaxCounter() == 0xFFFF, "asm is probably wrong");
2196 if (!is_frame_entry) {
2197 __ Push(vixl32::Register(kMethodRegister));
2198 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize);
2199 GetAssembler()->LoadFromOffset(kLoadWord, kMethodRegister, sp, kArmWordSize);
2200 }
2201 // Load with zero extend to clear the high bits for integer overflow check.
2202 __ Ldrh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2203 vixl::aarch32::Label done;
2204 DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
2205 __ CompareAndBranchIfZero(temp, &done, /* is_far_target= */ false);
2206 __ Add(temp, temp, -1);
2207 __ Strh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2208 __ Bind(&done);
2209 if (!is_frame_entry) {
2210 __ Pop(vixl32::Register(kMethodRegister));
2211 GetAssembler()->cfi().AdjustCFAOffset(-static_cast<int>(kArmWordSize));
2212 }
2213 }
2214
2215 if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
2216 SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARMVIXL();
2217 AddSlowPath(slow_path);
2218 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
2219 DCHECK(info != nullptr);
2220 DCHECK(!HasEmptyFrame());
2221 uint32_t address = reinterpret_cast32<uint32_t>(info);
2222 UseScratchRegisterScope temps(GetVIXLAssembler());
2223 vixl32::Register tmp = temps.Acquire();
2224 __ Mov(lr, address);
2225 __ Ldrh(tmp, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2226 __ Adds(tmp, tmp, -1);
2227 __ B(cc, slow_path->GetEntryLabel());
2228 __ Strh(tmp, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2229 __ Bind(slow_path->GetExitLabel());
2230 }
2231 }
2232
GenerateFrameEntry()2233 void CodeGeneratorARMVIXL::GenerateFrameEntry() {
2234 bool skip_overflow_check =
2235 IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
2236 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
2237 __ Bind(&frame_entry_label_);
2238
2239 if (HasEmptyFrame()) {
2240 // Ensure that the CFI opcode list is not empty.
2241 GetAssembler()->cfi().Nop();
2242 MaybeIncrementHotness(/* is_frame_entry= */ true);
2243 return;
2244 }
2245
2246 if (!skip_overflow_check) {
2247 // Using r4 instead of IP saves 2 bytes.
2248 UseScratchRegisterScope temps(GetVIXLAssembler());
2249 vixl32::Register temp;
2250 // TODO: Remove this check when R4 is made a callee-save register
2251 // in ART compiled code (b/72801708). Currently we need to make
2252 // sure r4 is not blocked, e.g. in special purpose
2253 // TestCodeGeneratorARMVIXL; also asserting that r4 is available
2254 // here.
2255 if (!blocked_core_registers_[R4]) {
2256 for (vixl32::Register reg : kParameterCoreRegistersVIXL) {
2257 DCHECK(!reg.Is(r4));
2258 }
2259 DCHECK(!kCoreCalleeSaves.Includes(r4));
2260 temp = r4;
2261 } else {
2262 temp = temps.Acquire();
2263 }
2264 __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(InstructionSet::kArm)));
2265 // The load must immediately precede RecordPcInfo.
2266 ExactAssemblyScope aas(GetVIXLAssembler(),
2267 vixl32::kMaxInstructionSizeInBytes,
2268 CodeBufferCheckScope::kMaximumSize);
2269 __ ldr(temp, MemOperand(temp));
2270 RecordPcInfo(nullptr, 0);
2271 }
2272
2273 uint32_t frame_size = GetFrameSize();
2274 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2275 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2276 if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2277 core_spills_offset <= 3u * kArmWordSize) {
2278 // Do a single PUSH for core registers including the method and up to two
2279 // filler registers. Then store the single FP spill if any.
2280 // (The worst case is when the method is not required and we actually
2281 // store 3 extra registers but they are stored in the same properly
2282 // aligned 16-byte chunk where we're already writing anyway.)
2283 DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2284 uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize);
2285 DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(core_spill_mask_));
2286 __ Push(RegisterList(core_spill_mask_ | extra_regs));
2287 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
2288 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2289 core_spills_offset,
2290 core_spill_mask_,
2291 kArmWordSize);
2292 if (fpu_spill_mask_ != 0u) {
2293 DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2294 vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2295 GetAssembler()->StoreSToOffset(sreg, sp, fp_spills_offset);
2296 GetAssembler()->cfi().RelOffset(DWARFReg(sreg), /*offset=*/ fp_spills_offset);
2297 }
2298 } else {
2299 __ Push(RegisterList(core_spill_mask_));
2300 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
2301 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2302 /*offset=*/ 0,
2303 core_spill_mask_,
2304 kArmWordSize);
2305 if (fpu_spill_mask_ != 0) {
2306 uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2307
2308 // Check that list is contiguous.
2309 DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2310
2311 __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2312 GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
2313 GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0),
2314 /*offset=*/ 0,
2315 fpu_spill_mask_,
2316 kArmWordSize);
2317 }
2318
2319 // Adjust SP and save the current method if we need it. Note that we do
2320 // not save the method in HCurrentMethod, as the instruction might have
2321 // been removed in the SSA graph.
2322 if (RequiresCurrentMethod() && fp_spills_offset <= 3 * kArmWordSize) {
2323 DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2324 __ Push(RegisterList(MaxInt<uint32_t>(fp_spills_offset / kArmWordSize)));
2325 GetAssembler()->cfi().AdjustCFAOffset(fp_spills_offset);
2326 } else {
2327 IncreaseFrame(fp_spills_offset);
2328 if (RequiresCurrentMethod()) {
2329 GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2330 }
2331 }
2332 }
2333
2334 if (GetGraph()->HasShouldDeoptimizeFlag()) {
2335 UseScratchRegisterScope temps(GetVIXLAssembler());
2336 vixl32::Register temp = temps.Acquire();
2337 // Initialize should_deoptimize flag to 0.
2338 __ Mov(temp, 0);
2339 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, GetStackOffsetOfShouldDeoptimizeFlag());
2340 }
2341
2342 MaybeIncrementHotness(/* is_frame_entry= */ true);
2343 MaybeGenerateMarkingRegisterCheck(/* code= */ 1);
2344 }
2345
GenerateFrameExit()2346 void CodeGeneratorARMVIXL::GenerateFrameExit() {
2347 if (HasEmptyFrame()) {
2348 __ Bx(lr);
2349 return;
2350 }
2351
2352 // Pop LR into PC to return.
2353 DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
2354 uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
2355
2356 uint32_t frame_size = GetFrameSize();
2357 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2358 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2359 if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2360 // r4 is blocked by TestCodeGeneratorARMVIXL used by some tests.
2361 core_spills_offset <= (blocked_core_registers_[r4.GetCode()] ? 2u : 3u) * kArmWordSize) {
2362 // Load the FP spill if any and then do a single POP including the method
2363 // and up to two filler registers. If we have no FP spills, this also has
2364 // the advantage that we do not need to emit CFI directives.
2365 if (fpu_spill_mask_ != 0u) {
2366 DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2367 vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2368 GetAssembler()->cfi().RememberState();
2369 GetAssembler()->LoadSFromOffset(sreg, sp, fp_spills_offset);
2370 GetAssembler()->cfi().Restore(DWARFReg(sreg));
2371 }
2372 // Clobber registers r2-r4 as they are caller-save in ART managed ABI and
2373 // never hold the return value.
2374 uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize) << r2.GetCode();
2375 DCHECK_EQ(extra_regs & kCoreCalleeSaves.GetList(), 0u);
2376 DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(pop_mask));
2377 __ Pop(RegisterList(pop_mask | extra_regs));
2378 if (fpu_spill_mask_ != 0u) {
2379 GetAssembler()->cfi().RestoreState();
2380 }
2381 } else {
2382 GetAssembler()->cfi().RememberState();
2383 DecreaseFrame(fp_spills_offset);
2384 if (fpu_spill_mask_ != 0) {
2385 uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2386
2387 // Check that list is contiguous.
2388 DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2389
2390 __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2391 GetAssembler()->cfi().AdjustCFAOffset(
2392 -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
2393 GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_);
2394 }
2395 __ Pop(RegisterList(pop_mask));
2396 GetAssembler()->cfi().RestoreState();
2397 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
2398 }
2399 }
2400
Bind(HBasicBlock * block)2401 void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
2402 __ Bind(GetLabelOf(block));
2403 }
2404
GetNextLocation(DataType::Type type)2405 Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2406 switch (type) {
2407 case DataType::Type::kReference:
2408 case DataType::Type::kBool:
2409 case DataType::Type::kUint8:
2410 case DataType::Type::kInt8:
2411 case DataType::Type::kUint16:
2412 case DataType::Type::kInt16:
2413 case DataType::Type::kInt32: {
2414 uint32_t index = gp_index_++;
2415 uint32_t stack_index = stack_index_++;
2416 if (index < calling_convention.GetNumberOfRegisters()) {
2417 return LocationFrom(calling_convention.GetRegisterAt(index));
2418 } else {
2419 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2420 }
2421 }
2422
2423 case DataType::Type::kInt64: {
2424 uint32_t index = gp_index_;
2425 uint32_t stack_index = stack_index_;
2426 gp_index_ += 2;
2427 stack_index_ += 2;
2428 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2429 if (calling_convention.GetRegisterAt(index).Is(r1)) {
2430 // Skip R1, and use R2_R3 instead.
2431 gp_index_++;
2432 index++;
2433 }
2434 }
2435 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2436 DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1,
2437 calling_convention.GetRegisterAt(index + 1).GetCode());
2438
2439 return LocationFrom(calling_convention.GetRegisterAt(index),
2440 calling_convention.GetRegisterAt(index + 1));
2441 } else {
2442 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2443 }
2444 }
2445
2446 case DataType::Type::kFloat32: {
2447 uint32_t stack_index = stack_index_++;
2448 if (float_index_ % 2 == 0) {
2449 float_index_ = std::max(double_index_, float_index_);
2450 }
2451 if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
2452 return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
2453 } else {
2454 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2455 }
2456 }
2457
2458 case DataType::Type::kFloat64: {
2459 double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
2460 uint32_t stack_index = stack_index_;
2461 stack_index_ += 2;
2462 if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
2463 uint32_t index = double_index_;
2464 double_index_ += 2;
2465 Location result = LocationFrom(
2466 calling_convention.GetFpuRegisterAt(index),
2467 calling_convention.GetFpuRegisterAt(index + 1));
2468 DCHECK(ExpectedPairLayout(result));
2469 return result;
2470 } else {
2471 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2472 }
2473 }
2474
2475 case DataType::Type::kUint32:
2476 case DataType::Type::kUint64:
2477 case DataType::Type::kVoid:
2478 LOG(FATAL) << "Unexpected parameter type " << type;
2479 UNREACHABLE();
2480 }
2481 return Location::NoLocation();
2482 }
2483
GetReturnLocation(DataType::Type type) const2484 Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type) const {
2485 switch (type) {
2486 case DataType::Type::kReference:
2487 case DataType::Type::kBool:
2488 case DataType::Type::kUint8:
2489 case DataType::Type::kInt8:
2490 case DataType::Type::kUint16:
2491 case DataType::Type::kInt16:
2492 case DataType::Type::kUint32:
2493 case DataType::Type::kInt32: {
2494 return LocationFrom(r0);
2495 }
2496
2497 case DataType::Type::kFloat32: {
2498 return LocationFrom(s0);
2499 }
2500
2501 case DataType::Type::kUint64:
2502 case DataType::Type::kInt64: {
2503 return LocationFrom(r0, r1);
2504 }
2505
2506 case DataType::Type::kFloat64: {
2507 return LocationFrom(s0, s1);
2508 }
2509
2510 case DataType::Type::kVoid:
2511 return Location::NoLocation();
2512 }
2513
2514 UNREACHABLE();
2515 }
2516
GetMethodLocation() const2517 Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2518 return LocationFrom(kMethodRegister);
2519 }
2520
GetNextLocation(DataType::Type type)2521 Location CriticalNativeCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2522 DCHECK_NE(type, DataType::Type::kReference);
2523
2524 // Native ABI uses the same registers as managed, except that the method register r0
2525 // is a normal argument.
2526 Location location = Location::NoLocation();
2527 if (DataType::Is64BitType(type)) {
2528 gpr_index_ = RoundUp(gpr_index_, 2u);
2529 stack_offset_ = RoundUp(stack_offset_, 2 * kFramePointerSize);
2530 if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) {
2531 location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u],
2532 kParameterCoreRegistersVIXL[gpr_index_]);
2533 gpr_index_ += 2u;
2534 }
2535 } else {
2536 if (gpr_index_ < 1u + kParameterCoreRegistersLengthVIXL) {
2537 location = LocationFrom(gpr_index_ == 0u ? r0 : kParameterCoreRegistersVIXL[gpr_index_ - 1u]);
2538 ++gpr_index_;
2539 }
2540 }
2541 if (location.IsInvalid()) {
2542 if (DataType::Is64BitType(type)) {
2543 location = Location::DoubleStackSlot(stack_offset_);
2544 stack_offset_ += 2 * kFramePointerSize;
2545 } else {
2546 location = Location::StackSlot(stack_offset_);
2547 stack_offset_ += kFramePointerSize;
2548 }
2549
2550 if (for_register_allocation_) {
2551 location = Location::Any();
2552 }
2553 }
2554 return location;
2555 }
2556
GetReturnLocation(DataType::Type type) const2557 Location CriticalNativeCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type)
2558 const {
2559 // We perform conversion to the managed ABI return register after the call if needed.
2560 InvokeDexCallingConventionVisitorARMVIXL dex_calling_convention;
2561 return dex_calling_convention.GetReturnLocation(type);
2562 }
2563
GetMethodLocation() const2564 Location CriticalNativeCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2565 // Pass the method in the hidden argument R4.
2566 return Location::RegisterLocation(R4);
2567 }
2568
Move32(Location destination,Location source)2569 void CodeGeneratorARMVIXL::Move32(Location destination, Location source) {
2570 if (source.Equals(destination)) {
2571 return;
2572 }
2573 if (destination.IsRegister()) {
2574 if (source.IsRegister()) {
2575 __ Mov(RegisterFrom(destination), RegisterFrom(source));
2576 } else if (source.IsFpuRegister()) {
2577 __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
2578 } else {
2579 GetAssembler()->LoadFromOffset(kLoadWord,
2580 RegisterFrom(destination),
2581 sp,
2582 source.GetStackIndex());
2583 }
2584 } else if (destination.IsFpuRegister()) {
2585 if (source.IsRegister()) {
2586 __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
2587 } else if (source.IsFpuRegister()) {
2588 __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
2589 } else {
2590 GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
2591 }
2592 } else {
2593 DCHECK(destination.IsStackSlot()) << destination;
2594 if (source.IsRegister()) {
2595 GetAssembler()->StoreToOffset(kStoreWord,
2596 RegisterFrom(source),
2597 sp,
2598 destination.GetStackIndex());
2599 } else if (source.IsFpuRegister()) {
2600 GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
2601 } else {
2602 DCHECK(source.IsStackSlot()) << source;
2603 UseScratchRegisterScope temps(GetVIXLAssembler());
2604 vixl32::Register temp = temps.Acquire();
2605 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
2606 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
2607 }
2608 }
2609 }
2610
MoveConstant(Location location,int32_t value)2611 void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) {
2612 DCHECK(location.IsRegister());
2613 __ Mov(RegisterFrom(location), value);
2614 }
2615
MoveLocation(Location dst,Location src,DataType::Type dst_type)2616 void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, DataType::Type dst_type) {
2617 // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in
2618 // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend.
2619 HParallelMove move(GetGraph()->GetAllocator());
2620 move.AddMove(src, dst, dst_type, nullptr);
2621 GetMoveResolver()->EmitNativeCode(&move);
2622 }
2623
AddLocationAsTemp(Location location,LocationSummary * locations)2624 void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
2625 if (location.IsRegister()) {
2626 locations->AddTemp(location);
2627 } else if (location.IsRegisterPair()) {
2628 locations->AddTemp(LocationFrom(LowRegisterFrom(location)));
2629 locations->AddTemp(LocationFrom(HighRegisterFrom(location)));
2630 } else {
2631 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
2632 }
2633 }
2634
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)2635 void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
2636 HInstruction* instruction,
2637 uint32_t dex_pc,
2638 SlowPathCode* slow_path) {
2639 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2640
2641 ThreadOffset32 entrypoint_offset = GetThreadOffset<kArmPointerSize>(entrypoint);
2642 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
2643 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
2644 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
2645 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
2646 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
2647 // Ensure the pc position is recorded immediately after the `blx` instruction.
2648 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
2649 ExactAssemblyScope aas(GetVIXLAssembler(),
2650 vixl32::k16BitT32InstructionSizeInBytes,
2651 CodeBufferCheckScope::kExactSize);
2652 __ blx(lr);
2653 if (EntrypointRequiresStackMap(entrypoint)) {
2654 RecordPcInfo(instruction, dex_pc, slow_path);
2655 }
2656 } else {
2657 // Ensure the pc position is recorded immediately after the `bl` instruction.
2658 ExactAssemblyScope aas(GetVIXLAssembler(),
2659 vixl32::k32BitT32InstructionSizeInBytes,
2660 CodeBufferCheckScope::kExactSize);
2661 EmitEntrypointThunkCall(entrypoint_offset);
2662 if (EntrypointRequiresStackMap(entrypoint)) {
2663 RecordPcInfo(instruction, dex_pc, slow_path);
2664 }
2665 }
2666 }
2667
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2668 void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2669 HInstruction* instruction,
2670 SlowPathCode* slow_path) {
2671 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2672 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2673 __ Blx(lr);
2674 }
2675
HandleGoto(HInstruction * got,HBasicBlock * successor)2676 void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2677 if (successor->IsExitBlock()) {
2678 DCHECK(got->GetPrevious()->AlwaysThrows());
2679 return; // no code needed
2680 }
2681
2682 HBasicBlock* block = got->GetBlock();
2683 HInstruction* previous = got->GetPrevious();
2684 HLoopInformation* info = block->GetLoopInformation();
2685
2686 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2687 codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
2688 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2689 return;
2690 }
2691 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2692 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2693 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 2);
2694 }
2695 if (!codegen_->GoesToNextBlock(block, successor)) {
2696 __ B(codegen_->GetLabelOf(successor));
2697 }
2698 }
2699
VisitGoto(HGoto * got)2700 void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
2701 got->SetLocations(nullptr);
2702 }
2703
VisitGoto(HGoto * got)2704 void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
2705 HandleGoto(got, got->GetSuccessor());
2706 }
2707
VisitTryBoundary(HTryBoundary * try_boundary)2708 void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2709 try_boundary->SetLocations(nullptr);
2710 }
2711
VisitTryBoundary(HTryBoundary * try_boundary)2712 void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2713 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2714 if (!successor->IsExitBlock()) {
2715 HandleGoto(try_boundary, successor);
2716 }
2717 }
2718
VisitExit(HExit * exit)2719 void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
2720 exit->SetLocations(nullptr);
2721 }
2722
VisitExit(HExit * exit ATTRIBUTE_UNUSED)2723 void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2724 }
2725
GenerateCompareTestAndBranch(HCondition * condition,vixl32::Label * true_target,vixl32::Label * false_target,bool is_far_target)2726 void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
2727 vixl32::Label* true_target,
2728 vixl32::Label* false_target,
2729 bool is_far_target) {
2730 if (true_target == false_target) {
2731 DCHECK(true_target != nullptr);
2732 __ B(true_target);
2733 return;
2734 }
2735
2736 vixl32::Label* non_fallthrough_target;
2737 bool invert;
2738 bool emit_both_branches;
2739
2740 if (true_target == nullptr) {
2741 // The true target is fallthrough.
2742 DCHECK(false_target != nullptr);
2743 non_fallthrough_target = false_target;
2744 invert = true;
2745 emit_both_branches = false;
2746 } else {
2747 non_fallthrough_target = true_target;
2748 invert = false;
2749 // Either the false target is fallthrough, or there is no fallthrough
2750 // and both branches must be emitted.
2751 emit_both_branches = (false_target != nullptr);
2752 }
2753
2754 const auto cond = GenerateTest(condition, invert, codegen_);
2755
2756 __ B(cond.first, non_fallthrough_target, is_far_target);
2757
2758 if (emit_both_branches) {
2759 // No target falls through, we need to branch.
2760 __ B(false_target);
2761 }
2762 }
2763
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl32::Label * true_target,vixl32::Label * false_target,bool far_target)2764 void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
2765 size_t condition_input_index,
2766 vixl32::Label* true_target,
2767 vixl32::Label* false_target,
2768 bool far_target) {
2769 HInstruction* cond = instruction->InputAt(condition_input_index);
2770
2771 if (true_target == nullptr && false_target == nullptr) {
2772 // Nothing to do. The code always falls through.
2773 return;
2774 } else if (cond->IsIntConstant()) {
2775 // Constant condition, statically compared against "true" (integer value 1).
2776 if (cond->AsIntConstant()->IsTrue()) {
2777 if (true_target != nullptr) {
2778 __ B(true_target);
2779 }
2780 } else {
2781 DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond);
2782 if (false_target != nullptr) {
2783 __ B(false_target);
2784 }
2785 }
2786 return;
2787 }
2788
2789 // The following code generates these patterns:
2790 // (1) true_target == nullptr && false_target != nullptr
2791 // - opposite condition true => branch to false_target
2792 // (2) true_target != nullptr && false_target == nullptr
2793 // - condition true => branch to true_target
2794 // (3) true_target != nullptr && false_target != nullptr
2795 // - condition true => branch to true_target
2796 // - branch to false_target
2797 if (IsBooleanValueOrMaterializedCondition(cond)) {
2798 // Condition has been materialized, compare the output to 0.
2799 if (kIsDebugBuild) {
2800 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2801 DCHECK(cond_val.IsRegister());
2802 }
2803 if (true_target == nullptr) {
2804 __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index),
2805 false_target,
2806 far_target);
2807 } else {
2808 __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index),
2809 true_target,
2810 far_target);
2811 }
2812 } else {
2813 // Condition has not been materialized. Use its inputs as the comparison and
2814 // its condition as the branch condition.
2815 HCondition* condition = cond->AsCondition();
2816
2817 // If this is a long or FP comparison that has been folded into
2818 // the HCondition, generate the comparison directly.
2819 DataType::Type type = condition->InputAt(0)->GetType();
2820 if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) {
2821 GenerateCompareTestAndBranch(condition, true_target, false_target, far_target);
2822 return;
2823 }
2824
2825 vixl32::Label* non_fallthrough_target;
2826 vixl32::Condition arm_cond = vixl32::Condition::None();
2827 const vixl32::Register left = InputRegisterAt(cond, 0);
2828 const Operand right = InputOperandAt(cond, 1);
2829
2830 if (true_target == nullptr) {
2831 arm_cond = ARMCondition(condition->GetOppositeCondition());
2832 non_fallthrough_target = false_target;
2833 } else {
2834 arm_cond = ARMCondition(condition->GetCondition());
2835 non_fallthrough_target = true_target;
2836 }
2837
2838 if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) {
2839 if (arm_cond.Is(eq)) {
2840 __ CompareAndBranchIfZero(left, non_fallthrough_target, far_target);
2841 } else {
2842 DCHECK(arm_cond.Is(ne));
2843 __ CompareAndBranchIfNonZero(left, non_fallthrough_target, far_target);
2844 }
2845 } else {
2846 __ Cmp(left, right);
2847 __ B(arm_cond, non_fallthrough_target, far_target);
2848 }
2849 }
2850
2851 // If neither branch falls through (case 3), the conditional branch to `true_target`
2852 // was already emitted (case 2) and we need to emit a jump to `false_target`.
2853 if (true_target != nullptr && false_target != nullptr) {
2854 __ B(false_target);
2855 }
2856 }
2857
VisitIf(HIf * if_instr)2858 void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
2859 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
2860 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2861 locations->SetInAt(0, Location::RequiresRegister());
2862 }
2863 }
2864
VisitIf(HIf * if_instr)2865 void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
2866 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2867 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2868 vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2869 nullptr : codegen_->GetLabelOf(true_successor);
2870 vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2871 nullptr : codegen_->GetLabelOf(false_successor);
2872 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
2873 }
2874
VisitDeoptimize(HDeoptimize * deoptimize)2875 void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2876 LocationSummary* locations = new (GetGraph()->GetAllocator())
2877 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2878 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2879 RegisterSet caller_saves = RegisterSet::Empty();
2880 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
2881 locations->SetCustomSlowPathCallerSaves(caller_saves);
2882 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2883 locations->SetInAt(0, Location::RequiresRegister());
2884 }
2885 }
2886
VisitDeoptimize(HDeoptimize * deoptimize)2887 void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2888 SlowPathCodeARMVIXL* slow_path =
2889 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize);
2890 GenerateTestAndBranch(deoptimize,
2891 /* condition_input_index= */ 0,
2892 slow_path->GetEntryLabel(),
2893 /* false_target= */ nullptr);
2894 }
2895
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2896 void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2897 LocationSummary* locations = new (GetGraph()->GetAllocator())
2898 LocationSummary(flag, LocationSummary::kNoCall);
2899 locations->SetOut(Location::RequiresRegister());
2900 }
2901
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2902 void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2903 GetAssembler()->LoadFromOffset(kLoadWord,
2904 OutputRegister(flag),
2905 sp,
2906 codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
2907 }
2908
VisitSelect(HSelect * select)2909 void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) {
2910 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
2911 const bool is_floating_point = DataType::IsFloatingPointType(select->GetType());
2912
2913 if (is_floating_point) {
2914 locations->SetInAt(0, Location::RequiresFpuRegister());
2915 locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
2916 } else {
2917 locations->SetInAt(0, Location::RequiresRegister());
2918 locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
2919 }
2920
2921 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
2922 locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
2923 // The code generator handles overlap with the values, but not with the condition.
2924 locations->SetOut(Location::SameAsFirstInput());
2925 } else if (is_floating_point) {
2926 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2927 } else {
2928 if (!locations->InAt(1).IsConstant()) {
2929 locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
2930 }
2931
2932 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2933 }
2934 }
2935
VisitSelect(HSelect * select)2936 void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) {
2937 HInstruction* const condition = select->GetCondition();
2938 const LocationSummary* const locations = select->GetLocations();
2939 const DataType::Type type = select->GetType();
2940 const Location first = locations->InAt(0);
2941 const Location out = locations->Out();
2942 const Location second = locations->InAt(1);
2943
2944 // In the unlucky case the output of this instruction overlaps
2945 // with an input of an "emitted-at-use-site" condition, and
2946 // the output of this instruction is not one of its inputs, we'll
2947 // need to fallback to branches instead of conditional ARM instructions.
2948 bool output_overlaps_with_condition_inputs =
2949 !IsBooleanValueOrMaterializedCondition(condition) &&
2950 !out.Equals(first) &&
2951 !out.Equals(second) &&
2952 (condition->GetLocations()->InAt(0).Equals(out) ||
2953 condition->GetLocations()->InAt(1).Equals(out));
2954 DCHECK_IMPLIES(output_overlaps_with_condition_inputs, condition->IsCondition());
2955 Location src;
2956
2957 if (condition->IsIntConstant()) {
2958 if (condition->AsIntConstant()->IsFalse()) {
2959 src = first;
2960 } else {
2961 src = second;
2962 }
2963
2964 codegen_->MoveLocation(out, src, type);
2965 return;
2966 }
2967
2968 if (!DataType::IsFloatingPointType(type) && !output_overlaps_with_condition_inputs) {
2969 bool invert = false;
2970
2971 if (out.Equals(second)) {
2972 src = first;
2973 invert = true;
2974 } else if (out.Equals(first)) {
2975 src = second;
2976 } else if (second.IsConstant()) {
2977 DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
2978 src = second;
2979 } else if (first.IsConstant()) {
2980 DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
2981 src = first;
2982 invert = true;
2983 } else {
2984 src = second;
2985 }
2986
2987 if (CanGenerateConditionalMove(out, src)) {
2988 if (!out.Equals(first) && !out.Equals(second)) {
2989 codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
2990 }
2991
2992 std::pair<vixl32::Condition, vixl32::Condition> cond(eq, ne);
2993
2994 if (IsBooleanValueOrMaterializedCondition(condition)) {
2995 __ Cmp(InputRegisterAt(select, 2), 0);
2996 cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
2997 } else {
2998 cond = GenerateTest(condition->AsCondition(), invert, codegen_);
2999 }
3000
3001 const size_t instr_count = out.IsRegisterPair() ? 4 : 2;
3002 // We use the scope because of the IT block that follows.
3003 ExactAssemblyScope guard(GetVIXLAssembler(),
3004 instr_count * vixl32::k16BitT32InstructionSizeInBytes,
3005 CodeBufferCheckScope::kExactSize);
3006
3007 if (out.IsRegister()) {
3008 __ it(cond.first);
3009 __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type));
3010 } else {
3011 DCHECK(out.IsRegisterPair());
3012
3013 Operand operand_high(0);
3014 Operand operand_low(0);
3015
3016 if (src.IsConstant()) {
3017 const int64_t value = Int64ConstantFrom(src);
3018
3019 operand_high = High32Bits(value);
3020 operand_low = Low32Bits(value);
3021 } else {
3022 DCHECK(src.IsRegisterPair());
3023 operand_high = HighRegisterFrom(src);
3024 operand_low = LowRegisterFrom(src);
3025 }
3026
3027 __ it(cond.first);
3028 __ mov(cond.first, LowRegisterFrom(out), operand_low);
3029 __ it(cond.first);
3030 __ mov(cond.first, HighRegisterFrom(out), operand_high);
3031 }
3032
3033 return;
3034 }
3035 }
3036
3037 vixl32::Label* false_target = nullptr;
3038 vixl32::Label* true_target = nullptr;
3039 vixl32::Label select_end;
3040 vixl32::Label other_case;
3041 vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end);
3042
3043 if (out.Equals(second)) {
3044 true_target = target;
3045 src = first;
3046 } else {
3047 false_target = target;
3048 src = second;
3049
3050 if (!out.Equals(first)) {
3051 if (output_overlaps_with_condition_inputs) {
3052 false_target = &other_case;
3053 } else {
3054 codegen_->MoveLocation(out, first, type);
3055 }
3056 }
3057 }
3058
3059 GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target= */ false);
3060 codegen_->MoveLocation(out, src, type);
3061 if (output_overlaps_with_condition_inputs) {
3062 __ B(target);
3063 __ Bind(&other_case);
3064 codegen_->MoveLocation(out, first, type);
3065 }
3066
3067 if (select_end.IsReferenced()) {
3068 __ Bind(&select_end);
3069 }
3070 }
3071
VisitNativeDebugInfo(HNativeDebugInfo * info)3072 void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3073 new (GetGraph()->GetAllocator()) LocationSummary(info);
3074 }
3075
VisitNativeDebugInfo(HNativeDebugInfo *)3076 void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) {
3077 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
3078 }
3079
IncreaseFrame(size_t adjustment)3080 void CodeGeneratorARMVIXL::IncreaseFrame(size_t adjustment) {
3081 __ Claim(adjustment);
3082 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
3083 }
3084
DecreaseFrame(size_t adjustment)3085 void CodeGeneratorARMVIXL::DecreaseFrame(size_t adjustment) {
3086 __ Drop(adjustment);
3087 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
3088 }
3089
GenerateNop()3090 void CodeGeneratorARMVIXL::GenerateNop() {
3091 __ Nop();
3092 }
3093
3094 // `temp` is an extra temporary register that is used for some conditions;
3095 // callers may not specify it, in which case the method will use a scratch
3096 // register instead.
GenerateConditionWithZero(IfCondition condition,vixl32::Register out,vixl32::Register in,vixl32::Register temp)3097 void CodeGeneratorARMVIXL::GenerateConditionWithZero(IfCondition condition,
3098 vixl32::Register out,
3099 vixl32::Register in,
3100 vixl32::Register temp) {
3101 switch (condition) {
3102 case kCondEQ:
3103 // x <= 0 iff x == 0 when the comparison is unsigned.
3104 case kCondBE:
3105 if (!temp.IsValid() || (out.IsLow() && !out.Is(in))) {
3106 temp = out;
3107 }
3108
3109 // Avoid 32-bit instructions if possible; note that `in` and `temp` must be
3110 // different as well.
3111 if (in.IsLow() && temp.IsLow() && !in.Is(temp)) {
3112 // temp = - in; only 0 sets the carry flag.
3113 __ Rsbs(temp, in, 0);
3114
3115 if (out.Is(in)) {
3116 std::swap(in, temp);
3117 }
3118
3119 // out = - in + in + carry = carry
3120 __ Adc(out, temp, in);
3121 } else {
3122 // If `in` is 0, then it has 32 leading zeros, and less than that otherwise.
3123 __ Clz(out, in);
3124 // Any number less than 32 logically shifted right by 5 bits results in 0;
3125 // the same operation on 32 yields 1.
3126 __ Lsr(out, out, 5);
3127 }
3128
3129 break;
3130 case kCondNE:
3131 // x > 0 iff x != 0 when the comparison is unsigned.
3132 case kCondA: {
3133 UseScratchRegisterScope temps(GetVIXLAssembler());
3134
3135 if (out.Is(in)) {
3136 if (!temp.IsValid() || in.Is(temp)) {
3137 temp = temps.Acquire();
3138 }
3139 } else if (!temp.IsValid() || !temp.IsLow()) {
3140 temp = out;
3141 }
3142
3143 // temp = in - 1; only 0 does not set the carry flag.
3144 __ Subs(temp, in, 1);
3145 // out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry
3146 __ Sbc(out, in, temp);
3147 break;
3148 }
3149 case kCondGE:
3150 __ Mvn(out, in);
3151 in = out;
3152 FALLTHROUGH_INTENDED;
3153 case kCondLT:
3154 // We only care about the sign bit.
3155 __ Lsr(out, in, 31);
3156 break;
3157 case kCondAE:
3158 // Trivially true.
3159 __ Mov(out, 1);
3160 break;
3161 case kCondB:
3162 // Trivially false.
3163 __ Mov(out, 0);
3164 break;
3165 default:
3166 LOG(FATAL) << "Unexpected condition " << condition;
3167 UNREACHABLE();
3168 }
3169 }
3170
HandleCondition(HCondition * cond)3171 void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
3172 LocationSummary* locations =
3173 new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall);
3174 const DataType::Type type = cond->InputAt(0)->GetType();
3175 if (DataType::IsFloatingPointType(type)) {
3176 locations->SetInAt(0, Location::RequiresFpuRegister());
3177 locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
3178 } else {
3179 locations->SetInAt(0, Location::RequiresRegister());
3180 locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
3181 }
3182 if (!cond->IsEmittedAtUseSite()) {
3183 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3184 }
3185 }
3186
HandleCondition(HCondition * cond)3187 void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
3188 if (cond->IsEmittedAtUseSite()) {
3189 return;
3190 }
3191
3192 const DataType::Type type = cond->GetLeft()->GetType();
3193
3194 if (DataType::IsFloatingPointType(type)) {
3195 GenerateConditionGeneric(cond, codegen_);
3196 return;
3197 }
3198
3199 DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
3200
3201 const IfCondition condition = cond->GetCondition();
3202
3203 // A condition with only one boolean input, or two boolean inputs without being equality or
3204 // inequality results from transformations done by the instruction simplifier, and is handled
3205 // as a regular condition with integral inputs.
3206 if (type == DataType::Type::kBool &&
3207 cond->GetRight()->GetType() == DataType::Type::kBool &&
3208 (condition == kCondEQ || condition == kCondNE)) {
3209 vixl32::Register left = InputRegisterAt(cond, 0);
3210 const vixl32::Register out = OutputRegister(cond);
3211 const Location right_loc = cond->GetLocations()->InAt(1);
3212
3213 // The constant case is handled by the instruction simplifier.
3214 DCHECK(!right_loc.IsConstant());
3215
3216 vixl32::Register right = RegisterFrom(right_loc);
3217
3218 // Avoid 32-bit instructions if possible.
3219 if (out.Is(right)) {
3220 std::swap(left, right);
3221 }
3222
3223 __ Eor(out, left, right);
3224
3225 if (condition == kCondEQ) {
3226 __ Eor(out, out, 1);
3227 }
3228
3229 return;
3230 }
3231
3232 GenerateConditionIntegralOrNonPrimitive(cond, codegen_);
3233 }
3234
VisitEqual(HEqual * comp)3235 void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
3236 HandleCondition(comp);
3237 }
3238
VisitEqual(HEqual * comp)3239 void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
3240 HandleCondition(comp);
3241 }
3242
VisitNotEqual(HNotEqual * comp)3243 void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
3244 HandleCondition(comp);
3245 }
3246
VisitNotEqual(HNotEqual * comp)3247 void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
3248 HandleCondition(comp);
3249 }
3250
VisitLessThan(HLessThan * comp)3251 void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
3252 HandleCondition(comp);
3253 }
3254
VisitLessThan(HLessThan * comp)3255 void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
3256 HandleCondition(comp);
3257 }
3258
VisitLessThanOrEqual(HLessThanOrEqual * comp)3259 void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3260 HandleCondition(comp);
3261 }
3262
VisitLessThanOrEqual(HLessThanOrEqual * comp)3263 void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3264 HandleCondition(comp);
3265 }
3266
VisitGreaterThan(HGreaterThan * comp)3267 void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3268 HandleCondition(comp);
3269 }
3270
VisitGreaterThan(HGreaterThan * comp)3271 void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3272 HandleCondition(comp);
3273 }
3274
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3275 void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3276 HandleCondition(comp);
3277 }
3278
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3279 void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3280 HandleCondition(comp);
3281 }
3282
VisitBelow(HBelow * comp)3283 void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
3284 HandleCondition(comp);
3285 }
3286
VisitBelow(HBelow * comp)3287 void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
3288 HandleCondition(comp);
3289 }
3290
VisitBelowOrEqual(HBelowOrEqual * comp)3291 void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3292 HandleCondition(comp);
3293 }
3294
VisitBelowOrEqual(HBelowOrEqual * comp)3295 void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3296 HandleCondition(comp);
3297 }
3298
VisitAbove(HAbove * comp)3299 void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
3300 HandleCondition(comp);
3301 }
3302
VisitAbove(HAbove * comp)3303 void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
3304 HandleCondition(comp);
3305 }
3306
VisitAboveOrEqual(HAboveOrEqual * comp)3307 void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3308 HandleCondition(comp);
3309 }
3310
VisitAboveOrEqual(HAboveOrEqual * comp)3311 void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3312 HandleCondition(comp);
3313 }
3314
VisitIntConstant(HIntConstant * constant)3315 void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
3316 LocationSummary* locations =
3317 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3318 locations->SetOut(Location::ConstantLocation(constant));
3319 }
3320
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)3321 void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3322 // Will be generated at use site.
3323 }
3324
VisitNullConstant(HNullConstant * constant)3325 void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) {
3326 LocationSummary* locations =
3327 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3328 locations->SetOut(Location::ConstantLocation(constant));
3329 }
3330
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)3331 void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3332 // Will be generated at use site.
3333 }
3334
VisitLongConstant(HLongConstant * constant)3335 void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
3336 LocationSummary* locations =
3337 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3338 locations->SetOut(Location::ConstantLocation(constant));
3339 }
3340
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)3341 void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3342 // Will be generated at use site.
3343 }
3344
VisitFloatConstant(HFloatConstant * constant)3345 void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) {
3346 LocationSummary* locations =
3347 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3348 locations->SetOut(Location::ConstantLocation(constant));
3349 }
3350
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3351 void InstructionCodeGeneratorARMVIXL::VisitFloatConstant(
3352 HFloatConstant* constant ATTRIBUTE_UNUSED) {
3353 // Will be generated at use site.
3354 }
3355
VisitDoubleConstant(HDoubleConstant * constant)3356 void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) {
3357 LocationSummary* locations =
3358 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3359 locations->SetOut(Location::ConstantLocation(constant));
3360 }
3361
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3362 void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant(
3363 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3364 // Will be generated at use site.
3365 }
3366
VisitConstructorFence(HConstructorFence * constructor_fence)3367 void LocationsBuilderARMVIXL::VisitConstructorFence(HConstructorFence* constructor_fence) {
3368 constructor_fence->SetLocations(nullptr);
3369 }
3370
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)3371 void InstructionCodeGeneratorARMVIXL::VisitConstructorFence(
3372 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
3373 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3374 }
3375
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3376 void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3377 memory_barrier->SetLocations(nullptr);
3378 }
3379
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3380 void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3381 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
3382 }
3383
VisitReturnVoid(HReturnVoid * ret)3384 void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
3385 ret->SetLocations(nullptr);
3386 }
3387
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)3388 void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
3389 codegen_->GenerateFrameExit();
3390 }
3391
VisitReturn(HReturn * ret)3392 void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
3393 LocationSummary* locations =
3394 new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall);
3395 locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
3396 }
3397
VisitReturn(HReturn * ret)3398 void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret) {
3399 if (GetGraph()->IsCompilingOsr()) {
3400 // To simplify callers of an OSR method, we put the return value in both
3401 // floating point and core registers.
3402 switch (ret->InputAt(0)->GetType()) {
3403 case DataType::Type::kFloat32:
3404 __ Vmov(r0, s0);
3405 break;
3406 case DataType::Type::kFloat64:
3407 __ Vmov(r0, r1, d0);
3408 break;
3409 default:
3410 break;
3411 }
3412 }
3413 codegen_->GenerateFrameExit();
3414 }
3415
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3416 void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3417 // The trampoline uses the same calling convention as dex calling conventions,
3418 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3419 // the method_idx.
3420 HandleInvoke(invoke);
3421 }
3422
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3423 void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3424 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3425 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 3);
3426 }
3427
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3428 void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3429 // Explicit clinit checks triggered by static invokes must have been pruned by
3430 // art::PrepareForRegisterAllocation.
3431 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3432
3433 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3434 if (intrinsic.TryDispatch(invoke)) {
3435 return;
3436 }
3437
3438 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
3439 CriticalNativeCallingConventionVisitorARMVIXL calling_convention_visitor(
3440 /*for_register_allocation=*/ true);
3441 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3442 } else {
3443 HandleInvoke(invoke);
3444 }
3445 }
3446
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARMVIXL * codegen)3447 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
3448 if (invoke->GetLocations()->Intrinsified()) {
3449 IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
3450 intrinsic.Dispatch(invoke);
3451 return true;
3452 }
3453 return false;
3454 }
3455
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3456 void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3457 // Explicit clinit checks triggered by static invokes must have been pruned by
3458 // art::PrepareForRegisterAllocation.
3459 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3460
3461 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3462 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 4);
3463 return;
3464 }
3465
3466 LocationSummary* locations = invoke->GetLocations();
3467 codegen_->GenerateStaticOrDirectCall(
3468 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3469
3470 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 5);
3471 }
3472
HandleInvoke(HInvoke * invoke)3473 void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
3474 InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
3475 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3476 }
3477
VisitInvokeVirtual(HInvokeVirtual * invoke)3478 void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3479 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3480 if (intrinsic.TryDispatch(invoke)) {
3481 return;
3482 }
3483
3484 HandleInvoke(invoke);
3485 }
3486
VisitInvokeVirtual(HInvokeVirtual * invoke)3487 void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3488 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3489 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 6);
3490 return;
3491 }
3492
3493 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3494 DCHECK(!codegen_->IsLeafMethod());
3495
3496 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 7);
3497 }
3498
VisitInvokeInterface(HInvokeInterface * invoke)3499 void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3500 HandleInvoke(invoke);
3501 // Add the hidden argument.
3502 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
3503 // We cannot request r12 as it's blocked by the register allocator.
3504 invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
3505 }
3506 }
3507
MaybeGenerateInlineCacheCheck(HInstruction * instruction,vixl32::Register klass)3508 void CodeGeneratorARMVIXL::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
3509 vixl32::Register klass) {
3510 DCHECK_EQ(r0.GetCode(), klass.GetCode());
3511 // We know the destination of an intrinsic, so no need to record inline
3512 // caches.
3513 if (!instruction->GetLocations()->Intrinsified() &&
3514 GetGraph()->IsCompilingBaseline() &&
3515 !Runtime::Current()->IsAotCompiler()) {
3516 DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
3517 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
3518 DCHECK(info != nullptr);
3519 InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
3520 uint32_t address = reinterpret_cast32<uint32_t>(cache);
3521 vixl32::Label done;
3522 UseScratchRegisterScope temps(GetVIXLAssembler());
3523 temps.Exclude(ip);
3524 __ Mov(r4, address);
3525 __ Ldr(ip, MemOperand(r4, InlineCache::ClassesOffset().Int32Value()));
3526 // Fast path for a monomorphic cache.
3527 __ Cmp(klass, ip);
3528 __ B(eq, &done, /* is_far_target= */ false);
3529 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
3530 __ Bind(&done);
3531 }
3532 }
3533
VisitInvokeInterface(HInvokeInterface * invoke)3534 void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3535 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3536 LocationSummary* locations = invoke->GetLocations();
3537 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
3538 Location receiver = locations->InAt(0);
3539 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3540
3541 DCHECK(!receiver.IsStackSlot());
3542
3543 // Ensure the pc position is recorded immediately after the `ldr` instruction.
3544 {
3545 ExactAssemblyScope aas(GetVIXLAssembler(),
3546 vixl32::kMaxInstructionSizeInBytes,
3547 CodeBufferCheckScope::kMaximumSize);
3548 // /* HeapReference<Class> */ temp = receiver->klass_
3549 __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset));
3550 codegen_->MaybeRecordImplicitNullCheck(invoke);
3551 }
3552 // Instead of simply (possibly) unpoisoning `temp` here, we should
3553 // emit a read barrier for the previous class reference load.
3554 // However this is not required in practice, as this is an
3555 // intermediate/temporary reference and because the current
3556 // concurrent copying collector keeps the from-space memory
3557 // intact/accessible until the end of the marking phase (the
3558 // concurrent copying collector may not in the future).
3559 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3560
3561 // If we're compiling baseline, update the inline cache.
3562 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
3563
3564 GetAssembler()->LoadFromOffset(kLoadWord,
3565 temp,
3566 temp,
3567 mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
3568
3569 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
3570 invoke->GetImtIndex(), kArmPointerSize));
3571 // temp = temp->GetImtEntryAt(method_offset);
3572 GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
3573 uint32_t entry_point =
3574 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
3575 // LR = temp->GetEntryPoint();
3576 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
3577
3578 {
3579 // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other
3580 // instruction from clobbering it as they might use r12 as a scratch register.
3581 Location hidden_reg = Location::RegisterLocation(r12.GetCode());
3582 // The VIXL macro assembler may clobber any of the scratch registers that are available to it,
3583 // so it checks if the application is using them (by passing them to the macro assembler
3584 // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of
3585 // what is available, and is the opposite of the standard usage: Instead of requesting a
3586 // temporary location, it imposes an external constraint (i.e. a specific register is reserved
3587 // for the hidden argument). Note that this works even if VIXL needs a scratch register itself
3588 // (to materialize the constant), since the destination register becomes available for such use
3589 // internally for the duration of the macro instruction.
3590 UseScratchRegisterScope temps(GetVIXLAssembler());
3591 temps.Exclude(RegisterFrom(hidden_reg));
3592 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
3593 Location current_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
3594 if (current_method.IsStackSlot()) {
3595 GetAssembler()->LoadFromOffset(
3596 kLoadWord, RegisterFrom(hidden_reg), sp, current_method.GetStackIndex());
3597 } else {
3598 __ Mov(RegisterFrom(hidden_reg), RegisterFrom(current_method));
3599 }
3600 } else if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
3601 // We pass the method from the IMT in case of a conflict. This will ensure
3602 // we go into the runtime to resolve the actual method.
3603 CHECK_NE(temp.GetCode(), lr.GetCode());
3604 __ Mov(RegisterFrom(hidden_reg), temp);
3605 } else {
3606 codegen_->LoadMethod(invoke->GetHiddenArgumentLoadKind(), hidden_reg, invoke);
3607 }
3608 }
3609 {
3610 // Ensure the pc position is recorded immediately after the `blx` instruction.
3611 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
3612 ExactAssemblyScope aas(GetVIXLAssembler(),
3613 vixl32::k16BitT32InstructionSizeInBytes,
3614 CodeBufferCheckScope::kExactSize);
3615 // LR();
3616 __ blx(lr);
3617 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3618 DCHECK(!codegen_->IsLeafMethod());
3619 }
3620
3621 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 8);
3622 }
3623
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3624 void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3625 IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3626 if (intrinsic.TryDispatch(invoke)) {
3627 return;
3628 }
3629 HandleInvoke(invoke);
3630 }
3631
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3632 void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3633 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3634 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 9);
3635 return;
3636 }
3637 codegen_->GenerateInvokePolymorphicCall(invoke);
3638 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 10);
3639 }
3640
VisitInvokeCustom(HInvokeCustom * invoke)3641 void LocationsBuilderARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3642 HandleInvoke(invoke);
3643 }
3644
VisitInvokeCustom(HInvokeCustom * invoke)3645 void InstructionCodeGeneratorARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3646 codegen_->GenerateInvokeCustomCall(invoke);
3647 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 11);
3648 }
3649
VisitNeg(HNeg * neg)3650 void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) {
3651 LocationSummary* locations =
3652 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
3653 switch (neg->GetResultType()) {
3654 case DataType::Type::kInt32: {
3655 locations->SetInAt(0, Location::RequiresRegister());
3656 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3657 break;
3658 }
3659 case DataType::Type::kInt64: {
3660 locations->SetInAt(0, Location::RequiresRegister());
3661 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3662 break;
3663 }
3664
3665 case DataType::Type::kFloat32:
3666 case DataType::Type::kFloat64:
3667 locations->SetInAt(0, Location::RequiresFpuRegister());
3668 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3669 break;
3670
3671 default:
3672 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3673 }
3674 }
3675
VisitNeg(HNeg * neg)3676 void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) {
3677 LocationSummary* locations = neg->GetLocations();
3678 Location out = locations->Out();
3679 Location in = locations->InAt(0);
3680 switch (neg->GetResultType()) {
3681 case DataType::Type::kInt32:
3682 __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0);
3683 break;
3684
3685 case DataType::Type::kInt64:
3686 // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
3687 __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0);
3688 // We cannot emit an RSC (Reverse Subtract with Carry)
3689 // instruction here, as it does not exist in the Thumb-2
3690 // instruction set. We use the following approach
3691 // using SBC and SUB instead.
3692 //
3693 // out.hi = -C
3694 __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out));
3695 // out.hi = out.hi - in.hi
3696 __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in));
3697 break;
3698
3699 case DataType::Type::kFloat32:
3700 case DataType::Type::kFloat64:
3701 __ Vneg(OutputVRegister(neg), InputVRegister(neg));
3702 break;
3703
3704 default:
3705 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3706 }
3707 }
3708
VisitTypeConversion(HTypeConversion * conversion)3709 void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3710 DataType::Type result_type = conversion->GetResultType();
3711 DataType::Type input_type = conversion->GetInputType();
3712 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3713 << input_type << " -> " << result_type;
3714
3715 // The float-to-long, double-to-long and long-to-float type conversions
3716 // rely on a call to the runtime.
3717 LocationSummary::CallKind call_kind =
3718 (((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64)
3719 && result_type == DataType::Type::kInt64)
3720 || (input_type == DataType::Type::kInt64 && result_type == DataType::Type::kFloat32))
3721 ? LocationSummary::kCallOnMainOnly
3722 : LocationSummary::kNoCall;
3723 LocationSummary* locations =
3724 new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
3725
3726 switch (result_type) {
3727 case DataType::Type::kUint8:
3728 case DataType::Type::kInt8:
3729 case DataType::Type::kUint16:
3730 case DataType::Type::kInt16:
3731 DCHECK(DataType::IsIntegralType(input_type)) << input_type;
3732 locations->SetInAt(0, Location::RequiresRegister());
3733 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3734 break;
3735
3736 case DataType::Type::kInt32:
3737 switch (input_type) {
3738 case DataType::Type::kInt64:
3739 locations->SetInAt(0, Location::Any());
3740 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3741 break;
3742
3743 case DataType::Type::kFloat32:
3744 locations->SetInAt(0, Location::RequiresFpuRegister());
3745 locations->SetOut(Location::RequiresRegister());
3746 locations->AddTemp(Location::RequiresFpuRegister());
3747 break;
3748
3749 case DataType::Type::kFloat64:
3750 locations->SetInAt(0, Location::RequiresFpuRegister());
3751 locations->SetOut(Location::RequiresRegister());
3752 locations->AddTemp(Location::RequiresFpuRegister());
3753 break;
3754
3755 default:
3756 LOG(FATAL) << "Unexpected type conversion from " << input_type
3757 << " to " << result_type;
3758 }
3759 break;
3760
3761 case DataType::Type::kInt64:
3762 switch (input_type) {
3763 case DataType::Type::kBool:
3764 case DataType::Type::kUint8:
3765 case DataType::Type::kInt8:
3766 case DataType::Type::kUint16:
3767 case DataType::Type::kInt16:
3768 case DataType::Type::kInt32:
3769 locations->SetInAt(0, Location::RequiresRegister());
3770 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3771 break;
3772
3773 case DataType::Type::kFloat32: {
3774 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3775 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3776 locations->SetOut(LocationFrom(r0, r1));
3777 break;
3778 }
3779
3780 case DataType::Type::kFloat64: {
3781 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3782 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0),
3783 calling_convention.GetFpuRegisterAt(1)));
3784 locations->SetOut(LocationFrom(r0, r1));
3785 break;
3786 }
3787
3788 default:
3789 LOG(FATAL) << "Unexpected type conversion from " << input_type
3790 << " to " << result_type;
3791 }
3792 break;
3793
3794 case DataType::Type::kFloat32:
3795 switch (input_type) {
3796 case DataType::Type::kBool:
3797 case DataType::Type::kUint8:
3798 case DataType::Type::kInt8:
3799 case DataType::Type::kUint16:
3800 case DataType::Type::kInt16:
3801 case DataType::Type::kInt32:
3802 locations->SetInAt(0, Location::RequiresRegister());
3803 locations->SetOut(Location::RequiresFpuRegister());
3804 break;
3805
3806 case DataType::Type::kInt64: {
3807 InvokeRuntimeCallingConventionARMVIXL calling_convention;
3808 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0),
3809 calling_convention.GetRegisterAt(1)));
3810 locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3811 break;
3812 }
3813
3814 case DataType::Type::kFloat64:
3815 locations->SetInAt(0, Location::RequiresFpuRegister());
3816 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3817 break;
3818
3819 default:
3820 LOG(FATAL) << "Unexpected type conversion from " << input_type
3821 << " to " << result_type;
3822 }
3823 break;
3824
3825 case DataType::Type::kFloat64:
3826 switch (input_type) {
3827 case DataType::Type::kBool:
3828 case DataType::Type::kUint8:
3829 case DataType::Type::kInt8:
3830 case DataType::Type::kUint16:
3831 case DataType::Type::kInt16:
3832 case DataType::Type::kInt32:
3833 locations->SetInAt(0, Location::RequiresRegister());
3834 locations->SetOut(Location::RequiresFpuRegister());
3835 break;
3836
3837 case DataType::Type::kInt64:
3838 locations->SetInAt(0, Location::RequiresRegister());
3839 locations->SetOut(Location::RequiresFpuRegister());
3840 locations->AddTemp(Location::RequiresFpuRegister());
3841 locations->AddTemp(Location::RequiresFpuRegister());
3842 break;
3843
3844 case DataType::Type::kFloat32:
3845 locations->SetInAt(0, Location::RequiresFpuRegister());
3846 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3847 break;
3848
3849 default:
3850 LOG(FATAL) << "Unexpected type conversion from " << input_type
3851 << " to " << result_type;
3852 }
3853 break;
3854
3855 default:
3856 LOG(FATAL) << "Unexpected type conversion from " << input_type
3857 << " to " << result_type;
3858 }
3859 }
3860
VisitTypeConversion(HTypeConversion * conversion)3861 void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3862 LocationSummary* locations = conversion->GetLocations();
3863 Location out = locations->Out();
3864 Location in = locations->InAt(0);
3865 DataType::Type result_type = conversion->GetResultType();
3866 DataType::Type input_type = conversion->GetInputType();
3867 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3868 << input_type << " -> " << result_type;
3869 switch (result_type) {
3870 case DataType::Type::kUint8:
3871 switch (input_type) {
3872 case DataType::Type::kInt8:
3873 case DataType::Type::kUint16:
3874 case DataType::Type::kInt16:
3875 case DataType::Type::kInt32:
3876 __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3877 break;
3878 case DataType::Type::kInt64:
3879 __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3880 break;
3881
3882 default:
3883 LOG(FATAL) << "Unexpected type conversion from " << input_type
3884 << " to " << result_type;
3885 }
3886 break;
3887
3888 case DataType::Type::kInt8:
3889 switch (input_type) {
3890 case DataType::Type::kUint8:
3891 case DataType::Type::kUint16:
3892 case DataType::Type::kInt16:
3893 case DataType::Type::kInt32:
3894 __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3895 break;
3896 case DataType::Type::kInt64:
3897 __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3898 break;
3899
3900 default:
3901 LOG(FATAL) << "Unexpected type conversion from " << input_type
3902 << " to " << result_type;
3903 }
3904 break;
3905
3906 case DataType::Type::kUint16:
3907 switch (input_type) {
3908 case DataType::Type::kInt8:
3909 case DataType::Type::kInt16:
3910 case DataType::Type::kInt32:
3911 __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3912 break;
3913 case DataType::Type::kInt64:
3914 __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3915 break;
3916
3917 default:
3918 LOG(FATAL) << "Unexpected type conversion from " << input_type
3919 << " to " << result_type;
3920 }
3921 break;
3922
3923 case DataType::Type::kInt16:
3924 switch (input_type) {
3925 case DataType::Type::kUint16:
3926 case DataType::Type::kInt32:
3927 __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3928 break;
3929 case DataType::Type::kInt64:
3930 __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3931 break;
3932
3933 default:
3934 LOG(FATAL) << "Unexpected type conversion from " << input_type
3935 << " to " << result_type;
3936 }
3937 break;
3938
3939 case DataType::Type::kInt32:
3940 switch (input_type) {
3941 case DataType::Type::kInt64:
3942 DCHECK(out.IsRegister());
3943 if (in.IsRegisterPair()) {
3944 __ Mov(OutputRegister(conversion), LowRegisterFrom(in));
3945 } else if (in.IsDoubleStackSlot()) {
3946 GetAssembler()->LoadFromOffset(kLoadWord,
3947 OutputRegister(conversion),
3948 sp,
3949 in.GetStackIndex());
3950 } else {
3951 DCHECK(in.IsConstant());
3952 DCHECK(in.GetConstant()->IsLongConstant());
3953 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3954 __ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
3955 }
3956 break;
3957
3958 case DataType::Type::kFloat32: {
3959 vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0));
3960 __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0));
3961 __ Vmov(OutputRegister(conversion), temp);
3962 break;
3963 }
3964
3965 case DataType::Type::kFloat64: {
3966 vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
3967 __ Vcvt(S32, F64, temp_s, DRegisterFrom(in));
3968 __ Vmov(OutputRegister(conversion), temp_s);
3969 break;
3970 }
3971
3972 default:
3973 LOG(FATAL) << "Unexpected type conversion from " << input_type
3974 << " to " << result_type;
3975 }
3976 break;
3977
3978 case DataType::Type::kInt64:
3979 switch (input_type) {
3980 case DataType::Type::kBool:
3981 case DataType::Type::kUint8:
3982 case DataType::Type::kInt8:
3983 case DataType::Type::kUint16:
3984 case DataType::Type::kInt16:
3985 case DataType::Type::kInt32:
3986 DCHECK(out.IsRegisterPair());
3987 DCHECK(in.IsRegister());
3988 __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0));
3989 // Sign extension.
3990 __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31);
3991 break;
3992
3993 case DataType::Type::kFloat32:
3994 codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
3995 CheckEntrypointTypes<kQuickF2l, int64_t, float>();
3996 break;
3997
3998 case DataType::Type::kFloat64:
3999 codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
4000 CheckEntrypointTypes<kQuickD2l, int64_t, double>();
4001 break;
4002
4003 default:
4004 LOG(FATAL) << "Unexpected type conversion from " << input_type
4005 << " to " << result_type;
4006 }
4007 break;
4008
4009 case DataType::Type::kFloat32:
4010 switch (input_type) {
4011 case DataType::Type::kBool:
4012 case DataType::Type::kUint8:
4013 case DataType::Type::kInt8:
4014 case DataType::Type::kUint16:
4015 case DataType::Type::kInt16:
4016 case DataType::Type::kInt32:
4017 __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
4018 __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion));
4019 break;
4020
4021 case DataType::Type::kInt64:
4022 codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
4023 CheckEntrypointTypes<kQuickL2f, float, int64_t>();
4024 break;
4025
4026 case DataType::Type::kFloat64:
4027 __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in));
4028 break;
4029
4030 default:
4031 LOG(FATAL) << "Unexpected type conversion from " << input_type
4032 << " to " << result_type;
4033 }
4034 break;
4035
4036 case DataType::Type::kFloat64:
4037 switch (input_type) {
4038 case DataType::Type::kBool:
4039 case DataType::Type::kUint8:
4040 case DataType::Type::kInt8:
4041 case DataType::Type::kUint16:
4042 case DataType::Type::kInt16:
4043 case DataType::Type::kInt32:
4044 __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0));
4045 __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out));
4046 break;
4047
4048 case DataType::Type::kInt64: {
4049 vixl32::Register low = LowRegisterFrom(in);
4050 vixl32::Register high = HighRegisterFrom(in);
4051 vixl32::SRegister out_s = LowSRegisterFrom(out);
4052 vixl32::DRegister out_d = DRegisterFrom(out);
4053 vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
4054 vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0));
4055 vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1));
4056
4057 // temp_d = int-to-double(high)
4058 __ Vmov(temp_s, high);
4059 __ Vcvt(F64, S32, temp_d, temp_s);
4060 // constant_d = k2Pow32EncodingForDouble
4061 __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
4062 // out_d = unsigned-to-double(low)
4063 __ Vmov(out_s, low);
4064 __ Vcvt(F64, U32, out_d, out_s);
4065 // out_d += temp_d * constant_d
4066 __ Vmla(F64, out_d, temp_d, constant_d);
4067 break;
4068 }
4069
4070 case DataType::Type::kFloat32:
4071 __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0));
4072 break;
4073
4074 default:
4075 LOG(FATAL) << "Unexpected type conversion from " << input_type
4076 << " to " << result_type;
4077 }
4078 break;
4079
4080 default:
4081 LOG(FATAL) << "Unexpected type conversion from " << input_type
4082 << " to " << result_type;
4083 }
4084 }
4085
VisitAdd(HAdd * add)4086 void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
4087 LocationSummary* locations =
4088 new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall);
4089 switch (add->GetResultType()) {
4090 case DataType::Type::kInt32: {
4091 locations->SetInAt(0, Location::RequiresRegister());
4092 locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
4093 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4094 break;
4095 }
4096
4097 case DataType::Type::kInt64: {
4098 locations->SetInAt(0, Location::RequiresRegister());
4099 locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
4100 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4101 break;
4102 }
4103
4104 case DataType::Type::kFloat32:
4105 case DataType::Type::kFloat64: {
4106 locations->SetInAt(0, Location::RequiresFpuRegister());
4107 locations->SetInAt(1, Location::RequiresFpuRegister());
4108 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4109 break;
4110 }
4111
4112 default:
4113 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
4114 }
4115 }
4116
VisitAdd(HAdd * add)4117 void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
4118 LocationSummary* locations = add->GetLocations();
4119 Location out = locations->Out();
4120 Location first = locations->InAt(0);
4121 Location second = locations->InAt(1);
4122
4123 switch (add->GetResultType()) {
4124 case DataType::Type::kInt32: {
4125 __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
4126 }
4127 break;
4128
4129 case DataType::Type::kInt64: {
4130 if (second.IsConstant()) {
4131 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4132 GenerateAddLongConst(out, first, value);
4133 } else {
4134 DCHECK(second.IsRegisterPair());
4135 __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4136 __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4137 }
4138 break;
4139 }
4140
4141 case DataType::Type::kFloat32:
4142 case DataType::Type::kFloat64:
4143 __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1));
4144 break;
4145
4146 default:
4147 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
4148 }
4149 }
4150
VisitSub(HSub * sub)4151 void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
4152 LocationSummary* locations =
4153 new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall);
4154 switch (sub->GetResultType()) {
4155 case DataType::Type::kInt32: {
4156 locations->SetInAt(0, Location::RequiresRegister());
4157 locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
4158 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4159 break;
4160 }
4161
4162 case DataType::Type::kInt64: {
4163 locations->SetInAt(0, Location::RequiresRegister());
4164 locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
4165 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4166 break;
4167 }
4168 case DataType::Type::kFloat32:
4169 case DataType::Type::kFloat64: {
4170 locations->SetInAt(0, Location::RequiresFpuRegister());
4171 locations->SetInAt(1, Location::RequiresFpuRegister());
4172 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4173 break;
4174 }
4175 default:
4176 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4177 }
4178 }
4179
VisitSub(HSub * sub)4180 void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
4181 LocationSummary* locations = sub->GetLocations();
4182 Location out = locations->Out();
4183 Location first = locations->InAt(0);
4184 Location second = locations->InAt(1);
4185 switch (sub->GetResultType()) {
4186 case DataType::Type::kInt32: {
4187 __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1));
4188 break;
4189 }
4190
4191 case DataType::Type::kInt64: {
4192 if (second.IsConstant()) {
4193 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4194 GenerateAddLongConst(out, first, -value);
4195 } else {
4196 DCHECK(second.IsRegisterPair());
4197 __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4198 __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4199 }
4200 break;
4201 }
4202
4203 case DataType::Type::kFloat32:
4204 case DataType::Type::kFloat64:
4205 __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1));
4206 break;
4207
4208 default:
4209 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4210 }
4211 }
4212
VisitMul(HMul * mul)4213 void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
4214 LocationSummary* locations =
4215 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
4216 switch (mul->GetResultType()) {
4217 case DataType::Type::kInt32:
4218 case DataType::Type::kInt64: {
4219 locations->SetInAt(0, Location::RequiresRegister());
4220 locations->SetInAt(1, Location::RequiresRegister());
4221 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4222 break;
4223 }
4224
4225 case DataType::Type::kFloat32:
4226 case DataType::Type::kFloat64: {
4227 locations->SetInAt(0, Location::RequiresFpuRegister());
4228 locations->SetInAt(1, Location::RequiresFpuRegister());
4229 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4230 break;
4231 }
4232
4233 default:
4234 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4235 }
4236 }
4237
VisitMul(HMul * mul)4238 void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
4239 LocationSummary* locations = mul->GetLocations();
4240 Location out = locations->Out();
4241 Location first = locations->InAt(0);
4242 Location second = locations->InAt(1);
4243 switch (mul->GetResultType()) {
4244 case DataType::Type::kInt32: {
4245 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
4246 break;
4247 }
4248 case DataType::Type::kInt64: {
4249 vixl32::Register out_hi = HighRegisterFrom(out);
4250 vixl32::Register out_lo = LowRegisterFrom(out);
4251 vixl32::Register in1_hi = HighRegisterFrom(first);
4252 vixl32::Register in1_lo = LowRegisterFrom(first);
4253 vixl32::Register in2_hi = HighRegisterFrom(second);
4254 vixl32::Register in2_lo = LowRegisterFrom(second);
4255
4256 // Extra checks to protect caused by the existence of R1_R2.
4257 // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
4258 // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
4259 DCHECK(!out_hi.Is(in1_lo));
4260 DCHECK(!out_hi.Is(in2_lo));
4261
4262 // input: in1 - 64 bits, in2 - 64 bits
4263 // output: out
4264 // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
4265 // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
4266 // parts: out.lo = (in1.lo * in2.lo)[31:0]
4267
4268 UseScratchRegisterScope temps(GetVIXLAssembler());
4269 vixl32::Register temp = temps.Acquire();
4270 // temp <- in1.lo * in2.hi
4271 __ Mul(temp, in1_lo, in2_hi);
4272 // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
4273 __ Mla(out_hi, in1_hi, in2_lo, temp);
4274 // out.lo <- (in1.lo * in2.lo)[31:0];
4275 __ Umull(out_lo, temp, in1_lo, in2_lo);
4276 // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
4277 __ Add(out_hi, out_hi, temp);
4278 break;
4279 }
4280
4281 case DataType::Type::kFloat32:
4282 case DataType::Type::kFloat64:
4283 __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1));
4284 break;
4285
4286 default:
4287 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4288 }
4289 }
4290
DivRemOneOrMinusOne(HBinaryOperation * instruction)4291 void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
4292 DCHECK(instruction->IsDiv() || instruction->IsRem());
4293 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4294
4295 Location second = instruction->GetLocations()->InAt(1);
4296 DCHECK(second.IsConstant());
4297
4298 vixl32::Register out = OutputRegister(instruction);
4299 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4300 int32_t imm = Int32ConstantFrom(second);
4301 DCHECK(imm == 1 || imm == -1);
4302
4303 if (instruction->IsRem()) {
4304 __ Mov(out, 0);
4305 } else {
4306 if (imm == 1) {
4307 __ Mov(out, dividend);
4308 } else {
4309 __ Rsb(out, dividend, 0);
4310 }
4311 }
4312 }
4313
DivRemByPowerOfTwo(HBinaryOperation * instruction)4314 void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
4315 DCHECK(instruction->IsDiv() || instruction->IsRem());
4316 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4317
4318 LocationSummary* locations = instruction->GetLocations();
4319 Location second = locations->InAt(1);
4320 DCHECK(second.IsConstant());
4321
4322 vixl32::Register out = OutputRegister(instruction);
4323 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4324 int32_t imm = Int32ConstantFrom(second);
4325 uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
4326 int ctz_imm = CTZ(abs_imm);
4327
4328 auto generate_div_code = [this, imm, ctz_imm](vixl32::Register out, vixl32::Register in) {
4329 __ Asr(out, in, ctz_imm);
4330 if (imm < 0) {
4331 __ Rsb(out, out, 0);
4332 }
4333 };
4334
4335 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
4336 // No need to adjust the result for non-negative dividends or the INT32_MIN dividend.
4337 // NOTE: The generated code for HDiv/HRem correctly works for the INT32_MIN dividend:
4338 // imm == 2
4339 // HDiv
4340 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
4341 // asr out, out(0x80000001), #1 => out = 0xc0000000
4342 // This is the same as 'asr out, dividend(0x80000000), #1'
4343 //
4344 // imm > 2
4345 // HDiv
4346 // asr out, dividend(0x80000000), #31 => out = -1
4347 // add out, dividend(0x80000000), out(-1), lsr #(32 - ctz_imm) => out = 0b10..01..1,
4348 // where the number of the rightmost 1s is ctz_imm.
4349 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
4350 // leftmost 1s is ctz_imm + 1.
4351 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
4352 //
4353 // imm == INT32_MIN
4354 // HDiv
4355 // asr out, dividend(0x80000000), #31 => out = -1
4356 // add out, dividend(0x80000000), out(-1), lsr #1 => out = 0xc0000000
4357 // asr out, out(0xc0000000), #31 => out = -1
4358 // rsb out, out(-1), #0 => out = 1
4359 // This is the same as
4360 // asr out, dividend(0x80000000), #31
4361 // rsb out, out, #0
4362 //
4363 //
4364 // INT_MIN % imm must be 0 for any imm of power 2. 'and' and 'ubfx' work only with bits
4365 // 0..30 of a dividend. For INT32_MIN those bits are zeros. So 'and' and 'ubfx' always
4366 // produce zero.
4367 if (instruction->IsDiv()) {
4368 generate_div_code(out, dividend);
4369 } else {
4370 if (GetVIXLAssembler()->IsModifiedImmediate(abs_imm - 1)) {
4371 __ And(out, dividend, abs_imm - 1);
4372 } else {
4373 __ Ubfx(out, dividend, 0, ctz_imm);
4374 }
4375 return;
4376 }
4377 } else {
4378 vixl32::Register add_right_input = dividend;
4379 if (ctz_imm > 1) {
4380 __ Asr(out, dividend, 31);
4381 add_right_input = out;
4382 }
4383 __ Add(out, dividend, Operand(add_right_input, vixl32::LSR, 32 - ctz_imm));
4384
4385 if (instruction->IsDiv()) {
4386 generate_div_code(out, out);
4387 } else {
4388 __ Bfc(out, 0, ctz_imm);
4389 __ Sub(out, dividend, out);
4390 }
4391 }
4392 }
4393
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)4394 void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
4395 DCHECK(instruction->IsDiv() || instruction->IsRem());
4396 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4397
4398 LocationSummary* locations = instruction->GetLocations();
4399 Location second = locations->InAt(1);
4400 DCHECK(second.IsConstant());
4401
4402 vixl32::Register out = OutputRegister(instruction);
4403 vixl32::Register dividend = InputRegisterAt(instruction, 0);
4404 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0));
4405 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1));
4406 int32_t imm = Int32ConstantFrom(second);
4407
4408 int64_t magic;
4409 int shift;
4410 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
4411
4412 auto generate_unsigned_div_code =[this, magic, shift](vixl32::Register out,
4413 vixl32::Register dividend,
4414 vixl32::Register temp1,
4415 vixl32::Register temp2) {
4416 // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4417 __ Mov(temp1, static_cast<int32_t>(magic));
4418 if (magic > 0 && shift == 0) {
4419 __ Smull(temp2, out, dividend, temp1);
4420 } else {
4421 __ Smull(temp2, temp1, dividend, temp1);
4422 if (magic < 0) {
4423 // The negative magic M = static_cast<int>(m) means that the multiplier m is greater
4424 // than INT32_MAX. In such a case shift is never 0.
4425 // Proof:
4426 // m = (2^p + d - 2^p % d) / d, where p = 32 + shift, d > 2
4427 //
4428 // If shift == 0, m = (2^32 + d - 2^32 % d) / d =
4429 // = (2^32 + d - (2^32 - (2^32 / d) * d)) / d =
4430 // = (d + (2^32 / d) * d) / d = 1 + (2^32 / d), here '/' is the integer division.
4431 //
4432 // 1 + (2^32 / d) is decreasing when d is increasing.
4433 // The maximum is 1 431 655 766, when d == 3. This value is less than INT32_MAX.
4434 // the minimum is 3, when d = 2^31 -1.
4435 // So for all values of d in [3, INT32_MAX] m with p == 32 is in [3, INT32_MAX) and
4436 // is never less than 0.
4437 __ Add(temp1, temp1, dividend);
4438 }
4439 DCHECK_NE(shift, 0);
4440 __ Lsr(out, temp1, shift);
4441 }
4442 };
4443
4444 if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
4445 // No need to adjust the result for a non-negative dividend and a positive divisor.
4446 if (instruction->IsDiv()) {
4447 generate_unsigned_div_code(out, dividend, temp1, temp2);
4448 } else {
4449 generate_unsigned_div_code(temp1, dividend, temp1, temp2);
4450 __ Mov(temp2, imm);
4451 __ Mls(out, temp1, temp2, dividend);
4452 }
4453 } else {
4454 // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4455 __ Mov(temp1, static_cast<int32_t>(magic));
4456 __ Smull(temp2, temp1, dividend, temp1);
4457
4458 if (imm > 0 && magic < 0) {
4459 __ Add(temp1, temp1, dividend);
4460 } else if (imm < 0 && magic > 0) {
4461 __ Sub(temp1, temp1, dividend);
4462 }
4463
4464 if (shift != 0) {
4465 __ Asr(temp1, temp1, shift);
4466 }
4467
4468 if (instruction->IsDiv()) {
4469 __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4470 } else {
4471 __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4472 // TODO: Strength reduction for mls.
4473 __ Mov(temp2, imm);
4474 __ Mls(out, temp1, temp2, dividend);
4475 }
4476 }
4477 }
4478
GenerateDivRemConstantIntegral(HBinaryOperation * instruction)4479 void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
4480 HBinaryOperation* instruction) {
4481 DCHECK(instruction->IsDiv() || instruction->IsRem());
4482 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4483
4484 Location second = instruction->GetLocations()->InAt(1);
4485 DCHECK(second.IsConstant());
4486
4487 int32_t imm = Int32ConstantFrom(second);
4488 if (imm == 0) {
4489 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4490 } else if (imm == 1 || imm == -1) {
4491 DivRemOneOrMinusOne(instruction);
4492 } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4493 DivRemByPowerOfTwo(instruction);
4494 } else {
4495 DCHECK(imm <= -2 || imm >= 2);
4496 GenerateDivRemWithAnyConstant(instruction);
4497 }
4498 }
4499
VisitDiv(HDiv * div)4500 void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
4501 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4502 if (div->GetResultType() == DataType::Type::kInt64) {
4503 // pLdiv runtime call.
4504 call_kind = LocationSummary::kCallOnMainOnly;
4505 } else if (div->GetResultType() == DataType::Type::kInt32 && div->InputAt(1)->IsConstant()) {
4506 // sdiv will be replaced by other instruction sequence.
4507 } else if (div->GetResultType() == DataType::Type::kInt32 &&
4508 !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4509 // pIdivmod runtime call.
4510 call_kind = LocationSummary::kCallOnMainOnly;
4511 }
4512
4513 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
4514
4515 switch (div->GetResultType()) {
4516 case DataType::Type::kInt32: {
4517 if (div->InputAt(1)->IsConstant()) {
4518 locations->SetInAt(0, Location::RequiresRegister());
4519 locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
4520 int32_t value = Int32ConstantFrom(div->InputAt(1));
4521 Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap;
4522 if (value == 1 || value == 0 || value == -1) {
4523 // No temp register required.
4524 } else if (IsPowerOfTwo(AbsOrMin(value)) &&
4525 value != 2 &&
4526 value != -2 &&
4527 !HasNonNegativeOrMinIntInputAt(div, 0)) {
4528 // The "out" register is used as a temporary, so it overlaps with the inputs.
4529 out_overlaps = Location::kOutputOverlap;
4530 } else {
4531 locations->AddRegisterTemps(2);
4532 }
4533 locations->SetOut(Location::RequiresRegister(), out_overlaps);
4534 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4535 locations->SetInAt(0, Location::RequiresRegister());
4536 locations->SetInAt(1, Location::RequiresRegister());
4537 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4538 } else {
4539 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4540 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4541 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4542 // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4543 // we only need the former.
4544 locations->SetOut(LocationFrom(r0));
4545 }
4546 break;
4547 }
4548 case DataType::Type::kInt64: {
4549 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4550 locations->SetInAt(0, LocationFrom(
4551 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4552 locations->SetInAt(1, LocationFrom(
4553 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4554 locations->SetOut(LocationFrom(r0, r1));
4555 break;
4556 }
4557 case DataType::Type::kFloat32:
4558 case DataType::Type::kFloat64: {
4559 locations->SetInAt(0, Location::RequiresFpuRegister());
4560 locations->SetInAt(1, Location::RequiresFpuRegister());
4561 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4562 break;
4563 }
4564
4565 default:
4566 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4567 }
4568 }
4569
VisitDiv(HDiv * div)4570 void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
4571 Location lhs = div->GetLocations()->InAt(0);
4572 Location rhs = div->GetLocations()->InAt(1);
4573
4574 switch (div->GetResultType()) {
4575 case DataType::Type::kInt32: {
4576 if (rhs.IsConstant()) {
4577 GenerateDivRemConstantIntegral(div);
4578 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4579 __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
4580 } else {
4581 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4582 DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs)));
4583 DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs)));
4584 DCHECK(r0.Is(OutputRegister(div)));
4585
4586 codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
4587 CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4588 }
4589 break;
4590 }
4591
4592 case DataType::Type::kInt64: {
4593 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4594 DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs)));
4595 DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs)));
4596 DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs)));
4597 DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs)));
4598 DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0));
4599 DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1));
4600
4601 codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
4602 CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4603 break;
4604 }
4605
4606 case DataType::Type::kFloat32:
4607 case DataType::Type::kFloat64:
4608 __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1));
4609 break;
4610
4611 default:
4612 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4613 }
4614 }
4615
VisitRem(HRem * rem)4616 void LocationsBuilderARMVIXL::VisitRem(HRem* rem) {
4617 DataType::Type type = rem->GetResultType();
4618
4619 // Most remainders are implemented in the runtime.
4620 LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
4621 if (rem->GetResultType() == DataType::Type::kInt32 && rem->InputAt(1)->IsConstant()) {
4622 // sdiv will be replaced by other instruction sequence.
4623 call_kind = LocationSummary::kNoCall;
4624 } else if ((rem->GetResultType() == DataType::Type::kInt32)
4625 && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4626 // Have hardware divide instruction for int, do it with three instructions.
4627 call_kind = LocationSummary::kNoCall;
4628 }
4629
4630 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
4631
4632 switch (type) {
4633 case DataType::Type::kInt32: {
4634 if (rem->InputAt(1)->IsConstant()) {
4635 locations->SetInAt(0, Location::RequiresRegister());
4636 locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
4637 int32_t value = Int32ConstantFrom(rem->InputAt(1));
4638 Location::OutputOverlap out_overlaps = Location::kNoOutputOverlap;
4639 if (value == 1 || value == 0 || value == -1) {
4640 // No temp register required.
4641 } else if (IsPowerOfTwo(AbsOrMin(value)) && !HasNonNegativeOrMinIntInputAt(rem, 0)) {
4642 // The "out" register is used as a temporary, so it overlaps with the inputs.
4643 out_overlaps = Location::kOutputOverlap;
4644 } else {
4645 locations->AddRegisterTemps(2);
4646 }
4647 locations->SetOut(Location::RequiresRegister(), out_overlaps);
4648 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4649 locations->SetInAt(0, Location::RequiresRegister());
4650 locations->SetInAt(1, Location::RequiresRegister());
4651 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4652 locations->AddTemp(Location::RequiresRegister());
4653 } else {
4654 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4655 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4656 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4657 // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4658 // we only need the latter.
4659 locations->SetOut(LocationFrom(r1));
4660 }
4661 break;
4662 }
4663 case DataType::Type::kInt64: {
4664 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4665 locations->SetInAt(0, LocationFrom(
4666 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4667 locations->SetInAt(1, LocationFrom(
4668 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4669 // The runtime helper puts the output in R2,R3.
4670 locations->SetOut(LocationFrom(r2, r3));
4671 break;
4672 }
4673 case DataType::Type::kFloat32: {
4674 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4675 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4676 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4677 locations->SetOut(LocationFrom(s0));
4678 break;
4679 }
4680
4681 case DataType::Type::kFloat64: {
4682 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4683 locations->SetInAt(0, LocationFrom(
4684 calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
4685 locations->SetInAt(1, LocationFrom(
4686 calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
4687 locations->SetOut(LocationFrom(s0, s1));
4688 break;
4689 }
4690
4691 default:
4692 LOG(FATAL) << "Unexpected rem type " << type;
4693 }
4694 }
4695
VisitRem(HRem * rem)4696 void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) {
4697 LocationSummary* locations = rem->GetLocations();
4698 Location second = locations->InAt(1);
4699
4700 DataType::Type type = rem->GetResultType();
4701 switch (type) {
4702 case DataType::Type::kInt32: {
4703 vixl32::Register reg1 = InputRegisterAt(rem, 0);
4704 vixl32::Register out_reg = OutputRegister(rem);
4705 if (second.IsConstant()) {
4706 GenerateDivRemConstantIntegral(rem);
4707 } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4708 vixl32::Register reg2 = RegisterFrom(second);
4709 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4710
4711 // temp = reg1 / reg2 (integer division)
4712 // dest = reg1 - temp * reg2
4713 __ Sdiv(temp, reg1, reg2);
4714 __ Mls(out_reg, temp, reg2, reg1);
4715 } else {
4716 InvokeRuntimeCallingConventionARMVIXL calling_convention;
4717 DCHECK(reg1.Is(calling_convention.GetRegisterAt(0)));
4718 DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1)));
4719 DCHECK(out_reg.Is(r1));
4720
4721 codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
4722 CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4723 }
4724 break;
4725 }
4726
4727 case DataType::Type::kInt64: {
4728 codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
4729 CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
4730 break;
4731 }
4732
4733 case DataType::Type::kFloat32: {
4734 codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
4735 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4736 break;
4737 }
4738
4739 case DataType::Type::kFloat64: {
4740 codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
4741 CheckEntrypointTypes<kQuickFmod, double, double, double>();
4742 break;
4743 }
4744
4745 default:
4746 LOG(FATAL) << "Unexpected rem type " << type;
4747 }
4748 }
4749
CreateMinMaxLocations(ArenaAllocator * allocator,HBinaryOperation * minmax)4750 static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
4751 LocationSummary* locations = new (allocator) LocationSummary(minmax);
4752 switch (minmax->GetResultType()) {
4753 case DataType::Type::kInt32:
4754 locations->SetInAt(0, Location::RequiresRegister());
4755 locations->SetInAt(1, Location::RequiresRegister());
4756 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4757 break;
4758 case DataType::Type::kInt64:
4759 locations->SetInAt(0, Location::RequiresRegister());
4760 locations->SetInAt(1, Location::RequiresRegister());
4761 locations->SetOut(Location::SameAsFirstInput());
4762 break;
4763 case DataType::Type::kFloat32:
4764 locations->SetInAt(0, Location::RequiresFpuRegister());
4765 locations->SetInAt(1, Location::RequiresFpuRegister());
4766 locations->SetOut(Location::SameAsFirstInput());
4767 locations->AddTemp(Location::RequiresRegister());
4768 break;
4769 case DataType::Type::kFloat64:
4770 locations->SetInAt(0, Location::RequiresFpuRegister());
4771 locations->SetInAt(1, Location::RequiresFpuRegister());
4772 locations->SetOut(Location::SameAsFirstInput());
4773 break;
4774 default:
4775 LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
4776 }
4777 }
4778
GenerateMinMaxInt(LocationSummary * locations,bool is_min)4779 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxInt(LocationSummary* locations, bool is_min) {
4780 Location op1_loc = locations->InAt(0);
4781 Location op2_loc = locations->InAt(1);
4782 Location out_loc = locations->Out();
4783
4784 vixl32::Register op1 = RegisterFrom(op1_loc);
4785 vixl32::Register op2 = RegisterFrom(op2_loc);
4786 vixl32::Register out = RegisterFrom(out_loc);
4787
4788 __ Cmp(op1, op2);
4789
4790 {
4791 ExactAssemblyScope aas(GetVIXLAssembler(),
4792 3 * kMaxInstructionSizeInBytes,
4793 CodeBufferCheckScope::kMaximumSize);
4794
4795 __ ite(is_min ? lt : gt);
4796 __ mov(is_min ? lt : gt, out, op1);
4797 __ mov(is_min ? ge : le, out, op2);
4798 }
4799 }
4800
GenerateMinMaxLong(LocationSummary * locations,bool is_min)4801 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxLong(LocationSummary* locations, bool is_min) {
4802 Location op1_loc = locations->InAt(0);
4803 Location op2_loc = locations->InAt(1);
4804 Location out_loc = locations->Out();
4805
4806 // Optimization: don't generate any code if inputs are the same.
4807 if (op1_loc.Equals(op2_loc)) {
4808 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
4809 return;
4810 }
4811
4812 vixl32::Register op1_lo = LowRegisterFrom(op1_loc);
4813 vixl32::Register op1_hi = HighRegisterFrom(op1_loc);
4814 vixl32::Register op2_lo = LowRegisterFrom(op2_loc);
4815 vixl32::Register op2_hi = HighRegisterFrom(op2_loc);
4816 vixl32::Register out_lo = LowRegisterFrom(out_loc);
4817 vixl32::Register out_hi = HighRegisterFrom(out_loc);
4818 UseScratchRegisterScope temps(GetVIXLAssembler());
4819 const vixl32::Register temp = temps.Acquire();
4820
4821 DCHECK(op1_lo.Is(out_lo));
4822 DCHECK(op1_hi.Is(out_hi));
4823
4824 // Compare op1 >= op2, or op1 < op2.
4825 __ Cmp(out_lo, op2_lo);
4826 __ Sbcs(temp, out_hi, op2_hi);
4827
4828 // Now GE/LT condition code is correct for the long comparison.
4829 {
4830 vixl32::ConditionType cond = is_min ? ge : lt;
4831 ExactAssemblyScope it_scope(GetVIXLAssembler(),
4832 3 * kMaxInstructionSizeInBytes,
4833 CodeBufferCheckScope::kMaximumSize);
4834 __ itt(cond);
4835 __ mov(cond, out_lo, op2_lo);
4836 __ mov(cond, out_hi, op2_hi);
4837 }
4838 }
4839
GenerateMinMaxFloat(HInstruction * minmax,bool is_min)4840 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxFloat(HInstruction* minmax, bool is_min) {
4841 LocationSummary* locations = minmax->GetLocations();
4842 Location op1_loc = locations->InAt(0);
4843 Location op2_loc = locations->InAt(1);
4844 Location out_loc = locations->Out();
4845
4846 // Optimization: don't generate any code if inputs are the same.
4847 if (op1_loc.Equals(op2_loc)) {
4848 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in location builder.
4849 return;
4850 }
4851
4852 vixl32::SRegister op1 = SRegisterFrom(op1_loc);
4853 vixl32::SRegister op2 = SRegisterFrom(op2_loc);
4854 vixl32::SRegister out = SRegisterFrom(out_loc);
4855
4856 UseScratchRegisterScope temps(GetVIXLAssembler());
4857 const vixl32::Register temp1 = temps.Acquire();
4858 vixl32::Register temp2 = RegisterFrom(locations->GetTemp(0));
4859 vixl32::Label nan, done;
4860 vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4861
4862 DCHECK(op1.Is(out));
4863
4864 __ Vcmp(op1, op2);
4865 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4866 __ B(vs, &nan, /* is_far_target= */ false); // if un-ordered, go to NaN handling.
4867
4868 // op1 <> op2
4869 vixl32::ConditionType cond = is_min ? gt : lt;
4870 {
4871 ExactAssemblyScope it_scope(GetVIXLAssembler(),
4872 2 * kMaxInstructionSizeInBytes,
4873 CodeBufferCheckScope::kMaximumSize);
4874 __ it(cond);
4875 __ vmov(cond, F32, out, op2);
4876 }
4877 // for <>(not equal), we've done min/max calculation.
4878 __ B(ne, final_label, /* is_far_target= */ false);
4879
4880 // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0).
4881 __ Vmov(temp1, op1);
4882 __ Vmov(temp2, op2);
4883 if (is_min) {
4884 __ Orr(temp1, temp1, temp2);
4885 } else {
4886 __ And(temp1, temp1, temp2);
4887 }
4888 __ Vmov(out, temp1);
4889 __ B(final_label);
4890
4891 // handle NaN input.
4892 __ Bind(&nan);
4893 __ Movt(temp1, High16Bits(kNanFloat)); // 0x7FC0xxxx is a NaN.
4894 __ Vmov(out, temp1);
4895
4896 if (done.IsReferenced()) {
4897 __ Bind(&done);
4898 }
4899 }
4900
GenerateMinMaxDouble(HInstruction * minmax,bool is_min)4901 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxDouble(HInstruction* minmax, bool is_min) {
4902 LocationSummary* locations = minmax->GetLocations();
4903 Location op1_loc = locations->InAt(0);
4904 Location op2_loc = locations->InAt(1);
4905 Location out_loc = locations->Out();
4906
4907 // Optimization: don't generate any code if inputs are the same.
4908 if (op1_loc.Equals(op2_loc)) {
4909 DCHECK(out_loc.Equals(op1_loc)); // out_loc is set as SameAsFirstInput() in.
4910 return;
4911 }
4912
4913 vixl32::DRegister op1 = DRegisterFrom(op1_loc);
4914 vixl32::DRegister op2 = DRegisterFrom(op2_loc);
4915 vixl32::DRegister out = DRegisterFrom(out_loc);
4916 vixl32::Label handle_nan_eq, done;
4917 vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4918
4919 DCHECK(op1.Is(out));
4920
4921 __ Vcmp(op1, op2);
4922 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4923 __ B(vs, &handle_nan_eq, /* is_far_target= */ false); // if un-ordered, go to NaN handling.
4924
4925 // op1 <> op2
4926 vixl32::ConditionType cond = is_min ? gt : lt;
4927 {
4928 ExactAssemblyScope it_scope(GetVIXLAssembler(),
4929 2 * kMaxInstructionSizeInBytes,
4930 CodeBufferCheckScope::kMaximumSize);
4931 __ it(cond);
4932 __ vmov(cond, F64, out, op2);
4933 }
4934 // for <>(not equal), we've done min/max calculation.
4935 __ B(ne, final_label, /* is_far_target= */ false);
4936
4937 // handle op1 == op2, max(+0.0,-0.0).
4938 if (!is_min) {
4939 __ Vand(F64, out, op1, op2);
4940 __ B(final_label);
4941 }
4942
4943 // handle op1 == op2, min(+0.0,-0.0), NaN input.
4944 __ Bind(&handle_nan_eq);
4945 __ Vorr(F64, out, op1, op2); // assemble op1/-0.0/NaN.
4946
4947 if (done.IsReferenced()) {
4948 __ Bind(&done);
4949 }
4950 }
4951
GenerateMinMax(HBinaryOperation * minmax,bool is_min)4952 void InstructionCodeGeneratorARMVIXL::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
4953 DataType::Type type = minmax->GetResultType();
4954 switch (type) {
4955 case DataType::Type::kInt32:
4956 GenerateMinMaxInt(minmax->GetLocations(), is_min);
4957 break;
4958 case DataType::Type::kInt64:
4959 GenerateMinMaxLong(minmax->GetLocations(), is_min);
4960 break;
4961 case DataType::Type::kFloat32:
4962 GenerateMinMaxFloat(minmax, is_min);
4963 break;
4964 case DataType::Type::kFloat64:
4965 GenerateMinMaxDouble(minmax, is_min);
4966 break;
4967 default:
4968 LOG(FATAL) << "Unexpected type for HMinMax " << type;
4969 }
4970 }
4971
VisitMin(HMin * min)4972 void LocationsBuilderARMVIXL::VisitMin(HMin* min) {
4973 CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
4974 }
4975
VisitMin(HMin * min)4976 void InstructionCodeGeneratorARMVIXL::VisitMin(HMin* min) {
4977 GenerateMinMax(min, /*is_min*/ true);
4978 }
4979
VisitMax(HMax * max)4980 void LocationsBuilderARMVIXL::VisitMax(HMax* max) {
4981 CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
4982 }
4983
VisitMax(HMax * max)4984 void InstructionCodeGeneratorARMVIXL::VisitMax(HMax* max) {
4985 GenerateMinMax(max, /*is_min*/ false);
4986 }
4987
VisitAbs(HAbs * abs)4988 void LocationsBuilderARMVIXL::VisitAbs(HAbs* abs) {
4989 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
4990 switch (abs->GetResultType()) {
4991 case DataType::Type::kInt32:
4992 case DataType::Type::kInt64:
4993 locations->SetInAt(0, Location::RequiresRegister());
4994 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4995 locations->AddTemp(Location::RequiresRegister());
4996 break;
4997 case DataType::Type::kFloat32:
4998 case DataType::Type::kFloat64:
4999 locations->SetInAt(0, Location::RequiresFpuRegister());
5000 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5001 break;
5002 default:
5003 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5004 }
5005 }
5006
VisitAbs(HAbs * abs)5007 void InstructionCodeGeneratorARMVIXL::VisitAbs(HAbs* abs) {
5008 LocationSummary* locations = abs->GetLocations();
5009 switch (abs->GetResultType()) {
5010 case DataType::Type::kInt32: {
5011 vixl32::Register in_reg = RegisterFrom(locations->InAt(0));
5012 vixl32::Register out_reg = RegisterFrom(locations->Out());
5013 vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
5014 __ Asr(mask, in_reg, 31);
5015 __ Add(out_reg, in_reg, mask);
5016 __ Eor(out_reg, out_reg, mask);
5017 break;
5018 }
5019 case DataType::Type::kInt64: {
5020 Location in = locations->InAt(0);
5021 vixl32::Register in_reg_lo = LowRegisterFrom(in);
5022 vixl32::Register in_reg_hi = HighRegisterFrom(in);
5023 Location output = locations->Out();
5024 vixl32::Register out_reg_lo = LowRegisterFrom(output);
5025 vixl32::Register out_reg_hi = HighRegisterFrom(output);
5026 DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
5027 vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
5028 __ Asr(mask, in_reg_hi, 31);
5029 __ Adds(out_reg_lo, in_reg_lo, mask);
5030 __ Adc(out_reg_hi, in_reg_hi, mask);
5031 __ Eor(out_reg_lo, out_reg_lo, mask);
5032 __ Eor(out_reg_hi, out_reg_hi, mask);
5033 break;
5034 }
5035 case DataType::Type::kFloat32:
5036 case DataType::Type::kFloat64:
5037 __ Vabs(OutputVRegister(abs), InputVRegisterAt(abs, 0));
5038 break;
5039 default:
5040 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
5041 }
5042 }
5043
VisitDivZeroCheck(HDivZeroCheck * instruction)5044 void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
5045 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5046 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5047 }
5048
VisitDivZeroCheck(HDivZeroCheck * instruction)5049 void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
5050 DivZeroCheckSlowPathARMVIXL* slow_path =
5051 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARMVIXL(instruction);
5052 codegen_->AddSlowPath(slow_path);
5053
5054 LocationSummary* locations = instruction->GetLocations();
5055 Location value = locations->InAt(0);
5056
5057 switch (instruction->GetType()) {
5058 case DataType::Type::kBool:
5059 case DataType::Type::kUint8:
5060 case DataType::Type::kInt8:
5061 case DataType::Type::kUint16:
5062 case DataType::Type::kInt16:
5063 case DataType::Type::kInt32: {
5064 if (value.IsRegister()) {
5065 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
5066 } else {
5067 DCHECK(value.IsConstant()) << value;
5068 if (Int32ConstantFrom(value) == 0) {
5069 __ B(slow_path->GetEntryLabel());
5070 }
5071 }
5072 break;
5073 }
5074 case DataType::Type::kInt64: {
5075 if (value.IsRegisterPair()) {
5076 UseScratchRegisterScope temps(GetVIXLAssembler());
5077 vixl32::Register temp = temps.Acquire();
5078 __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value));
5079 __ B(eq, slow_path->GetEntryLabel());
5080 } else {
5081 DCHECK(value.IsConstant()) << value;
5082 if (Int64ConstantFrom(value) == 0) {
5083 __ B(slow_path->GetEntryLabel());
5084 }
5085 }
5086 break;
5087 }
5088 default:
5089 LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
5090 }
5091 }
5092
HandleIntegerRotate(HRor * ror)5093 void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) {
5094 LocationSummary* locations = ror->GetLocations();
5095 vixl32::Register in = InputRegisterAt(ror, 0);
5096 Location rhs = locations->InAt(1);
5097 vixl32::Register out = OutputRegister(ror);
5098
5099 if (rhs.IsConstant()) {
5100 // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
5101 // so map all rotations to a +ve. equivalent in that range.
5102 // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
5103 uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
5104 if (rot) {
5105 // Rotate, mapping left rotations to right equivalents if necessary.
5106 // (e.g. left by 2 bits == right by 30.)
5107 __ Ror(out, in, rot);
5108 } else if (!out.Is(in)) {
5109 __ Mov(out, in);
5110 }
5111 } else {
5112 __ Ror(out, in, RegisterFrom(rhs));
5113 }
5114 }
5115
5116 // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
5117 // rotates by swapping input regs (effectively rotating by the first 32-bits of
5118 // a larger rotation) or flipping direction (thus treating larger right/left
5119 // rotations as sub-word sized rotations in the other direction) as appropriate.
HandleLongRotate(HRor * ror)5120 void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) {
5121 LocationSummary* locations = ror->GetLocations();
5122 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
5123 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
5124 Location rhs = locations->InAt(1);
5125 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
5126 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
5127
5128 if (rhs.IsConstant()) {
5129 uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
5130 // Map all rotations to +ve. equivalents on the interval [0,63].
5131 rot &= kMaxLongShiftDistance;
5132 // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
5133 // logic below to a simple pair of binary orr.
5134 // (e.g. 34 bits == in_reg swap + 2 bits right.)
5135 if (rot >= kArmBitsPerWord) {
5136 rot -= kArmBitsPerWord;
5137 std::swap(in_reg_hi, in_reg_lo);
5138 }
5139 // Rotate, or mov to out for zero or word size rotations.
5140 if (rot != 0u) {
5141 __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot));
5142 __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot));
5143 __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot));
5144 __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot));
5145 } else {
5146 __ Mov(out_reg_lo, in_reg_lo);
5147 __ Mov(out_reg_hi, in_reg_hi);
5148 }
5149 } else {
5150 vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0));
5151 vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1));
5152 vixl32::Label end;
5153 vixl32::Label shift_by_32_plus_shift_right;
5154 vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end);
5155
5156 __ And(shift_right, RegisterFrom(rhs), 0x1F);
5157 __ Lsrs(shift_left, RegisterFrom(rhs), 6);
5158 __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord));
5159 __ B(cc, &shift_by_32_plus_shift_right, /* is_far_target= */ false);
5160
5161 // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
5162 // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
5163 __ Lsl(out_reg_hi, in_reg_hi, shift_left);
5164 __ Lsr(out_reg_lo, in_reg_lo, shift_right);
5165 __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
5166 __ Lsl(out_reg_lo, in_reg_lo, shift_left);
5167 __ Lsr(shift_left, in_reg_hi, shift_right);
5168 __ Add(out_reg_lo, out_reg_lo, shift_left);
5169 __ B(final_label);
5170
5171 __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right.
5172 // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
5173 // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
5174 __ Lsr(out_reg_hi, in_reg_hi, shift_right);
5175 __ Lsl(out_reg_lo, in_reg_lo, shift_left);
5176 __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
5177 __ Lsr(out_reg_lo, in_reg_lo, shift_right);
5178 __ Lsl(shift_right, in_reg_hi, shift_left);
5179 __ Add(out_reg_lo, out_reg_lo, shift_right);
5180
5181 if (end.IsReferenced()) {
5182 __ Bind(&end);
5183 }
5184 }
5185 }
5186
VisitRor(HRor * ror)5187 void LocationsBuilderARMVIXL::VisitRor(HRor* ror) {
5188 LocationSummary* locations =
5189 new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall);
5190 switch (ror->GetResultType()) {
5191 case DataType::Type::kInt32: {
5192 locations->SetInAt(0, Location::RequiresRegister());
5193 locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
5194 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5195 break;
5196 }
5197 case DataType::Type::kInt64: {
5198 locations->SetInAt(0, Location::RequiresRegister());
5199 if (ror->InputAt(1)->IsConstant()) {
5200 locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
5201 } else {
5202 locations->SetInAt(1, Location::RequiresRegister());
5203 locations->AddTemp(Location::RequiresRegister());
5204 locations->AddTemp(Location::RequiresRegister());
5205 }
5206 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5207 break;
5208 }
5209 default:
5210 LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
5211 }
5212 }
5213
VisitRor(HRor * ror)5214 void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) {
5215 DataType::Type type = ror->GetResultType();
5216 switch (type) {
5217 case DataType::Type::kInt32: {
5218 HandleIntegerRotate(ror);
5219 break;
5220 }
5221 case DataType::Type::kInt64: {
5222 HandleLongRotate(ror);
5223 break;
5224 }
5225 default:
5226 LOG(FATAL) << "Unexpected operation type " << type;
5227 UNREACHABLE();
5228 }
5229 }
5230
HandleShift(HBinaryOperation * op)5231 void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) {
5232 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5233
5234 LocationSummary* locations =
5235 new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall);
5236
5237 switch (op->GetResultType()) {
5238 case DataType::Type::kInt32: {
5239 locations->SetInAt(0, Location::RequiresRegister());
5240 if (op->InputAt(1)->IsConstant()) {
5241 locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
5242 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5243 } else {
5244 locations->SetInAt(1, Location::RequiresRegister());
5245 // Make the output overlap, as it will be used to hold the masked
5246 // second input.
5247 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5248 }
5249 break;
5250 }
5251 case DataType::Type::kInt64: {
5252 locations->SetInAt(0, Location::RequiresRegister());
5253 if (op->InputAt(1)->IsConstant()) {
5254 locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
5255 // For simplicity, use kOutputOverlap even though we only require that low registers
5256 // don't clash with high registers which the register allocator currently guarantees.
5257 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5258 } else {
5259 locations->SetInAt(1, Location::RequiresRegister());
5260 locations->AddTemp(Location::RequiresRegister());
5261 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5262 }
5263 break;
5264 }
5265 default:
5266 LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
5267 }
5268 }
5269
HandleShift(HBinaryOperation * op)5270 void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) {
5271 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5272
5273 LocationSummary* locations = op->GetLocations();
5274 Location out = locations->Out();
5275 Location first = locations->InAt(0);
5276 Location second = locations->InAt(1);
5277
5278 DataType::Type type = op->GetResultType();
5279 switch (type) {
5280 case DataType::Type::kInt32: {
5281 vixl32::Register out_reg = OutputRegister(op);
5282 vixl32::Register first_reg = InputRegisterAt(op, 0);
5283 if (second.IsRegister()) {
5284 vixl32::Register second_reg = RegisterFrom(second);
5285 // ARM doesn't mask the shift count so we need to do it ourselves.
5286 __ And(out_reg, second_reg, kMaxIntShiftDistance);
5287 if (op->IsShl()) {
5288 __ Lsl(out_reg, first_reg, out_reg);
5289 } else if (op->IsShr()) {
5290 __ Asr(out_reg, first_reg, out_reg);
5291 } else {
5292 __ Lsr(out_reg, first_reg, out_reg);
5293 }
5294 } else {
5295 int32_t cst = Int32ConstantFrom(second);
5296 uint32_t shift_value = cst & kMaxIntShiftDistance;
5297 if (shift_value == 0) { // ARM does not support shifting with 0 immediate.
5298 __ Mov(out_reg, first_reg);
5299 } else if (op->IsShl()) {
5300 __ Lsl(out_reg, first_reg, shift_value);
5301 } else if (op->IsShr()) {
5302 __ Asr(out_reg, first_reg, shift_value);
5303 } else {
5304 __ Lsr(out_reg, first_reg, shift_value);
5305 }
5306 }
5307 break;
5308 }
5309 case DataType::Type::kInt64: {
5310 vixl32::Register o_h = HighRegisterFrom(out);
5311 vixl32::Register o_l = LowRegisterFrom(out);
5312
5313 vixl32::Register high = HighRegisterFrom(first);
5314 vixl32::Register low = LowRegisterFrom(first);
5315
5316 if (second.IsRegister()) {
5317 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5318
5319 vixl32::Register second_reg = RegisterFrom(second);
5320
5321 if (op->IsShl()) {
5322 __ And(o_l, second_reg, kMaxLongShiftDistance);
5323 // Shift the high part
5324 __ Lsl(o_h, high, o_l);
5325 // Shift the low part and `or` what overflew on the high part
5326 __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord));
5327 __ Lsr(temp, low, temp);
5328 __ Orr(o_h, o_h, temp);
5329 // If the shift is > 32 bits, override the high part
5330 __ Subs(temp, o_l, Operand::From(kArmBitsPerWord));
5331 {
5332 ExactAssemblyScope guard(GetVIXLAssembler(),
5333 2 * vixl32::kMaxInstructionSizeInBytes,
5334 CodeBufferCheckScope::kMaximumSize);
5335 __ it(pl);
5336 __ lsl(pl, o_h, low, temp);
5337 }
5338 // Shift the low part
5339 __ Lsl(o_l, low, o_l);
5340 } else if (op->IsShr()) {
5341 __ And(o_h, second_reg, kMaxLongShiftDistance);
5342 // Shift the low part
5343 __ Lsr(o_l, low, o_h);
5344 // Shift the high part and `or` what underflew on the low part
5345 __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5346 __ Lsl(temp, high, temp);
5347 __ Orr(o_l, o_l, temp);
5348 // If the shift is > 32 bits, override the low part
5349 __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5350 {
5351 ExactAssemblyScope guard(GetVIXLAssembler(),
5352 2 * vixl32::kMaxInstructionSizeInBytes,
5353 CodeBufferCheckScope::kMaximumSize);
5354 __ it(pl);
5355 __ asr(pl, o_l, high, temp);
5356 }
5357 // Shift the high part
5358 __ Asr(o_h, high, o_h);
5359 } else {
5360 __ And(o_h, second_reg, kMaxLongShiftDistance);
5361 // same as Shr except we use `Lsr`s and not `Asr`s
5362 __ Lsr(o_l, low, o_h);
5363 __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5364 __ Lsl(temp, high, temp);
5365 __ Orr(o_l, o_l, temp);
5366 __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5367 {
5368 ExactAssemblyScope guard(GetVIXLAssembler(),
5369 2 * vixl32::kMaxInstructionSizeInBytes,
5370 CodeBufferCheckScope::kMaximumSize);
5371 __ it(pl);
5372 __ lsr(pl, o_l, high, temp);
5373 }
5374 __ Lsr(o_h, high, o_h);
5375 }
5376 } else {
5377 // Register allocator doesn't create partial overlap.
5378 DCHECK(!o_l.Is(high));
5379 DCHECK(!o_h.Is(low));
5380 int32_t cst = Int32ConstantFrom(second);
5381 uint32_t shift_value = cst & kMaxLongShiftDistance;
5382 if (shift_value > 32) {
5383 if (op->IsShl()) {
5384 __ Lsl(o_h, low, shift_value - 32);
5385 __ Mov(o_l, 0);
5386 } else if (op->IsShr()) {
5387 __ Asr(o_l, high, shift_value - 32);
5388 __ Asr(o_h, high, 31);
5389 } else {
5390 __ Lsr(o_l, high, shift_value - 32);
5391 __ Mov(o_h, 0);
5392 }
5393 } else if (shift_value == 32) {
5394 if (op->IsShl()) {
5395 __ Mov(o_h, low);
5396 __ Mov(o_l, 0);
5397 } else if (op->IsShr()) {
5398 __ Mov(o_l, high);
5399 __ Asr(o_h, high, 31);
5400 } else {
5401 __ Mov(o_l, high);
5402 __ Mov(o_h, 0);
5403 }
5404 } else if (shift_value == 1) {
5405 if (op->IsShl()) {
5406 __ Lsls(o_l, low, 1);
5407 __ Adc(o_h, high, high);
5408 } else if (op->IsShr()) {
5409 __ Asrs(o_h, high, 1);
5410 __ Rrx(o_l, low);
5411 } else {
5412 __ Lsrs(o_h, high, 1);
5413 __ Rrx(o_l, low);
5414 }
5415 } else if (shift_value == 0) {
5416 __ Mov(o_l, low);
5417 __ Mov(o_h, high);
5418 } else {
5419 DCHECK(0 < shift_value && shift_value < 32) << shift_value;
5420 if (op->IsShl()) {
5421 __ Lsl(o_h, high, shift_value);
5422 __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value));
5423 __ Lsl(o_l, low, shift_value);
5424 } else if (op->IsShr()) {
5425 __ Lsr(o_l, low, shift_value);
5426 __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5427 __ Asr(o_h, high, shift_value);
5428 } else {
5429 __ Lsr(o_l, low, shift_value);
5430 __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5431 __ Lsr(o_h, high, shift_value);
5432 }
5433 }
5434 }
5435 break;
5436 }
5437 default:
5438 LOG(FATAL) << "Unexpected operation type " << type;
5439 UNREACHABLE();
5440 }
5441 }
5442
VisitShl(HShl * shl)5443 void LocationsBuilderARMVIXL::VisitShl(HShl* shl) {
5444 HandleShift(shl);
5445 }
5446
VisitShl(HShl * shl)5447 void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) {
5448 HandleShift(shl);
5449 }
5450
VisitShr(HShr * shr)5451 void LocationsBuilderARMVIXL::VisitShr(HShr* shr) {
5452 HandleShift(shr);
5453 }
5454
VisitShr(HShr * shr)5455 void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) {
5456 HandleShift(shr);
5457 }
5458
VisitUShr(HUShr * ushr)5459 void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) {
5460 HandleShift(ushr);
5461 }
5462
VisitUShr(HUShr * ushr)5463 void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) {
5464 HandleShift(ushr);
5465 }
5466
VisitNewInstance(HNewInstance * instruction)5467 void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5468 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5469 instruction, LocationSummary::kCallOnMainOnly);
5470 InvokeRuntimeCallingConventionARMVIXL calling_convention;
5471 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5472 locations->SetOut(LocationFrom(r0));
5473 }
5474
VisitNewInstance(HNewInstance * instruction)5475 void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5476 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5477 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5478 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 12);
5479 }
5480
VisitNewArray(HNewArray * instruction)5481 void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) {
5482 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5483 instruction, LocationSummary::kCallOnMainOnly);
5484 InvokeRuntimeCallingConventionARMVIXL calling_convention;
5485 locations->SetOut(LocationFrom(r0));
5486 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5487 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5488 }
5489
VisitNewArray(HNewArray * instruction)5490 void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) {
5491 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5492 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5493 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5494 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5495 DCHECK(!codegen_->IsLeafMethod());
5496 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 13);
5497 }
5498
VisitParameterValue(HParameterValue * instruction)5499 void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) {
5500 LocationSummary* locations =
5501 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5502 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5503 if (location.IsStackSlot()) {
5504 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5505 } else if (location.IsDoubleStackSlot()) {
5506 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5507 }
5508 locations->SetOut(location);
5509 }
5510
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5511 void InstructionCodeGeneratorARMVIXL::VisitParameterValue(
5512 HParameterValue* instruction ATTRIBUTE_UNUSED) {
5513 // Nothing to do, the parameter is already at its location.
5514 }
5515
VisitCurrentMethod(HCurrentMethod * instruction)5516 void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) {
5517 LocationSummary* locations =
5518 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5519 locations->SetOut(LocationFrom(kMethodRegister));
5520 }
5521
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5522 void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod(
5523 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5524 // Nothing to do, the method is already at its location.
5525 }
5526
VisitNot(HNot * not_)5527 void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
5528 LocationSummary* locations =
5529 new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall);
5530 locations->SetInAt(0, Location::RequiresRegister());
5531 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5532 }
5533
VisitNot(HNot * not_)5534 void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
5535 LocationSummary* locations = not_->GetLocations();
5536 Location out = locations->Out();
5537 Location in = locations->InAt(0);
5538 switch (not_->GetResultType()) {
5539 case DataType::Type::kInt32:
5540 __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
5541 break;
5542
5543 case DataType::Type::kInt64:
5544 __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in));
5545 __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in));
5546 break;
5547
5548 default:
5549 LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
5550 }
5551 }
5552
VisitBooleanNot(HBooleanNot * bool_not)5553 void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5554 LocationSummary* locations =
5555 new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall);
5556 locations->SetInAt(0, Location::RequiresRegister());
5557 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5558 }
5559
VisitBooleanNot(HBooleanNot * bool_not)5560 void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5561 __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1);
5562 }
5563
VisitCompare(HCompare * compare)5564 void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) {
5565 LocationSummary* locations =
5566 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
5567 switch (compare->InputAt(0)->GetType()) {
5568 case DataType::Type::kBool:
5569 case DataType::Type::kUint8:
5570 case DataType::Type::kInt8:
5571 case DataType::Type::kUint16:
5572 case DataType::Type::kInt16:
5573 case DataType::Type::kInt32:
5574 case DataType::Type::kInt64: {
5575 locations->SetInAt(0, Location::RequiresRegister());
5576 locations->SetInAt(1, Location::RequiresRegister());
5577 // Output overlaps because it is written before doing the low comparison.
5578 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5579 break;
5580 }
5581 case DataType::Type::kFloat32:
5582 case DataType::Type::kFloat64: {
5583 locations->SetInAt(0, Location::RequiresFpuRegister());
5584 locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
5585 locations->SetOut(Location::RequiresRegister());
5586 break;
5587 }
5588 default:
5589 LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
5590 }
5591 }
5592
VisitCompare(HCompare * compare)5593 void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) {
5594 LocationSummary* locations = compare->GetLocations();
5595 vixl32::Register out = OutputRegister(compare);
5596 Location left = locations->InAt(0);
5597 Location right = locations->InAt(1);
5598
5599 vixl32::Label less, greater, done;
5600 vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done);
5601 DataType::Type type = compare->InputAt(0)->GetType();
5602 vixl32::Condition less_cond = vixl32::Condition::None();
5603 switch (type) {
5604 case DataType::Type::kBool:
5605 case DataType::Type::kUint8:
5606 case DataType::Type::kInt8:
5607 case DataType::Type::kUint16:
5608 case DataType::Type::kInt16:
5609 case DataType::Type::kInt32: {
5610 // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags.
5611 __ Mov(out, 0);
5612 __ Cmp(RegisterFrom(left), RegisterFrom(right)); // Signed compare.
5613 less_cond = lt;
5614 break;
5615 }
5616 case DataType::Type::kInt64: {
5617 __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right)); // Signed compare.
5618 __ B(lt, &less, /* is_far_target= */ false);
5619 __ B(gt, &greater, /* is_far_target= */ false);
5620 // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags.
5621 __ Mov(out, 0);
5622 __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right)); // Unsigned compare.
5623 less_cond = lo;
5624 break;
5625 }
5626 case DataType::Type::kFloat32:
5627 case DataType::Type::kFloat64: {
5628 __ Mov(out, 0);
5629 GenerateVcmp(compare, codegen_);
5630 // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS).
5631 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
5632 less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
5633 break;
5634 }
5635 default:
5636 LOG(FATAL) << "Unexpected compare type " << type;
5637 UNREACHABLE();
5638 }
5639
5640 __ B(eq, final_label, /* is_far_target= */ false);
5641 __ B(less_cond, &less, /* is_far_target= */ false);
5642
5643 __ Bind(&greater);
5644 __ Mov(out, 1);
5645 __ B(final_label);
5646
5647 __ Bind(&less);
5648 __ Mov(out, -1);
5649
5650 if (done.IsReferenced()) {
5651 __ Bind(&done);
5652 }
5653 }
5654
VisitPhi(HPhi * instruction)5655 void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) {
5656 LocationSummary* locations =
5657 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5658 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5659 locations->SetInAt(i, Location::Any());
5660 }
5661 locations->SetOut(Location::Any());
5662 }
5663
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5664 void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5665 LOG(FATAL) << "Unreachable";
5666 }
5667
GenerateMemoryBarrier(MemBarrierKind kind)5668 void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
5669 // TODO (ported from quick): revisit ARM barrier kinds.
5670 DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings.
5671 switch (kind) {
5672 case MemBarrierKind::kAnyStore:
5673 case MemBarrierKind::kLoadAny:
5674 case MemBarrierKind::kAnyAny: {
5675 flavor = DmbOptions::ISH;
5676 break;
5677 }
5678 case MemBarrierKind::kStoreStore: {
5679 flavor = DmbOptions::ISHST;
5680 break;
5681 }
5682 default:
5683 LOG(FATAL) << "Unexpected memory barrier " << kind;
5684 }
5685 __ Dmb(flavor);
5686 }
5687
GenerateWideAtomicLoad(vixl32::Register addr,uint32_t offset,vixl32::Register out_lo,vixl32::Register out_hi)5688 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr,
5689 uint32_t offset,
5690 vixl32::Register out_lo,
5691 vixl32::Register out_hi) {
5692 UseScratchRegisterScope temps(GetVIXLAssembler());
5693 if (offset != 0) {
5694 vixl32::Register temp = temps.Acquire();
5695 __ Add(temp, addr, offset);
5696 addr = temp;
5697 }
5698 __ Ldrexd(out_lo, out_hi, MemOperand(addr));
5699 }
5700
GenerateWideAtomicStore(vixl32::Register addr,uint32_t offset,vixl32::Register value_lo,vixl32::Register value_hi,vixl32::Register temp1,vixl32::Register temp2,HInstruction * instruction)5701 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr,
5702 uint32_t offset,
5703 vixl32::Register value_lo,
5704 vixl32::Register value_hi,
5705 vixl32::Register temp1,
5706 vixl32::Register temp2,
5707 HInstruction* instruction) {
5708 UseScratchRegisterScope temps(GetVIXLAssembler());
5709 vixl32::Label fail;
5710 if (offset != 0) {
5711 vixl32::Register temp = temps.Acquire();
5712 __ Add(temp, addr, offset);
5713 addr = temp;
5714 }
5715 __ Bind(&fail);
5716 {
5717 // Ensure the pc position is recorded immediately after the `ldrexd` instruction.
5718 ExactAssemblyScope aas(GetVIXLAssembler(),
5719 vixl32::kMaxInstructionSizeInBytes,
5720 CodeBufferCheckScope::kMaximumSize);
5721 // We need a load followed by store. (The address used in a STREX instruction must
5722 // be the same as the address in the most recently executed LDREX instruction.)
5723 __ ldrexd(temp1, temp2, MemOperand(addr));
5724 codegen_->MaybeRecordImplicitNullCheck(instruction);
5725 }
5726 __ Strexd(temp1, value_lo, value_hi, MemOperand(addr));
5727 __ CompareAndBranchIfNonZero(temp1, &fail);
5728 }
5729
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)5730 void LocationsBuilderARMVIXL::HandleFieldSet(
5731 HInstruction* instruction, const FieldInfo& field_info) {
5732 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5733
5734 LocationSummary* locations =
5735 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5736 locations->SetInAt(0, Location::RequiresRegister());
5737
5738 DataType::Type field_type = field_info.GetFieldType();
5739 if (DataType::IsFloatingPointType(field_type)) {
5740 locations->SetInAt(1, Location::RequiresFpuRegister());
5741 } else {
5742 locations->SetInAt(1, Location::RequiresRegister());
5743 }
5744
5745 bool is_wide = field_type == DataType::Type::kInt64 || field_type == DataType::Type::kFloat64;
5746 bool generate_volatile = field_info.IsVolatile()
5747 && is_wide
5748 && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5749 bool needs_write_barrier =
5750 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5751 // Temporary registers for the write barrier.
5752 // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
5753 if (needs_write_barrier) {
5754 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
5755 locations->AddTemp(Location::RequiresRegister());
5756 } else if (generate_volatile) {
5757 // ARM encoding have some additional constraints for ldrexd/strexd:
5758 // - registers need to be consecutive
5759 // - the first register should be even but not R14.
5760 // We don't test for ARM yet, and the assertion makes sure that we
5761 // revisit this if we ever enable ARM encoding.
5762 DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5763
5764 locations->AddTemp(Location::RequiresRegister());
5765 locations->AddTemp(Location::RequiresRegister());
5766 if (field_type == DataType::Type::kFloat64) {
5767 // For doubles we need two more registers to copy the value.
5768 locations->AddTemp(LocationFrom(r2));
5769 locations->AddTemp(LocationFrom(r3));
5770 }
5771 }
5772 }
5773
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)5774 void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction,
5775 const FieldInfo& field_info,
5776 bool value_can_be_null) {
5777 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5778
5779 LocationSummary* locations = instruction->GetLocations();
5780 vixl32::Register base = InputRegisterAt(instruction, 0);
5781 Location value = locations->InAt(1);
5782 std::optional<vixl::aarch32::Label> pred_is_null;
5783
5784 bool is_predicated =
5785 instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet();
5786 bool is_volatile = field_info.IsVolatile();
5787 bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5788 DataType::Type field_type = field_info.GetFieldType();
5789 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5790 bool needs_write_barrier =
5791 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5792
5793 if (is_predicated) {
5794 pred_is_null.emplace();
5795 __ CompareAndBranchIfZero(base, &*pred_is_null, /* is_far_target= */ false);
5796 }
5797
5798 if (is_volatile) {
5799 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
5800 }
5801
5802 switch (field_type) {
5803 case DataType::Type::kBool:
5804 case DataType::Type::kUint8:
5805 case DataType::Type::kInt8:
5806 case DataType::Type::kUint16:
5807 case DataType::Type::kInt16:
5808 case DataType::Type::kInt32: {
5809 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5810 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5811 StoreOperandType operand_type = GetStoreOperandType(field_type);
5812 GetAssembler()->StoreToOffset(operand_type, RegisterFrom(value), base, offset);
5813 codegen_->MaybeRecordImplicitNullCheck(instruction);
5814 break;
5815 }
5816
5817 case DataType::Type::kReference: {
5818 vixl32::Register value_reg = RegisterFrom(value);
5819 if (kPoisonHeapReferences && needs_write_barrier) {
5820 // Note that in the case where `value` is a null reference,
5821 // we do not enter this block, as a null reference does not
5822 // need poisoning.
5823 DCHECK_EQ(field_type, DataType::Type::kReference);
5824 value_reg = RegisterFrom(locations->GetTemp(0));
5825 __ Mov(value_reg, RegisterFrom(value));
5826 GetAssembler()->PoisonHeapReference(value_reg);
5827 }
5828 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5829 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5830 GetAssembler()->StoreToOffset(kStoreWord, value_reg, base, offset);
5831 codegen_->MaybeRecordImplicitNullCheck(instruction);
5832 break;
5833 }
5834
5835 case DataType::Type::kInt64: {
5836 if (is_volatile && !atomic_ldrd_strd) {
5837 GenerateWideAtomicStore(base,
5838 offset,
5839 LowRegisterFrom(value),
5840 HighRegisterFrom(value),
5841 RegisterFrom(locations->GetTemp(0)),
5842 RegisterFrom(locations->GetTemp(1)),
5843 instruction);
5844 } else {
5845 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5846 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5847 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset);
5848 codegen_->MaybeRecordImplicitNullCheck(instruction);
5849 }
5850 break;
5851 }
5852
5853 case DataType::Type::kFloat32: {
5854 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5855 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5856 GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset);
5857 codegen_->MaybeRecordImplicitNullCheck(instruction);
5858 break;
5859 }
5860
5861 case DataType::Type::kFloat64: {
5862 vixl32::DRegister value_reg = DRegisterFrom(value);
5863 if (is_volatile && !atomic_ldrd_strd) {
5864 vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0));
5865 vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1));
5866
5867 __ Vmov(value_reg_lo, value_reg_hi, value_reg);
5868
5869 GenerateWideAtomicStore(base,
5870 offset,
5871 value_reg_lo,
5872 value_reg_hi,
5873 RegisterFrom(locations->GetTemp(2)),
5874 RegisterFrom(locations->GetTemp(3)),
5875 instruction);
5876 } else {
5877 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5878 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5879 GetAssembler()->StoreDToOffset(value_reg, base, offset);
5880 codegen_->MaybeRecordImplicitNullCheck(instruction);
5881 }
5882 break;
5883 }
5884
5885 case DataType::Type::kUint32:
5886 case DataType::Type::kUint64:
5887 case DataType::Type::kVoid:
5888 LOG(FATAL) << "Unreachable type " << field_type;
5889 UNREACHABLE();
5890 }
5891
5892 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
5893 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5894 vixl32::Register card = RegisterFrom(locations->GetTemp(1));
5895 codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null);
5896 }
5897
5898 if (is_volatile) {
5899 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
5900 }
5901
5902 if (is_predicated) {
5903 __ Bind(&*pred_is_null);
5904 }
5905 }
5906
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5907 void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction,
5908 const FieldInfo& field_info) {
5909 DCHECK(instruction->IsInstanceFieldGet() ||
5910 instruction->IsStaticFieldGet() ||
5911 instruction->IsPredicatedInstanceFieldGet());
5912
5913 bool object_field_get_with_read_barrier =
5914 kEmitCompilerReadBarrier && (field_info.GetFieldType() == DataType::Type::kReference);
5915 bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
5916 LocationSummary* locations =
5917 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
5918 object_field_get_with_read_barrier
5919 ? LocationSummary::kCallOnSlowPath
5920 : LocationSummary::kNoCall);
5921 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5922 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5923 }
5924 // Input for object receiver.
5925 locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister());
5926
5927 bool volatile_for_double = field_info.IsVolatile()
5928 && (field_info.GetFieldType() == DataType::Type::kFloat64)
5929 && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5930 // The output overlaps in case of volatile long: we don't want the
5931 // code generated by GenerateWideAtomicLoad to overwrite the
5932 // object's location. Likewise, in the case of an object field get
5933 // with read barriers enabled, we do not want the load to overwrite
5934 // the object's location, as we need it to emit the read barrier.
5935 bool overlap =
5936 (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) ||
5937 object_field_get_with_read_barrier;
5938
5939 if (DataType::IsFloatingPointType(instruction->GetType())) {
5940 if (is_predicated) {
5941 locations->SetInAt(0, Location::RequiresFpuRegister());
5942 locations->SetOut(Location::SameAsFirstInput());
5943 } else {
5944 locations->SetOut(Location::RequiresFpuRegister());
5945 }
5946 } else {
5947 if (is_predicated) {
5948 locations->SetInAt(0, Location::RequiresRegister());
5949 locations->SetOut(Location::SameAsFirstInput());
5950 } else {
5951 locations->SetOut(Location::RequiresRegister(),
5952 (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
5953 }
5954 }
5955 if (volatile_for_double) {
5956 // ARM encoding have some additional constraints for ldrexd/strexd:
5957 // - registers need to be consecutive
5958 // - the first register should be even but not R14.
5959 // We don't test for ARM yet, and the assertion makes sure that we
5960 // revisit this if we ever enable ARM encoding.
5961 DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5962 locations->AddTemp(Location::RequiresRegister());
5963 locations->AddTemp(Location::RequiresRegister());
5964 } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5965 // We need a temporary register for the read barrier load in
5966 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
5967 // only if the offset is too big.
5968 if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
5969 locations->AddTemp(Location::RequiresRegister());
5970 }
5971 }
5972 }
5973
ArithmeticZeroOrFpuRegister(HInstruction * input)5974 Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) {
5975 DCHECK(DataType::IsFloatingPointType(input->GetType())) << input->GetType();
5976 if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
5977 (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
5978 return Location::ConstantLocation(input->AsConstant());
5979 } else {
5980 return Location::RequiresFpuRegister();
5981 }
5982 }
5983
ArmEncodableConstantOrRegister(HInstruction * constant,Opcode opcode)5984 Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant,
5985 Opcode opcode) {
5986 DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
5987 if (constant->IsConstant() &&
5988 CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
5989 return Location::ConstantLocation(constant->AsConstant());
5990 }
5991 return Location::RequiresRegister();
5992 }
5993
CanEncode32BitConstantAsImmediate(CodeGeneratorARMVIXL * codegen,uint32_t value,Opcode opcode,vixl32::FlagsUpdate flags_update=vixl32::FlagsUpdate::DontCare)5994 static bool CanEncode32BitConstantAsImmediate(
5995 CodeGeneratorARMVIXL* codegen,
5996 uint32_t value,
5997 Opcode opcode,
5998 vixl32::FlagsUpdate flags_update = vixl32::FlagsUpdate::DontCare) {
5999 ArmVIXLAssembler* assembler = codegen->GetAssembler();
6000 if (assembler->ShifterOperandCanHold(opcode, value, flags_update)) {
6001 return true;
6002 }
6003 Opcode neg_opcode = kNoOperand;
6004 uint32_t neg_value = 0;
6005 switch (opcode) {
6006 case AND: neg_opcode = BIC; neg_value = ~value; break;
6007 case ORR: neg_opcode = ORN; neg_value = ~value; break;
6008 case ADD: neg_opcode = SUB; neg_value = -value; break;
6009 case ADC: neg_opcode = SBC; neg_value = ~value; break;
6010 case SUB: neg_opcode = ADD; neg_value = -value; break;
6011 case SBC: neg_opcode = ADC; neg_value = ~value; break;
6012 case MOV: neg_opcode = MVN; neg_value = ~value; break;
6013 default:
6014 return false;
6015 }
6016
6017 if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, flags_update)) {
6018 return true;
6019 }
6020
6021 return opcode == AND && IsPowerOfTwo(value + 1);
6022 }
6023
CanEncodeConstantAsImmediate(HConstant * input_cst,Opcode opcode)6024 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst, Opcode opcode) {
6025 uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
6026 if (DataType::Is64BitType(input_cst->GetType())) {
6027 Opcode high_opcode = opcode;
6028 vixl32::FlagsUpdate low_flags_update = vixl32::FlagsUpdate::DontCare;
6029 switch (opcode) {
6030 case SUB:
6031 // Flip the operation to an ADD.
6032 value = -value;
6033 opcode = ADD;
6034 FALLTHROUGH_INTENDED;
6035 case ADD:
6036 if (Low32Bits(value) == 0u) {
6037 return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), opcode);
6038 }
6039 high_opcode = ADC;
6040 low_flags_update = vixl32::FlagsUpdate::SetFlags;
6041 break;
6042 default:
6043 break;
6044 }
6045 return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), high_opcode) &&
6046 CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode, low_flags_update);
6047 } else {
6048 return CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode);
6049 }
6050 }
6051
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)6052 void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction,
6053 const FieldInfo& field_info) {
6054 DCHECK(instruction->IsInstanceFieldGet() ||
6055 instruction->IsStaticFieldGet() ||
6056 instruction->IsPredicatedInstanceFieldGet());
6057
6058 LocationSummary* locations = instruction->GetLocations();
6059 uint32_t receiver_input = instruction->IsPredicatedInstanceFieldGet() ? 1 : 0;
6060 vixl32::Register base = InputRegisterAt(instruction, receiver_input);
6061 Location out = locations->Out();
6062 bool is_volatile = field_info.IsVolatile();
6063 bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
6064 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
6065 DataType::Type load_type = instruction->GetType();
6066 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
6067
6068 switch (load_type) {
6069 case DataType::Type::kBool:
6070 case DataType::Type::kUint8:
6071 case DataType::Type::kInt8:
6072 case DataType::Type::kUint16:
6073 case DataType::Type::kInt16:
6074 case DataType::Type::kInt32: {
6075 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6076 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6077 LoadOperandType operand_type = GetLoadOperandType(load_type);
6078 GetAssembler()->LoadFromOffset(operand_type, RegisterFrom(out), base, offset);
6079 codegen_->MaybeRecordImplicitNullCheck(instruction);
6080 break;
6081 }
6082
6083 case DataType::Type::kReference: {
6084 // /* HeapReference<Object> */ out = *(base + offset)
6085 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6086 Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6087 // Note that a potential implicit null check is handled in this
6088 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call.
6089 codegen_->GenerateFieldLoadWithBakerReadBarrier(
6090 instruction, out, base, offset, maybe_temp, /* needs_null_check= */ true);
6091 if (is_volatile) {
6092 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6093 }
6094 } else {
6095 {
6096 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6097 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6098 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
6099 codegen_->MaybeRecordImplicitNullCheck(instruction);
6100 }
6101 if (is_volatile) {
6102 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6103 }
6104 // If read barriers are enabled, emit read barriers other than
6105 // Baker's using a slow path (and also unpoison the loaded
6106 // reference, if heap poisoning is enabled).
6107 codegen_->MaybeGenerateReadBarrierSlow(
6108 instruction, out, out, locations->InAt(receiver_input), offset);
6109 }
6110 break;
6111 }
6112
6113 case DataType::Type::kInt64: {
6114 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6115 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6116 if (is_volatile && !atomic_ldrd_strd) {
6117 GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out));
6118 } else {
6119 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset);
6120 }
6121 codegen_->MaybeRecordImplicitNullCheck(instruction);
6122 break;
6123 }
6124
6125 case DataType::Type::kFloat32: {
6126 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6127 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6128 GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset);
6129 codegen_->MaybeRecordImplicitNullCheck(instruction);
6130 break;
6131 }
6132
6133 case DataType::Type::kFloat64: {
6134 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6135 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6136 vixl32::DRegister out_dreg = DRegisterFrom(out);
6137 if (is_volatile && !atomic_ldrd_strd) {
6138 vixl32::Register lo = RegisterFrom(locations->GetTemp(0));
6139 vixl32::Register hi = RegisterFrom(locations->GetTemp(1));
6140 GenerateWideAtomicLoad(base, offset, lo, hi);
6141 codegen_->MaybeRecordImplicitNullCheck(instruction);
6142 __ Vmov(out_dreg, lo, hi);
6143 } else {
6144 GetAssembler()->LoadDFromOffset(out_dreg, base, offset);
6145 codegen_->MaybeRecordImplicitNullCheck(instruction);
6146 }
6147 break;
6148 }
6149
6150 case DataType::Type::kUint32:
6151 case DataType::Type::kUint64:
6152 case DataType::Type::kVoid:
6153 LOG(FATAL) << "Unreachable type " << load_type;
6154 UNREACHABLE();
6155 }
6156
6157 if (is_volatile) {
6158 if (load_type == DataType::Type::kReference) {
6159 // Memory barriers, in the case of references, are also handled
6160 // in the previous switch statement.
6161 } else {
6162 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6163 }
6164 }
6165 }
6166
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6167 void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6168 HandleFieldSet(instruction, instruction->GetFieldInfo());
6169 }
6170
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6171 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6172 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6173 }
6174
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6175 void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6176 HandleFieldGet(instruction, instruction->GetFieldInfo());
6177 }
6178
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6179 void LocationsBuilderARMVIXL::VisitPredicatedInstanceFieldGet(
6180 HPredicatedInstanceFieldGet* instruction) {
6181 HandleFieldGet(instruction, instruction->GetFieldInfo());
6182 }
6183
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)6184 void InstructionCodeGeneratorARMVIXL::VisitPredicatedInstanceFieldGet(
6185 HPredicatedInstanceFieldGet* instruction) {
6186 vixl::aarch32::Label finish;
6187 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 1), &finish, false);
6188 HandleFieldGet(instruction, instruction->GetFieldInfo());
6189 __ Bind(&finish);
6190 }
6191
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6192 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6193 HandleFieldGet(instruction, instruction->GetFieldInfo());
6194 }
6195
VisitStaticFieldGet(HStaticFieldGet * instruction)6196 void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6197 HandleFieldGet(instruction, instruction->GetFieldInfo());
6198 }
6199
VisitStaticFieldGet(HStaticFieldGet * instruction)6200 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6201 HandleFieldGet(instruction, instruction->GetFieldInfo());
6202 }
6203
VisitStaticFieldSet(HStaticFieldSet * instruction)6204 void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6205 HandleFieldSet(instruction, instruction->GetFieldInfo());
6206 }
6207
VisitStaticFieldSet(HStaticFieldSet * instruction)6208 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6209 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6210 }
6211
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6212 void LocationsBuilderARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6213 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(r0));
6214 }
6215
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6216 void InstructionCodeGeneratorARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6217 __ Mov(r0, instruction->GetFormat()->GetValue());
6218 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6219 }
6220
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6221 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet(
6222 HUnresolvedInstanceFieldGet* instruction) {
6223 FieldAccessCallingConventionARMVIXL calling_convention;
6224 codegen_->CreateUnresolvedFieldLocationSummary(
6225 instruction, instruction->GetFieldType(), calling_convention);
6226 }
6227
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6228 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet(
6229 HUnresolvedInstanceFieldGet* instruction) {
6230 FieldAccessCallingConventionARMVIXL calling_convention;
6231 codegen_->GenerateUnresolvedFieldAccess(instruction,
6232 instruction->GetFieldType(),
6233 instruction->GetFieldIndex(),
6234 instruction->GetDexPc(),
6235 calling_convention);
6236 }
6237
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6238 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet(
6239 HUnresolvedInstanceFieldSet* instruction) {
6240 FieldAccessCallingConventionARMVIXL calling_convention;
6241 codegen_->CreateUnresolvedFieldLocationSummary(
6242 instruction, instruction->GetFieldType(), calling_convention);
6243 }
6244
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6245 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet(
6246 HUnresolvedInstanceFieldSet* instruction) {
6247 FieldAccessCallingConventionARMVIXL calling_convention;
6248 codegen_->GenerateUnresolvedFieldAccess(instruction,
6249 instruction->GetFieldType(),
6250 instruction->GetFieldIndex(),
6251 instruction->GetDexPc(),
6252 calling_convention);
6253 }
6254
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6255 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet(
6256 HUnresolvedStaticFieldGet* instruction) {
6257 FieldAccessCallingConventionARMVIXL calling_convention;
6258 codegen_->CreateUnresolvedFieldLocationSummary(
6259 instruction, instruction->GetFieldType(), calling_convention);
6260 }
6261
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6262 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet(
6263 HUnresolvedStaticFieldGet* instruction) {
6264 FieldAccessCallingConventionARMVIXL calling_convention;
6265 codegen_->GenerateUnresolvedFieldAccess(instruction,
6266 instruction->GetFieldType(),
6267 instruction->GetFieldIndex(),
6268 instruction->GetDexPc(),
6269 calling_convention);
6270 }
6271
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6272 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet(
6273 HUnresolvedStaticFieldSet* instruction) {
6274 FieldAccessCallingConventionARMVIXL calling_convention;
6275 codegen_->CreateUnresolvedFieldLocationSummary(
6276 instruction, instruction->GetFieldType(), calling_convention);
6277 }
6278
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6279 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet(
6280 HUnresolvedStaticFieldSet* instruction) {
6281 FieldAccessCallingConventionARMVIXL calling_convention;
6282 codegen_->GenerateUnresolvedFieldAccess(instruction,
6283 instruction->GetFieldType(),
6284 instruction->GetFieldIndex(),
6285 instruction->GetDexPc(),
6286 calling_convention);
6287 }
6288
VisitNullCheck(HNullCheck * instruction)6289 void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6290 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
6291 locations->SetInAt(0, Location::RequiresRegister());
6292 }
6293
GenerateImplicitNullCheck(HNullCheck * instruction)6294 void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) {
6295 if (CanMoveNullCheckToUser(instruction)) {
6296 return;
6297 }
6298
6299 UseScratchRegisterScope temps(GetVIXLAssembler());
6300 // Ensure the pc position is recorded immediately after the `ldr` instruction.
6301 ExactAssemblyScope aas(GetVIXLAssembler(),
6302 vixl32::kMaxInstructionSizeInBytes,
6303 CodeBufferCheckScope::kMaximumSize);
6304 __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0)));
6305 RecordPcInfo(instruction, instruction->GetDexPc());
6306 }
6307
GenerateExplicitNullCheck(HNullCheck * instruction)6308 void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) {
6309 NullCheckSlowPathARMVIXL* slow_path =
6310 new (GetScopedAllocator()) NullCheckSlowPathARMVIXL(instruction);
6311 AddSlowPath(slow_path);
6312 __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
6313 }
6314
VisitNullCheck(HNullCheck * instruction)6315 void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6316 codegen_->GenerateNullCheck(instruction);
6317 }
6318
LoadFromShiftedRegOffset(DataType::Type type,Location out_loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6319 void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(DataType::Type type,
6320 Location out_loc,
6321 vixl32::Register base,
6322 vixl32::Register reg_index,
6323 vixl32::Condition cond) {
6324 uint32_t shift_count = DataType::SizeShift(type);
6325 MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6326
6327 switch (type) {
6328 case DataType::Type::kBool:
6329 case DataType::Type::kUint8:
6330 __ Ldrb(cond, RegisterFrom(out_loc), mem_address);
6331 break;
6332 case DataType::Type::kInt8:
6333 __ Ldrsb(cond, RegisterFrom(out_loc), mem_address);
6334 break;
6335 case DataType::Type::kUint16:
6336 __ Ldrh(cond, RegisterFrom(out_loc), mem_address);
6337 break;
6338 case DataType::Type::kInt16:
6339 __ Ldrsh(cond, RegisterFrom(out_loc), mem_address);
6340 break;
6341 case DataType::Type::kReference:
6342 case DataType::Type::kInt32:
6343 __ Ldr(cond, RegisterFrom(out_loc), mem_address);
6344 break;
6345 // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
6346 case DataType::Type::kInt64:
6347 case DataType::Type::kFloat32:
6348 case DataType::Type::kFloat64:
6349 default:
6350 LOG(FATAL) << "Unreachable type " << type;
6351 UNREACHABLE();
6352 }
6353 }
6354
StoreToShiftedRegOffset(DataType::Type type,Location loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6355 void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(DataType::Type type,
6356 Location loc,
6357 vixl32::Register base,
6358 vixl32::Register reg_index,
6359 vixl32::Condition cond) {
6360 uint32_t shift_count = DataType::SizeShift(type);
6361 MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6362
6363 switch (type) {
6364 case DataType::Type::kBool:
6365 case DataType::Type::kUint8:
6366 case DataType::Type::kInt8:
6367 __ Strb(cond, RegisterFrom(loc), mem_address);
6368 break;
6369 case DataType::Type::kUint16:
6370 case DataType::Type::kInt16:
6371 __ Strh(cond, RegisterFrom(loc), mem_address);
6372 break;
6373 case DataType::Type::kReference:
6374 case DataType::Type::kInt32:
6375 __ Str(cond, RegisterFrom(loc), mem_address);
6376 break;
6377 // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
6378 case DataType::Type::kInt64:
6379 case DataType::Type::kFloat32:
6380 case DataType::Type::kFloat64:
6381 default:
6382 LOG(FATAL) << "Unreachable type " << type;
6383 UNREACHABLE();
6384 }
6385 }
6386
VisitArrayGet(HArrayGet * instruction)6387 void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6388 bool object_array_get_with_read_barrier =
6389 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
6390 LocationSummary* locations =
6391 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
6392 object_array_get_with_read_barrier
6393 ? LocationSummary::kCallOnSlowPath
6394 : LocationSummary::kNoCall);
6395 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6396 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
6397 }
6398 locations->SetInAt(0, Location::RequiresRegister());
6399 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6400 if (DataType::IsFloatingPointType(instruction->GetType())) {
6401 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6402 } else {
6403 // The output overlaps in the case of an object array get with
6404 // read barriers enabled: we do not want the move to overwrite the
6405 // array's location, as we need it to emit the read barrier.
6406 locations->SetOut(
6407 Location::RequiresRegister(),
6408 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
6409 }
6410 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6411 if (instruction->GetIndex()->IsConstant()) {
6412 // Array loads with constant index are treated as field loads.
6413 // We need a temporary register for the read barrier load in
6414 // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
6415 // only if the offset is too big.
6416 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
6417 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
6418 offset += index << DataType::SizeShift(DataType::Type::kReference);
6419 if (offset >= kReferenceLoadMinFarOffset) {
6420 locations->AddTemp(Location::RequiresRegister());
6421 }
6422 } else {
6423 // We need a non-scratch temporary for the array data pointer in
6424 // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier().
6425 locations->AddTemp(Location::RequiresRegister());
6426 }
6427 } else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
6428 // Also need a temporary for String compression feature.
6429 locations->AddTemp(Location::RequiresRegister());
6430 }
6431 }
6432
VisitArrayGet(HArrayGet * instruction)6433 void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6434 LocationSummary* locations = instruction->GetLocations();
6435 Location obj_loc = locations->InAt(0);
6436 vixl32::Register obj = InputRegisterAt(instruction, 0);
6437 Location index = locations->InAt(1);
6438 Location out_loc = locations->Out();
6439 uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
6440 DataType::Type type = instruction->GetType();
6441 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
6442 instruction->IsStringCharAt();
6443 HInstruction* array_instr = instruction->GetArray();
6444 bool has_intermediate_address = array_instr->IsIntermediateAddress();
6445
6446 switch (type) {
6447 case DataType::Type::kBool:
6448 case DataType::Type::kUint8:
6449 case DataType::Type::kInt8:
6450 case DataType::Type::kUint16:
6451 case DataType::Type::kInt16:
6452 case DataType::Type::kInt32: {
6453 vixl32::Register length;
6454 if (maybe_compressed_char_at) {
6455 length = RegisterFrom(locations->GetTemp(0));
6456 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
6457 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6458 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6459 GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset);
6460 codegen_->MaybeRecordImplicitNullCheck(instruction);
6461 }
6462 if (index.IsConstant()) {
6463 int32_t const_index = Int32ConstantFrom(index);
6464 if (maybe_compressed_char_at) {
6465 vixl32::Label uncompressed_load, done;
6466 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6467 __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
6468 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6469 "Expecting 0=compressed, 1=uncompressed");
6470 __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6471 GetAssembler()->LoadFromOffset(kLoadUnsignedByte,
6472 RegisterFrom(out_loc),
6473 obj,
6474 data_offset + const_index);
6475 __ B(final_label);
6476 __ Bind(&uncompressed_load);
6477 GetAssembler()->LoadFromOffset(GetLoadOperandType(DataType::Type::kUint16),
6478 RegisterFrom(out_loc),
6479 obj,
6480 data_offset + (const_index << 1));
6481 if (done.IsReferenced()) {
6482 __ Bind(&done);
6483 }
6484 } else {
6485 uint32_t full_offset = data_offset + (const_index << DataType::SizeShift(type));
6486
6487 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6488 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6489 LoadOperandType load_type = GetLoadOperandType(type);
6490 GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset);
6491 codegen_->MaybeRecordImplicitNullCheck(instruction);
6492 }
6493 } else {
6494 UseScratchRegisterScope temps(GetVIXLAssembler());
6495 vixl32::Register temp = temps.Acquire();
6496
6497 if (has_intermediate_address) {
6498 // We do not need to compute the intermediate address from the array: the
6499 // input instruction has done it already. See the comment in
6500 // `TryExtractArrayAccessAddress()`.
6501 if (kIsDebugBuild) {
6502 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6503 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6504 }
6505 temp = obj;
6506 } else {
6507 __ Add(temp, obj, data_offset);
6508 }
6509 if (maybe_compressed_char_at) {
6510 vixl32::Label uncompressed_load, done;
6511 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6512 __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
6513 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6514 "Expecting 0=compressed, 1=uncompressed");
6515 __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6516 __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0));
6517 __ B(final_label);
6518 __ Bind(&uncompressed_load);
6519 __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1));
6520 if (done.IsReferenced()) {
6521 __ Bind(&done);
6522 }
6523 } else {
6524 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6525 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6526 codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6527 codegen_->MaybeRecordImplicitNullCheck(instruction);
6528 }
6529 }
6530 break;
6531 }
6532
6533 case DataType::Type::kReference: {
6534 // The read barrier instrumentation of object ArrayGet
6535 // instructions does not support the HIntermediateAddress
6536 // instruction.
6537 DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
6538
6539 static_assert(
6540 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6541 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6542 // /* HeapReference<Object> */ out =
6543 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
6544 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6545 // Note that a potential implicit null check is handled in this
6546 // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call.
6547 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
6548 if (index.IsConstant()) {
6549 // Array load with a constant index can be treated as a field load.
6550 Location maybe_temp =
6551 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6552 data_offset += Int32ConstantFrom(index) << DataType::SizeShift(type);
6553 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6554 out_loc,
6555 obj,
6556 data_offset,
6557 maybe_temp,
6558 /* needs_null_check= */ false);
6559 } else {
6560 Location temp = locations->GetTemp(0);
6561 codegen_->GenerateArrayLoadWithBakerReadBarrier(
6562 out_loc, obj, data_offset, index, temp, /* needs_null_check= */ false);
6563 }
6564 } else {
6565 vixl32::Register out = OutputRegister(instruction);
6566 if (index.IsConstant()) {
6567 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6568 {
6569 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6570 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6571 GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset);
6572 codegen_->MaybeRecordImplicitNullCheck(instruction);
6573 }
6574 // If read barriers are enabled, emit read barriers other than
6575 // Baker's using a slow path (and also unpoison the loaded
6576 // reference, if heap poisoning is enabled).
6577 codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
6578 } else {
6579 UseScratchRegisterScope temps(GetVIXLAssembler());
6580 vixl32::Register temp = temps.Acquire();
6581
6582 if (has_intermediate_address) {
6583 // We do not need to compute the intermediate address from the array: the
6584 // input instruction has done it already. See the comment in
6585 // `TryExtractArrayAccessAddress()`.
6586 if (kIsDebugBuild) {
6587 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6588 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6589 }
6590 temp = obj;
6591 } else {
6592 __ Add(temp, obj, data_offset);
6593 }
6594 {
6595 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6596 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6597 codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6598 temps.Close();
6599 codegen_->MaybeRecordImplicitNullCheck(instruction);
6600 }
6601 // If read barriers are enabled, emit read barriers other than
6602 // Baker's using a slow path (and also unpoison the loaded
6603 // reference, if heap poisoning is enabled).
6604 codegen_->MaybeGenerateReadBarrierSlow(
6605 instruction, out_loc, out_loc, obj_loc, data_offset, index);
6606 }
6607 }
6608 break;
6609 }
6610
6611 case DataType::Type::kInt64: {
6612 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6613 // As two macro instructions can be emitted the max size is doubled.
6614 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6615 if (index.IsConstant()) {
6616 size_t offset =
6617 (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6618 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset);
6619 } else {
6620 UseScratchRegisterScope temps(GetVIXLAssembler());
6621 vixl32::Register temp = temps.Acquire();
6622 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6623 GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset);
6624 }
6625 codegen_->MaybeRecordImplicitNullCheck(instruction);
6626 break;
6627 }
6628
6629 case DataType::Type::kFloat32: {
6630 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6631 // As two macro instructions can be emitted the max size is doubled.
6632 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6633 vixl32::SRegister out = SRegisterFrom(out_loc);
6634 if (index.IsConstant()) {
6635 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6636 GetAssembler()->LoadSFromOffset(out, obj, offset);
6637 } else {
6638 UseScratchRegisterScope temps(GetVIXLAssembler());
6639 vixl32::Register temp = temps.Acquire();
6640 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6641 GetAssembler()->LoadSFromOffset(out, temp, data_offset);
6642 }
6643 codegen_->MaybeRecordImplicitNullCheck(instruction);
6644 break;
6645 }
6646
6647 case DataType::Type::kFloat64: {
6648 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6649 // As two macro instructions can be emitted the max size is doubled.
6650 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6651 if (index.IsConstant()) {
6652 size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6653 GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset);
6654 } else {
6655 UseScratchRegisterScope temps(GetVIXLAssembler());
6656 vixl32::Register temp = temps.Acquire();
6657 __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6658 GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset);
6659 }
6660 codegen_->MaybeRecordImplicitNullCheck(instruction);
6661 break;
6662 }
6663
6664 case DataType::Type::kUint32:
6665 case DataType::Type::kUint64:
6666 case DataType::Type::kVoid:
6667 LOG(FATAL) << "Unreachable type " << type;
6668 UNREACHABLE();
6669 }
6670 }
6671
VisitArraySet(HArraySet * instruction)6672 void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) {
6673 DataType::Type value_type = instruction->GetComponentType();
6674
6675 bool needs_write_barrier =
6676 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6677 bool needs_type_check = instruction->NeedsTypeCheck();
6678
6679 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6680 instruction,
6681 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
6682
6683 locations->SetInAt(0, Location::RequiresRegister());
6684 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6685 if (DataType::IsFloatingPointType(value_type)) {
6686 locations->SetInAt(2, Location::RequiresFpuRegister());
6687 } else {
6688 locations->SetInAt(2, Location::RequiresRegister());
6689 }
6690 if (needs_write_barrier) {
6691 // Temporary registers for the write barrier.
6692 locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
6693 locations->AddTemp(Location::RequiresRegister());
6694 }
6695 }
6696
VisitArraySet(HArraySet * instruction)6697 void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) {
6698 LocationSummary* locations = instruction->GetLocations();
6699 vixl32::Register array = InputRegisterAt(instruction, 0);
6700 Location index = locations->InAt(1);
6701 DataType::Type value_type = instruction->GetComponentType();
6702 bool needs_type_check = instruction->NeedsTypeCheck();
6703 bool needs_write_barrier =
6704 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6705 uint32_t data_offset =
6706 mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
6707 Location value_loc = locations->InAt(2);
6708 HInstruction* array_instr = instruction->GetArray();
6709 bool has_intermediate_address = array_instr->IsIntermediateAddress();
6710
6711 switch (value_type) {
6712 case DataType::Type::kBool:
6713 case DataType::Type::kUint8:
6714 case DataType::Type::kInt8:
6715 case DataType::Type::kUint16:
6716 case DataType::Type::kInt16:
6717 case DataType::Type::kInt32: {
6718 if (index.IsConstant()) {
6719 int32_t const_index = Int32ConstantFrom(index);
6720 uint32_t full_offset =
6721 data_offset + (const_index << DataType::SizeShift(value_type));
6722 StoreOperandType store_type = GetStoreOperandType(value_type);
6723 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6724 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6725 GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset);
6726 codegen_->MaybeRecordImplicitNullCheck(instruction);
6727 } else {
6728 UseScratchRegisterScope temps(GetVIXLAssembler());
6729 vixl32::Register temp = temps.Acquire();
6730
6731 if (has_intermediate_address) {
6732 // We do not need to compute the intermediate address from the array: the
6733 // input instruction has done it already. See the comment in
6734 // `TryExtractArrayAccessAddress()`.
6735 if (kIsDebugBuild) {
6736 HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6737 DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6738 }
6739 temp = array;
6740 } else {
6741 __ Add(temp, array, data_offset);
6742 }
6743 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6744 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6745 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6746 codegen_->MaybeRecordImplicitNullCheck(instruction);
6747 }
6748 break;
6749 }
6750
6751 case DataType::Type::kReference: {
6752 vixl32::Register value = RegisterFrom(value_loc);
6753 // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
6754 // See the comment in instruction_simplifier_shared.cc.
6755 DCHECK(!has_intermediate_address);
6756
6757 if (instruction->InputAt(2)->IsNullConstant()) {
6758 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6759 // As two macro instructions can be emitted the max size is doubled.
6760 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6761 // Just setting null.
6762 if (index.IsConstant()) {
6763 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6764 GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
6765 } else {
6766 DCHECK(index.IsRegister()) << index;
6767 UseScratchRegisterScope temps(GetVIXLAssembler());
6768 vixl32::Register temp = temps.Acquire();
6769 __ Add(temp, array, data_offset);
6770 codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6771 }
6772 codegen_->MaybeRecordImplicitNullCheck(instruction);
6773 DCHECK(!needs_write_barrier);
6774 DCHECK(!needs_type_check);
6775 break;
6776 }
6777
6778 DCHECK(needs_write_barrier);
6779 Location temp1_loc = locations->GetTemp(0);
6780 vixl32::Register temp1 = RegisterFrom(temp1_loc);
6781 Location temp2_loc = locations->GetTemp(1);
6782 vixl32::Register temp2 = RegisterFrom(temp2_loc);
6783
6784 bool can_value_be_null = instruction->GetValueCanBeNull();
6785 vixl32::Label do_store;
6786 if (can_value_be_null) {
6787 __ CompareAndBranchIfZero(value, &do_store, /* is_far_target= */ false);
6788 }
6789
6790 SlowPathCodeARMVIXL* slow_path = nullptr;
6791 if (needs_type_check) {
6792 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARMVIXL(instruction);
6793 codegen_->AddSlowPath(slow_path);
6794
6795 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6796 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6797 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6798
6799 // Note that when read barriers are enabled, the type checks
6800 // are performed without read barriers. This is fine, even in
6801 // the case where a class object is in the from-space after
6802 // the flip, as a comparison involving such a type would not
6803 // produce a false positive; it may of course produce a false
6804 // negative, in which case we would take the ArraySet slow
6805 // path.
6806
6807 {
6808 // Ensure we record the pc position immediately after the `ldr` instruction.
6809 ExactAssemblyScope aas(GetVIXLAssembler(),
6810 vixl32::kMaxInstructionSizeInBytes,
6811 CodeBufferCheckScope::kMaximumSize);
6812 // /* HeapReference<Class> */ temp1 = array->klass_
6813 __ ldr(temp1, MemOperand(array, class_offset));
6814 codegen_->MaybeRecordImplicitNullCheck(instruction);
6815 }
6816 GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6817
6818 // /* HeapReference<Class> */ temp1 = temp1->component_type_
6819 GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
6820 // /* HeapReference<Class> */ temp2 = value->klass_
6821 GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset);
6822 // If heap poisoning is enabled, no need to unpoison `temp1`
6823 // nor `temp2`, as we are comparing two poisoned references.
6824 __ Cmp(temp1, temp2);
6825
6826 if (instruction->StaticTypeOfArrayIsObjectArray()) {
6827 vixl32::Label do_put;
6828 __ B(eq, &do_put, /* is_far_target= */ false);
6829 // If heap poisoning is enabled, the `temp1` reference has
6830 // not been unpoisoned yet; unpoison it now.
6831 GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6832
6833 // /* HeapReference<Class> */ temp1 = temp1->super_class_
6834 GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
6835 // If heap poisoning is enabled, no need to unpoison
6836 // `temp1`, as we are comparing against null below.
6837 __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
6838 __ Bind(&do_put);
6839 } else {
6840 __ B(ne, slow_path->GetEntryLabel());
6841 }
6842 }
6843
6844 codegen_->MarkGCCard(temp1, temp2, array, value, /* value_can_be_null= */ false);
6845
6846 if (can_value_be_null) {
6847 DCHECK(do_store.IsReferenced());
6848 __ Bind(&do_store);
6849 }
6850
6851 vixl32::Register source = value;
6852 if (kPoisonHeapReferences) {
6853 // Note that in the case where `value` is a null reference,
6854 // we do not enter this block, as a null reference does not
6855 // need poisoning.
6856 DCHECK_EQ(value_type, DataType::Type::kReference);
6857 __ Mov(temp1, value);
6858 GetAssembler()->PoisonHeapReference(temp1);
6859 source = temp1;
6860 }
6861
6862 {
6863 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6864 // As two macro instructions can be emitted the max size is doubled.
6865 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6866 if (index.IsConstant()) {
6867 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6868 GetAssembler()->StoreToOffset(kStoreWord, source, array, offset);
6869 } else {
6870 DCHECK(index.IsRegister()) << index;
6871
6872 UseScratchRegisterScope temps(GetVIXLAssembler());
6873 vixl32::Register temp = temps.Acquire();
6874 __ Add(temp, array, data_offset);
6875 codegen_->StoreToShiftedRegOffset(value_type,
6876 LocationFrom(source),
6877 temp,
6878 RegisterFrom(index));
6879 }
6880
6881 if (can_value_be_null || !needs_type_check) {
6882 codegen_->MaybeRecordImplicitNullCheck(instruction);
6883 }
6884 }
6885
6886 if (slow_path != nullptr) {
6887 __ Bind(slow_path->GetExitLabel());
6888 }
6889
6890 break;
6891 }
6892
6893 case DataType::Type::kInt64: {
6894 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6895 // As two macro instructions can be emitted the max size is doubled.
6896 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6897 Location value = locations->InAt(2);
6898 if (index.IsConstant()) {
6899 size_t offset =
6900 (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6901 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset);
6902 } else {
6903 UseScratchRegisterScope temps(GetVIXLAssembler());
6904 vixl32::Register temp = temps.Acquire();
6905 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6906 GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset);
6907 }
6908 codegen_->MaybeRecordImplicitNullCheck(instruction);
6909 break;
6910 }
6911
6912 case DataType::Type::kFloat32: {
6913 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6914 // As two macro instructions can be emitted the max size is doubled.
6915 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6916 Location value = locations->InAt(2);
6917 DCHECK(value.IsFpuRegister());
6918 if (index.IsConstant()) {
6919 size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6920 GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset);
6921 } else {
6922 UseScratchRegisterScope temps(GetVIXLAssembler());
6923 vixl32::Register temp = temps.Acquire();
6924 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6925 GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset);
6926 }
6927 codegen_->MaybeRecordImplicitNullCheck(instruction);
6928 break;
6929 }
6930
6931 case DataType::Type::kFloat64: {
6932 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6933 // As two macro instructions can be emitted the max size is doubled.
6934 EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6935 Location value = locations->InAt(2);
6936 DCHECK(value.IsFpuRegisterPair());
6937 if (index.IsConstant()) {
6938 size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6939 GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset);
6940 } else {
6941 UseScratchRegisterScope temps(GetVIXLAssembler());
6942 vixl32::Register temp = temps.Acquire();
6943 __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6944 GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset);
6945 }
6946 codegen_->MaybeRecordImplicitNullCheck(instruction);
6947 break;
6948 }
6949
6950 case DataType::Type::kUint32:
6951 case DataType::Type::kUint64:
6952 case DataType::Type::kVoid:
6953 LOG(FATAL) << "Unreachable type " << value_type;
6954 UNREACHABLE();
6955 }
6956 }
6957
VisitArrayLength(HArrayLength * instruction)6958 void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6959 LocationSummary* locations =
6960 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6961 locations->SetInAt(0, Location::RequiresRegister());
6962 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6963 }
6964
VisitArrayLength(HArrayLength * instruction)6965 void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6966 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
6967 vixl32::Register obj = InputRegisterAt(instruction, 0);
6968 vixl32::Register out = OutputRegister(instruction);
6969 {
6970 ExactAssemblyScope aas(GetVIXLAssembler(),
6971 vixl32::kMaxInstructionSizeInBytes,
6972 CodeBufferCheckScope::kMaximumSize);
6973 __ ldr(out, MemOperand(obj, offset));
6974 codegen_->MaybeRecordImplicitNullCheck(instruction);
6975 }
6976 // Mask out compression flag from String's array length.
6977 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
6978 __ Lsr(out, out, 1u);
6979 }
6980 }
6981
VisitIntermediateAddress(HIntermediateAddress * instruction)6982 void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6983 LocationSummary* locations =
6984 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6985
6986 locations->SetInAt(0, Location::RequiresRegister());
6987 locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
6988 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6989 }
6990
VisitIntermediateAddress(HIntermediateAddress * instruction)6991 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6992 vixl32::Register out = OutputRegister(instruction);
6993 vixl32::Register first = InputRegisterAt(instruction, 0);
6994 Location second = instruction->GetLocations()->InAt(1);
6995
6996 if (second.IsRegister()) {
6997 __ Add(out, first, RegisterFrom(second));
6998 } else {
6999 __ Add(out, first, Int32ConstantFrom(second));
7000 }
7001 }
7002
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)7003 void LocationsBuilderARMVIXL::VisitIntermediateAddressIndex(
7004 HIntermediateAddressIndex* instruction) {
7005 LOG(FATAL) << "Unreachable " << instruction->GetId();
7006 }
7007
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)7008 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddressIndex(
7009 HIntermediateAddressIndex* instruction) {
7010 LOG(FATAL) << "Unreachable " << instruction->GetId();
7011 }
7012
VisitBoundsCheck(HBoundsCheck * instruction)7013 void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
7014 RegisterSet caller_saves = RegisterSet::Empty();
7015 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7016 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
7017 caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1)));
7018 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
7019
7020 HInstruction* index = instruction->InputAt(0);
7021 HInstruction* length = instruction->InputAt(1);
7022 // If both index and length are constants we can statically check the bounds. But if at least one
7023 // of them is not encodable ArmEncodableConstantOrRegister will create
7024 // Location::RequiresRegister() which is not desired to happen. Instead we create constant
7025 // locations.
7026 bool both_const = index->IsConstant() && length->IsConstant();
7027 locations->SetInAt(0, both_const
7028 ? Location::ConstantLocation(index->AsConstant())
7029 : ArmEncodableConstantOrRegister(index, CMP));
7030 locations->SetInAt(1, both_const
7031 ? Location::ConstantLocation(length->AsConstant())
7032 : ArmEncodableConstantOrRegister(length, CMP));
7033 }
7034
VisitBoundsCheck(HBoundsCheck * instruction)7035 void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
7036 LocationSummary* locations = instruction->GetLocations();
7037 Location index_loc = locations->InAt(0);
7038 Location length_loc = locations->InAt(1);
7039
7040 if (length_loc.IsConstant()) {
7041 int32_t length = Int32ConstantFrom(length_loc);
7042 if (index_loc.IsConstant()) {
7043 // BCE will remove the bounds check if we are guaranteed to pass.
7044 int32_t index = Int32ConstantFrom(index_loc);
7045 if (index < 0 || index >= length) {
7046 SlowPathCodeARMVIXL* slow_path =
7047 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7048 codegen_->AddSlowPath(slow_path);
7049 __ B(slow_path->GetEntryLabel());
7050 } else {
7051 // Some optimization after BCE may have generated this, and we should not
7052 // generate a bounds check if it is a valid range.
7053 }
7054 return;
7055 }
7056
7057 SlowPathCodeARMVIXL* slow_path =
7058 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7059 __ Cmp(RegisterFrom(index_loc), length);
7060 codegen_->AddSlowPath(slow_path);
7061 __ B(hs, slow_path->GetEntryLabel());
7062 } else {
7063 SlowPathCodeARMVIXL* slow_path =
7064 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
7065 __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0));
7066 codegen_->AddSlowPath(slow_path);
7067 __ B(ls, slow_path->GetEntryLabel());
7068 }
7069 }
7070
MarkGCCard(vixl32::Register temp,vixl32::Register card,vixl32::Register object,vixl32::Register value,bool value_can_be_null)7071 void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp,
7072 vixl32::Register card,
7073 vixl32::Register object,
7074 vixl32::Register value,
7075 bool value_can_be_null) {
7076 vixl32::Label is_null;
7077 if (value_can_be_null) {
7078 __ CompareAndBranchIfZero(value, &is_null, /* is_far_target=*/ false);
7079 }
7080 // Load the address of the card table into `card`.
7081 GetAssembler()->LoadFromOffset(
7082 kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
7083 // Calculate the offset (in the card table) of the card corresponding to
7084 // `object`.
7085 __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift));
7086 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
7087 // `object`'s card.
7088 //
7089 // Register `card` contains the address of the card table. Note that the card
7090 // table's base is biased during its creation so that it always starts at an
7091 // address whose least-significant byte is equal to `kCardDirty` (see
7092 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
7093 // below writes the `kCardDirty` (byte) value into the `object`'s card
7094 // (located at `card + object >> kCardShift`).
7095 //
7096 // This dual use of the value in register `card` (1. to calculate the location
7097 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
7098 // (no need to explicitly load `kCardDirty` as an immediate value).
7099 __ Strb(card, MemOperand(card, temp));
7100 if (value_can_be_null) {
7101 __ Bind(&is_null);
7102 }
7103 }
7104
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)7105 void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
7106 LOG(FATAL) << "Unreachable";
7107 }
7108
VisitParallelMove(HParallelMove * instruction)7109 void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
7110 if (instruction->GetNext()->IsSuspendCheck() &&
7111 instruction->GetBlock()->GetLoopInformation() != nullptr) {
7112 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
7113 // The back edge will generate the suspend check.
7114 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
7115 }
7116
7117 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
7118 }
7119
VisitSuspendCheck(HSuspendCheck * instruction)7120 void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
7121 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7122 instruction, LocationSummary::kCallOnSlowPath);
7123 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7124 }
7125
VisitSuspendCheck(HSuspendCheck * instruction)7126 void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
7127 HBasicBlock* block = instruction->GetBlock();
7128 if (block->GetLoopInformation() != nullptr) {
7129 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
7130 // The back edge will generate the suspend check.
7131 return;
7132 }
7133 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
7134 // The goto will generate the suspend check.
7135 return;
7136 }
7137 GenerateSuspendCheck(instruction, nullptr);
7138 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 14);
7139 }
7140
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)7141 void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
7142 HBasicBlock* successor) {
7143 SuspendCheckSlowPathARMVIXL* slow_path =
7144 down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath());
7145 if (slow_path == nullptr) {
7146 slow_path =
7147 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARMVIXL(instruction, successor);
7148 instruction->SetSlowPath(slow_path);
7149 codegen_->AddSlowPath(slow_path);
7150 if (successor != nullptr) {
7151 DCHECK(successor->IsLoopHeader());
7152 }
7153 } else {
7154 DCHECK_EQ(slow_path->GetSuccessor(), successor);
7155 }
7156
7157 UseScratchRegisterScope temps(GetVIXLAssembler());
7158 vixl32::Register temp = temps.Acquire();
7159 GetAssembler()->LoadFromOffset(
7160 kLoadWord, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
7161 __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
7162 if (successor == nullptr) {
7163 __ B(ne, slow_path->GetEntryLabel());
7164 __ Bind(slow_path->GetReturnLabel());
7165 } else {
7166 __ B(eq, codegen_->GetLabelOf(successor));
7167 __ B(slow_path->GetEntryLabel());
7168 }
7169 }
7170
GetAssembler() const7171 ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
7172 return codegen_->GetAssembler();
7173 }
7174
EmitMove(size_t index)7175 void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
7176 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7177 MoveOperands* move = moves_[index];
7178 Location source = move->GetSource();
7179 Location destination = move->GetDestination();
7180
7181 if (source.IsRegister()) {
7182 if (destination.IsRegister()) {
7183 __ Mov(RegisterFrom(destination), RegisterFrom(source));
7184 } else if (destination.IsFpuRegister()) {
7185 __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
7186 } else {
7187 DCHECK(destination.IsStackSlot());
7188 GetAssembler()->StoreToOffset(kStoreWord,
7189 RegisterFrom(source),
7190 sp,
7191 destination.GetStackIndex());
7192 }
7193 } else if (source.IsStackSlot()) {
7194 if (destination.IsRegister()) {
7195 GetAssembler()->LoadFromOffset(kLoadWord,
7196 RegisterFrom(destination),
7197 sp,
7198 source.GetStackIndex());
7199 } else if (destination.IsFpuRegister()) {
7200 GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
7201 } else {
7202 DCHECK(destination.IsStackSlot());
7203 vixl32::Register temp = temps.Acquire();
7204 GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
7205 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7206 }
7207 } else if (source.IsFpuRegister()) {
7208 if (destination.IsRegister()) {
7209 __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
7210 } else if (destination.IsFpuRegister()) {
7211 __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
7212 } else {
7213 DCHECK(destination.IsStackSlot());
7214 GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
7215 }
7216 } else if (source.IsDoubleStackSlot()) {
7217 if (destination.IsDoubleStackSlot()) {
7218 vixl32::DRegister temp = temps.AcquireD();
7219 GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex());
7220 GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex());
7221 } else if (destination.IsRegisterPair()) {
7222 DCHECK(ExpectedPairLayout(destination));
7223 GetAssembler()->LoadFromOffset(
7224 kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex());
7225 } else {
7226 DCHECK(destination.IsFpuRegisterPair()) << destination;
7227 GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex());
7228 }
7229 } else if (source.IsRegisterPair()) {
7230 if (destination.IsRegisterPair()) {
7231 __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source));
7232 __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source));
7233 } else if (destination.IsFpuRegisterPair()) {
7234 __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source));
7235 } else {
7236 DCHECK(destination.IsDoubleStackSlot()) << destination;
7237 DCHECK(ExpectedPairLayout(source));
7238 GetAssembler()->StoreToOffset(kStoreWordPair,
7239 LowRegisterFrom(source),
7240 sp,
7241 destination.GetStackIndex());
7242 }
7243 } else if (source.IsFpuRegisterPair()) {
7244 if (destination.IsRegisterPair()) {
7245 __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source));
7246 } else if (destination.IsFpuRegisterPair()) {
7247 __ Vmov(DRegisterFrom(destination), DRegisterFrom(source));
7248 } else {
7249 DCHECK(destination.IsDoubleStackSlot()) << destination;
7250 GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex());
7251 }
7252 } else {
7253 DCHECK(source.IsConstant()) << source;
7254 HConstant* constant = source.GetConstant();
7255 if (constant->IsIntConstant() || constant->IsNullConstant()) {
7256 int32_t value = CodeGenerator::GetInt32ValueOf(constant);
7257 if (destination.IsRegister()) {
7258 __ Mov(RegisterFrom(destination), value);
7259 } else {
7260 DCHECK(destination.IsStackSlot());
7261 vixl32::Register temp = temps.Acquire();
7262 __ Mov(temp, value);
7263 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7264 }
7265 } else if (constant->IsLongConstant()) {
7266 int64_t value = Int64ConstantFrom(source);
7267 if (destination.IsRegisterPair()) {
7268 __ Mov(LowRegisterFrom(destination), Low32Bits(value));
7269 __ Mov(HighRegisterFrom(destination), High32Bits(value));
7270 } else {
7271 DCHECK(destination.IsDoubleStackSlot()) << destination;
7272 vixl32::Register temp = temps.Acquire();
7273 __ Mov(temp, Low32Bits(value));
7274 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7275 __ Mov(temp, High32Bits(value));
7276 GetAssembler()->StoreToOffset(kStoreWord,
7277 temp,
7278 sp,
7279 destination.GetHighStackIndex(kArmWordSize));
7280 }
7281 } else if (constant->IsDoubleConstant()) {
7282 double value = constant->AsDoubleConstant()->GetValue();
7283 if (destination.IsFpuRegisterPair()) {
7284 __ Vmov(DRegisterFrom(destination), value);
7285 } else {
7286 DCHECK(destination.IsDoubleStackSlot()) << destination;
7287 uint64_t int_value = bit_cast<uint64_t, double>(value);
7288 vixl32::Register temp = temps.Acquire();
7289 __ Mov(temp, Low32Bits(int_value));
7290 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7291 __ Mov(temp, High32Bits(int_value));
7292 GetAssembler()->StoreToOffset(kStoreWord,
7293 temp,
7294 sp,
7295 destination.GetHighStackIndex(kArmWordSize));
7296 }
7297 } else {
7298 DCHECK(constant->IsFloatConstant()) << constant->DebugName();
7299 float value = constant->AsFloatConstant()->GetValue();
7300 if (destination.IsFpuRegister()) {
7301 __ Vmov(SRegisterFrom(destination), value);
7302 } else {
7303 DCHECK(destination.IsStackSlot());
7304 vixl32::Register temp = temps.Acquire();
7305 __ Mov(temp, bit_cast<int32_t, float>(value));
7306 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7307 }
7308 }
7309 }
7310 }
7311
Exchange(vixl32::Register reg,int mem)7312 void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) {
7313 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7314 vixl32::Register temp = temps.Acquire();
7315 __ Mov(temp, reg);
7316 GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem);
7317 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7318 }
7319
Exchange(int mem1,int mem2)7320 void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
7321 // TODO(VIXL32): Double check the performance of this implementation.
7322 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7323 vixl32::Register temp1 = temps.Acquire();
7324 ScratchRegisterScope ensure_scratch(
7325 this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters());
7326 vixl32::Register temp2(ensure_scratch.GetRegister());
7327
7328 int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
7329 GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset);
7330 GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset);
7331 GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset);
7332 GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset);
7333 }
7334
EmitSwap(size_t index)7335 void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
7336 MoveOperands* move = moves_[index];
7337 Location source = move->GetSource();
7338 Location destination = move->GetDestination();
7339 UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7340
7341 if (source.IsRegister() && destination.IsRegister()) {
7342 vixl32::Register temp = temps.Acquire();
7343 DCHECK(!RegisterFrom(source).Is(temp));
7344 DCHECK(!RegisterFrom(destination).Is(temp));
7345 __ Mov(temp, RegisterFrom(destination));
7346 __ Mov(RegisterFrom(destination), RegisterFrom(source));
7347 __ Mov(RegisterFrom(source), temp);
7348 } else if (source.IsRegister() && destination.IsStackSlot()) {
7349 Exchange(RegisterFrom(source), destination.GetStackIndex());
7350 } else if (source.IsStackSlot() && destination.IsRegister()) {
7351 Exchange(RegisterFrom(destination), source.GetStackIndex());
7352 } else if (source.IsStackSlot() && destination.IsStackSlot()) {
7353 Exchange(source.GetStackIndex(), destination.GetStackIndex());
7354 } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
7355 vixl32::Register temp = temps.Acquire();
7356 __ Vmov(temp, SRegisterFrom(source));
7357 __ Vmov(SRegisterFrom(source), SRegisterFrom(destination));
7358 __ Vmov(SRegisterFrom(destination), temp);
7359 } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
7360 vixl32::DRegister temp = temps.AcquireD();
7361 __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source));
7362 __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination));
7363 __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination));
7364 __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp);
7365 } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
7366 vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination);
7367 int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex();
7368 DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
7369 vixl32::DRegister temp = temps.AcquireD();
7370 __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1));
7371 GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem);
7372 GetAssembler()->StoreDToOffset(temp, sp, mem);
7373 } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
7374 vixl32::DRegister first = DRegisterFrom(source);
7375 vixl32::DRegister second = DRegisterFrom(destination);
7376 vixl32::DRegister temp = temps.AcquireD();
7377 __ Vmov(temp, first);
7378 __ Vmov(first, second);
7379 __ Vmov(second, temp);
7380 } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
7381 vixl32::DRegister reg = source.IsFpuRegisterPair()
7382 ? DRegisterFrom(source)
7383 : DRegisterFrom(destination);
7384 int mem = source.IsFpuRegisterPair()
7385 ? destination.GetStackIndex()
7386 : source.GetStackIndex();
7387 vixl32::DRegister temp = temps.AcquireD();
7388 __ Vmov(temp, reg);
7389 GetAssembler()->LoadDFromOffset(reg, sp, mem);
7390 GetAssembler()->StoreDToOffset(temp, sp, mem);
7391 } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
7392 vixl32::SRegister reg = source.IsFpuRegister()
7393 ? SRegisterFrom(source)
7394 : SRegisterFrom(destination);
7395 int mem = source.IsFpuRegister()
7396 ? destination.GetStackIndex()
7397 : source.GetStackIndex();
7398 vixl32::Register temp = temps.Acquire();
7399 __ Vmov(temp, reg);
7400 GetAssembler()->LoadSFromOffset(reg, sp, mem);
7401 GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7402 } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
7403 vixl32::DRegister temp1 = temps.AcquireD();
7404 vixl32::DRegister temp2 = temps.AcquireD();
7405 __ Vldr(temp1, MemOperand(sp, source.GetStackIndex()));
7406 __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex()));
7407 __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex()));
7408 __ Vstr(temp2, MemOperand(sp, source.GetStackIndex()));
7409 } else {
7410 LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
7411 }
7412 }
7413
SpillScratch(int reg)7414 void ParallelMoveResolverARMVIXL::SpillScratch(int reg) {
7415 __ Push(vixl32::Register(reg));
7416 }
7417
RestoreScratch(int reg)7418 void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) {
7419 __ Pop(vixl32::Register(reg));
7420 }
7421
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)7422 HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
7423 HLoadClass::LoadKind desired_class_load_kind) {
7424 switch (desired_class_load_kind) {
7425 case HLoadClass::LoadKind::kInvalid:
7426 LOG(FATAL) << "UNREACHABLE";
7427 UNREACHABLE();
7428 case HLoadClass::LoadKind::kReferrersClass:
7429 break;
7430 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
7431 case HLoadClass::LoadKind::kBootImageRelRo:
7432 case HLoadClass::LoadKind::kBssEntry:
7433 case HLoadClass::LoadKind::kBssEntryPublic:
7434 case HLoadClass::LoadKind::kBssEntryPackage:
7435 DCHECK(!GetCompilerOptions().IsJitCompiler());
7436 break;
7437 case HLoadClass::LoadKind::kJitBootImageAddress:
7438 case HLoadClass::LoadKind::kJitTableAddress:
7439 DCHECK(GetCompilerOptions().IsJitCompiler());
7440 break;
7441 case HLoadClass::LoadKind::kRuntimeCall:
7442 break;
7443 }
7444 return desired_class_load_kind;
7445 }
7446
VisitLoadClass(HLoadClass * cls)7447 void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) {
7448 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7449 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7450 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7451 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
7452 cls,
7453 LocationFrom(calling_convention.GetRegisterAt(0)),
7454 LocationFrom(r0));
7455 DCHECK(calling_convention.GetRegisterAt(0).Is(r0));
7456 return;
7457 }
7458 DCHECK_EQ(cls->NeedsAccessCheck(),
7459 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7460 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7461
7462 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
7463 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
7464 ? LocationSummary::kCallOnSlowPath
7465 : LocationSummary::kNoCall;
7466 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
7467 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
7468 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7469 }
7470
7471 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
7472 locations->SetInAt(0, Location::RequiresRegister());
7473 }
7474 locations->SetOut(Location::RequiresRegister());
7475 if (load_kind == HLoadClass::LoadKind::kBssEntry) {
7476 if (!kUseReadBarrier || kUseBakerReadBarrier) {
7477 // Rely on the type resolution or initialization and marking to save everything we need.
7478 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7479 } else {
7480 // For non-Baker read barrier we have a temp-clobbering call.
7481 }
7482 }
7483 }
7484
7485 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7486 // move.
VisitLoadClass(HLoadClass * cls)7487 void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
7488 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7489 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7490 codegen_->GenerateLoadClassRuntimeCall(cls);
7491 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 15);
7492 return;
7493 }
7494 DCHECK_EQ(cls->NeedsAccessCheck(),
7495 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
7496 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
7497
7498 LocationSummary* locations = cls->GetLocations();
7499 Location out_loc = locations->Out();
7500 vixl32::Register out = OutputRegister(cls);
7501
7502 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
7503 ? kWithoutReadBarrier
7504 : kCompilerReadBarrierOption;
7505 bool generate_null_check = false;
7506 switch (load_kind) {
7507 case HLoadClass::LoadKind::kReferrersClass: {
7508 DCHECK(!cls->CanCallRuntime());
7509 DCHECK(!cls->MustGenerateClinitCheck());
7510 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
7511 vixl32::Register current_method = InputRegisterAt(cls, 0);
7512 codegen_->GenerateGcRootFieldLoad(cls,
7513 out_loc,
7514 current_method,
7515 ArtMethod::DeclaringClassOffset().Int32Value(),
7516 read_barrier_option);
7517 break;
7518 }
7519 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
7520 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7521 codegen_->GetCompilerOptions().IsBootImageExtension());
7522 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7523 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7524 codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
7525 codegen_->EmitMovwMovtPlaceholder(labels, out);
7526 break;
7527 }
7528 case HLoadClass::LoadKind::kBootImageRelRo: {
7529 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7530 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
7531 codegen_->LoadBootImageRelRoEntry(out, boot_image_offset);
7532 break;
7533 }
7534 case HLoadClass::LoadKind::kBssEntry:
7535 case HLoadClass::LoadKind::kBssEntryPublic:
7536 case HLoadClass::LoadKind::kBssEntryPackage: {
7537 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = codegen_->NewTypeBssEntryPatch(cls);
7538 codegen_->EmitMovwMovtPlaceholder(labels, out);
7539 // All aligned loads are implicitly atomic consume operations on ARM.
7540 codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /*offset=*/ 0, read_barrier_option);
7541 generate_null_check = true;
7542 break;
7543 }
7544 case HLoadClass::LoadKind::kJitBootImageAddress: {
7545 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7546 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
7547 DCHECK_NE(address, 0u);
7548 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7549 break;
7550 }
7551 case HLoadClass::LoadKind::kJitTableAddress: {
7552 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
7553 cls->GetTypeIndex(),
7554 cls->GetClass()));
7555 // /* GcRoot<mirror::Class> */ out = *out
7556 codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /*offset=*/ 0, read_barrier_option);
7557 break;
7558 }
7559 case HLoadClass::LoadKind::kRuntimeCall:
7560 case HLoadClass::LoadKind::kInvalid:
7561 LOG(FATAL) << "UNREACHABLE";
7562 UNREACHABLE();
7563 }
7564
7565 if (generate_null_check || cls->MustGenerateClinitCheck()) {
7566 DCHECK(cls->CanCallRuntime());
7567 LoadClassSlowPathARMVIXL* slow_path =
7568 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(cls, cls);
7569 codegen_->AddSlowPath(slow_path);
7570 if (generate_null_check) {
7571 __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7572 }
7573 if (cls->MustGenerateClinitCheck()) {
7574 GenerateClassInitializationCheck(slow_path, out);
7575 } else {
7576 __ Bind(slow_path->GetExitLabel());
7577 }
7578 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 16);
7579 }
7580 }
7581
VisitLoadMethodHandle(HLoadMethodHandle * load)7582 void LocationsBuilderARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7583 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7584 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7585 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
7586 }
7587
VisitLoadMethodHandle(HLoadMethodHandle * load)7588 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7589 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
7590 }
7591
VisitLoadMethodType(HLoadMethodType * load)7592 void LocationsBuilderARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7593 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7594 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7595 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
7596 }
7597
VisitLoadMethodType(HLoadMethodType * load)7598 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7599 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
7600 }
7601
VisitClinitCheck(HClinitCheck * check)7602 void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7603 LocationSummary* locations =
7604 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
7605 locations->SetInAt(0, Location::RequiresRegister());
7606 if (check->HasUses()) {
7607 locations->SetOut(Location::SameAsFirstInput());
7608 }
7609 // Rely on the type initialization to save everything we need.
7610 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7611 }
7612
VisitClinitCheck(HClinitCheck * check)7613 void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7614 // We assume the class is not null.
7615 LoadClassSlowPathARMVIXL* slow_path =
7616 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(check->GetLoadClass(), check);
7617 codegen_->AddSlowPath(slow_path);
7618 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
7619 }
7620
GenerateClassInitializationCheck(LoadClassSlowPathARMVIXL * slow_path,vixl32::Register class_reg)7621 void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck(
7622 LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) {
7623 UseScratchRegisterScope temps(GetVIXLAssembler());
7624 vixl32::Register temp = temps.Acquire();
7625 constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
7626 constexpr uint32_t shifted_visibly_initialized_value =
7627 enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << status_lsb_position;
7628
7629 const size_t status_offset = mirror::Class::StatusOffset().SizeValue();
7630 GetAssembler()->LoadFromOffset(kLoadWord, temp, class_reg, status_offset);
7631 __ Cmp(temp, shifted_visibly_initialized_value);
7632 __ B(lo, slow_path->GetEntryLabel());
7633 __ Bind(slow_path->GetExitLabel());
7634 }
7635
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl32::Register temp,vixl32::FlagsUpdate flags_update)7636 void InstructionCodeGeneratorARMVIXL::GenerateBitstringTypeCheckCompare(
7637 HTypeCheckInstruction* check,
7638 vixl32::Register temp,
7639 vixl32::FlagsUpdate flags_update) {
7640 uint32_t path_to_root = check->GetBitstringPathToRoot();
7641 uint32_t mask = check->GetBitstringMask();
7642 DCHECK(IsPowerOfTwo(mask + 1));
7643 size_t mask_bits = WhichPowerOf2(mask + 1);
7644
7645 // Note that HInstanceOf shall check for zero value in `temp` but HCheckCast needs
7646 // the Z flag for BNE. This is indicated by the `flags_update` parameter.
7647 if (mask_bits == 16u) {
7648 // Load only the bitstring part of the status word.
7649 __ Ldrh(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7650 // Check if the bitstring bits are equal to `path_to_root`.
7651 if (flags_update == SetFlags) {
7652 __ Cmp(temp, path_to_root);
7653 } else {
7654 __ Sub(temp, temp, path_to_root);
7655 }
7656 } else {
7657 // /* uint32_t */ temp = temp->status_
7658 __ Ldr(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7659 if (GetAssembler()->ShifterOperandCanHold(SUB, path_to_root)) {
7660 // Compare the bitstring bits using SUB.
7661 __ Sub(temp, temp, path_to_root);
7662 // Shift out bits that do not contribute to the comparison.
7663 __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7664 } else if (IsUint<16>(path_to_root)) {
7665 if (temp.IsLow()) {
7666 // Note: Optimized for size but contains one more dependent instruction than necessary.
7667 // MOVW+SUB(register) would be 8 bytes unless we find a low-reg temporary but the
7668 // macro assembler would use the high reg IP for the constant by default.
7669 // Compare the bitstring bits using SUB.
7670 __ Sub(temp, temp, path_to_root & 0x00ffu); // 16-bit SUB (immediate) T2
7671 __ Sub(temp, temp, path_to_root & 0xff00u); // 32-bit SUB (immediate) T3
7672 // Shift out bits that do not contribute to the comparison.
7673 __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7674 } else {
7675 // Extract the bitstring bits.
7676 __ Ubfx(temp, temp, 0, mask_bits);
7677 // Check if the bitstring bits are equal to `path_to_root`.
7678 if (flags_update == SetFlags) {
7679 __ Cmp(temp, path_to_root);
7680 } else {
7681 __ Sub(temp, temp, path_to_root);
7682 }
7683 }
7684 } else {
7685 // Shift out bits that do not contribute to the comparison.
7686 __ Lsl(temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7687 // Check if the shifted bitstring bits are equal to `path_to_root << (32u - mask_bits)`.
7688 if (flags_update == SetFlags) {
7689 __ Cmp(temp, path_to_root << (32u - mask_bits));
7690 } else {
7691 __ Sub(temp, temp, path_to_root << (32u - mask_bits));
7692 }
7693 }
7694 }
7695 }
7696
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)7697 HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
7698 HLoadString::LoadKind desired_string_load_kind) {
7699 switch (desired_string_load_kind) {
7700 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
7701 case HLoadString::LoadKind::kBootImageRelRo:
7702 case HLoadString::LoadKind::kBssEntry:
7703 DCHECK(!GetCompilerOptions().IsJitCompiler());
7704 break;
7705 case HLoadString::LoadKind::kJitBootImageAddress:
7706 case HLoadString::LoadKind::kJitTableAddress:
7707 DCHECK(GetCompilerOptions().IsJitCompiler());
7708 break;
7709 case HLoadString::LoadKind::kRuntimeCall:
7710 break;
7711 }
7712 return desired_string_load_kind;
7713 }
7714
VisitLoadString(HLoadString * load)7715 void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) {
7716 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
7717 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
7718 HLoadString::LoadKind load_kind = load->GetLoadKind();
7719 if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
7720 locations->SetOut(LocationFrom(r0));
7721 } else {
7722 locations->SetOut(Location::RequiresRegister());
7723 if (load_kind == HLoadString::LoadKind::kBssEntry) {
7724 if (!kUseReadBarrier || kUseBakerReadBarrier) {
7725 // Rely on the pResolveString and marking to save everything we need, including temps.
7726 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7727 } else {
7728 // For non-Baker read barrier we have a temp-clobbering call.
7729 }
7730 }
7731 }
7732 }
7733
7734 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7735 // move.
VisitLoadString(HLoadString * load)7736 void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
7737 LocationSummary* locations = load->GetLocations();
7738 Location out_loc = locations->Out();
7739 vixl32::Register out = OutputRegister(load);
7740 HLoadString::LoadKind load_kind = load->GetLoadKind();
7741
7742 switch (load_kind) {
7743 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
7744 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7745 codegen_->GetCompilerOptions().IsBootImageExtension());
7746 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7747 codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex());
7748 codegen_->EmitMovwMovtPlaceholder(labels, out);
7749 return;
7750 }
7751 case HLoadString::LoadKind::kBootImageRelRo: {
7752 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7753 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
7754 codegen_->LoadBootImageRelRoEntry(out, boot_image_offset);
7755 return;
7756 }
7757 case HLoadString::LoadKind::kBssEntry: {
7758 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7759 codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex());
7760 codegen_->EmitMovwMovtPlaceholder(labels, out);
7761 // All aligned loads are implicitly atomic consume operations on ARM.
7762 codegen_->GenerateGcRootFieldLoad(
7763 load, out_loc, out, /*offset=*/ 0, kCompilerReadBarrierOption);
7764 LoadStringSlowPathARMVIXL* slow_path =
7765 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARMVIXL(load);
7766 codegen_->AddSlowPath(slow_path);
7767 __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7768 __ Bind(slow_path->GetExitLabel());
7769 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 17);
7770 return;
7771 }
7772 case HLoadString::LoadKind::kJitBootImageAddress: {
7773 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
7774 DCHECK_NE(address, 0u);
7775 __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7776 return;
7777 }
7778 case HLoadString::LoadKind::kJitTableAddress: {
7779 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
7780 load->GetStringIndex(),
7781 load->GetString()));
7782 // /* GcRoot<mirror::String> */ out = *out
7783 codegen_->GenerateGcRootFieldLoad(
7784 load, out_loc, out, /*offset=*/ 0, kCompilerReadBarrierOption);
7785 return;
7786 }
7787 default:
7788 break;
7789 }
7790
7791 // TODO: Re-add the compiler code to do string dex cache lookup again.
7792 DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kRuntimeCall);
7793 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7794 __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
7795 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
7796 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
7797 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 18);
7798 }
7799
GetExceptionTlsOffset()7800 static int32_t GetExceptionTlsOffset() {
7801 return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
7802 }
7803
VisitLoadException(HLoadException * load)7804 void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) {
7805 LocationSummary* locations =
7806 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
7807 locations->SetOut(Location::RequiresRegister());
7808 }
7809
VisitLoadException(HLoadException * load)7810 void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) {
7811 vixl32::Register out = OutputRegister(load);
7812 GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset());
7813 }
7814
7815
VisitClearException(HClearException * clear)7816 void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) {
7817 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
7818 }
7819
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)7820 void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
7821 UseScratchRegisterScope temps(GetVIXLAssembler());
7822 vixl32::Register temp = temps.Acquire();
7823 __ Mov(temp, 0);
7824 GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset());
7825 }
7826
VisitThrow(HThrow * instruction)7827 void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) {
7828 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7829 instruction, LocationSummary::kCallOnMainOnly);
7830 InvokeRuntimeCallingConventionARMVIXL calling_convention;
7831 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
7832 }
7833
VisitThrow(HThrow * instruction)7834 void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) {
7835 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
7836 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
7837 }
7838
7839 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)7840 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
7841 if (kEmitCompilerReadBarrier &&
7842 (kUseBakerReadBarrier ||
7843 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7844 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7845 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
7846 return 1;
7847 }
7848 return 0;
7849 }
7850
7851 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
7852 // interface pointer, one for loading the current interface.
7853 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)7854 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
7855 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7856 return 3;
7857 }
7858 return 1 + NumberOfInstanceOfTemps(type_check_kind);
7859 }
7860
VisitInstanceOf(HInstanceOf * instruction)7861 void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7862 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7863 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7864 bool baker_read_barrier_slow_path = false;
7865 switch (type_check_kind) {
7866 case TypeCheckKind::kExactCheck:
7867 case TypeCheckKind::kAbstractClassCheck:
7868 case TypeCheckKind::kClassHierarchyCheck:
7869 case TypeCheckKind::kArrayObjectCheck: {
7870 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
7871 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7872 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
7873 break;
7874 }
7875 case TypeCheckKind::kArrayCheck:
7876 case TypeCheckKind::kUnresolvedCheck:
7877 case TypeCheckKind::kInterfaceCheck:
7878 call_kind = LocationSummary::kCallOnSlowPath;
7879 break;
7880 case TypeCheckKind::kBitstringCheck:
7881 break;
7882 }
7883
7884 LocationSummary* locations =
7885 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7886 if (baker_read_barrier_slow_path) {
7887 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7888 }
7889 locations->SetInAt(0, Location::RequiresRegister());
7890 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7891 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7892 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7893 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7894 } else {
7895 locations->SetInAt(1, Location::RequiresRegister());
7896 }
7897 // The "out" register is used as a temporary, so it overlaps with the inputs.
7898 // Note that TypeCheckSlowPathARM uses this register too.
7899 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
7900 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
7901 }
7902
VisitInstanceOf(HInstanceOf * instruction)7903 void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7904 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7905 LocationSummary* locations = instruction->GetLocations();
7906 Location obj_loc = locations->InAt(0);
7907 vixl32::Register obj = InputRegisterAt(instruction, 0);
7908 vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
7909 ? vixl32::Register()
7910 : InputRegisterAt(instruction, 1);
7911 Location out_loc = locations->Out();
7912 vixl32::Register out = OutputRegister(instruction);
7913 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
7914 DCHECK_LE(num_temps, 1u);
7915 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
7916 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7917 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7918 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7919 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7920 vixl32::Label done;
7921 vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
7922 SlowPathCodeARMVIXL* slow_path = nullptr;
7923
7924 // Return 0 if `obj` is null.
7925 // avoid null check if we know obj is not null.
7926 if (instruction->MustDoNullCheck()) {
7927 DCHECK(!out.Is(obj));
7928 __ Mov(out, 0);
7929 __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
7930 }
7931
7932 switch (type_check_kind) {
7933 case TypeCheckKind::kExactCheck: {
7934 ReadBarrierOption read_barrier_option =
7935 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7936 // /* HeapReference<Class> */ out = obj->klass_
7937 GenerateReferenceLoadTwoRegisters(instruction,
7938 out_loc,
7939 obj_loc,
7940 class_offset,
7941 maybe_temp_loc,
7942 read_barrier_option);
7943 // Classes must be equal for the instanceof to succeed.
7944 __ Cmp(out, cls);
7945 // We speculatively set the result to false without changing the condition
7946 // flags, which allows us to avoid some branching later.
7947 __ Mov(LeaveFlags, out, 0);
7948
7949 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7950 // we check that the output is in a low register, so that a 16-bit MOV
7951 // encoding can be used.
7952 if (out.IsLow()) {
7953 // We use the scope because of the IT block that follows.
7954 ExactAssemblyScope guard(GetVIXLAssembler(),
7955 2 * vixl32::k16BitT32InstructionSizeInBytes,
7956 CodeBufferCheckScope::kExactSize);
7957
7958 __ it(eq);
7959 __ mov(eq, out, 1);
7960 } else {
7961 __ B(ne, final_label, /* is_far_target= */ false);
7962 __ Mov(out, 1);
7963 }
7964
7965 break;
7966 }
7967
7968 case TypeCheckKind::kAbstractClassCheck: {
7969 ReadBarrierOption read_barrier_option =
7970 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7971 // /* HeapReference<Class> */ out = obj->klass_
7972 GenerateReferenceLoadTwoRegisters(instruction,
7973 out_loc,
7974 obj_loc,
7975 class_offset,
7976 maybe_temp_loc,
7977 read_barrier_option);
7978 // If the class is abstract, we eagerly fetch the super class of the
7979 // object to avoid doing a comparison we know will fail.
7980 vixl32::Label loop;
7981 __ Bind(&loop);
7982 // /* HeapReference<Class> */ out = out->super_class_
7983 GenerateReferenceLoadOneRegister(instruction,
7984 out_loc,
7985 super_offset,
7986 maybe_temp_loc,
7987 read_barrier_option);
7988 // If `out` is null, we use it for the result, and jump to the final label.
7989 __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
7990 __ Cmp(out, cls);
7991 __ B(ne, &loop, /* is_far_target= */ false);
7992 __ Mov(out, 1);
7993 break;
7994 }
7995
7996 case TypeCheckKind::kClassHierarchyCheck: {
7997 ReadBarrierOption read_barrier_option =
7998 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7999 // /* HeapReference<Class> */ out = obj->klass_
8000 GenerateReferenceLoadTwoRegisters(instruction,
8001 out_loc,
8002 obj_loc,
8003 class_offset,
8004 maybe_temp_loc,
8005 read_barrier_option);
8006 // Walk over the class hierarchy to find a match.
8007 vixl32::Label loop, success;
8008 __ Bind(&loop);
8009 __ Cmp(out, cls);
8010 __ B(eq, &success, /* is_far_target= */ false);
8011 // /* HeapReference<Class> */ out = out->super_class_
8012 GenerateReferenceLoadOneRegister(instruction,
8013 out_loc,
8014 super_offset,
8015 maybe_temp_loc,
8016 read_barrier_option);
8017 // This is essentially a null check, but it sets the condition flags to the
8018 // proper value for the code that follows the loop, i.e. not `eq`.
8019 __ Cmp(out, 1);
8020 __ B(hs, &loop, /* is_far_target= */ false);
8021
8022 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
8023 // we check that the output is in a low register, so that a 16-bit MOV
8024 // encoding can be used.
8025 if (out.IsLow()) {
8026 // If `out` is null, we use it for the result, and the condition flags
8027 // have already been set to `ne`, so the IT block that comes afterwards
8028 // (and which handles the successful case) turns into a NOP (instead of
8029 // overwriting `out`).
8030 __ Bind(&success);
8031
8032 // We use the scope because of the IT block that follows.
8033 ExactAssemblyScope guard(GetVIXLAssembler(),
8034 2 * vixl32::k16BitT32InstructionSizeInBytes,
8035 CodeBufferCheckScope::kExactSize);
8036
8037 // There is only one branch to the `success` label (which is bound to this
8038 // IT block), and it has the same condition, `eq`, so in that case the MOV
8039 // is executed.
8040 __ it(eq);
8041 __ mov(eq, out, 1);
8042 } else {
8043 // If `out` is null, we use it for the result, and jump to the final label.
8044 __ B(final_label);
8045 __ Bind(&success);
8046 __ Mov(out, 1);
8047 }
8048
8049 break;
8050 }
8051
8052 case TypeCheckKind::kArrayObjectCheck: {
8053 ReadBarrierOption read_barrier_option =
8054 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
8055 // /* HeapReference<Class> */ out = obj->klass_
8056 GenerateReferenceLoadTwoRegisters(instruction,
8057 out_loc,
8058 obj_loc,
8059 class_offset,
8060 maybe_temp_loc,
8061 read_barrier_option);
8062 // Do an exact check.
8063 vixl32::Label exact_check;
8064 __ Cmp(out, cls);
8065 __ B(eq, &exact_check, /* is_far_target= */ false);
8066 // Otherwise, we need to check that the object's class is a non-primitive array.
8067 // /* HeapReference<Class> */ out = out->component_type_
8068 GenerateReferenceLoadOneRegister(instruction,
8069 out_loc,
8070 component_offset,
8071 maybe_temp_loc,
8072 read_barrier_option);
8073 // If `out` is null, we use it for the result, and jump to the final label.
8074 __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
8075 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
8076 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8077 __ Cmp(out, 0);
8078 // We speculatively set the result to false without changing the condition
8079 // flags, which allows us to avoid some branching later.
8080 __ Mov(LeaveFlags, out, 0);
8081
8082 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
8083 // we check that the output is in a low register, so that a 16-bit MOV
8084 // encoding can be used.
8085 if (out.IsLow()) {
8086 __ Bind(&exact_check);
8087
8088 // We use the scope because of the IT block that follows.
8089 ExactAssemblyScope guard(GetVIXLAssembler(),
8090 2 * vixl32::k16BitT32InstructionSizeInBytes,
8091 CodeBufferCheckScope::kExactSize);
8092
8093 __ it(eq);
8094 __ mov(eq, out, 1);
8095 } else {
8096 __ B(ne, final_label, /* is_far_target= */ false);
8097 __ Bind(&exact_check);
8098 __ Mov(out, 1);
8099 }
8100
8101 break;
8102 }
8103
8104 case TypeCheckKind::kArrayCheck: {
8105 // No read barrier since the slow path will retry upon failure.
8106 // /* HeapReference<Class> */ out = obj->klass_
8107 GenerateReferenceLoadTwoRegisters(instruction,
8108 out_loc,
8109 obj_loc,
8110 class_offset,
8111 maybe_temp_loc,
8112 kWithoutReadBarrier);
8113 __ Cmp(out, cls);
8114 DCHECK(locations->OnlyCallsOnSlowPath());
8115 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8116 instruction, /* is_fatal= */ false);
8117 codegen_->AddSlowPath(slow_path);
8118 __ B(ne, slow_path->GetEntryLabel());
8119 __ Mov(out, 1);
8120 break;
8121 }
8122
8123 case TypeCheckKind::kUnresolvedCheck:
8124 case TypeCheckKind::kInterfaceCheck: {
8125 // Note that we indeed only call on slow path, but we always go
8126 // into the slow path for the unresolved and interface check
8127 // cases.
8128 //
8129 // We cannot directly call the InstanceofNonTrivial runtime
8130 // entry point without resorting to a type checking slow path
8131 // here (i.e. by calling InvokeRuntime directly), as it would
8132 // require to assign fixed registers for the inputs of this
8133 // HInstanceOf instruction (following the runtime calling
8134 // convention), which might be cluttered by the potential first
8135 // read barrier emission at the beginning of this method.
8136 //
8137 // TODO: Introduce a new runtime entry point taking the object
8138 // to test (instead of its class) as argument, and let it deal
8139 // with the read barrier issues. This will let us refactor this
8140 // case of the `switch` code as it was previously (with a direct
8141 // call to the runtime not using a type checking slow path).
8142 // This should also be beneficial for the other cases above.
8143 DCHECK(locations->OnlyCallsOnSlowPath());
8144 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8145 instruction, /* is_fatal= */ false);
8146 codegen_->AddSlowPath(slow_path);
8147 __ B(slow_path->GetEntryLabel());
8148 break;
8149 }
8150
8151 case TypeCheckKind::kBitstringCheck: {
8152 // /* HeapReference<Class> */ temp = obj->klass_
8153 GenerateReferenceLoadTwoRegisters(instruction,
8154 out_loc,
8155 obj_loc,
8156 class_offset,
8157 maybe_temp_loc,
8158 kWithoutReadBarrier);
8159
8160 GenerateBitstringTypeCheckCompare(instruction, out, DontCare);
8161 // If `out` is a low reg and we would have another low reg temp, we could
8162 // optimize this as RSBS+ADC, see GenerateConditionWithZero().
8163 //
8164 // Also, in some cases when `out` is a low reg and we're loading a constant to IP
8165 // it would make sense to use CMP+MOV+IT+MOV instead of SUB+CLZ+LSR as the code size
8166 // would be the same and we would have fewer direct data dependencies.
8167 codegen_->GenerateConditionWithZero(kCondEQ, out, out); // CLZ+LSR
8168 break;
8169 }
8170 }
8171
8172 if (done.IsReferenced()) {
8173 __ Bind(&done);
8174 }
8175
8176 if (slow_path != nullptr) {
8177 __ Bind(slow_path->GetExitLabel());
8178 }
8179 }
8180
VisitCheckCast(HCheckCast * instruction)8181 void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) {
8182 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8183 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
8184 LocationSummary* locations =
8185 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
8186 locations->SetInAt(0, Location::RequiresRegister());
8187 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
8188 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
8189 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
8190 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
8191 } else {
8192 locations->SetInAt(1, Location::RequiresRegister());
8193 }
8194 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
8195 }
8196
VisitCheckCast(HCheckCast * instruction)8197 void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) {
8198 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
8199 LocationSummary* locations = instruction->GetLocations();
8200 Location obj_loc = locations->InAt(0);
8201 vixl32::Register obj = InputRegisterAt(instruction, 0);
8202 vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
8203 ? vixl32::Register()
8204 : InputRegisterAt(instruction, 1);
8205 Location temp_loc = locations->GetTemp(0);
8206 vixl32::Register temp = RegisterFrom(temp_loc);
8207 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
8208 DCHECK_LE(num_temps, 3u);
8209 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
8210 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
8211 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8212 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
8213 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
8214 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
8215 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
8216 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
8217 const uint32_t object_array_data_offset =
8218 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
8219
8220 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
8221 SlowPathCodeARMVIXL* type_check_slow_path =
8222 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
8223 instruction, is_type_check_slow_path_fatal);
8224 codegen_->AddSlowPath(type_check_slow_path);
8225
8226 vixl32::Label done;
8227 vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
8228 // Avoid null check if we know obj is not null.
8229 if (instruction->MustDoNullCheck()) {
8230 __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
8231 }
8232
8233 switch (type_check_kind) {
8234 case TypeCheckKind::kExactCheck:
8235 case TypeCheckKind::kArrayCheck: {
8236 // /* HeapReference<Class> */ temp = obj->klass_
8237 GenerateReferenceLoadTwoRegisters(instruction,
8238 temp_loc,
8239 obj_loc,
8240 class_offset,
8241 maybe_temp2_loc,
8242 kWithoutReadBarrier);
8243
8244 __ Cmp(temp, cls);
8245 // Jump to slow path for throwing the exception or doing a
8246 // more involved array check.
8247 __ B(ne, type_check_slow_path->GetEntryLabel());
8248 break;
8249 }
8250
8251 case TypeCheckKind::kAbstractClassCheck: {
8252 // /* HeapReference<Class> */ temp = obj->klass_
8253 GenerateReferenceLoadTwoRegisters(instruction,
8254 temp_loc,
8255 obj_loc,
8256 class_offset,
8257 maybe_temp2_loc,
8258 kWithoutReadBarrier);
8259
8260 // If the class is abstract, we eagerly fetch the super class of the
8261 // object to avoid doing a comparison we know will fail.
8262 vixl32::Label loop;
8263 __ Bind(&loop);
8264 // /* HeapReference<Class> */ temp = temp->super_class_
8265 GenerateReferenceLoadOneRegister(instruction,
8266 temp_loc,
8267 super_offset,
8268 maybe_temp2_loc,
8269 kWithoutReadBarrier);
8270
8271 // If the class reference currently in `temp` is null, jump to the slow path to throw the
8272 // exception.
8273 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8274
8275 // Otherwise, compare the classes.
8276 __ Cmp(temp, cls);
8277 __ B(ne, &loop, /* is_far_target= */ false);
8278 break;
8279 }
8280
8281 case TypeCheckKind::kClassHierarchyCheck: {
8282 // /* HeapReference<Class> */ temp = obj->klass_
8283 GenerateReferenceLoadTwoRegisters(instruction,
8284 temp_loc,
8285 obj_loc,
8286 class_offset,
8287 maybe_temp2_loc,
8288 kWithoutReadBarrier);
8289
8290 // Walk over the class hierarchy to find a match.
8291 vixl32::Label loop;
8292 __ Bind(&loop);
8293 __ Cmp(temp, cls);
8294 __ B(eq, final_label, /* is_far_target= */ false);
8295
8296 // /* HeapReference<Class> */ temp = temp->super_class_
8297 GenerateReferenceLoadOneRegister(instruction,
8298 temp_loc,
8299 super_offset,
8300 maybe_temp2_loc,
8301 kWithoutReadBarrier);
8302
8303 // If the class reference currently in `temp` is null, jump to the slow path to throw the
8304 // exception.
8305 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8306 // Otherwise, jump to the beginning of the loop.
8307 __ B(&loop);
8308 break;
8309 }
8310
8311 case TypeCheckKind::kArrayObjectCheck: {
8312 // /* HeapReference<Class> */ temp = obj->klass_
8313 GenerateReferenceLoadTwoRegisters(instruction,
8314 temp_loc,
8315 obj_loc,
8316 class_offset,
8317 maybe_temp2_loc,
8318 kWithoutReadBarrier);
8319
8320 // Do an exact check.
8321 __ Cmp(temp, cls);
8322 __ B(eq, final_label, /* is_far_target= */ false);
8323
8324 // Otherwise, we need to check that the object's class is a non-primitive array.
8325 // /* HeapReference<Class> */ temp = temp->component_type_
8326 GenerateReferenceLoadOneRegister(instruction,
8327 temp_loc,
8328 component_offset,
8329 maybe_temp2_loc,
8330 kWithoutReadBarrier);
8331 // If the component type is null, jump to the slow path to throw the exception.
8332 __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8333 // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
8334 // to further check that this component type is not a primitive type.
8335 GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
8336 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8337 __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
8338 break;
8339 }
8340
8341 case TypeCheckKind::kUnresolvedCheck:
8342 // We always go into the type check slow path for the unresolved check case.
8343 // We cannot directly call the CheckCast runtime entry point
8344 // without resorting to a type checking slow path here (i.e. by
8345 // calling InvokeRuntime directly), as it would require to
8346 // assign fixed registers for the inputs of this HInstanceOf
8347 // instruction (following the runtime calling convention), which
8348 // might be cluttered by the potential first read barrier
8349 // emission at the beginning of this method.
8350
8351 __ B(type_check_slow_path->GetEntryLabel());
8352 break;
8353
8354 case TypeCheckKind::kInterfaceCheck: {
8355 // Avoid read barriers to improve performance of the fast path. We can not get false
8356 // positives by doing this.
8357 // /* HeapReference<Class> */ temp = obj->klass_
8358 GenerateReferenceLoadTwoRegisters(instruction,
8359 temp_loc,
8360 obj_loc,
8361 class_offset,
8362 maybe_temp2_loc,
8363 kWithoutReadBarrier);
8364
8365 // /* HeapReference<Class> */ temp = temp->iftable_
8366 GenerateReferenceLoadTwoRegisters(instruction,
8367 temp_loc,
8368 temp_loc,
8369 iftable_offset,
8370 maybe_temp2_loc,
8371 kWithoutReadBarrier);
8372 // Iftable is never null.
8373 __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset));
8374 // Loop through the iftable and check if any class matches.
8375 vixl32::Label start_loop;
8376 __ Bind(&start_loop);
8377 __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc),
8378 type_check_slow_path->GetEntryLabel());
8379 __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset));
8380 GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc));
8381 // Go to next interface.
8382 __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize));
8383 __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2);
8384 // Compare the classes and continue the loop if they do not match.
8385 __ Cmp(cls, RegisterFrom(maybe_temp3_loc));
8386 __ B(ne, &start_loop, /* is_far_target= */ false);
8387 break;
8388 }
8389
8390 case TypeCheckKind::kBitstringCheck: {
8391 // /* HeapReference<Class> */ temp = obj->klass_
8392 GenerateReferenceLoadTwoRegisters(instruction,
8393 temp_loc,
8394 obj_loc,
8395 class_offset,
8396 maybe_temp2_loc,
8397 kWithoutReadBarrier);
8398
8399 GenerateBitstringTypeCheckCompare(instruction, temp, SetFlags);
8400 __ B(ne, type_check_slow_path->GetEntryLabel());
8401 break;
8402 }
8403 }
8404 if (done.IsReferenced()) {
8405 __ Bind(&done);
8406 }
8407
8408 __ Bind(type_check_slow_path->GetExitLabel());
8409 }
8410
VisitMonitorOperation(HMonitorOperation * instruction)8411 void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8412 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8413 instruction, LocationSummary::kCallOnMainOnly);
8414 InvokeRuntimeCallingConventionARMVIXL calling_convention;
8415 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
8416 }
8417
VisitMonitorOperation(HMonitorOperation * instruction)8418 void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8419 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
8420 instruction,
8421 instruction->GetDexPc());
8422 if (instruction->IsEnter()) {
8423 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
8424 } else {
8425 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
8426 }
8427 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 19);
8428 }
8429
VisitAnd(HAnd * instruction)8430 void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) {
8431 HandleBitwiseOperation(instruction, AND);
8432 }
8433
VisitOr(HOr * instruction)8434 void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) {
8435 HandleBitwiseOperation(instruction, ORR);
8436 }
8437
VisitXor(HXor * instruction)8438 void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) {
8439 HandleBitwiseOperation(instruction, EOR);
8440 }
8441
HandleBitwiseOperation(HBinaryOperation * instruction,Opcode opcode)8442 void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
8443 LocationSummary* locations =
8444 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8445 DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8446 || instruction->GetResultType() == DataType::Type::kInt64);
8447 // Note: GVN reorders commutative operations to have the constant on the right hand side.
8448 locations->SetInAt(0, Location::RequiresRegister());
8449 locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
8450 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8451 }
8452
VisitAnd(HAnd * instruction)8453 void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) {
8454 HandleBitwiseOperation(instruction);
8455 }
8456
VisitOr(HOr * instruction)8457 void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) {
8458 HandleBitwiseOperation(instruction);
8459 }
8460
VisitXor(HXor * instruction)8461 void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) {
8462 HandleBitwiseOperation(instruction);
8463 }
8464
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8465 void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8466 LocationSummary* locations =
8467 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8468 DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8469 || instruction->GetResultType() == DataType::Type::kInt64);
8470
8471 locations->SetInAt(0, Location::RequiresRegister());
8472 locations->SetInAt(1, Location::RequiresRegister());
8473 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8474 }
8475
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8476 void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8477 LocationSummary* locations = instruction->GetLocations();
8478 Location first = locations->InAt(0);
8479 Location second = locations->InAt(1);
8480 Location out = locations->Out();
8481
8482 if (instruction->GetResultType() == DataType::Type::kInt32) {
8483 vixl32::Register first_reg = RegisterFrom(first);
8484 vixl32::Register second_reg = RegisterFrom(second);
8485 vixl32::Register out_reg = RegisterFrom(out);
8486
8487 switch (instruction->GetOpKind()) {
8488 case HInstruction::kAnd:
8489 __ Bic(out_reg, first_reg, second_reg);
8490 break;
8491 case HInstruction::kOr:
8492 __ Orn(out_reg, first_reg, second_reg);
8493 break;
8494 // There is no EON on arm.
8495 case HInstruction::kXor:
8496 default:
8497 LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8498 UNREACHABLE();
8499 }
8500 return;
8501
8502 } else {
8503 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8504 vixl32::Register first_low = LowRegisterFrom(first);
8505 vixl32::Register first_high = HighRegisterFrom(first);
8506 vixl32::Register second_low = LowRegisterFrom(second);
8507 vixl32::Register second_high = HighRegisterFrom(second);
8508 vixl32::Register out_low = LowRegisterFrom(out);
8509 vixl32::Register out_high = HighRegisterFrom(out);
8510
8511 switch (instruction->GetOpKind()) {
8512 case HInstruction::kAnd:
8513 __ Bic(out_low, first_low, second_low);
8514 __ Bic(out_high, first_high, second_high);
8515 break;
8516 case HInstruction::kOr:
8517 __ Orn(out_low, first_low, second_low);
8518 __ Orn(out_high, first_high, second_high);
8519 break;
8520 // There is no EON on arm.
8521 case HInstruction::kXor:
8522 default:
8523 LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8524 UNREACHABLE();
8525 }
8526 }
8527 }
8528
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8529 void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp(
8530 HDataProcWithShifterOp* instruction) {
8531 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
8532 instruction->GetType() == DataType::Type::kInt64);
8533 LocationSummary* locations =
8534 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8535 const bool overlap = instruction->GetType() == DataType::Type::kInt64 &&
8536 HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
8537
8538 locations->SetInAt(0, Location::RequiresRegister());
8539 locations->SetInAt(1, Location::RequiresRegister());
8540 locations->SetOut(Location::RequiresRegister(),
8541 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
8542 }
8543
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8544 void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp(
8545 HDataProcWithShifterOp* instruction) {
8546 const LocationSummary* const locations = instruction->GetLocations();
8547 const HInstruction::InstructionKind kind = instruction->GetInstrKind();
8548 const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
8549
8550 if (instruction->GetType() == DataType::Type::kInt32) {
8551 const vixl32::Register first = InputRegisterAt(instruction, 0);
8552 const vixl32::Register output = OutputRegister(instruction);
8553 const vixl32::Register second = instruction->InputAt(1)->GetType() == DataType::Type::kInt64
8554 ? LowRegisterFrom(locations->InAt(1))
8555 : InputRegisterAt(instruction, 1);
8556
8557 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8558 DCHECK_EQ(kind, HInstruction::kAdd);
8559
8560 switch (op_kind) {
8561 case HDataProcWithShifterOp::kUXTB:
8562 __ Uxtab(output, first, second);
8563 break;
8564 case HDataProcWithShifterOp::kUXTH:
8565 __ Uxtah(output, first, second);
8566 break;
8567 case HDataProcWithShifterOp::kSXTB:
8568 __ Sxtab(output, first, second);
8569 break;
8570 case HDataProcWithShifterOp::kSXTH:
8571 __ Sxtah(output, first, second);
8572 break;
8573 default:
8574 LOG(FATAL) << "Unexpected operation kind: " << op_kind;
8575 UNREACHABLE();
8576 }
8577 } else {
8578 GenerateDataProcInstruction(kind,
8579 output,
8580 first,
8581 Operand(second,
8582 ShiftFromOpKind(op_kind),
8583 instruction->GetShiftAmount()),
8584 codegen_);
8585 }
8586 } else {
8587 DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
8588
8589 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8590 const vixl32::Register second = InputRegisterAt(instruction, 1);
8591
8592 DCHECK(!LowRegisterFrom(locations->Out()).Is(second));
8593 GenerateDataProc(kind,
8594 locations->Out(),
8595 locations->InAt(0),
8596 second,
8597 Operand(second, ShiftType::ASR, 31),
8598 codegen_);
8599 } else {
8600 GenerateLongDataProc(instruction, codegen_);
8601 }
8602 }
8603 }
8604
8605 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateAndConst(vixl32::Register out,vixl32::Register first,uint32_t value)8606 void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out,
8607 vixl32::Register first,
8608 uint32_t value) {
8609 // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
8610 if (value == 0xffffffffu) {
8611 if (!out.Is(first)) {
8612 __ Mov(out, first);
8613 }
8614 return;
8615 }
8616 if (value == 0u) {
8617 __ Mov(out, 0);
8618 return;
8619 }
8620 if (GetAssembler()->ShifterOperandCanHold(AND, value)) {
8621 __ And(out, first, value);
8622 } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) {
8623 __ Bic(out, first, ~value);
8624 } else {
8625 DCHECK(IsPowerOfTwo(value + 1));
8626 __ Ubfx(out, first, 0, WhichPowerOf2(value + 1));
8627 }
8628 }
8629
8630 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateOrrConst(vixl32::Register out,vixl32::Register first,uint32_t value)8631 void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out,
8632 vixl32::Register first,
8633 uint32_t value) {
8634 // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
8635 if (value == 0u) {
8636 if (!out.Is(first)) {
8637 __ Mov(out, first);
8638 }
8639 return;
8640 }
8641 if (value == 0xffffffffu) {
8642 __ Mvn(out, 0);
8643 return;
8644 }
8645 if (GetAssembler()->ShifterOperandCanHold(ORR, value)) {
8646 __ Orr(out, first, value);
8647 } else {
8648 DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value));
8649 __ Orn(out, first, ~value);
8650 }
8651 }
8652
8653 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateEorConst(vixl32::Register out,vixl32::Register first,uint32_t value)8654 void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out,
8655 vixl32::Register first,
8656 uint32_t value) {
8657 // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
8658 if (value == 0u) {
8659 if (!out.Is(first)) {
8660 __ Mov(out, first);
8661 }
8662 return;
8663 }
8664 __ Eor(out, first, value);
8665 }
8666
GenerateAddLongConst(Location out,Location first,uint64_t value)8667 void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out,
8668 Location first,
8669 uint64_t value) {
8670 vixl32::Register out_low = LowRegisterFrom(out);
8671 vixl32::Register out_high = HighRegisterFrom(out);
8672 vixl32::Register first_low = LowRegisterFrom(first);
8673 vixl32::Register first_high = HighRegisterFrom(first);
8674 uint32_t value_low = Low32Bits(value);
8675 uint32_t value_high = High32Bits(value);
8676 if (value_low == 0u) {
8677 if (!out_low.Is(first_low)) {
8678 __ Mov(out_low, first_low);
8679 }
8680 __ Add(out_high, first_high, value_high);
8681 return;
8682 }
8683 __ Adds(out_low, first_low, value_low);
8684 if (GetAssembler()->ShifterOperandCanHold(ADC, value_high)) {
8685 __ Adc(out_high, first_high, value_high);
8686 } else {
8687 DCHECK(GetAssembler()->ShifterOperandCanHold(SBC, ~value_high));
8688 __ Sbc(out_high, first_high, ~value_high);
8689 }
8690 }
8691
HandleBitwiseOperation(HBinaryOperation * instruction)8692 void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) {
8693 LocationSummary* locations = instruction->GetLocations();
8694 Location first = locations->InAt(0);
8695 Location second = locations->InAt(1);
8696 Location out = locations->Out();
8697
8698 if (second.IsConstant()) {
8699 uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
8700 uint32_t value_low = Low32Bits(value);
8701 if (instruction->GetResultType() == DataType::Type::kInt32) {
8702 vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8703 vixl32::Register out_reg = OutputRegister(instruction);
8704 if (instruction->IsAnd()) {
8705 GenerateAndConst(out_reg, first_reg, value_low);
8706 } else if (instruction->IsOr()) {
8707 GenerateOrrConst(out_reg, first_reg, value_low);
8708 } else {
8709 DCHECK(instruction->IsXor());
8710 GenerateEorConst(out_reg, first_reg, value_low);
8711 }
8712 } else {
8713 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8714 uint32_t value_high = High32Bits(value);
8715 vixl32::Register first_low = LowRegisterFrom(first);
8716 vixl32::Register first_high = HighRegisterFrom(first);
8717 vixl32::Register out_low = LowRegisterFrom(out);
8718 vixl32::Register out_high = HighRegisterFrom(out);
8719 if (instruction->IsAnd()) {
8720 GenerateAndConst(out_low, first_low, value_low);
8721 GenerateAndConst(out_high, first_high, value_high);
8722 } else if (instruction->IsOr()) {
8723 GenerateOrrConst(out_low, first_low, value_low);
8724 GenerateOrrConst(out_high, first_high, value_high);
8725 } else {
8726 DCHECK(instruction->IsXor());
8727 GenerateEorConst(out_low, first_low, value_low);
8728 GenerateEorConst(out_high, first_high, value_high);
8729 }
8730 }
8731 return;
8732 }
8733
8734 if (instruction->GetResultType() == DataType::Type::kInt32) {
8735 vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8736 vixl32::Register second_reg = InputRegisterAt(instruction, 1);
8737 vixl32::Register out_reg = OutputRegister(instruction);
8738 if (instruction->IsAnd()) {
8739 __ And(out_reg, first_reg, second_reg);
8740 } else if (instruction->IsOr()) {
8741 __ Orr(out_reg, first_reg, second_reg);
8742 } else {
8743 DCHECK(instruction->IsXor());
8744 __ Eor(out_reg, first_reg, second_reg);
8745 }
8746 } else {
8747 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8748 vixl32::Register first_low = LowRegisterFrom(first);
8749 vixl32::Register first_high = HighRegisterFrom(first);
8750 vixl32::Register second_low = LowRegisterFrom(second);
8751 vixl32::Register second_high = HighRegisterFrom(second);
8752 vixl32::Register out_low = LowRegisterFrom(out);
8753 vixl32::Register out_high = HighRegisterFrom(out);
8754 if (instruction->IsAnd()) {
8755 __ And(out_low, first_low, second_low);
8756 __ And(out_high, first_high, second_high);
8757 } else if (instruction->IsOr()) {
8758 __ Orr(out_low, first_low, second_low);
8759 __ Orr(out_high, first_high, second_high);
8760 } else {
8761 DCHECK(instruction->IsXor());
8762 __ Eor(out_low, first_low, second_low);
8763 __ Eor(out_high, first_high, second_high);
8764 }
8765 }
8766 }
8767
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8768 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister(
8769 HInstruction* instruction,
8770 Location out,
8771 uint32_t offset,
8772 Location maybe_temp,
8773 ReadBarrierOption read_barrier_option) {
8774 vixl32::Register out_reg = RegisterFrom(out);
8775 if (read_barrier_option == kWithReadBarrier) {
8776 CHECK(kEmitCompilerReadBarrier);
8777 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8778 if (kUseBakerReadBarrier) {
8779 // Load with fast path based Baker's read barrier.
8780 // /* HeapReference<Object> */ out = *(out + offset)
8781 codegen_->GenerateFieldLoadWithBakerReadBarrier(
8782 instruction, out, out_reg, offset, maybe_temp, /* needs_null_check= */ false);
8783 } else {
8784 // Load with slow path based read barrier.
8785 // Save the value of `out` into `maybe_temp` before overwriting it
8786 // in the following move operation, as we will need it for the
8787 // read barrier below.
8788 __ Mov(RegisterFrom(maybe_temp), out_reg);
8789 // /* HeapReference<Object> */ out = *(out + offset)
8790 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8791 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
8792 }
8793 } else {
8794 // Plain load with no read barrier.
8795 // /* HeapReference<Object> */ out = *(out + offset)
8796 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8797 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8798 }
8799 }
8800
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8801 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters(
8802 HInstruction* instruction,
8803 Location out,
8804 Location obj,
8805 uint32_t offset,
8806 Location maybe_temp,
8807 ReadBarrierOption read_barrier_option) {
8808 vixl32::Register out_reg = RegisterFrom(out);
8809 vixl32::Register obj_reg = RegisterFrom(obj);
8810 if (read_barrier_option == kWithReadBarrier) {
8811 CHECK(kEmitCompilerReadBarrier);
8812 if (kUseBakerReadBarrier) {
8813 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8814 // Load with fast path based Baker's read barrier.
8815 // /* HeapReference<Object> */ out = *(obj + offset)
8816 codegen_->GenerateFieldLoadWithBakerReadBarrier(
8817 instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check= */ false);
8818 } else {
8819 // Load with slow path based read barrier.
8820 // /* HeapReference<Object> */ out = *(obj + offset)
8821 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8822 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
8823 }
8824 } else {
8825 // Plain load with no read barrier.
8826 // /* HeapReference<Object> */ out = *(obj + offset)
8827 GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8828 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8829 }
8830 }
8831
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,vixl32::Register obj,uint32_t offset,ReadBarrierOption read_barrier_option)8832 void CodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
8833 HInstruction* instruction,
8834 Location root,
8835 vixl32::Register obj,
8836 uint32_t offset,
8837 ReadBarrierOption read_barrier_option) {
8838 vixl32::Register root_reg = RegisterFrom(root);
8839 if (read_barrier_option == kWithReadBarrier) {
8840 DCHECK(kEmitCompilerReadBarrier);
8841 if (kUseBakerReadBarrier) {
8842 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
8843 // Baker's read barrier are used.
8844
8845 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
8846 // the Marking Register) to decide whether we need to enter
8847 // the slow path to mark the GC root.
8848 //
8849 // We use shared thunks for the slow path; shared within the method
8850 // for JIT, across methods for AOT. That thunk checks the reference
8851 // and jumps to the entrypoint if needed.
8852 //
8853 // lr = &return_address;
8854 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
8855 // if (mr) { // Thread::Current()->GetIsGcMarking()
8856 // goto gc_root_thunk<root_reg>(lr)
8857 // }
8858 // return_address:
8859
8860 UseScratchRegisterScope temps(GetVIXLAssembler());
8861 temps.Exclude(ip);
8862 bool narrow = CanEmitNarrowLdr(root_reg, obj, offset);
8863 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode(), narrow);
8864
8865 size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* LDR */ (narrow ? 1u : 0u);
8866 size_t wide_instructions = /* ADR+CMP+LDR+BNE */ 4u - narrow_instructions;
8867 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8868 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8869 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8870 vixl32::Label return_address;
8871 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8872 __ cmp(mr, Operand(0));
8873 // Currently the offset is always within range. If that changes,
8874 // we shall have to split the load the same way as for fields.
8875 DCHECK_LT(offset, kReferenceLoadMinFarOffset);
8876 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8877 __ ldr(EncodingSize(narrow ? Narrow : Wide), root_reg, MemOperand(obj, offset));
8878 EmitBakerReadBarrierBne(custom_data);
8879 __ bind(&return_address);
8880 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8881 narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
8882 : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET);
8883 } else {
8884 // GC root loaded through a slow path for read barriers other
8885 // than Baker's.
8886 // /* GcRoot<mirror::Object>* */ root = obj + offset
8887 __ Add(root_reg, obj, offset);
8888 // /* mirror::Object* */ root = root->Read()
8889 GenerateReadBarrierForRootSlow(instruction, root, root);
8890 }
8891 } else {
8892 // Plain GC root load with no read barrier.
8893 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
8894 GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
8895 // Note that GC roots are not affected by heap poisoning, thus we
8896 // do not have to unpoison `root_reg` here.
8897 }
8898 MaybeGenerateMarkingRegisterCheck(/* code= */ 20);
8899 }
8900
GenerateIntrinsicCasMoveWithBakerReadBarrier(vixl::aarch32::Register marked_old_value,vixl::aarch32::Register old_value)8901 void CodeGeneratorARMVIXL::GenerateIntrinsicCasMoveWithBakerReadBarrier(
8902 vixl::aarch32::Register marked_old_value,
8903 vixl::aarch32::Register old_value) {
8904 DCHECK(kEmitCompilerReadBarrier);
8905 DCHECK(kUseBakerReadBarrier);
8906
8907 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
8908 // For low registers, we can reuse the GC root narrow entrypoint, for high registers
8909 // we use a specialized entrypoint because the register bits are 8-11 instead of 12-15.
8910 bool narrow_mov = marked_old_value.IsLow();
8911 uint32_t custom_data = narrow_mov
8912 ? EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode(), /*narrow=*/ true)
8913 : EncodeBakerReadBarrierIntrinsicCasData(marked_old_value.GetCode());
8914
8915 size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* MOV */ (narrow_mov ? 1u : 0u);
8916 size_t wide_instructions = /* ADR+CMP+MOV+BNE */ 4u - narrow_instructions;
8917 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8918 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8919 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8920 vixl32::Label return_address;
8921 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8922 __ cmp(mr, Operand(0));
8923 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8924 __ mov(EncodingSize(narrow_mov ? Narrow : Wide), marked_old_value, old_value);
8925 EmitBakerReadBarrierBne(custom_data);
8926 __ bind(&return_address);
8927 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8928 narrow_mov
8929 ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
8930 : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_MOV_OFFSET);
8931 }
8932
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,const vixl32::MemOperand & src,bool needs_null_check)8933 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8934 Location ref,
8935 vixl32::Register obj,
8936 const vixl32::MemOperand& src,
8937 bool needs_null_check) {
8938 DCHECK(kEmitCompilerReadBarrier);
8939 DCHECK(kUseBakerReadBarrier);
8940
8941 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
8942 // Marking Register) to decide whether we need to enter the slow
8943 // path to mark the reference. Then, in the slow path, check the
8944 // gray bit in the lock word of the reference's holder (`obj`) to
8945 // decide whether to mark `ref` or not.
8946 //
8947 // We use shared thunks for the slow path; shared within the method
8948 // for JIT, across methods for AOT. That thunk checks the holder
8949 // and jumps to the entrypoint if needed. If the holder is not gray,
8950 // it creates a fake dependency and returns to the LDR instruction.
8951 //
8952 // lr = &gray_return_address;
8953 // if (mr) { // Thread::Current()->GetIsGcMarking()
8954 // goto field_thunk<holder_reg, base_reg>(lr)
8955 // }
8956 // not_gray_return_address:
8957 // // Original reference load. If the offset is too large to fit
8958 // // into LDR, we use an adjusted base register here.
8959 // HeapReference<mirror::Object> reference = *(obj+offset);
8960 // gray_return_address:
8961
8962 DCHECK(src.GetAddrMode() == vixl32::Offset);
8963 DCHECK_ALIGNED(src.GetOffsetImmediate(), sizeof(mirror::HeapReference<mirror::Object>));
8964 vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
8965 bool narrow = CanEmitNarrowLdr(ref_reg, src.GetBaseRegister(), src.GetOffsetImmediate());
8966
8967 UseScratchRegisterScope temps(GetVIXLAssembler());
8968 temps.Exclude(ip);
8969 uint32_t custom_data =
8970 EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode(), narrow);
8971
8972 {
8973 size_t narrow_instructions =
8974 /* CMP */ (mr.IsLow() ? 1u : 0u) +
8975 /* LDR+unpoison? */ (narrow ? (kPoisonHeapReferences ? 2u : 1u) : 0u);
8976 size_t wide_instructions =
8977 /* ADR+CMP+LDR+BNE+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
8978 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8979 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8980 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8981 vixl32::Label return_address;
8982 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8983 __ cmp(mr, Operand(0));
8984 EmitBakerReadBarrierBne(custom_data);
8985 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8986 __ ldr(EncodingSize(narrow ? Narrow : Wide), ref_reg, src);
8987 if (needs_null_check) {
8988 MaybeRecordImplicitNullCheck(instruction);
8989 }
8990 // Note: We need a specific width for the unpoisoning NEG.
8991 if (kPoisonHeapReferences) {
8992 if (narrow) {
8993 // The only 16-bit encoding is T1 which sets flags outside IT block (i.e. RSBS, not RSB).
8994 __ rsbs(EncodingSize(Narrow), ref_reg, ref_reg, Operand(0));
8995 } else {
8996 __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
8997 }
8998 }
8999 __ bind(&return_address);
9000 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9001 narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET
9002 : BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET);
9003 }
9004 MaybeGenerateMarkingRegisterCheck(/* code= */ 21, /* temp_loc= */ LocationFrom(ip));
9005 }
9006
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check)9007 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
9008 Location ref,
9009 vixl32::Register obj,
9010 uint32_t offset,
9011 Location maybe_temp,
9012 bool needs_null_check) {
9013 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
9014 vixl32::Register base = obj;
9015 if (offset >= kReferenceLoadMinFarOffset) {
9016 base = RegisterFrom(maybe_temp);
9017 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
9018 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
9019 offset &= (kReferenceLoadMinFarOffset - 1u);
9020 }
9021 GenerateFieldLoadWithBakerReadBarrier(
9022 instruction, ref, obj, MemOperand(base, offset), needs_null_check);
9023 }
9024
GenerateArrayLoadWithBakerReadBarrier(Location ref,vixl32::Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)9025 void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(Location ref,
9026 vixl32::Register obj,
9027 uint32_t data_offset,
9028 Location index,
9029 Location temp,
9030 bool needs_null_check) {
9031 DCHECK(kEmitCompilerReadBarrier);
9032 DCHECK(kUseBakerReadBarrier);
9033
9034 static_assert(
9035 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
9036 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
9037 ScaleFactor scale_factor = TIMES_4;
9038
9039 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
9040 // Marking Register) to decide whether we need to enter the slow
9041 // path to mark the reference. Then, in the slow path, check the
9042 // gray bit in the lock word of the reference's holder (`obj`) to
9043 // decide whether to mark `ref` or not.
9044 //
9045 // We use shared thunks for the slow path; shared within the method
9046 // for JIT, across methods for AOT. That thunk checks the holder
9047 // and jumps to the entrypoint if needed. If the holder is not gray,
9048 // it creates a fake dependency and returns to the LDR instruction.
9049 //
9050 // lr = &gray_return_address;
9051 // if (mr) { // Thread::Current()->GetIsGcMarking()
9052 // goto array_thunk<base_reg>(lr)
9053 // }
9054 // not_gray_return_address:
9055 // // Original reference load. If the offset is too large to fit
9056 // // into LDR, we use an adjusted base register here.
9057 // HeapReference<mirror::Object> reference = data[index];
9058 // gray_return_address:
9059
9060 DCHECK(index.IsValid());
9061 vixl32::Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
9062 vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
9063 vixl32::Register data_reg = RegisterFrom(temp, DataType::Type::kInt32); // Raw pointer.
9064
9065 UseScratchRegisterScope temps(GetVIXLAssembler());
9066 temps.Exclude(ip);
9067 uint32_t custom_data = EncodeBakerReadBarrierArrayData(data_reg.GetCode());
9068
9069 __ Add(data_reg, obj, Operand(data_offset));
9070 {
9071 size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u);
9072 size_t wide_instructions =
9073 /* ADR+CMP+BNE+LDR+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
9074 size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
9075 narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
9076 ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
9077 vixl32::Label return_address;
9078 EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
9079 __ cmp(mr, Operand(0));
9080 EmitBakerReadBarrierBne(custom_data);
9081 ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
9082 __ ldr(ref_reg, MemOperand(data_reg, index_reg, vixl32::LSL, scale_factor));
9083 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
9084 // Note: We need a Wide NEG for the unpoisoning.
9085 if (kPoisonHeapReferences) {
9086 __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
9087 }
9088 __ bind(&return_address);
9089 DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
9090 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
9091 }
9092 MaybeGenerateMarkingRegisterCheck(/* code= */ 22, /* temp_loc= */ LocationFrom(ip));
9093 }
9094
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)9095 void CodeGeneratorARMVIXL::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
9096 // The following condition is a compile-time one, so it does not have a run-time cost.
9097 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
9098 // The following condition is a run-time one; it is executed after the
9099 // previous compile-time test, to avoid penalizing non-debug builds.
9100 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
9101 UseScratchRegisterScope temps(GetVIXLAssembler());
9102 vixl32::Register temp = temp_loc.IsValid() ? RegisterFrom(temp_loc) : temps.Acquire();
9103 GetAssembler()->GenerateMarkingRegisterCheck(temp,
9104 kMarkingRegisterCheckBreakCodeBaseCode + code);
9105 }
9106 }
9107 }
9108
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9109 SlowPathCodeARMVIXL* CodeGeneratorARMVIXL::AddReadBarrierSlowPath(HInstruction* instruction,
9110 Location out,
9111 Location ref,
9112 Location obj,
9113 uint32_t offset,
9114 Location index) {
9115 SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator())
9116 ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index);
9117 AddSlowPath(slow_path);
9118 return slow_path;
9119 }
9120
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9121 void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction,
9122 Location out,
9123 Location ref,
9124 Location obj,
9125 uint32_t offset,
9126 Location index) {
9127 DCHECK(kEmitCompilerReadBarrier);
9128
9129 // Insert a slow path based read barrier *after* the reference load.
9130 //
9131 // If heap poisoning is enabled, the unpoisoning of the loaded
9132 // reference will be carried out by the runtime within the slow
9133 // path.
9134 //
9135 // Note that `ref` currently does not get unpoisoned (when heap
9136 // poisoning is enabled), which is alright as the `ref` argument is
9137 // not used by the artReadBarrierSlow entry point.
9138 //
9139 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
9140 SlowPathCodeARMVIXL* slow_path =
9141 AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
9142
9143 __ B(slow_path->GetEntryLabel());
9144 __ Bind(slow_path->GetExitLabel());
9145 }
9146
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)9147 void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
9148 Location out,
9149 Location ref,
9150 Location obj,
9151 uint32_t offset,
9152 Location index) {
9153 if (kEmitCompilerReadBarrier) {
9154 // Baker's read barriers shall be handled by the fast path
9155 // (CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier).
9156 DCHECK(!kUseBakerReadBarrier);
9157 // If heap poisoning is enabled, unpoisoning will be taken care of
9158 // by the runtime within the slow path.
9159 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
9160 } else if (kPoisonHeapReferences) {
9161 GetAssembler()->UnpoisonHeapReference(RegisterFrom(out));
9162 }
9163 }
9164
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)9165 void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction,
9166 Location out,
9167 Location root) {
9168 DCHECK(kEmitCompilerReadBarrier);
9169
9170 // Insert a slow path based read barrier *after* the GC root load.
9171 //
9172 // Note that GC roots are not affected by heap poisoning, so we do
9173 // not need to do anything special for this here.
9174 SlowPathCodeARMVIXL* slow_path =
9175 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root);
9176 AddSlowPath(slow_path);
9177
9178 __ B(slow_path->GetEntryLabel());
9179 __ Bind(slow_path->GetExitLabel());
9180 }
9181
9182 // Check if the desired_dispatch_info is supported. If it is, return it,
9183 // otherwise return a fall-back info that should be used instead.
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method)9184 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
9185 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
9186 ArtMethod* method) {
9187 if (method->IsIntrinsic() &&
9188 desired_dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) {
9189 // As a work-around for soft-float native ABI interfering with type checks, we are
9190 // inserting fake calls to Float.floatToRawIntBits() or Double.doubleToRawLongBits()
9191 // when a float or double argument is passed in core registers but we cannot do that
9192 // for actual intrinsic implementations that expect them in FP registers. Therefore
9193 // we do not use `kCallCriticalNative` for intrinsics with FP arguments; if they are
9194 // properly intrinsified, the dispatch type does not matter anyway.
9195 ScopedObjectAccess soa(Thread::Current());
9196 uint32_t shorty_len;
9197 const char* shorty = method->GetShorty(&shorty_len);
9198 for (uint32_t i = 1; i != shorty_len; ++i) {
9199 if (shorty[i] == 'D' || shorty[i] == 'F') {
9200 HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
9201 dispatch_info.code_ptr_location = CodePtrLocation::kCallArtMethod;
9202 return dispatch_info;
9203 }
9204 }
9205 }
9206 return desired_dispatch_info;
9207 }
9208
9209
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)9210 void CodeGeneratorARMVIXL::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
9211 switch (load_kind) {
9212 case MethodLoadKind::kBootImageLinkTimePcRelative: {
9213 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
9214 PcRelativePatchInfo* labels = NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
9215 vixl32::Register temp_reg = RegisterFrom(temp);
9216 EmitMovwMovtPlaceholder(labels, temp_reg);
9217 break;
9218 }
9219 case MethodLoadKind::kBootImageRelRo: {
9220 uint32_t boot_image_offset = GetBootImageOffset(invoke);
9221 LoadBootImageRelRoEntry(RegisterFrom(temp), boot_image_offset);
9222 break;
9223 }
9224 case MethodLoadKind::kBssEntry: {
9225 PcRelativePatchInfo* labels = NewMethodBssEntryPatch(invoke->GetMethodReference());
9226 vixl32::Register temp_reg = RegisterFrom(temp);
9227 EmitMovwMovtPlaceholder(labels, temp_reg);
9228 // All aligned loads are implicitly atomic consume operations on ARM.
9229 GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
9230 break;
9231 }
9232 case MethodLoadKind::kJitDirectAddress: {
9233 __ Mov(RegisterFrom(temp), Operand::From(invoke->GetResolvedMethod()));
9234 break;
9235 }
9236 case MethodLoadKind::kRuntimeCall: {
9237 // Test situation, don't do anything.
9238 break;
9239 }
9240 default: {
9241 LOG(FATAL) << "Load kind should have already been handled " << load_kind;
9242 UNREACHABLE();
9243 }
9244 }
9245 }
9246
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)9247 void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(
9248 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
9249 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
9250 switch (invoke->GetMethodLoadKind()) {
9251 case MethodLoadKind::kStringInit: {
9252 uint32_t offset =
9253 GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
9254 // temp = thread->string_init_entrypoint
9255 GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset);
9256 break;
9257 }
9258 case MethodLoadKind::kRecursive: {
9259 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
9260 break;
9261 }
9262 case MethodLoadKind::kRuntimeCall: {
9263 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
9264 return; // No code pointer retrieval; the runtime performs the call directly.
9265 }
9266 case MethodLoadKind::kBootImageLinkTimePcRelative:
9267 // Note: Unlike arm64, x86 and x86-64, we do not avoid the materialization of method
9268 // pointer for kCallCriticalNative because it would not save us an instruction from
9269 // the current sequence MOVW+MOVT+ADD(pc)+LDR+BL. The ADD(pc) separates the patched
9270 // offset instructions MOVW+MOVT from the entrypoint load, so they cannot be fused.
9271 FALLTHROUGH_INTENDED;
9272 default: {
9273 LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
9274 break;
9275 }
9276 }
9277
9278 auto call_code_pointer_member = [&](MemberOffset offset) {
9279 // LR = callee_method->member;
9280 GetAssembler()->LoadFromOffset(kLoadWord, lr, RegisterFrom(callee_method), offset.Int32Value());
9281 {
9282 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9283 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9284 ExactAssemblyScope aas(GetVIXLAssembler(),
9285 vixl32::k16BitT32InstructionSizeInBytes,
9286 CodeBufferCheckScope::kExactSize);
9287 // LR()
9288 __ blx(lr);
9289 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9290 }
9291 };
9292 switch (invoke->GetCodePtrLocation()) {
9293 case CodePtrLocation::kCallSelf:
9294 {
9295 DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
9296 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9297 ExactAssemblyScope aas(GetVIXLAssembler(),
9298 vixl32::k32BitT32InstructionSizeInBytes,
9299 CodeBufferCheckScope::kMaximumSize);
9300 __ bl(GetFrameEntryLabel());
9301 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9302 }
9303 break;
9304 case CodePtrLocation::kCallCriticalNative: {
9305 size_t out_frame_size =
9306 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARMVIXL,
9307 kAapcsStackAlignment,
9308 GetCriticalNativeDirectCallFrameSize>(invoke);
9309 call_code_pointer_member(ArtMethod::EntryPointFromJniOffset(kArmPointerSize));
9310 // Move the result when needed due to native and managed ABI mismatch.
9311 switch (invoke->GetType()) {
9312 case DataType::Type::kFloat32:
9313 __ Vmov(s0, r0);
9314 break;
9315 case DataType::Type::kFloat64:
9316 __ Vmov(d0, r0, r1);
9317 break;
9318 case DataType::Type::kBool:
9319 case DataType::Type::kInt8:
9320 case DataType::Type::kUint16:
9321 case DataType::Type::kInt16:
9322 case DataType::Type::kInt32:
9323 case DataType::Type::kInt64:
9324 case DataType::Type::kVoid:
9325 break;
9326 default:
9327 DCHECK(false) << invoke->GetType();
9328 break;
9329 }
9330 if (out_frame_size != 0u) {
9331 DecreaseFrame(out_frame_size);
9332 }
9333 break;
9334 }
9335 case CodePtrLocation::kCallArtMethod:
9336 call_code_pointer_member(ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize));
9337 break;
9338 }
9339
9340 DCHECK(!IsLeafMethod());
9341 }
9342
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location,SlowPathCode * slow_path)9343 void CodeGeneratorARMVIXL::GenerateVirtualCall(
9344 HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
9345 vixl32::Register temp = RegisterFrom(temp_location);
9346 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
9347 invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
9348
9349 // Use the calling convention instead of the location of the receiver, as
9350 // intrinsics may have put the receiver in a different register. In the intrinsics
9351 // slow path, the arguments have been moved to the right place, so here we are
9352 // guaranteed that the receiver is the first register of the calling convention.
9353 InvokeDexCallingConventionARMVIXL calling_convention;
9354 vixl32::Register receiver = calling_convention.GetRegisterAt(0);
9355 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
9356 {
9357 // Make sure the pc is recorded immediately after the `ldr` instruction.
9358 ExactAssemblyScope aas(GetVIXLAssembler(),
9359 vixl32::kMaxInstructionSizeInBytes,
9360 CodeBufferCheckScope::kMaximumSize);
9361 // /* HeapReference<Class> */ temp = receiver->klass_
9362 __ ldr(temp, MemOperand(receiver, class_offset));
9363 MaybeRecordImplicitNullCheck(invoke);
9364 }
9365 // Instead of simply (possibly) unpoisoning `temp` here, we should
9366 // emit a read barrier for the previous class reference load.
9367 // However this is not required in practice, as this is an
9368 // intermediate/temporary reference and because the current
9369 // concurrent copying collector keeps the from-space memory
9370 // intact/accessible until the end of the marking phase (the
9371 // concurrent copying collector may not in the future).
9372 GetAssembler()->MaybeUnpoisonHeapReference(temp);
9373
9374 // If we're compiling baseline, update the inline cache.
9375 MaybeGenerateInlineCacheCheck(invoke, temp);
9376
9377 // temp = temp->GetMethodAt(method_offset);
9378 uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
9379 kArmPointerSize).Int32Value();
9380 GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
9381 // LR = temp->GetEntryPoint();
9382 GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
9383 {
9384 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9385 // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9386 ExactAssemblyScope aas(GetVIXLAssembler(),
9387 vixl32::k16BitT32InstructionSizeInBytes,
9388 CodeBufferCheckScope::kExactSize);
9389 // LR();
9390 __ blx(lr);
9391 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9392 }
9393 }
9394
NewBootImageIntrinsicPatch(uint32_t intrinsic_data)9395 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageIntrinsicPatch(
9396 uint32_t intrinsic_data) {
9397 return NewPcRelativePatch(/* dex_file= */ nullptr, intrinsic_data, &boot_image_other_patches_);
9398 }
9399
NewBootImageRelRoPatch(uint32_t boot_image_offset)9400 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageRelRoPatch(
9401 uint32_t boot_image_offset) {
9402 return NewPcRelativePatch(/* dex_file= */ nullptr,
9403 boot_image_offset,
9404 &boot_image_other_patches_);
9405 }
9406
NewBootImageMethodPatch(MethodReference target_method)9407 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageMethodPatch(
9408 MethodReference target_method) {
9409 return NewPcRelativePatch(
9410 target_method.dex_file, target_method.index, &boot_image_method_patches_);
9411 }
9412
NewMethodBssEntryPatch(MethodReference target_method)9413 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewMethodBssEntryPatch(
9414 MethodReference target_method) {
9415 return NewPcRelativePatch(
9416 target_method.dex_file, target_method.index, &method_bss_entry_patches_);
9417 }
9418
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index)9419 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageTypePatch(
9420 const DexFile& dex_file, dex::TypeIndex type_index) {
9421 return NewPcRelativePatch(&dex_file, type_index.index_, &boot_image_type_patches_);
9422 }
9423
NewTypeBssEntryPatch(HLoadClass * load_class)9424 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch(
9425 HLoadClass* load_class) {
9426 const DexFile& dex_file = load_class->GetDexFile();
9427 dex::TypeIndex type_index = load_class->GetTypeIndex();
9428 ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
9429 switch (load_class->GetLoadKind()) {
9430 case HLoadClass::LoadKind::kBssEntry:
9431 patches = &type_bss_entry_patches_;
9432 break;
9433 case HLoadClass::LoadKind::kBssEntryPublic:
9434 patches = &public_type_bss_entry_patches_;
9435 break;
9436 case HLoadClass::LoadKind::kBssEntryPackage:
9437 patches = &package_type_bss_entry_patches_;
9438 break;
9439 default:
9440 LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
9441 UNREACHABLE();
9442 }
9443 return NewPcRelativePatch(&dex_file, type_index.index_, patches);
9444 }
9445
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index)9446 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageStringPatch(
9447 const DexFile& dex_file, dex::StringIndex string_index) {
9448 return NewPcRelativePatch(&dex_file, string_index.index_, &boot_image_string_patches_);
9449 }
9450
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index)9451 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewStringBssEntryPatch(
9452 const DexFile& dex_file, dex::StringIndex string_index) {
9453 return NewPcRelativePatch(&dex_file, string_index.index_, &string_bss_entry_patches_);
9454 }
9455
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,ArenaDeque<PcRelativePatchInfo> * patches)9456 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch(
9457 const DexFile* dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
9458 patches->emplace_back(dex_file, offset_or_index);
9459 return &patches->back();
9460 }
9461
EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset)9462 void CodeGeneratorARMVIXL::EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset) {
9463 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
9464 DCHECK(!GetCompilerOptions().IsJitCompiler());
9465 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
9466 vixl::aarch32::Label* bl_label = &call_entrypoint_patches_.back().label;
9467 __ bind(bl_label);
9468 vixl32::Label placeholder_label;
9469 __ bl(&placeholder_label); // Placeholder, patched at link-time.
9470 __ bind(&placeholder_label);
9471 }
9472
EmitBakerReadBarrierBne(uint32_t custom_data)9473 void CodeGeneratorARMVIXL::EmitBakerReadBarrierBne(uint32_t custom_data) {
9474 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
9475 if (GetCompilerOptions().IsJitCompiler()) {
9476 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
9477 vixl::aarch32::Label* slow_path_entry = &it->second.label;
9478 __ b(ne, EncodingSize(Wide), slow_path_entry);
9479 } else {
9480 baker_read_barrier_patches_.emplace_back(custom_data);
9481 vixl::aarch32::Label* patch_label = &baker_read_barrier_patches_.back().label;
9482 __ bind(patch_label);
9483 vixl32::Label placeholder_label;
9484 __ b(ne, EncodingSize(Wide), &placeholder_label); // Placeholder, patched at link-time.
9485 __ bind(&placeholder_label);
9486 }
9487 }
9488
DeduplicateBootImageAddressLiteral(uint32_t address)9489 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) {
9490 return DeduplicateUint32Literal(address, &uint32_literals_);
9491 }
9492
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)9493 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral(
9494 const DexFile& dex_file,
9495 dex::StringIndex string_index,
9496 Handle<mirror::String> handle) {
9497 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
9498 return jit_string_patches_.GetOrCreate(
9499 StringReference(&dex_file, string_index),
9500 [this]() {
9501 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9502 });
9503 }
9504
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)9505 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file,
9506 dex::TypeIndex type_index,
9507 Handle<mirror::Class> handle) {
9508 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
9509 return jit_class_patches_.GetOrCreate(
9510 TypeReference(&dex_file, type_index),
9511 [this]() {
9512 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9513 });
9514 }
9515
LoadBootImageRelRoEntry(vixl32::Register reg,uint32_t boot_image_offset)9516 void CodeGeneratorARMVIXL::LoadBootImageRelRoEntry(vixl32::Register reg,
9517 uint32_t boot_image_offset) {
9518 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels = NewBootImageRelRoPatch(boot_image_offset);
9519 EmitMovwMovtPlaceholder(labels, reg);
9520 __ Ldr(reg, MemOperand(reg, /*offset=*/ 0));
9521 }
9522
LoadBootImageAddress(vixl32::Register reg,uint32_t boot_image_reference)9523 void CodeGeneratorARMVIXL::LoadBootImageAddress(vixl32::Register reg,
9524 uint32_t boot_image_reference) {
9525 if (GetCompilerOptions().IsBootImage()) {
9526 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
9527 NewBootImageIntrinsicPatch(boot_image_reference);
9528 EmitMovwMovtPlaceholder(labels, reg);
9529 } else if (GetCompilerOptions().GetCompilePic()) {
9530 LoadBootImageRelRoEntry(reg, boot_image_reference);
9531 } else {
9532 DCHECK(GetCompilerOptions().IsJitCompiler());
9533 gc::Heap* heap = Runtime::Current()->GetHeap();
9534 DCHECK(!heap->GetBootImageSpaces().empty());
9535 uintptr_t address =
9536 reinterpret_cast<uintptr_t>(heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference);
9537 __ Ldr(reg, DeduplicateBootImageAddressLiteral(dchecked_integral_cast<uint32_t>(address)));
9538 }
9539 }
9540
LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg,TypeReference target_type)9541 void CodeGeneratorARMVIXL::LoadTypeForBootImageIntrinsic(vixl::aarch32::Register reg,
9542 TypeReference target_type) {
9543 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
9544 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
9545 PcRelativePatchInfo* labels =
9546 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
9547 EmitMovwMovtPlaceholder(labels, reg);
9548 }
9549
LoadIntrinsicDeclaringClass(vixl32::Register reg,HInvoke * invoke)9550 void CodeGeneratorARMVIXL::LoadIntrinsicDeclaringClass(vixl32::Register reg, HInvoke* invoke) {
9551 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
9552 if (GetCompilerOptions().IsBootImage()) {
9553 MethodReference target_method = invoke->GetResolvedMethodReference();
9554 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
9555 LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
9556 } else {
9557 uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
9558 LoadBootImageAddress(reg, boot_image_offset);
9559 }
9560 }
9561
LoadClassRootForIntrinsic(vixl::aarch32::Register reg,ClassRoot class_root)9562 void CodeGeneratorARMVIXL::LoadClassRootForIntrinsic(vixl::aarch32::Register reg,
9563 ClassRoot class_root) {
9564 if (GetCompilerOptions().IsBootImage()) {
9565 ScopedObjectAccess soa(Thread::Current());
9566 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
9567 TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
9568 LoadTypeForBootImageIntrinsic(reg, target_type);
9569 } else {
9570 uint32_t boot_image_offset = GetBootImageOffset(class_root);
9571 LoadBootImageAddress(reg, boot_image_offset);
9572 }
9573 }
9574
9575 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)9576 inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches(
9577 const ArenaDeque<PcRelativePatchInfo>& infos,
9578 ArenaVector<linker::LinkerPatch>* linker_patches) {
9579 for (const PcRelativePatchInfo& info : infos) {
9580 const DexFile* dex_file = info.target_dex_file;
9581 size_t offset_or_index = info.offset_or_index;
9582 DCHECK(info.add_pc_label.IsBound());
9583 uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation());
9584 // Add MOVW patch.
9585 DCHECK(info.movw_label.IsBound());
9586 uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation());
9587 linker_patches->push_back(Factory(movw_offset, dex_file, add_pc_offset, offset_or_index));
9588 // Add MOVT patch.
9589 DCHECK(info.movt_label.IsBound());
9590 uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation());
9591 linker_patches->push_back(Factory(movt_offset, dex_file, add_pc_offset, offset_or_index));
9592 }
9593 }
9594
9595 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)9596 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
9597 const DexFile* target_dex_file,
9598 uint32_t pc_insn_offset,
9599 uint32_t boot_image_offset) {
9600 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
9601 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
9602 }
9603
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)9604 void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
9605 DCHECK(linker_patches->empty());
9606 size_t size =
9607 /* MOVW+MOVT for each entry */ 2u * boot_image_method_patches_.size() +
9608 /* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() +
9609 /* MOVW+MOVT for each entry */ 2u * boot_image_type_patches_.size() +
9610 /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() +
9611 /* MOVW+MOVT for each entry */ 2u * public_type_bss_entry_patches_.size() +
9612 /* MOVW+MOVT for each entry */ 2u * package_type_bss_entry_patches_.size() +
9613 /* MOVW+MOVT for each entry */ 2u * boot_image_string_patches_.size() +
9614 /* MOVW+MOVT for each entry */ 2u * string_bss_entry_patches_.size() +
9615 /* MOVW+MOVT for each entry */ 2u * boot_image_other_patches_.size() +
9616 call_entrypoint_patches_.size() +
9617 baker_read_barrier_patches_.size();
9618 linker_patches->reserve(size);
9619 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
9620 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
9621 boot_image_method_patches_, linker_patches);
9622 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
9623 boot_image_type_patches_, linker_patches);
9624 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
9625 boot_image_string_patches_, linker_patches);
9626 } else {
9627 DCHECK(boot_image_method_patches_.empty());
9628 DCHECK(boot_image_type_patches_.empty());
9629 DCHECK(boot_image_string_patches_.empty());
9630 }
9631 if (GetCompilerOptions().IsBootImage()) {
9632 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
9633 boot_image_other_patches_, linker_patches);
9634 } else {
9635 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
9636 boot_image_other_patches_, linker_patches);
9637 }
9638 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
9639 method_bss_entry_patches_, linker_patches);
9640 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
9641 type_bss_entry_patches_, linker_patches);
9642 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
9643 public_type_bss_entry_patches_, linker_patches);
9644 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
9645 package_type_bss_entry_patches_, linker_patches);
9646 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
9647 string_bss_entry_patches_, linker_patches);
9648 for (const PatchInfo<vixl32::Label>& info : call_entrypoint_patches_) {
9649 DCHECK(info.target_dex_file == nullptr);
9650 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
9651 info.label.GetLocation(), info.offset_or_index));
9652 }
9653 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
9654 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
9655 info.label.GetLocation(), info.custom_data));
9656 }
9657 DCHECK_EQ(size, linker_patches->size());
9658 }
9659
NeedsThunkCode(const linker::LinkerPatch & patch) const9660 bool CodeGeneratorARMVIXL::NeedsThunkCode(const linker::LinkerPatch& patch) const {
9661 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
9662 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
9663 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
9664 }
9665
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)9666 void CodeGeneratorARMVIXL::EmitThunkCode(const linker::LinkerPatch& patch,
9667 /*out*/ ArenaVector<uint8_t>* code,
9668 /*out*/ std::string* debug_name) {
9669 arm::ArmVIXLAssembler assembler(GetGraph()->GetAllocator());
9670 switch (patch.GetType()) {
9671 case linker::LinkerPatch::Type::kCallRelative: {
9672 // The thunk just uses the entry point in the ArtMethod. This works even for calls
9673 // to the generic JNI and interpreter trampolines.
9674 MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
9675 assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, vixl32::r0, offset.Int32Value());
9676 assembler.GetVIXLAssembler()->Bkpt(0);
9677 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9678 *debug_name = "MethodCallThunk";
9679 }
9680 break;
9681 }
9682 case linker::LinkerPatch::Type::kCallEntrypoint: {
9683 assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, tr, patch.EntrypointOffset());
9684 assembler.GetVIXLAssembler()->Bkpt(0);
9685 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9686 *debug_name = "EntrypointCallThunk_" + std::to_string(patch.EntrypointOffset());
9687 }
9688 break;
9689 }
9690 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
9691 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
9692 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
9693 break;
9694 }
9695 default:
9696 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
9697 UNREACHABLE();
9698 }
9699
9700 // Ensure we emit the literal pool if any.
9701 assembler.FinalizeCode();
9702 code->resize(assembler.CodeSize());
9703 MemoryRegion code_region(code->data(), code->size());
9704 assembler.FinalizeInstructions(code_region);
9705 }
9706
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)9707 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal(
9708 uint32_t value,
9709 Uint32ToLiteralMap* map) {
9710 return map->GetOrCreate(
9711 value,
9712 [this, value]() {
9713 return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ value);
9714 });
9715 }
9716
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9717 void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9718 LocationSummary* locations =
9719 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
9720 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
9721 Location::RequiresRegister());
9722 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
9723 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
9724 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
9725 }
9726
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9727 void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9728 vixl32::Register res = OutputRegister(instr);
9729 vixl32::Register accumulator =
9730 InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
9731 vixl32::Register mul_left =
9732 InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
9733 vixl32::Register mul_right =
9734 InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
9735
9736 if (instr->GetOpKind() == HInstruction::kAdd) {
9737 __ Mla(res, mul_left, mul_right, accumulator);
9738 } else {
9739 __ Mls(res, mul_left, mul_right, accumulator);
9740 }
9741 }
9742
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9743 void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9744 // Nothing to do, this should be removed during prepare for register allocator.
9745 LOG(FATAL) << "Unreachable";
9746 }
9747
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9748 void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9749 // Nothing to do, this should be removed during prepare for register allocator.
9750 LOG(FATAL) << "Unreachable";
9751 }
9752
9753 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)9754 void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9755 LocationSummary* locations =
9756 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
9757 locations->SetInAt(0, Location::RequiresRegister());
9758 if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
9759 codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9760 locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base.
9761 if (switch_instr->GetStartValue() != 0) {
9762 locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias.
9763 }
9764 }
9765 }
9766
9767 // TODO(VIXL): Investigate and reach the parity with old arm codegen.
VisitPackedSwitch(HPackedSwitch * switch_instr)9768 void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9769 int32_t lower_bound = switch_instr->GetStartValue();
9770 uint32_t num_entries = switch_instr->GetNumEntries();
9771 LocationSummary* locations = switch_instr->GetLocations();
9772 vixl32::Register value_reg = InputRegisterAt(switch_instr, 0);
9773 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
9774
9775 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
9776 !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9777 // Create a series of compare/jumps.
9778 UseScratchRegisterScope temps(GetVIXLAssembler());
9779 vixl32::Register temp_reg = temps.Acquire();
9780 // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
9781 // the immediate, because IP is used as the destination register. For the other
9782 // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
9783 // and they can be encoded in the instruction without making use of IP register.
9784 __ Adds(temp_reg, value_reg, -lower_bound);
9785
9786 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
9787 // Jump to successors[0] if value == lower_bound.
9788 __ B(eq, codegen_->GetLabelOf(successors[0]));
9789 int32_t last_index = 0;
9790 for (; num_entries - last_index > 2; last_index += 2) {
9791 __ Adds(temp_reg, temp_reg, -2);
9792 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
9793 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
9794 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
9795 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
9796 }
9797 if (num_entries - last_index == 2) {
9798 // The last missing case_value.
9799 __ Cmp(temp_reg, 1);
9800 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
9801 }
9802
9803 // And the default for any other value.
9804 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
9805 __ B(codegen_->GetLabelOf(default_block));
9806 }
9807 } else {
9808 // Create a table lookup.
9809 vixl32::Register table_base = RegisterFrom(locations->GetTemp(0));
9810
9811 JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr);
9812
9813 // Remove the bias.
9814 vixl32::Register key_reg;
9815 if (lower_bound != 0) {
9816 key_reg = RegisterFrom(locations->GetTemp(1));
9817 __ Sub(key_reg, value_reg, lower_bound);
9818 } else {
9819 key_reg = value_reg;
9820 }
9821
9822 // Check whether the value is in the table, jump to default block if not.
9823 __ Cmp(key_reg, num_entries - 1);
9824 __ B(hi, codegen_->GetLabelOf(default_block));
9825
9826 UseScratchRegisterScope temps(GetVIXLAssembler());
9827 vixl32::Register jump_offset = temps.Acquire();
9828
9829 // Load jump offset from the table.
9830 {
9831 const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
9832 ExactAssemblyScope aas(GetVIXLAssembler(),
9833 (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size,
9834 CodeBufferCheckScope::kMaximumSize);
9835 __ adr(table_base, jump_table->GetTableStartLabel());
9836 __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2));
9837
9838 // Jump to target block by branching to table_base(pc related) + offset.
9839 vixl32::Register target_address = table_base;
9840 __ add(target_address, table_base, jump_offset);
9841 __ bx(target_address);
9842
9843 jump_table->EmitTable(codegen_);
9844 }
9845 }
9846 }
9847
9848 // Copy the result of a call into the given target.
MoveFromReturnRegister(Location trg,DataType::Type type)9849 void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, DataType::Type type) {
9850 if (!trg.IsValid()) {
9851 DCHECK_EQ(type, DataType::Type::kVoid);
9852 return;
9853 }
9854
9855 DCHECK_NE(type, DataType::Type::kVoid);
9856
9857 Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type);
9858 if (return_loc.Equals(trg)) {
9859 return;
9860 }
9861
9862 // Let the parallel move resolver take care of all of this.
9863 HParallelMove parallel_move(GetGraph()->GetAllocator());
9864 parallel_move.AddMove(return_loc, trg, type, nullptr);
9865 GetMoveResolver()->EmitNativeCode(¶llel_move);
9866 }
9867
VisitClassTableGet(HClassTableGet * instruction)9868 void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9869 LocationSummary* locations =
9870 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
9871 locations->SetInAt(0, Location::RequiresRegister());
9872 locations->SetOut(Location::RequiresRegister());
9873 }
9874
VisitClassTableGet(HClassTableGet * instruction)9875 void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9876 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
9877 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
9878 instruction->GetIndex(), kArmPointerSize).SizeValue();
9879 GetAssembler()->LoadFromOffset(kLoadWord,
9880 OutputRegister(instruction),
9881 InputRegisterAt(instruction, 0),
9882 method_offset);
9883 } else {
9884 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
9885 instruction->GetIndex(), kArmPointerSize));
9886 GetAssembler()->LoadFromOffset(kLoadWord,
9887 OutputRegister(instruction),
9888 InputRegisterAt(instruction, 0),
9889 mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
9890 GetAssembler()->LoadFromOffset(kLoadWord,
9891 OutputRegister(instruction),
9892 OutputRegister(instruction),
9893 method_offset);
9894 }
9895 }
9896
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,VIXLUInt32Literal * literal,uint64_t index_in_table)9897 static void PatchJitRootUse(uint8_t* code,
9898 const uint8_t* roots_data,
9899 VIXLUInt32Literal* literal,
9900 uint64_t index_in_table) {
9901 DCHECK(literal->IsBound());
9902 uint32_t literal_offset = literal->GetLocation();
9903 uintptr_t address =
9904 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
9905 uint8_t* data = code + literal_offset;
9906 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
9907 }
9908
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)9909 void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
9910 for (const auto& entry : jit_string_patches_) {
9911 const StringReference& string_reference = entry.first;
9912 VIXLUInt32Literal* table_entry_literal = entry.second;
9913 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
9914 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
9915 }
9916 for (const auto& entry : jit_class_patches_) {
9917 const TypeReference& type_reference = entry.first;
9918 VIXLUInt32Literal* table_entry_literal = entry.second;
9919 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
9920 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
9921 }
9922 }
9923
EmitMovwMovtPlaceholder(CodeGeneratorARMVIXL::PcRelativePatchInfo * labels,vixl32::Register out)9924 void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder(
9925 CodeGeneratorARMVIXL::PcRelativePatchInfo* labels,
9926 vixl32::Register out) {
9927 ExactAssemblyScope aas(GetVIXLAssembler(),
9928 3 * vixl32::kMaxInstructionSizeInBytes,
9929 CodeBufferCheckScope::kMaximumSize);
9930 // TODO(VIXL): Think about using mov instead of movw.
9931 __ bind(&labels->movw_label);
9932 __ movw(out, /* operand= */ 0u);
9933 __ bind(&labels->movt_label);
9934 __ movt(out, /* operand= */ 0u);
9935 __ bind(&labels->add_pc_label);
9936 __ add(out, out, pc);
9937 }
9938
9939 #undef __
9940 #undef QUICK_ENTRY_POINT
9941 #undef TODO_VIXL32
9942
9943 #define __ assembler.GetVIXLAssembler()->
9944
EmitGrayCheckAndFastPath(ArmVIXLAssembler & assembler,vixl32::Register base_reg,vixl32::MemOperand & lock_word,vixl32::Label * slow_path,int32_t raw_ldr_offset,vixl32::Label * throw_npe=nullptr)9945 static void EmitGrayCheckAndFastPath(ArmVIXLAssembler& assembler,
9946 vixl32::Register base_reg,
9947 vixl32::MemOperand& lock_word,
9948 vixl32::Label* slow_path,
9949 int32_t raw_ldr_offset,
9950 vixl32::Label* throw_npe = nullptr) {
9951 // Load the lock word containing the rb_state.
9952 __ Ldr(ip, lock_word);
9953 // Given the numeric representation, it's enough to check the low bit of the rb_state.
9954 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
9955 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
9956 __ Tst(ip, Operand(LockWord::kReadBarrierStateMaskShifted));
9957 __ B(ne, slow_path, /* is_far_target= */ false);
9958 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
9959 if (throw_npe != nullptr) {
9960 __ Bind(throw_npe);
9961 }
9962 __ Add(lr, lr, raw_ldr_offset);
9963 // Introduce a dependency on the lock_word including rb_state,
9964 // to prevent load-load reordering, and without using
9965 // a memory barrier (which would be more expensive).
9966 __ Add(base_reg, base_reg, Operand(ip, LSR, 32));
9967 __ Bx(lr); // And return back to the function.
9968 // Note: The fake dependency is unnecessary for the slow path.
9969 }
9970
9971 // Load the read barrier introspection entrypoint in register `entrypoint`
LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler & assembler)9972 static vixl32::Register LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler& assembler) {
9973 // The register where the read barrier introspection entrypoint is loaded
9974 // is the marking register. We clobber it here and the entrypoint restores it to 1.
9975 vixl32::Register entrypoint = mr;
9976 // entrypoint = Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection.
9977 DCHECK_EQ(ip.GetCode(), 12u);
9978 const int32_t entry_point_offset =
9979 Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ip.GetCode());
9980 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
9981 return entrypoint;
9982 }
9983
CompileBakerReadBarrierThunk(ArmVIXLAssembler & assembler,uint32_t encoded_data,std::string * debug_name)9984 void CodeGeneratorARMVIXL::CompileBakerReadBarrierThunk(ArmVIXLAssembler& assembler,
9985 uint32_t encoded_data,
9986 /*out*/ std::string* debug_name) {
9987 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
9988 switch (kind) {
9989 case BakerReadBarrierKind::kField: {
9990 vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
9991 CheckValidReg(base_reg.GetCode());
9992 vixl32::Register holder_reg(BakerReadBarrierSecondRegField::Decode(encoded_data));
9993 CheckValidReg(holder_reg.GetCode());
9994 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
9995 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
9996 temps.Exclude(ip);
9997 // In the case of a field load, if `base_reg` differs from
9998 // `holder_reg`, the offset was too large and we must have emitted (during the construction
9999 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
10000 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
10001 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
10002 // not necessarily do that check before going to the thunk.
10003 vixl32::Label throw_npe_label;
10004 vixl32::Label* throw_npe = nullptr;
10005 if (GetCompilerOptions().GetImplicitNullChecks() && holder_reg.Is(base_reg)) {
10006 throw_npe = &throw_npe_label;
10007 __ CompareAndBranchIfZero(holder_reg, throw_npe, /* is_far_target= */ false);
10008 }
10009 // Check if the holder is gray and, if not, add fake dependency to the base register
10010 // and return to the LDR instruction to load the reference. Otherwise, use introspection
10011 // to load the reference and call the entrypoint that performs further checks on the
10012 // reference and marks it if needed.
10013 vixl32::Label slow_path;
10014 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
10015 const int32_t raw_ldr_offset = (width == BakerReadBarrierWidth::kWide)
10016 ? BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET
10017 : BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET;
10018 EmitGrayCheckAndFastPath(
10019 assembler, base_reg, lock_word, &slow_path, raw_ldr_offset, throw_npe);
10020 __ Bind(&slow_path);
10021 const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
10022 raw_ldr_offset;
10023 vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10024 if (width == BakerReadBarrierWidth::kWide) {
10025 MemOperand ldr_half_address(lr, ldr_offset + 2);
10026 __ Ldrh(ip, ldr_half_address); // Load the LDR immediate half-word with "Rt | imm12".
10027 __ Ubfx(ip, ip, 0, 12); // Extract the offset imm12.
10028 __ Ldr(ip, MemOperand(base_reg, ip)); // Load the reference.
10029 } else {
10030 MemOperand ldr_address(lr, ldr_offset);
10031 __ Ldrh(ip, ldr_address); // Load the LDR immediate, encoding T1.
10032 __ Add(ep_reg, // Adjust the entrypoint address to the entrypoint
10033 ep_reg, // for narrow LDR.
10034 Operand(BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_ENTRYPOINT_OFFSET));
10035 __ Ubfx(ip, ip, 6, 5); // Extract the imm5, i.e. offset / 4.
10036 __ Ldr(ip, MemOperand(base_reg, ip, LSL, 2)); // Load the reference.
10037 }
10038 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
10039 __ Bx(ep_reg); // Jump to the entrypoint.
10040 break;
10041 }
10042 case BakerReadBarrierKind::kArray: {
10043 vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10044 CheckValidReg(base_reg.GetCode());
10045 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10046 BakerReadBarrierSecondRegField::Decode(encoded_data));
10047 DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10048 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10049 temps.Exclude(ip);
10050 vixl32::Label slow_path;
10051 int32_t data_offset =
10052 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
10053 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
10054 DCHECK_LT(lock_word.GetOffsetImmediate(), 0);
10055 const int32_t raw_ldr_offset = BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET;
10056 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, raw_ldr_offset);
10057 __ Bind(&slow_path);
10058 const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
10059 raw_ldr_offset;
10060 MemOperand ldr_address(lr, ldr_offset + 2);
10061 __ Ldrb(ip, ldr_address); // Load the LDR (register) byte with "00 | imm2 | Rm",
10062 // i.e. Rm+32 because the scale in imm2 is 2.
10063 vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10064 __ Bfi(ep_reg, ip, 3, 6); // Insert ip to the entrypoint address to create
10065 // a switch case target based on the index register.
10066 __ Mov(ip, base_reg); // Move the base register to ip0.
10067 __ Bx(ep_reg); // Jump to the entrypoint's array switch case.
10068 break;
10069 }
10070 case BakerReadBarrierKind::kGcRoot:
10071 case BakerReadBarrierKind::kIntrinsicCas: {
10072 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
10073 // and it does not have a forwarding address), call the correct introspection entrypoint;
10074 // otherwise return the reference (or the extracted forwarding address).
10075 // There is no gray bit check for GC roots.
10076 vixl32::Register root_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
10077 CheckValidReg(root_reg.GetCode());
10078 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10079 BakerReadBarrierSecondRegField::Decode(encoded_data));
10080 BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
10081 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
10082 temps.Exclude(ip);
10083 vixl32::Label return_label, not_marked, forwarding_address;
10084 __ CompareAndBranchIfZero(root_reg, &return_label, /* is_far_target= */ false);
10085 MemOperand lock_word(root_reg, mirror::Object::MonitorOffset().Int32Value());
10086 __ Ldr(ip, lock_word);
10087 __ Tst(ip, LockWord::kMarkBitStateMaskShifted);
10088 __ B(eq, ¬_marked);
10089 __ Bind(&return_label);
10090 __ Bx(lr);
10091 __ Bind(¬_marked);
10092 static_assert(LockWord::kStateShift == 30 && LockWord::kStateForwardingAddress == 3,
10093 "To use 'CMP ip, #modified-immediate; BHS', we need the lock word state in "
10094 " the highest bits and the 'forwarding address' state to have all bits set");
10095 __ Cmp(ip, Operand(0xc0000000));
10096 __ B(hs, &forwarding_address);
10097 vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
10098 // Adjust the art_quick_read_barrier_mark_introspection address
10099 // in kBakerCcEntrypointRegister to one of
10100 // art_quick_read_barrier_mark_introspection_{gc_roots_{wide,narrow},intrinsic_cas}.
10101 if (kind == BakerReadBarrierKind::kIntrinsicCas) {
10102 DCHECK(width == BakerReadBarrierWidth::kWide);
10103 DCHECK(!root_reg.IsLow());
10104 }
10105 int32_t entrypoint_offset =
10106 (kind == BakerReadBarrierKind::kGcRoot)
10107 ? (width == BakerReadBarrierWidth::kWide)
10108 ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_ENTRYPOINT_OFFSET
10109 : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_ENTRYPOINT_OFFSET
10110 : BAKER_MARK_INTROSPECTION_INTRINSIC_CAS_ENTRYPOINT_OFFSET;
10111 __ Add(ep_reg, ep_reg, Operand(entrypoint_offset));
10112 __ Mov(ip, root_reg);
10113 __ Bx(ep_reg);
10114 __ Bind(&forwarding_address);
10115 __ Lsl(root_reg, ip, LockWord::kForwardingAddressShift);
10116 __ Bx(lr);
10117 break;
10118 }
10119 default:
10120 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
10121 UNREACHABLE();
10122 }
10123
10124 // For JIT, the slow path is considered part of the compiled method,
10125 // so JIT should pass null as `debug_name`.
10126 DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
10127 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
10128 std::ostringstream oss;
10129 oss << "BakerReadBarrierThunk";
10130 switch (kind) {
10131 case BakerReadBarrierKind::kField:
10132 oss << "Field";
10133 if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
10134 oss << "Wide";
10135 }
10136 oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
10137 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
10138 break;
10139 case BakerReadBarrierKind::kArray:
10140 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10141 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10142 BakerReadBarrierSecondRegField::Decode(encoded_data));
10143 DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10144 break;
10145 case BakerReadBarrierKind::kGcRoot:
10146 oss << "GcRoot";
10147 if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
10148 oss << "Wide";
10149 }
10150 oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10151 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10152 BakerReadBarrierSecondRegField::Decode(encoded_data));
10153 break;
10154 case BakerReadBarrierKind::kIntrinsicCas:
10155 oss << "IntrinsicCas_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
10156 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
10157 BakerReadBarrierSecondRegField::Decode(encoded_data));
10158 DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
10159 break;
10160 }
10161 *debug_name = oss.str();
10162 }
10163 }
10164
10165 #undef __
10166
10167 } // namespace arm
10168 } // namespace art
10169