1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm64.h"
18
19 #include "aarch64/assembler-aarch64.h"
20 #include "aarch64/registers-aarch64.h"
21 #include "arch/arm64/asm_support_arm64.h"
22 #include "arch/arm64/instruction_set_features_arm64.h"
23 #include "arch/arm64/jni_frame_arm64.h"
24 #include "art_method-inl.h"
25 #include "base/bit_utils.h"
26 #include "base/bit_utils_iterator.h"
27 #include "class_root-inl.h"
28 #include "class_table.h"
29 #include "code_generator_utils.h"
30 #include "compiled_method.h"
31 #include "entrypoints/quick/quick_entrypoints.h"
32 #include "entrypoints/quick/quick_entrypoints_enum.h"
33 #include "gc/accounting/card_table.h"
34 #include "gc/space/image_space.h"
35 #include "heap_poisoning.h"
36 #include "interpreter/mterp/nterp.h"
37 #include "intrinsics.h"
38 #include "intrinsics_arm64.h"
39 #include "intrinsics_utils.h"
40 #include "linker/linker_patch.h"
41 #include "lock_word.h"
42 #include "mirror/array-inl.h"
43 #include "mirror/class-inl.h"
44 #include "mirror/var_handle.h"
45 #include "offsets.h"
46 #include "optimizing/common_arm64.h"
47 #include "thread.h"
48 #include "utils/arm64/assembler_arm64.h"
49 #include "utils/assembler.h"
50 #include "utils/stack_checks.h"
51
52 using namespace vixl::aarch64; // NOLINT(build/namespaces)
53 using vixl::ExactAssemblyScope;
54 using vixl::CodeBufferCheckScope;
55 using vixl::EmissionCheckScope;
56
57 #ifdef __
58 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
59 #endif
60
61 namespace art {
62
63 template<class MirrorType>
64 class GcRoot;
65
66 namespace arm64 {
67
68 using helpers::ARM64EncodableConstantOrRegister;
69 using helpers::ArtVixlRegCodeCoherentForRegSet;
70 using helpers::CPURegisterFrom;
71 using helpers::DRegisterFrom;
72 using helpers::FPRegisterFrom;
73 using helpers::HeapOperand;
74 using helpers::HeapOperandFrom;
75 using helpers::InputCPURegisterOrZeroRegAt;
76 using helpers::InputFPRegisterAt;
77 using helpers::InputOperandAt;
78 using helpers::InputRegisterAt;
79 using helpers::Int64FromLocation;
80 using helpers::IsConstantZeroBitPattern;
81 using helpers::LocationFrom;
82 using helpers::OperandFromMemOperand;
83 using helpers::OutputCPURegister;
84 using helpers::OutputFPRegister;
85 using helpers::OutputRegister;
86 using helpers::RegisterFrom;
87 using helpers::StackOperandFrom;
88 using helpers::VIXLRegCodeFromART;
89 using helpers::WRegisterFrom;
90 using helpers::XRegisterFrom;
91
92 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
93 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
94 // generates less code/data with a small num_entries.
95 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
96
97 // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle
98 // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions.
99 // For the Baker read barrier implementation using link-time generated thunks we need to split
100 // the offset explicitly.
101 constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB;
102
ARM64Condition(IfCondition cond)103 inline Condition ARM64Condition(IfCondition cond) {
104 switch (cond) {
105 case kCondEQ: return eq;
106 case kCondNE: return ne;
107 case kCondLT: return lt;
108 case kCondLE: return le;
109 case kCondGT: return gt;
110 case kCondGE: return ge;
111 case kCondB: return lo;
112 case kCondBE: return ls;
113 case kCondA: return hi;
114 case kCondAE: return hs;
115 }
116 LOG(FATAL) << "Unreachable";
117 UNREACHABLE();
118 }
119
ARM64FPCondition(IfCondition cond,bool gt_bias)120 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
121 // The ARM64 condition codes can express all the necessary branches, see the
122 // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
123 // There is no dex instruction or HIR that would need the missing conditions
124 // "equal or unordered" or "not equal".
125 switch (cond) {
126 case kCondEQ: return eq;
127 case kCondNE: return ne /* unordered */;
128 case kCondLT: return gt_bias ? cc : lt /* unordered */;
129 case kCondLE: return gt_bias ? ls : le /* unordered */;
130 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
131 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
132 default:
133 LOG(FATAL) << "UNREACHABLE";
134 UNREACHABLE();
135 }
136 }
137
ARM64ReturnLocation(DataType::Type return_type)138 Location ARM64ReturnLocation(DataType::Type return_type) {
139 // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
140 // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
141 // but we use the exact registers for clarity.
142 if (return_type == DataType::Type::kFloat32) {
143 return LocationFrom(s0);
144 } else if (return_type == DataType::Type::kFloat64) {
145 return LocationFrom(d0);
146 } else if (return_type == DataType::Type::kInt64) {
147 return LocationFrom(x0);
148 } else if (return_type == DataType::Type::kVoid) {
149 return Location::NoLocation();
150 } else {
151 return LocationFrom(w0);
152 }
153 }
154
GetReturnLocation(DataType::Type return_type)155 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
156 return ARM64ReturnLocation(return_type);
157 }
158
OneRegInReferenceOutSaveEverythingCallerSaves()159 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
160 InvokeRuntimeCallingConvention calling_convention;
161 RegisterSet caller_saves = RegisterSet::Empty();
162 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
163 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
164 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
165 DataType::Type::kReference).GetCode());
166 return caller_saves;
167 }
168
169 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
170 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
171 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
172
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)173 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
174 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
175 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
176 for (uint32_t i : LowToHighBits(core_spills)) {
177 // If the register holds an object, update the stack mask.
178 if (locations->RegisterContainsObject(i)) {
179 locations->SetStackBit(stack_offset / kVRegSize);
180 }
181 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
182 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
183 saved_core_stack_offsets_[i] = stack_offset;
184 stack_offset += kXRegSizeInBytes;
185 }
186
187 const size_t fp_reg_size = codegen->GetSlowPathFPWidth();
188 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
189 for (uint32_t i : LowToHighBits(fp_spills)) {
190 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
191 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
192 saved_fpu_stack_offsets_[i] = stack_offset;
193 stack_offset += fp_reg_size;
194 }
195
196 InstructionCodeGeneratorARM64* visitor =
197 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
198 visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
199 }
200
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)201 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
202 InstructionCodeGeneratorARM64* visitor =
203 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
204 visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
205 }
206
207 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
208 public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)209 explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
210
EmitNativeCode(CodeGenerator * codegen)211 void EmitNativeCode(CodeGenerator* codegen) override {
212 LocationSummary* locations = instruction_->GetLocations();
213 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
214
215 __ Bind(GetEntryLabel());
216 if (instruction_->CanThrowIntoCatchBlock()) {
217 // Live registers will be restored in the catch block if caught.
218 SaveLiveRegisters(codegen, instruction_->GetLocations());
219 }
220 // We're moving two locations to locations that could overlap, so we need a parallel
221 // move resolver.
222 InvokeRuntimeCallingConvention calling_convention;
223 codegen->EmitParallelMoves(locations->InAt(0),
224 LocationFrom(calling_convention.GetRegisterAt(0)),
225 DataType::Type::kInt32,
226 locations->InAt(1),
227 LocationFrom(calling_convention.GetRegisterAt(1)),
228 DataType::Type::kInt32);
229 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
230 ? kQuickThrowStringBounds
231 : kQuickThrowArrayBounds;
232 arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
233 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
234 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
235 }
236
IsFatal() const237 bool IsFatal() const override { return true; }
238
GetDescription() const239 const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
240
241 private:
242 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
243 };
244
245 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
246 public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)247 explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
248
EmitNativeCode(CodeGenerator * codegen)249 void EmitNativeCode(CodeGenerator* codegen) override {
250 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
251 __ Bind(GetEntryLabel());
252 arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
253 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
254 }
255
IsFatal() const256 bool IsFatal() const override { return true; }
257
GetDescription() const258 const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
259
260 private:
261 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
262 };
263
264 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
265 public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at)266 LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
267 : SlowPathCodeARM64(at), cls_(cls) {
268 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
269 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
270 }
271
EmitNativeCode(CodeGenerator * codegen)272 void EmitNativeCode(CodeGenerator* codegen) override {
273 LocationSummary* locations = instruction_->GetLocations();
274 Location out = locations->Out();
275 const uint32_t dex_pc = instruction_->GetDexPc();
276 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
277 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
278
279 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
280 __ Bind(GetEntryLabel());
281 SaveLiveRegisters(codegen, locations);
282
283 InvokeRuntimeCallingConvention calling_convention;
284 if (must_resolve_type) {
285 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) ||
286 arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
287 ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
288 &cls_->GetDexFile()));
289 dex::TypeIndex type_index = cls_->GetTypeIndex();
290 __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
291 if (cls_->NeedsAccessCheck()) {
292 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
293 arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
294 } else {
295 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
296 arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
297 }
298 // If we also must_do_clinit, the resolved type is now in the correct register.
299 } else {
300 DCHECK(must_do_clinit);
301 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
302 arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
303 source,
304 cls_->GetType());
305 }
306 if (must_do_clinit) {
307 arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
308 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
309 }
310
311 // Move the class to the desired location.
312 if (out.IsValid()) {
313 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
314 DataType::Type type = instruction_->GetType();
315 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
316 }
317 RestoreLiveRegisters(codegen, locations);
318 __ B(GetExitLabel());
319 }
320
GetDescription() const321 const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
322
323 private:
324 // The class this slow path will load.
325 HLoadClass* const cls_;
326
327 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
328 };
329
330 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
331 public:
LoadStringSlowPathARM64(HLoadString * instruction)332 explicit LoadStringSlowPathARM64(HLoadString* instruction)
333 : SlowPathCodeARM64(instruction) {}
334
EmitNativeCode(CodeGenerator * codegen)335 void EmitNativeCode(CodeGenerator* codegen) override {
336 LocationSummary* locations = instruction_->GetLocations();
337 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
338 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
339
340 __ Bind(GetEntryLabel());
341 SaveLiveRegisters(codegen, locations);
342
343 InvokeRuntimeCallingConvention calling_convention;
344 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
345 __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
346 arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
347 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
348 DataType::Type type = instruction_->GetType();
349 arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
350
351 RestoreLiveRegisters(codegen, locations);
352
353 __ B(GetExitLabel());
354 }
355
GetDescription() const356 const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
357
358 private:
359 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
360 };
361
362 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
363 public:
NullCheckSlowPathARM64(HNullCheck * instr)364 explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
365
EmitNativeCode(CodeGenerator * codegen)366 void EmitNativeCode(CodeGenerator* codegen) override {
367 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
368 __ Bind(GetEntryLabel());
369 if (instruction_->CanThrowIntoCatchBlock()) {
370 // Live registers will be restored in the catch block if caught.
371 SaveLiveRegisters(codegen, instruction_->GetLocations());
372 }
373 arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
374 instruction_,
375 instruction_->GetDexPc(),
376 this);
377 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
378 }
379
IsFatal() const380 bool IsFatal() const override { return true; }
381
GetDescription() const382 const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
383
384 private:
385 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
386 };
387
388 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
389 public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)390 SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
391 : SlowPathCodeARM64(instruction), successor_(successor) {}
392
EmitNativeCode(CodeGenerator * codegen)393 void EmitNativeCode(CodeGenerator* codegen) override {
394 LocationSummary* locations = instruction_->GetLocations();
395 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
396 __ Bind(GetEntryLabel());
397 SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD.
398 arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
399 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
400 RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD.
401 if (successor_ == nullptr) {
402 __ B(GetReturnLabel());
403 } else {
404 __ B(arm64_codegen->GetLabelOf(successor_));
405 }
406 }
407
GetReturnLabel()408 vixl::aarch64::Label* GetReturnLabel() {
409 DCHECK(successor_ == nullptr);
410 return &return_label_;
411 }
412
GetSuccessor() const413 HBasicBlock* GetSuccessor() const {
414 return successor_;
415 }
416
GetDescription() const417 const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
418
419 private:
420 // If not null, the block to branch to after the suspend check.
421 HBasicBlock* const successor_;
422
423 // If `successor_` is null, the label to branch to after the suspend check.
424 vixl::aarch64::Label return_label_;
425
426 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
427 };
428
429 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
430 public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)431 TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
432 : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
433
EmitNativeCode(CodeGenerator * codegen)434 void EmitNativeCode(CodeGenerator* codegen) override {
435 LocationSummary* locations = instruction_->GetLocations();
436
437 DCHECK(instruction_->IsCheckCast()
438 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
439 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
440 uint32_t dex_pc = instruction_->GetDexPc();
441
442 __ Bind(GetEntryLabel());
443
444 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
445 SaveLiveRegisters(codegen, locations);
446 }
447
448 // We're moving two locations to locations that could overlap, so we need a parallel
449 // move resolver.
450 InvokeRuntimeCallingConvention calling_convention;
451 codegen->EmitParallelMoves(locations->InAt(0),
452 LocationFrom(calling_convention.GetRegisterAt(0)),
453 DataType::Type::kReference,
454 locations->InAt(1),
455 LocationFrom(calling_convention.GetRegisterAt(1)),
456 DataType::Type::kReference);
457 if (instruction_->IsInstanceOf()) {
458 arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
459 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
460 DataType::Type ret_type = instruction_->GetType();
461 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
462 arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
463 } else {
464 DCHECK(instruction_->IsCheckCast());
465 arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
466 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
467 }
468
469 if (!is_fatal_) {
470 RestoreLiveRegisters(codegen, locations);
471 __ B(GetExitLabel());
472 }
473 }
474
GetDescription() const475 const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
IsFatal() const476 bool IsFatal() const override { return is_fatal_; }
477
478 private:
479 const bool is_fatal_;
480
481 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
482 };
483
484 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
485 public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)486 explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
487 : SlowPathCodeARM64(instruction) {}
488
EmitNativeCode(CodeGenerator * codegen)489 void EmitNativeCode(CodeGenerator* codegen) override {
490 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
491 __ Bind(GetEntryLabel());
492 LocationSummary* locations = instruction_->GetLocations();
493 SaveLiveRegisters(codegen, locations);
494 InvokeRuntimeCallingConvention calling_convention;
495 __ Mov(calling_convention.GetRegisterAt(0),
496 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
497 arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
498 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
499 }
500
GetDescription() const501 const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
502
503 private:
504 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
505 };
506
507 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
508 public:
ArraySetSlowPathARM64(HInstruction * instruction)509 explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
510
EmitNativeCode(CodeGenerator * codegen)511 void EmitNativeCode(CodeGenerator* codegen) override {
512 LocationSummary* locations = instruction_->GetLocations();
513 __ Bind(GetEntryLabel());
514 SaveLiveRegisters(codegen, locations);
515
516 InvokeRuntimeCallingConvention calling_convention;
517 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
518 parallel_move.AddMove(
519 locations->InAt(0),
520 LocationFrom(calling_convention.GetRegisterAt(0)),
521 DataType::Type::kReference,
522 nullptr);
523 parallel_move.AddMove(
524 locations->InAt(1),
525 LocationFrom(calling_convention.GetRegisterAt(1)),
526 DataType::Type::kInt32,
527 nullptr);
528 parallel_move.AddMove(
529 locations->InAt(2),
530 LocationFrom(calling_convention.GetRegisterAt(2)),
531 DataType::Type::kReference,
532 nullptr);
533 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
534
535 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
536 arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
537 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
538 RestoreLiveRegisters(codegen, locations);
539 __ B(GetExitLabel());
540 }
541
GetDescription() const542 const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
543
544 private:
545 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
546 };
547
EmitTable(CodeGeneratorARM64 * codegen)548 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
549 uint32_t num_entries = switch_instr_->GetNumEntries();
550 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
551
552 // We are about to use the assembler to place literals directly. Make sure we have enough
553 // underlying code buffer and we have generated the jump table with right size.
554 EmissionCheckScope scope(codegen->GetVIXLAssembler(),
555 num_entries * sizeof(int32_t),
556 CodeBufferCheckScope::kExactSize);
557
558 __ Bind(&table_start_);
559 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
560 for (uint32_t i = 0; i < num_entries; i++) {
561 vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
562 DCHECK(target_label->IsBound());
563 ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
564 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
565 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
566 Literal<int32_t> literal(jump_offset);
567 __ place(&literal);
568 }
569 }
570
571 // Slow path generating a read barrier for a heap reference.
572 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
573 public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)574 ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
575 Location out,
576 Location ref,
577 Location obj,
578 uint32_t offset,
579 Location index)
580 : SlowPathCodeARM64(instruction),
581 out_(out),
582 ref_(ref),
583 obj_(obj),
584 offset_(offset),
585 index_(index) {
586 DCHECK(kEmitCompilerReadBarrier);
587 // If `obj` is equal to `out` or `ref`, it means the initial object
588 // has been overwritten by (or after) the heap object reference load
589 // to be instrumented, e.g.:
590 //
591 // __ Ldr(out, HeapOperand(out, class_offset);
592 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
593 //
594 // In that case, we have lost the information about the original
595 // object, and the emitted read barrier cannot work properly.
596 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
597 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
598 }
599
EmitNativeCode(CodeGenerator * codegen)600 void EmitNativeCode(CodeGenerator* codegen) override {
601 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
602 LocationSummary* locations = instruction_->GetLocations();
603 DataType::Type type = DataType::Type::kReference;
604 DCHECK(locations->CanCall());
605 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
606 DCHECK(instruction_->IsInstanceFieldGet() ||
607 instruction_->IsPredicatedInstanceFieldGet() ||
608 instruction_->IsStaticFieldGet() ||
609 instruction_->IsArrayGet() ||
610 instruction_->IsInstanceOf() ||
611 instruction_->IsCheckCast() ||
612 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
613 << "Unexpected instruction in read barrier for heap reference slow path: "
614 << instruction_->DebugName();
615 // The read barrier instrumentation of object ArrayGet
616 // instructions does not support the HIntermediateAddress
617 // instruction.
618 DCHECK(!(instruction_->IsArrayGet() &&
619 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
620
621 __ Bind(GetEntryLabel());
622
623 SaveLiveRegisters(codegen, locations);
624
625 // We may have to change the index's value, but as `index_` is a
626 // constant member (like other "inputs" of this slow path),
627 // introduce a copy of it, `index`.
628 Location index = index_;
629 if (index_.IsValid()) {
630 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
631 if (instruction_->IsArrayGet()) {
632 // Compute the actual memory offset and store it in `index`.
633 Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
634 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
635 if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
636 // We are about to change the value of `index_reg` (see the
637 // calls to vixl::MacroAssembler::Lsl and
638 // vixl::MacroAssembler::Mov below), but it has
639 // not been saved by the previous call to
640 // art::SlowPathCode::SaveLiveRegisters, as it is a
641 // callee-save register --
642 // art::SlowPathCode::SaveLiveRegisters does not consider
643 // callee-save registers, as it has been designed with the
644 // assumption that callee-save registers are supposed to be
645 // handled by the called function. So, as a callee-save
646 // register, `index_reg` _would_ eventually be saved onto
647 // the stack, but it would be too late: we would have
648 // changed its value earlier. Therefore, we manually save
649 // it here into another freely available register,
650 // `free_reg`, chosen of course among the caller-save
651 // registers (as a callee-save `free_reg` register would
652 // exhibit the same problem).
653 //
654 // Note we could have requested a temporary register from
655 // the register allocator instead; but we prefer not to, as
656 // this is a slow path, and we know we can find a
657 // caller-save register that is available.
658 Register free_reg = FindAvailableCallerSaveRegister(codegen);
659 __ Mov(free_reg.W(), index_reg);
660 index_reg = free_reg;
661 index = LocationFrom(index_reg);
662 } else {
663 // The initial register stored in `index_` has already been
664 // saved in the call to art::SlowPathCode::SaveLiveRegisters
665 // (as it is not a callee-save register), so we can freely
666 // use it.
667 }
668 // Shifting the index value contained in `index_reg` by the scale
669 // factor (2) cannot overflow in practice, as the runtime is
670 // unable to allocate object arrays with a size larger than
671 // 2^26 - 1 (that is, 2^28 - 4 bytes).
672 __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
673 static_assert(
674 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
675 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
676 __ Add(index_reg, index_reg, Operand(offset_));
677 } else {
678 // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
679 // (as in the case of ArrayGet), as it is actually an offset to an object field within an
680 // object.
681 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
682 DCHECK(instruction_->GetLocations()->Intrinsified());
683 HInvoke* invoke = instruction_->AsInvoke();
684 DCHECK(IsUnsafeGetObject(invoke) ||
685 IsVarHandleGet(invoke) ||
686 IsUnsafeCASObject(invoke) ||
687 IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic();
688 DCHECK_EQ(offset_, 0u);
689 DCHECK(index_.IsRegister());
690 }
691 }
692
693 // We're moving two or three locations to locations that could
694 // overlap, so we need a parallel move resolver.
695 InvokeRuntimeCallingConvention calling_convention;
696 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
697 parallel_move.AddMove(ref_,
698 LocationFrom(calling_convention.GetRegisterAt(0)),
699 type,
700 nullptr);
701 parallel_move.AddMove(obj_,
702 LocationFrom(calling_convention.GetRegisterAt(1)),
703 type,
704 nullptr);
705 if (index.IsValid()) {
706 parallel_move.AddMove(index,
707 LocationFrom(calling_convention.GetRegisterAt(2)),
708 DataType::Type::kInt32,
709 nullptr);
710 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
711 } else {
712 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
713 arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
714 }
715 arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
716 instruction_,
717 instruction_->GetDexPc(),
718 this);
719 CheckEntrypointTypes<
720 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
721 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
722
723 RestoreLiveRegisters(codegen, locations);
724
725 __ B(GetExitLabel());
726 }
727
GetDescription() const728 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
729
730 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)731 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
732 size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
733 size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
734 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
735 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
736 return Register(VIXLRegCodeFromART(i), kXRegSize);
737 }
738 }
739 // We shall never fail to find a free caller-save register, as
740 // there are more than two core caller-save registers on ARM64
741 // (meaning it is possible to find one which is different from
742 // `ref` and `obj`).
743 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
744 LOG(FATAL) << "Could not find a free register";
745 UNREACHABLE();
746 }
747
748 const Location out_;
749 const Location ref_;
750 const Location obj_;
751 const uint32_t offset_;
752 // An additional location containing an index to an array.
753 // Only used for HArrayGet and the UnsafeGetObject &
754 // UnsafeGetObjectVolatile intrinsics.
755 const Location index_;
756
757 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
758 };
759
760 // Slow path generating a read barrier for a GC root.
761 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
762 public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)763 ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
764 : SlowPathCodeARM64(instruction), out_(out), root_(root) {
765 DCHECK(kEmitCompilerReadBarrier);
766 }
767
EmitNativeCode(CodeGenerator * codegen)768 void EmitNativeCode(CodeGenerator* codegen) override {
769 LocationSummary* locations = instruction_->GetLocations();
770 DataType::Type type = DataType::Type::kReference;
771 DCHECK(locations->CanCall());
772 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
773 DCHECK(instruction_->IsLoadClass() ||
774 instruction_->IsLoadString() ||
775 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
776 << "Unexpected instruction in read barrier for GC root slow path: "
777 << instruction_->DebugName();
778
779 __ Bind(GetEntryLabel());
780 SaveLiveRegisters(codegen, locations);
781
782 InvokeRuntimeCallingConvention calling_convention;
783 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
784 // The argument of the ReadBarrierForRootSlow is not a managed
785 // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
786 // thus we need a 64-bit move here, and we cannot use
787 //
788 // arm64_codegen->MoveLocation(
789 // LocationFrom(calling_convention.GetRegisterAt(0)),
790 // root_,
791 // type);
792 //
793 // which would emit a 32-bit move, as `type` is a (32-bit wide)
794 // reference type (`DataType::Type::kReference`).
795 __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
796 arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
797 instruction_,
798 instruction_->GetDexPc(),
799 this);
800 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
801 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
802
803 RestoreLiveRegisters(codegen, locations);
804 __ B(GetExitLabel());
805 }
806
GetDescription() const807 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
808
809 private:
810 const Location out_;
811 const Location root_;
812
813 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
814 };
815
816 class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
817 public:
MethodEntryExitHooksSlowPathARM64(HInstruction * instruction)818 explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction)
819 : SlowPathCodeARM64(instruction) {}
820
EmitNativeCode(CodeGenerator * codegen)821 void EmitNativeCode(CodeGenerator* codegen) override {
822 LocationSummary* locations = instruction_->GetLocations();
823 QuickEntrypointEnum entry_point =
824 (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
825 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
826 __ Bind(GetEntryLabel());
827 SaveLiveRegisters(codegen, locations);
828 arm64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
829 RestoreLiveRegisters(codegen, locations);
830 __ B(GetExitLabel());
831 }
832
GetDescription() const833 const char* GetDescription() const override {
834 return "MethodEntryExitHooksSlowPath";
835 }
836
837 private:
838 DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64);
839 };
840
841 class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 {
842 public:
CompileOptimizedSlowPathARM64()843 CompileOptimizedSlowPathARM64() : SlowPathCodeARM64(/* instruction= */ nullptr) {}
844
EmitNativeCode(CodeGenerator * codegen)845 void EmitNativeCode(CodeGenerator* codegen) override {
846 uint32_t entrypoint_offset =
847 GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
848 __ Bind(GetEntryLabel());
849 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
850 // Note: we don't record the call here (and therefore don't generate a stack
851 // map), as the entrypoint should never be suspended.
852 __ Blr(lr);
853 __ B(GetExitLabel());
854 }
855
GetDescription() const856 const char* GetDescription() const override {
857 return "CompileOptimizedSlowPath";
858 }
859
860 private:
861 DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64);
862 };
863
864 #undef __
865
GetNextLocation(DataType::Type type)866 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
867 Location next_location;
868 if (type == DataType::Type::kVoid) {
869 LOG(FATAL) << "Unreachable type " << type;
870 }
871
872 if (DataType::IsFloatingPointType(type) &&
873 (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
874 next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
875 } else if (!DataType::IsFloatingPointType(type) &&
876 (gp_index_ < calling_convention.GetNumberOfRegisters())) {
877 next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
878 } else {
879 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
880 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
881 : Location::StackSlot(stack_offset);
882 }
883
884 // Space on the stack is reserved for all arguments.
885 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
886 return next_location;
887 }
888
GetMethodLocation() const889 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
890 return LocationFrom(kArtMethodRegister);
891 }
892
GetNextLocation(DataType::Type type)893 Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
894 DCHECK_NE(type, DataType::Type::kReference);
895
896 Location location = Location::NoLocation();
897 if (DataType::IsFloatingPointType(type)) {
898 if (fpr_index_ < kParameterFPRegistersLength) {
899 location = LocationFrom(kParameterFPRegisters[fpr_index_]);
900 ++fpr_index_;
901 }
902 } else {
903 // Native ABI uses the same registers as managed, except that the method register x0
904 // is a normal argument.
905 if (gpr_index_ < 1u + kParameterCoreRegistersLength) {
906 location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]);
907 ++gpr_index_;
908 }
909 }
910 if (location.IsInvalid()) {
911 if (DataType::Is64BitType(type)) {
912 location = Location::DoubleStackSlot(stack_offset_);
913 } else {
914 location = Location::StackSlot(stack_offset_);
915 }
916 stack_offset_ += kFramePointerSize;
917
918 if (for_register_allocation_) {
919 location = Location::Any();
920 }
921 }
922 return location;
923 }
924
GetReturnLocation(DataType::Type type) const925 Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const {
926 // We perform conversion to the managed ABI return register after the call if needed.
927 InvokeDexCallingConventionVisitorARM64 dex_calling_convention;
928 return dex_calling_convention.GetReturnLocation(type);
929 }
930
GetMethodLocation() const931 Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const {
932 // Pass the method in the hidden argument x15.
933 return Location::RegisterLocation(x15.GetCode());
934 }
935
CodeGeneratorARM64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)936 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
937 const CompilerOptions& compiler_options,
938 OptimizingCompilerStats* stats)
939 : CodeGenerator(graph,
940 kNumberOfAllocatableRegisters,
941 kNumberOfAllocatableFPRegisters,
942 kNumberOfAllocatableRegisterPairs,
943 callee_saved_core_registers.GetList(),
944 callee_saved_fp_registers.GetList(),
945 compiler_options,
946 stats),
947 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
948 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
949 location_builder_neon_(graph, this),
950 instruction_visitor_neon_(graph, this),
951 location_builder_sve_(graph, this),
952 instruction_visitor_sve_(graph, this),
953 move_resolver_(graph->GetAllocator(), this),
954 assembler_(graph->GetAllocator(),
955 compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
956 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
957 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
958 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
959 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
960 public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
961 package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
962 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
963 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
964 boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
965 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
966 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
967 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
968 uint32_literals_(std::less<uint32_t>(),
969 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
970 uint64_literals_(std::less<uint64_t>(),
971 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
972 jit_string_patches_(StringReferenceValueComparator(),
973 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
974 jit_class_patches_(TypeReferenceValueComparator(),
975 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
976 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
977 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
978 // Save the link register (containing the return address) to mimic Quick.
979 AddAllocatedRegister(LocationFrom(lr));
980
981 bool use_sve = ShouldUseSVE();
982 if (use_sve) {
983 location_builder_ = &location_builder_sve_;
984 instruction_visitor_ = &instruction_visitor_sve_;
985 } else {
986 location_builder_ = &location_builder_neon_;
987 instruction_visitor_ = &instruction_visitor_neon_;
988 }
989 }
990
ShouldUseSVE() const991 bool CodeGeneratorARM64::ShouldUseSVE() const {
992 return GetInstructionSetFeatures().HasSVE();
993 }
994
GetSIMDRegisterWidth() const995 size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const {
996 return SupportsPredicatedSIMD()
997 ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte
998 : vixl::aarch64::kQRegSizeInBytes;
999 }
1000
1001 #define __ GetVIXLAssembler()->
1002
EmitJumpTables()1003 void CodeGeneratorARM64::EmitJumpTables() {
1004 for (auto&& jump_table : jump_tables_) {
1005 jump_table->EmitTable(this);
1006 }
1007 }
1008
Finalize(CodeAllocator * allocator)1009 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
1010 EmitJumpTables();
1011
1012 // Emit JIT baker read barrier slow paths.
1013 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
1014 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
1015 uint32_t encoded_data = entry.first;
1016 vixl::aarch64::Label* slow_path_entry = &entry.second.label;
1017 __ Bind(slow_path_entry);
1018 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
1019 }
1020
1021 // Ensure we emit the literal pool.
1022 __ FinalizeCode();
1023
1024 CodeGenerator::Finalize(allocator);
1025
1026 // Verify Baker read barrier linker patches.
1027 if (kIsDebugBuild) {
1028 ArrayRef<const uint8_t> code = allocator->GetMemory();
1029 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1030 DCHECK(info.label.IsBound());
1031 uint32_t literal_offset = info.label.GetLocation();
1032 DCHECK_ALIGNED(literal_offset, 4u);
1033
1034 auto GetInsn = [&code](uint32_t offset) {
1035 DCHECK_ALIGNED(offset, 4u);
1036 return
1037 (static_cast<uint32_t>(code[offset + 0]) << 0) +
1038 (static_cast<uint32_t>(code[offset + 1]) << 8) +
1039 (static_cast<uint32_t>(code[offset + 2]) << 16)+
1040 (static_cast<uint32_t>(code[offset + 3]) << 24);
1041 };
1042
1043 const uint32_t encoded_data = info.custom_data;
1044 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1045 // Check that the next instruction matches the expected LDR.
1046 switch (kind) {
1047 case BakerReadBarrierKind::kField:
1048 case BakerReadBarrierKind::kAcquire: {
1049 DCHECK_GE(code.size() - literal_offset, 8u);
1050 uint32_t next_insn = GetInsn(literal_offset + 4u);
1051 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1052 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1053 if (kind == BakerReadBarrierKind::kField) {
1054 // LDR (immediate) with correct base_reg.
1055 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
1056 } else {
1057 DCHECK(kind == BakerReadBarrierKind::kAcquire);
1058 // LDAR with correct base_reg.
1059 CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
1060 }
1061 break;
1062 }
1063 case BakerReadBarrierKind::kArray: {
1064 DCHECK_GE(code.size() - literal_offset, 8u);
1065 uint32_t next_insn = GetInsn(literal_offset + 4u);
1066 // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
1067 // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
1068 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1069 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1070 CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
1071 CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
1072 break;
1073 }
1074 case BakerReadBarrierKind::kGcRoot: {
1075 DCHECK_GE(literal_offset, 4u);
1076 uint32_t prev_insn = GetInsn(literal_offset - 4u);
1077 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1078 // Usually LDR (immediate) with correct root_reg but
1079 // we may have a "MOV marked, old_value" for intrinsic CAS.
1080 if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
1081 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
1082 }
1083 break;
1084 }
1085 default:
1086 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
1087 UNREACHABLE();
1088 }
1089 }
1090 }
1091 }
1092
PrepareForEmitNativeCode()1093 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
1094 // Note: There are 6 kinds of moves:
1095 // 1. constant -> GPR/FPR (non-cycle)
1096 // 2. constant -> stack (non-cycle)
1097 // 3. GPR/FPR -> GPR/FPR
1098 // 4. GPR/FPR -> stack
1099 // 5. stack -> GPR/FPR
1100 // 6. stack -> stack (non-cycle)
1101 // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
1102 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
1103 // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
1104 // dependency.
1105 vixl_temps_.Open(GetVIXLAssembler());
1106 }
1107
FinishEmitNativeCode()1108 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
1109 vixl_temps_.Close();
1110 }
1111
AllocateScratchLocationFor(Location::Kind kind)1112 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
1113 DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
1114 || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
1115 || kind == Location::kSIMDStackSlot);
1116 kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
1117 ? Location::kFpuRegister
1118 : Location::kRegister;
1119 Location scratch = GetScratchLocation(kind);
1120 if (!scratch.Equals(Location::NoLocation())) {
1121 return scratch;
1122 }
1123 // Allocate from VIXL temp registers.
1124 if (kind == Location::kRegister) {
1125 scratch = LocationFrom(vixl_temps_.AcquireX());
1126 } else {
1127 DCHECK_EQ(kind, Location::kFpuRegister);
1128 scratch = codegen_->GetGraph()->HasSIMD()
1129 ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_)
1130 : LocationFrom(vixl_temps_.AcquireD());
1131 }
1132 AddScratchLocation(scratch);
1133 return scratch;
1134 }
1135
FreeScratchLocation(Location loc)1136 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
1137 if (loc.IsRegister()) {
1138 vixl_temps_.Release(XRegisterFrom(loc));
1139 } else {
1140 DCHECK(loc.IsFpuRegister());
1141 if (codegen_->GetGraph()->HasSIMD()) {
1142 codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_);
1143 } else {
1144 vixl_temps_.Release(DRegisterFrom(loc));
1145 }
1146 }
1147 RemoveScratchLocation(loc);
1148 }
1149
EmitMove(size_t index)1150 void ParallelMoveResolverARM64::EmitMove(size_t index) {
1151 MoveOperands* move = moves_[index];
1152 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
1153 }
1154
VisitMethodExitHook(HMethodExitHook * method_hook)1155 void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) {
1156 LocationSummary* locations = new (GetGraph()->GetAllocator())
1157 LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1158 DataType::Type return_type = method_hook->InputAt(0)->GetType();
1159 locations->SetInAt(0, ARM64ReturnLocation(return_type));
1160 }
1161
GenerateMethodEntryExitHook(HInstruction * instruction)1162 void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) {
1163 MacroAssembler* masm = GetVIXLAssembler();
1164 UseScratchRegisterScope temps(masm);
1165 Register temp = temps.AcquireX();
1166 Register value = temps.AcquireW();
1167
1168 SlowPathCodeARM64* slow_path =
1169 new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction);
1170 codegen_->AddSlowPath(slow_path);
1171
1172 uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation());
1173 int offset = instrumentation::Instrumentation::NeedsEntryExitHooksOffset().Int32Value();
1174 __ Mov(temp, address + offset);
1175 __ Ldrb(value, MemOperand(temp, 0));
1176 __ Cbnz(value, slow_path->GetEntryLabel());
1177 __ Bind(slow_path->GetExitLabel());
1178 }
1179
VisitMethodExitHook(HMethodExitHook * instruction)1180 void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) {
1181 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1182 DCHECK(codegen_->RequiresCurrentMethod());
1183 GenerateMethodEntryExitHook(instruction);
1184 }
1185
VisitMethodEntryHook(HMethodEntryHook * method_hook)1186 void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
1187 new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1188 }
1189
VisitMethodEntryHook(HMethodEntryHook * instruction)1190 void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
1191 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1192 DCHECK(codegen_->RequiresCurrentMethod());
1193 GenerateMethodEntryExitHook(instruction);
1194 }
1195
MaybeIncrementHotness(bool is_frame_entry)1196 void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) {
1197 MacroAssembler* masm = GetVIXLAssembler();
1198 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1199 UseScratchRegisterScope temps(masm);
1200 Register counter = temps.AcquireX();
1201 Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
1202 if (!is_frame_entry) {
1203 __ Ldr(method, MemOperand(sp, 0));
1204 }
1205 __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1206 vixl::aarch64::Label done;
1207 DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
1208 __ Cbz(counter, &done);
1209 __ Add(counter, counter, -1);
1210 __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1211 __ Bind(&done);
1212 }
1213
1214 if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
1215 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64();
1216 AddSlowPath(slow_path);
1217 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
1218 DCHECK(info != nullptr);
1219 DCHECK(!HasEmptyFrame());
1220 uint64_t address = reinterpret_cast64<uint64_t>(info);
1221 vixl::aarch64::Label done;
1222 UseScratchRegisterScope temps(masm);
1223 Register temp = temps.AcquireX();
1224 Register counter = temps.AcquireW();
1225 __ Ldr(temp, DeduplicateUint64Literal(address));
1226 __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1227 __ Cbz(counter, slow_path->GetEntryLabel());
1228 __ Add(counter, counter, -1);
1229 __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1230 __ Bind(slow_path->GetExitLabel());
1231 }
1232 }
1233
GenerateFrameEntry()1234 void CodeGeneratorARM64::GenerateFrameEntry() {
1235 MacroAssembler* masm = GetVIXLAssembler();
1236 __ Bind(&frame_entry_label_);
1237
1238 bool do_overflow_check =
1239 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
1240 if (do_overflow_check) {
1241 UseScratchRegisterScope temps(masm);
1242 Register temp = temps.AcquireX();
1243 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1244 __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
1245 {
1246 // Ensure that between load and RecordPcInfo there are no pools emitted.
1247 ExactAssemblyScope eas(GetVIXLAssembler(),
1248 kInstructionSize,
1249 CodeBufferCheckScope::kExactSize);
1250 __ ldr(wzr, MemOperand(temp, 0));
1251 RecordPcInfo(nullptr, 0);
1252 }
1253 }
1254
1255 if (!HasEmptyFrame()) {
1256 // Stack layout:
1257 // sp[frame_size - 8] : lr.
1258 // ... : other preserved core registers.
1259 // ... : other preserved fp registers.
1260 // ... : reserved frame space.
1261 // sp[0] : current method.
1262 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1263 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1264 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1265 DCHECK(!preserved_core_registers.IsEmpty());
1266 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1267 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1268
1269 // Save the current method if we need it, or if using STP reduces code
1270 // size. Note that we do not do this in HCurrentMethod, as the
1271 // instruction might have been removed in the SSA graph.
1272 CPURegister lowest_spill;
1273 if (core_spills_offset == kXRegSizeInBytes) {
1274 // If there is no gap between the method and the lowest core spill, use
1275 // aligned STP pre-index to store both. Max difference is 512. We do
1276 // that to reduce code size even if we do not have to save the method.
1277 DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
1278 lowest_spill = preserved_core_registers.PopLowestIndex();
1279 __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
1280 } else if (RequiresCurrentMethod()) {
1281 __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1282 } else {
1283 __ Claim(frame_size);
1284 }
1285 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1286 if (lowest_spill.IsValid()) {
1287 GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
1288 core_spills_offset += kXRegSizeInBytes;
1289 }
1290 GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
1291 GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
1292
1293 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1294 // Initialize should_deoptimize flag to 0.
1295 Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
1296 __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
1297 }
1298 }
1299 MaybeIncrementHotness(/* is_frame_entry= */ true);
1300 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
1301 }
1302
GenerateFrameExit()1303 void CodeGeneratorARM64::GenerateFrameExit() {
1304 GetAssembler()->cfi().RememberState();
1305 if (!HasEmptyFrame()) {
1306 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1307 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1308 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1309 DCHECK(!preserved_core_registers.IsEmpty());
1310 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1311 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1312
1313 CPURegister lowest_spill;
1314 if (core_spills_offset == kXRegSizeInBytes) {
1315 // If there is no gap between the method and the lowest core spill, use
1316 // aligned LDP pre-index to pop both. Max difference is 504. We do
1317 // that to reduce code size even though the loaded method is unused.
1318 DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
1319 lowest_spill = preserved_core_registers.PopLowestIndex();
1320 core_spills_offset += kXRegSizeInBytes;
1321 }
1322 GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
1323 GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset);
1324 if (lowest_spill.IsValid()) {
1325 __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
1326 GetAssembler()->cfi().Restore(DWARFReg(lowest_spill));
1327 } else {
1328 __ Drop(frame_size);
1329 }
1330 GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1331 }
1332 __ Ret();
1333 GetAssembler()->cfi().RestoreState();
1334 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1335 }
1336
GetFramePreservedCoreRegisters() const1337 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1338 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1339 return CPURegList(CPURegister::kRegister, kXRegSize,
1340 core_spill_mask_);
1341 }
1342
GetFramePreservedFPRegisters() const1343 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1344 DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1345 GetNumberOfFloatingPointRegisters()));
1346 return CPURegList(CPURegister::kVRegister, kDRegSize,
1347 fpu_spill_mask_);
1348 }
1349
Bind(HBasicBlock * block)1350 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1351 __ Bind(GetLabelOf(block));
1352 }
1353
MoveConstant(Location location,int32_t value)1354 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1355 DCHECK(location.IsRegister());
1356 __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
1357 }
1358
AddLocationAsTemp(Location location,LocationSummary * locations)1359 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1360 if (location.IsRegister()) {
1361 locations->AddTemp(location);
1362 } else {
1363 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1364 }
1365 }
1366
MarkGCCard(Register object,Register value,bool value_can_be_null)1367 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
1368 UseScratchRegisterScope temps(GetVIXLAssembler());
1369 Register card = temps.AcquireX();
1370 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1371 vixl::aarch64::Label done;
1372 if (value_can_be_null) {
1373 __ Cbz(value, &done);
1374 }
1375 // Load the address of the card table into `card`.
1376 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1377 // Calculate the offset (in the card table) of the card corresponding to
1378 // `object`.
1379 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1380 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1381 // `object`'s card.
1382 //
1383 // Register `card` contains the address of the card table. Note that the card
1384 // table's base is biased during its creation so that it always starts at an
1385 // address whose least-significant byte is equal to `kCardDirty` (see
1386 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
1387 // below writes the `kCardDirty` (byte) value into the `object`'s card
1388 // (located at `card + object >> kCardShift`).
1389 //
1390 // This dual use of the value in register `card` (1. to calculate the location
1391 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1392 // (no need to explicitly load `kCardDirty` as an immediate value).
1393 __ Strb(card, MemOperand(card, temp.X()));
1394 if (value_can_be_null) {
1395 __ Bind(&done);
1396 }
1397 }
1398
SetupBlockedRegisters() const1399 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1400 // Blocked core registers:
1401 // lr : Runtime reserved.
1402 // tr : Runtime reserved.
1403 // mr : Runtime reserved.
1404 // ip1 : VIXL core temp.
1405 // ip0 : VIXL core temp.
1406 // x18 : Platform register.
1407 //
1408 // Blocked fp registers:
1409 // d31 : VIXL fp temp.
1410 CPURegList reserved_core_registers = vixl_reserved_core_registers;
1411 reserved_core_registers.Combine(runtime_reserved_core_registers);
1412 while (!reserved_core_registers.IsEmpty()) {
1413 blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
1414 }
1415 blocked_core_registers_[X18] = true;
1416
1417 CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1418 while (!reserved_fp_registers.IsEmpty()) {
1419 blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
1420 }
1421
1422 if (GetGraph()->IsDebuggable()) {
1423 // Stubs do not save callee-save floating point registers. If the graph
1424 // is debuggable, we need to deal with these registers differently. For
1425 // now, just block them.
1426 CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1427 while (!reserved_fp_registers_debuggable.IsEmpty()) {
1428 blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
1429 }
1430 }
1431 }
1432
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1433 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1434 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1435 __ Str(reg, MemOperand(sp, stack_index));
1436 return kArm64WordSize;
1437 }
1438
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1439 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1440 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1441 __ Ldr(reg, MemOperand(sp, stack_index));
1442 return kArm64WordSize;
1443 }
1444
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1445 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1446 uint32_t reg_id ATTRIBUTE_UNUSED) {
1447 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1448 << "use SaveRestoreLiveRegistersHelper";
1449 UNREACHABLE();
1450 }
1451
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1452 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1453 uint32_t reg_id ATTRIBUTE_UNUSED) {
1454 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1455 << "use SaveRestoreLiveRegistersHelper";
1456 UNREACHABLE();
1457 }
1458
DumpCoreRegister(std::ostream & stream,int reg) const1459 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1460 stream << XRegister(reg);
1461 }
1462
DumpFloatingPointRegister(std::ostream & stream,int reg) const1463 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1464 stream << DRegister(reg);
1465 }
1466
GetInstructionSetFeatures() const1467 const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
1468 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
1469 }
1470
MoveConstant(CPURegister destination,HConstant * constant)1471 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1472 if (constant->IsIntConstant()) {
1473 __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1474 } else if (constant->IsLongConstant()) {
1475 __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1476 } else if (constant->IsNullConstant()) {
1477 __ Mov(Register(destination), 0);
1478 } else if (constant->IsFloatConstant()) {
1479 __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
1480 } else {
1481 DCHECK(constant->IsDoubleConstant());
1482 __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
1483 }
1484 }
1485
1486
CoherentConstantAndType(Location constant,DataType::Type type)1487 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
1488 DCHECK(constant.IsConstant());
1489 HConstant* cst = constant.GetConstant();
1490 return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
1491 // Null is mapped to a core W register, which we associate with kPrimInt.
1492 (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
1493 (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
1494 (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
1495 (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
1496 }
1497
1498 // Allocate a scratch register from the VIXL pool, querying first
1499 // the floating-point register pool, and then the core register
1500 // pool. This is essentially a reimplementation of
1501 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
1502 // using a different allocation strategy.
AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler * masm,vixl::aarch64::UseScratchRegisterScope * temps,int size_in_bits)1503 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
1504 vixl::aarch64::UseScratchRegisterScope* temps,
1505 int size_in_bits) {
1506 return masm->GetScratchVRegisterList()->IsEmpty()
1507 ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
1508 : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
1509 }
1510
MoveLocation(Location destination,Location source,DataType::Type dst_type)1511 void CodeGeneratorARM64::MoveLocation(Location destination,
1512 Location source,
1513 DataType::Type dst_type) {
1514 if (source.Equals(destination)) {
1515 return;
1516 }
1517
1518 // A valid move can always be inferred from the destination and source
1519 // locations. When moving from and to a register, the argument type can be
1520 // used to generate 32bit instead of 64bit moves. In debug mode we also
1521 // checks the coherency of the locations and the type.
1522 bool unspecified_type = (dst_type == DataType::Type::kVoid);
1523
1524 if (destination.IsRegister() || destination.IsFpuRegister()) {
1525 if (unspecified_type) {
1526 HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1527 if (source.IsStackSlot() ||
1528 (src_cst != nullptr && (src_cst->IsIntConstant()
1529 || src_cst->IsFloatConstant()
1530 || src_cst->IsNullConstant()))) {
1531 // For stack slots and 32bit constants, a 64bit type is appropriate.
1532 dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
1533 } else {
1534 // If the source is a double stack slot or a 64bit constant, a 64bit
1535 // type is appropriate. Else the source is a register, and since the
1536 // type has not been specified, we chose a 64bit type to force a 64bit
1537 // move.
1538 dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
1539 }
1540 }
1541 DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
1542 (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
1543 CPURegister dst = CPURegisterFrom(destination, dst_type);
1544 if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1545 DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1546 __ Ldr(dst, StackOperandFrom(source));
1547 } else if (source.IsSIMDStackSlot()) {
1548 GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source);
1549 } else if (source.IsConstant()) {
1550 DCHECK(CoherentConstantAndType(source, dst_type));
1551 MoveConstant(dst, source.GetConstant());
1552 } else if (source.IsRegister()) {
1553 if (destination.IsRegister()) {
1554 __ Mov(Register(dst), RegisterFrom(source, dst_type));
1555 } else {
1556 DCHECK(destination.IsFpuRegister());
1557 DataType::Type source_type = DataType::Is64BitType(dst_type)
1558 ? DataType::Type::kInt64
1559 : DataType::Type::kInt32;
1560 __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1561 }
1562 } else {
1563 DCHECK(source.IsFpuRegister());
1564 if (destination.IsRegister()) {
1565 DataType::Type source_type = DataType::Is64BitType(dst_type)
1566 ? DataType::Type::kFloat64
1567 : DataType::Type::kFloat32;
1568 __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1569 } else {
1570 DCHECK(destination.IsFpuRegister());
1571 if (GetGraph()->HasSIMD()) {
1572 GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source);
1573 } else {
1574 __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
1575 }
1576 }
1577 }
1578 } else if (destination.IsSIMDStackSlot()) {
1579 GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source);
1580 } else { // The destination is not a register. It must be a stack slot.
1581 DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1582 if (source.IsRegister() || source.IsFpuRegister()) {
1583 if (unspecified_type) {
1584 if (source.IsRegister()) {
1585 dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
1586 } else {
1587 dst_type =
1588 destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
1589 }
1590 }
1591 DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
1592 (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
1593 __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1594 } else if (source.IsConstant()) {
1595 DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1596 << source << " " << dst_type;
1597 UseScratchRegisterScope temps(GetVIXLAssembler());
1598 HConstant* src_cst = source.GetConstant();
1599 CPURegister temp;
1600 if (src_cst->IsZeroBitPattern()) {
1601 temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
1602 ? Register(xzr)
1603 : Register(wzr);
1604 } else {
1605 if (src_cst->IsIntConstant()) {
1606 temp = temps.AcquireW();
1607 } else if (src_cst->IsLongConstant()) {
1608 temp = temps.AcquireX();
1609 } else if (src_cst->IsFloatConstant()) {
1610 temp = temps.AcquireS();
1611 } else {
1612 DCHECK(src_cst->IsDoubleConstant());
1613 temp = temps.AcquireD();
1614 }
1615 MoveConstant(temp, src_cst);
1616 }
1617 __ Str(temp, StackOperandFrom(destination));
1618 } else {
1619 DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1620 DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1621 UseScratchRegisterScope temps(GetVIXLAssembler());
1622 // Use any scratch register (a core or a floating-point one)
1623 // from VIXL scratch register pools as a temporary.
1624 //
1625 // We used to only use the FP scratch register pool, but in some
1626 // rare cases the only register from this pool (D31) would
1627 // already be used (e.g. within a ParallelMove instruction, when
1628 // a move is blocked by a another move requiring a scratch FP
1629 // register, which would reserve D31). To prevent this issue, we
1630 // ask for a scratch register of any type (core or FP).
1631 //
1632 // Also, we start by asking for a FP scratch register first, as the
1633 // demand of scratch core registers is higher. This is why we
1634 // use AcquireFPOrCoreCPURegisterOfSize instead of
1635 // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
1636 // allocates core scratch registers first.
1637 CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
1638 GetVIXLAssembler(),
1639 &temps,
1640 (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
1641 __ Ldr(temp, StackOperandFrom(source));
1642 __ Str(temp, StackOperandFrom(destination));
1643 }
1644 }
1645 }
1646
Load(DataType::Type type,CPURegister dst,const MemOperand & src)1647 void CodeGeneratorARM64::Load(DataType::Type type,
1648 CPURegister dst,
1649 const MemOperand& src) {
1650 switch (type) {
1651 case DataType::Type::kBool:
1652 case DataType::Type::kUint8:
1653 __ Ldrb(Register(dst), src);
1654 break;
1655 case DataType::Type::kInt8:
1656 __ Ldrsb(Register(dst), src);
1657 break;
1658 case DataType::Type::kUint16:
1659 __ Ldrh(Register(dst), src);
1660 break;
1661 case DataType::Type::kInt16:
1662 __ Ldrsh(Register(dst), src);
1663 break;
1664 case DataType::Type::kInt32:
1665 case DataType::Type::kReference:
1666 case DataType::Type::kInt64:
1667 case DataType::Type::kFloat32:
1668 case DataType::Type::kFloat64:
1669 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1670 __ Ldr(dst, src);
1671 break;
1672 case DataType::Type::kUint32:
1673 case DataType::Type::kUint64:
1674 case DataType::Type::kVoid:
1675 LOG(FATAL) << "Unreachable type " << type;
1676 }
1677 }
1678
LoadAcquire(HInstruction * instruction,DataType::Type type,CPURegister dst,const MemOperand & src,bool needs_null_check)1679 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1680 DataType::Type type,
1681 CPURegister dst,
1682 const MemOperand& src,
1683 bool needs_null_check) {
1684 MacroAssembler* masm = GetVIXLAssembler();
1685 UseScratchRegisterScope temps(masm);
1686 Register temp_base = temps.AcquireX();
1687
1688 DCHECK(!src.IsPreIndex());
1689 DCHECK(!src.IsPostIndex());
1690
1691 // TODO(vixl): Let the MacroAssembler handle MemOperand.
1692 __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
1693 {
1694 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
1695 MemOperand base = MemOperand(temp_base);
1696 switch (type) {
1697 case DataType::Type::kBool:
1698 case DataType::Type::kUint8:
1699 case DataType::Type::kInt8:
1700 {
1701 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1702 __ ldarb(Register(dst), base);
1703 if (needs_null_check) {
1704 MaybeRecordImplicitNullCheck(instruction);
1705 }
1706 }
1707 if (type == DataType::Type::kInt8) {
1708 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1709 }
1710 break;
1711 case DataType::Type::kUint16:
1712 case DataType::Type::kInt16:
1713 {
1714 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1715 __ ldarh(Register(dst), base);
1716 if (needs_null_check) {
1717 MaybeRecordImplicitNullCheck(instruction);
1718 }
1719 }
1720 if (type == DataType::Type::kInt16) {
1721 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1722 }
1723 break;
1724 case DataType::Type::kInt32:
1725 case DataType::Type::kReference:
1726 case DataType::Type::kInt64:
1727 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1728 {
1729 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1730 __ ldar(Register(dst), base);
1731 if (needs_null_check) {
1732 MaybeRecordImplicitNullCheck(instruction);
1733 }
1734 }
1735 break;
1736 case DataType::Type::kFloat32:
1737 case DataType::Type::kFloat64: {
1738 DCHECK(dst.IsFPRegister());
1739 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1740
1741 Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1742 {
1743 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1744 __ ldar(temp, base);
1745 if (needs_null_check) {
1746 MaybeRecordImplicitNullCheck(instruction);
1747 }
1748 }
1749 __ Fmov(VRegister(dst), temp);
1750 break;
1751 }
1752 case DataType::Type::kUint32:
1753 case DataType::Type::kUint64:
1754 case DataType::Type::kVoid:
1755 LOG(FATAL) << "Unreachable type " << type;
1756 }
1757 }
1758 }
1759
Store(DataType::Type type,CPURegister src,const MemOperand & dst)1760 void CodeGeneratorARM64::Store(DataType::Type type,
1761 CPURegister src,
1762 const MemOperand& dst) {
1763 switch (type) {
1764 case DataType::Type::kBool:
1765 case DataType::Type::kUint8:
1766 case DataType::Type::kInt8:
1767 __ Strb(Register(src), dst);
1768 break;
1769 case DataType::Type::kUint16:
1770 case DataType::Type::kInt16:
1771 __ Strh(Register(src), dst);
1772 break;
1773 case DataType::Type::kInt32:
1774 case DataType::Type::kReference:
1775 case DataType::Type::kInt64:
1776 case DataType::Type::kFloat32:
1777 case DataType::Type::kFloat64:
1778 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1779 __ Str(src, dst);
1780 break;
1781 case DataType::Type::kUint32:
1782 case DataType::Type::kUint64:
1783 case DataType::Type::kVoid:
1784 LOG(FATAL) << "Unreachable type " << type;
1785 }
1786 }
1787
StoreRelease(HInstruction * instruction,DataType::Type type,CPURegister src,const MemOperand & dst,bool needs_null_check)1788 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
1789 DataType::Type type,
1790 CPURegister src,
1791 const MemOperand& dst,
1792 bool needs_null_check) {
1793 MacroAssembler* masm = GetVIXLAssembler();
1794 UseScratchRegisterScope temps(GetVIXLAssembler());
1795 Register temp_base = temps.AcquireX();
1796
1797 DCHECK(!dst.IsPreIndex());
1798 DCHECK(!dst.IsPostIndex());
1799
1800 // TODO(vixl): Let the MacroAssembler handle this.
1801 Operand op = OperandFromMemOperand(dst);
1802 __ Add(temp_base, dst.GetBaseRegister(), op);
1803 MemOperand base = MemOperand(temp_base);
1804 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
1805 switch (type) {
1806 case DataType::Type::kBool:
1807 case DataType::Type::kUint8:
1808 case DataType::Type::kInt8:
1809 {
1810 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1811 __ stlrb(Register(src), base);
1812 if (needs_null_check) {
1813 MaybeRecordImplicitNullCheck(instruction);
1814 }
1815 }
1816 break;
1817 case DataType::Type::kUint16:
1818 case DataType::Type::kInt16:
1819 {
1820 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1821 __ stlrh(Register(src), base);
1822 if (needs_null_check) {
1823 MaybeRecordImplicitNullCheck(instruction);
1824 }
1825 }
1826 break;
1827 case DataType::Type::kInt32:
1828 case DataType::Type::kReference:
1829 case DataType::Type::kInt64:
1830 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1831 {
1832 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1833 __ stlr(Register(src), base);
1834 if (needs_null_check) {
1835 MaybeRecordImplicitNullCheck(instruction);
1836 }
1837 }
1838 break;
1839 case DataType::Type::kFloat32:
1840 case DataType::Type::kFloat64: {
1841 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1842 Register temp_src;
1843 if (src.IsZero()) {
1844 // The zero register is used to avoid synthesizing zero constants.
1845 temp_src = Register(src);
1846 } else {
1847 DCHECK(src.IsFPRegister());
1848 temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1849 __ Fmov(temp_src, VRegister(src));
1850 }
1851 {
1852 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1853 __ stlr(temp_src, base);
1854 if (needs_null_check) {
1855 MaybeRecordImplicitNullCheck(instruction);
1856 }
1857 }
1858 break;
1859 }
1860 case DataType::Type::kUint32:
1861 case DataType::Type::kUint64:
1862 case DataType::Type::kVoid:
1863 LOG(FATAL) << "Unreachable type " << type;
1864 }
1865 }
1866
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1867 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1868 HInstruction* instruction,
1869 uint32_t dex_pc,
1870 SlowPathCode* slow_path) {
1871 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1872
1873 ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
1874 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
1875 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
1876 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
1877 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
1878 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
1879 // Ensure the pc position is recorded immediately after the `blr` instruction.
1880 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1881 __ blr(lr);
1882 if (EntrypointRequiresStackMap(entrypoint)) {
1883 RecordPcInfo(instruction, dex_pc, slow_path);
1884 }
1885 } else {
1886 // Ensure the pc position is recorded immediately after the `bl` instruction.
1887 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1888 EmitEntrypointThunkCall(entrypoint_offset);
1889 if (EntrypointRequiresStackMap(entrypoint)) {
1890 RecordPcInfo(instruction, dex_pc, slow_path);
1891 }
1892 }
1893 }
1894
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)1895 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1896 HInstruction* instruction,
1897 SlowPathCode* slow_path) {
1898 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1899 __ Ldr(lr, MemOperand(tr, entry_point_offset));
1900 __ Blr(lr);
1901 }
1902
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,Register class_reg)1903 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1904 Register class_reg) {
1905 UseScratchRegisterScope temps(GetVIXLAssembler());
1906 Register temp = temps.AcquireW();
1907 constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
1908 const size_t status_byte_offset =
1909 mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
1910 constexpr uint32_t shifted_visibly_initialized_value =
1911 enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte);
1912
1913 // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
1914 // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
1915 // size, load only the high byte of the field and compare with 0xf0.
1916 // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
1917 // show that this pattern is slower (tested on little cores).
1918 __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset));
1919 __ Cmp(temp, shifted_visibly_initialized_value);
1920 __ B(lo, slow_path->GetEntryLabel());
1921 __ Bind(slow_path->GetExitLabel());
1922 }
1923
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl::aarch64::Register temp)1924 void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
1925 HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
1926 uint32_t path_to_root = check->GetBitstringPathToRoot();
1927 uint32_t mask = check->GetBitstringMask();
1928 DCHECK(IsPowerOfTwo(mask + 1));
1929 size_t mask_bits = WhichPowerOf2(mask + 1);
1930
1931 if (mask_bits == 16u) {
1932 // Load only the bitstring part of the status word.
1933 __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
1934 } else {
1935 // /* uint32_t */ temp = temp->status_
1936 __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
1937 // Extract the bitstring bits.
1938 __ Ubfx(temp, temp, 0, mask_bits);
1939 }
1940 // Compare the bitstring bits to `path_to_root`.
1941 __ Cmp(temp, path_to_root);
1942 }
1943
GenerateMemoryBarrier(MemBarrierKind kind)1944 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
1945 BarrierType type = BarrierAll;
1946
1947 switch (kind) {
1948 case MemBarrierKind::kAnyAny:
1949 case MemBarrierKind::kAnyStore: {
1950 type = BarrierAll;
1951 break;
1952 }
1953 case MemBarrierKind::kLoadAny: {
1954 type = BarrierReads;
1955 break;
1956 }
1957 case MemBarrierKind::kStoreStore: {
1958 type = BarrierWrites;
1959 break;
1960 }
1961 default:
1962 LOG(FATAL) << "Unexpected memory barrier " << kind;
1963 }
1964 __ Dmb(InnerShareable, type);
1965 }
1966
CanUseImplicitSuspendCheck() const1967 bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const {
1968 // Use implicit suspend checks if requested in compiler options unless there are SIMD
1969 // instructions in the graph. The implicit suspend check saves all FP registers as
1970 // 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit
1971 // registers, so they need to be saved in an explicit slow path.
1972 return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD();
1973 }
1974
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)1975 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
1976 HBasicBlock* successor) {
1977 if (codegen_->CanUseImplicitSuspendCheck()) {
1978 __ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister));
1979 codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
1980 if (successor != nullptr) {
1981 __ B(codegen_->GetLabelOf(successor));
1982 }
1983 return;
1984 }
1985
1986 SuspendCheckSlowPathARM64* slow_path =
1987 down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
1988 if (slow_path == nullptr) {
1989 slow_path =
1990 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
1991 instruction->SetSlowPath(slow_path);
1992 codegen_->AddSlowPath(slow_path);
1993 if (successor != nullptr) {
1994 DCHECK(successor->IsLoopHeader());
1995 }
1996 } else {
1997 DCHECK_EQ(slow_path->GetSuccessor(), successor);
1998 }
1999
2000 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
2001 Register temp = temps.AcquireW();
2002
2003 __ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
2004 __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
2005 if (successor == nullptr) {
2006 __ B(ne, slow_path->GetEntryLabel());
2007 __ Bind(slow_path->GetReturnLabel());
2008 } else {
2009 __ B(eq, codegen_->GetLabelOf(successor));
2010 __ B(slow_path->GetEntryLabel());
2011 // slow_path will return to GetLabelOf(successor).
2012 }
2013 }
2014
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)2015 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
2016 CodeGeneratorARM64* codegen)
2017 : InstructionCodeGenerator(graph, codegen),
2018 assembler_(codegen->GetAssembler()),
2019 codegen_(codegen) {}
2020
HandleBinaryOp(HBinaryOperation * instr)2021 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
2022 DCHECK_EQ(instr->InputCount(), 2U);
2023 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2024 DataType::Type type = instr->GetResultType();
2025 switch (type) {
2026 case DataType::Type::kInt32:
2027 case DataType::Type::kInt64:
2028 locations->SetInAt(0, Location::RequiresRegister());
2029 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
2030 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2031 break;
2032
2033 case DataType::Type::kFloat32:
2034 case DataType::Type::kFloat64:
2035 locations->SetInAt(0, Location::RequiresFpuRegister());
2036 locations->SetInAt(1, Location::RequiresFpuRegister());
2037 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2038 break;
2039
2040 default:
2041 LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
2042 }
2043 }
2044
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2045 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
2046 const FieldInfo& field_info) {
2047 DCHECK(instruction->IsInstanceFieldGet() ||
2048 instruction->IsStaticFieldGet() ||
2049 instruction->IsPredicatedInstanceFieldGet());
2050
2051 bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
2052
2053 bool object_field_get_with_read_barrier =
2054 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
2055 LocationSummary* locations =
2056 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2057 object_field_get_with_read_barrier
2058 ? LocationSummary::kCallOnSlowPath
2059 : LocationSummary::kNoCall);
2060 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
2061 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2062 // We need a temporary register for the read barrier load in
2063 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2064 // only if the field is volatile or the offset is too big.
2065 if (field_info.IsVolatile() ||
2066 field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
2067 locations->AddTemp(FixedTempLocation());
2068 }
2069 }
2070 // Input for object receiver.
2071 locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister());
2072 if (DataType::IsFloatingPointType(instruction->GetType())) {
2073 if (is_predicated) {
2074 locations->SetInAt(0, Location::RequiresFpuRegister());
2075 locations->SetOut(Location::SameAsFirstInput());
2076 } else {
2077 locations->SetOut(Location::RequiresFpuRegister());
2078 }
2079 } else {
2080 if (is_predicated) {
2081 locations->SetInAt(0, Location::RequiresRegister());
2082 locations->SetOut(Location::SameAsFirstInput());
2083 } else {
2084 // The output overlaps for an object field get when read barriers
2085 // are enabled: we do not want the load to overwrite the object's
2086 // location, as we need it to emit the read barrier.
2087 locations->SetOut(Location::RequiresRegister(),
2088 object_field_get_with_read_barrier ? Location::kOutputOverlap
2089 : Location::kNoOutputOverlap);
2090 }
2091 }
2092 }
2093
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2094 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
2095 const FieldInfo& field_info) {
2096 DCHECK(instruction->IsInstanceFieldGet() ||
2097 instruction->IsStaticFieldGet() ||
2098 instruction->IsPredicatedInstanceFieldGet());
2099 bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
2100 LocationSummary* locations = instruction->GetLocations();
2101 uint32_t receiver_input = is_predicated ? 1 : 0;
2102 Location base_loc = locations->InAt(receiver_input);
2103 Location out = locations->Out();
2104 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2105 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
2106 DataType::Type load_type = instruction->GetType();
2107 MemOperand field =
2108 HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset());
2109
2110 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier &&
2111 load_type == DataType::Type::kReference) {
2112 // Object FieldGet with Baker's read barrier case.
2113 // /* HeapReference<Object> */ out = *(base + offset)
2114 Register base = RegisterFrom(base_loc, DataType::Type::kReference);
2115 Location maybe_temp =
2116 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2117 // Note that potential implicit null checks are handled in this
2118 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
2119 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2120 instruction,
2121 out,
2122 base,
2123 offset,
2124 maybe_temp,
2125 /* needs_null_check= */ true,
2126 field_info.IsVolatile());
2127 } else {
2128 // General case.
2129 if (field_info.IsVolatile()) {
2130 // Note that a potential implicit null check is handled in this
2131 // CodeGeneratorARM64::LoadAcquire call.
2132 // NB: LoadAcquire will record the pc info if needed.
2133 codegen_->LoadAcquire(instruction,
2134 load_type,
2135 OutputCPURegister(instruction),
2136 field,
2137 /* needs_null_check= */ true);
2138 } else {
2139 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2140 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2141 codegen_->Load(load_type, OutputCPURegister(instruction), field);
2142 codegen_->MaybeRecordImplicitNullCheck(instruction);
2143 }
2144 if (load_type == DataType::Type::kReference) {
2145 // If read barriers are enabled, emit read barriers other than
2146 // Baker's using a slow path (and also unpoison the loaded
2147 // reference, if heap poisoning is enabled).
2148 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
2149 }
2150 }
2151 }
2152
HandleFieldSet(HInstruction * instruction)2153 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
2154 LocationSummary* locations =
2155 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2156 locations->SetInAt(0, Location::RequiresRegister());
2157 if (IsConstantZeroBitPattern(instruction->InputAt(1))) {
2158 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
2159 } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
2160 locations->SetInAt(1, Location::RequiresFpuRegister());
2161 } else {
2162 locations->SetInAt(1, Location::RequiresRegister());
2163 }
2164 }
2165
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)2166 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
2167 const FieldInfo& field_info,
2168 bool value_can_be_null) {
2169 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
2170 bool is_predicated =
2171 instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet();
2172
2173 Register obj = InputRegisterAt(instruction, 0);
2174 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
2175 CPURegister source = value;
2176 Offset offset = field_info.GetFieldOffset();
2177 DataType::Type field_type = field_info.GetFieldType();
2178 std::optional<vixl::aarch64::Label> pred_is_null;
2179 if (is_predicated) {
2180 pred_is_null.emplace();
2181 __ Cbz(obj, &*pred_is_null);
2182 }
2183
2184 {
2185 // We use a block to end the scratch scope before the write barrier, thus
2186 // freeing the temporary registers so they can be used in `MarkGCCard`.
2187 UseScratchRegisterScope temps(GetVIXLAssembler());
2188
2189 if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
2190 DCHECK(value.IsW());
2191 Register temp = temps.AcquireW();
2192 __ Mov(temp, value.W());
2193 GetAssembler()->PoisonHeapReference(temp.W());
2194 source = temp;
2195 }
2196
2197 if (field_info.IsVolatile()) {
2198 codegen_->StoreRelease(
2199 instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
2200 } else {
2201 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2202 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2203 codegen_->Store(field_type, source, HeapOperand(obj, offset));
2204 codegen_->MaybeRecordImplicitNullCheck(instruction);
2205 }
2206 }
2207
2208 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
2209 codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
2210 }
2211
2212 if (is_predicated) {
2213 __ Bind(&*pred_is_null);
2214 }
2215 }
2216
HandleBinaryOp(HBinaryOperation * instr)2217 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
2218 DataType::Type type = instr->GetType();
2219
2220 switch (type) {
2221 case DataType::Type::kInt32:
2222 case DataType::Type::kInt64: {
2223 Register dst = OutputRegister(instr);
2224 Register lhs = InputRegisterAt(instr, 0);
2225 Operand rhs = InputOperandAt(instr, 1);
2226 if (instr->IsAdd()) {
2227 __ Add(dst, lhs, rhs);
2228 } else if (instr->IsAnd()) {
2229 __ And(dst, lhs, rhs);
2230 } else if (instr->IsOr()) {
2231 __ Orr(dst, lhs, rhs);
2232 } else if (instr->IsSub()) {
2233 __ Sub(dst, lhs, rhs);
2234 } else if (instr->IsRor()) {
2235 if (rhs.IsImmediate()) {
2236 uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
2237 __ Ror(dst, lhs, shift);
2238 } else {
2239 // Ensure shift distance is in the same size register as the result. If
2240 // we are rotating a long and the shift comes in a w register originally,
2241 // we don't need to sxtw for use as an x since the shift distances are
2242 // all & reg_bits - 1.
2243 __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
2244 }
2245 } else if (instr->IsMin() || instr->IsMax()) {
2246 __ Cmp(lhs, rhs);
2247 __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
2248 } else {
2249 DCHECK(instr->IsXor());
2250 __ Eor(dst, lhs, rhs);
2251 }
2252 break;
2253 }
2254 case DataType::Type::kFloat32:
2255 case DataType::Type::kFloat64: {
2256 VRegister dst = OutputFPRegister(instr);
2257 VRegister lhs = InputFPRegisterAt(instr, 0);
2258 VRegister rhs = InputFPRegisterAt(instr, 1);
2259 if (instr->IsAdd()) {
2260 __ Fadd(dst, lhs, rhs);
2261 } else if (instr->IsSub()) {
2262 __ Fsub(dst, lhs, rhs);
2263 } else if (instr->IsMin()) {
2264 __ Fmin(dst, lhs, rhs);
2265 } else if (instr->IsMax()) {
2266 __ Fmax(dst, lhs, rhs);
2267 } else {
2268 LOG(FATAL) << "Unexpected floating-point binary operation";
2269 }
2270 break;
2271 }
2272 default:
2273 LOG(FATAL) << "Unexpected binary operation type " << type;
2274 }
2275 }
2276
HandleShift(HBinaryOperation * instr)2277 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
2278 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2279
2280 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2281 DataType::Type type = instr->GetResultType();
2282 switch (type) {
2283 case DataType::Type::kInt32:
2284 case DataType::Type::kInt64: {
2285 locations->SetInAt(0, Location::RequiresRegister());
2286 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2287 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2288 break;
2289 }
2290 default:
2291 LOG(FATAL) << "Unexpected shift type " << type;
2292 }
2293 }
2294
HandleShift(HBinaryOperation * instr)2295 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
2296 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2297
2298 DataType::Type type = instr->GetType();
2299 switch (type) {
2300 case DataType::Type::kInt32:
2301 case DataType::Type::kInt64: {
2302 Register dst = OutputRegister(instr);
2303 Register lhs = InputRegisterAt(instr, 0);
2304 Operand rhs = InputOperandAt(instr, 1);
2305 if (rhs.IsImmediate()) {
2306 uint32_t shift_value = rhs.GetImmediate() &
2307 (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2308 if (instr->IsShl()) {
2309 __ Lsl(dst, lhs, shift_value);
2310 } else if (instr->IsShr()) {
2311 __ Asr(dst, lhs, shift_value);
2312 } else {
2313 __ Lsr(dst, lhs, shift_value);
2314 }
2315 } else {
2316 Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
2317
2318 if (instr->IsShl()) {
2319 __ Lsl(dst, lhs, rhs_reg);
2320 } else if (instr->IsShr()) {
2321 __ Asr(dst, lhs, rhs_reg);
2322 } else {
2323 __ Lsr(dst, lhs, rhs_reg);
2324 }
2325 }
2326 break;
2327 }
2328 default:
2329 LOG(FATAL) << "Unexpected shift operation type " << type;
2330 }
2331 }
2332
VisitAdd(HAdd * instruction)2333 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
2334 HandleBinaryOp(instruction);
2335 }
2336
VisitAdd(HAdd * instruction)2337 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
2338 HandleBinaryOp(instruction);
2339 }
2340
VisitAnd(HAnd * instruction)2341 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
2342 HandleBinaryOp(instruction);
2343 }
2344
VisitAnd(HAnd * instruction)2345 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
2346 HandleBinaryOp(instruction);
2347 }
2348
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2349 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2350 DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
2351 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2352 locations->SetInAt(0, Location::RequiresRegister());
2353 // There is no immediate variant of negated bitwise instructions in AArch64.
2354 locations->SetInAt(1, Location::RequiresRegister());
2355 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2356 }
2357
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2358 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2359 Register dst = OutputRegister(instr);
2360 Register lhs = InputRegisterAt(instr, 0);
2361 Register rhs = InputRegisterAt(instr, 1);
2362
2363 switch (instr->GetOpKind()) {
2364 case HInstruction::kAnd:
2365 __ Bic(dst, lhs, rhs);
2366 break;
2367 case HInstruction::kOr:
2368 __ Orn(dst, lhs, rhs);
2369 break;
2370 case HInstruction::kXor:
2371 __ Eon(dst, lhs, rhs);
2372 break;
2373 default:
2374 LOG(FATAL) << "Unreachable";
2375 }
2376 }
2377
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2378 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
2379 HDataProcWithShifterOp* instruction) {
2380 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
2381 instruction->GetType() == DataType::Type::kInt64);
2382 LocationSummary* locations =
2383 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2384 if (instruction->GetInstrKind() == HInstruction::kNeg) {
2385 locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
2386 } else {
2387 locations->SetInAt(0, Location::RequiresRegister());
2388 }
2389 locations->SetInAt(1, Location::RequiresRegister());
2390 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2391 }
2392
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2393 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
2394 HDataProcWithShifterOp* instruction) {
2395 DataType::Type type = instruction->GetType();
2396 HInstruction::InstructionKind kind = instruction->GetInstrKind();
2397 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2398 Register out = OutputRegister(instruction);
2399 Register left;
2400 if (kind != HInstruction::kNeg) {
2401 left = InputRegisterAt(instruction, 0);
2402 }
2403 // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
2404 // shifter operand operation, the IR generating `right_reg` (input to the type
2405 // conversion) can have a different type from the current instruction's type,
2406 // so we manually indicate the type.
2407 Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
2408 Operand right_operand(0);
2409
2410 HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
2411 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
2412 right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
2413 } else {
2414 right_operand = Operand(right_reg,
2415 helpers::ShiftFromOpKind(op_kind),
2416 instruction->GetShiftAmount());
2417 }
2418
2419 // Logical binary operations do not support extension operations in the
2420 // operand. Note that VIXL would still manage if it was passed by generating
2421 // the extension as a separate instruction.
2422 // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2423 DCHECK_IMPLIES(right_operand.IsExtendedRegister(),
2424 kind != HInstruction::kAnd && kind != HInstruction::kOr &&
2425 kind != HInstruction::kXor && kind != HInstruction::kNeg);
2426 switch (kind) {
2427 case HInstruction::kAdd:
2428 __ Add(out, left, right_operand);
2429 break;
2430 case HInstruction::kAnd:
2431 __ And(out, left, right_operand);
2432 break;
2433 case HInstruction::kNeg:
2434 DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
2435 __ Neg(out, right_operand);
2436 break;
2437 case HInstruction::kOr:
2438 __ Orr(out, left, right_operand);
2439 break;
2440 case HInstruction::kSub:
2441 __ Sub(out, left, right_operand);
2442 break;
2443 case HInstruction::kXor:
2444 __ Eor(out, left, right_operand);
2445 break;
2446 default:
2447 LOG(FATAL) << "Unexpected operation kind: " << kind;
2448 UNREACHABLE();
2449 }
2450 }
2451
VisitIntermediateAddress(HIntermediateAddress * instruction)2452 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2453 LocationSummary* locations =
2454 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2455 locations->SetInAt(0, Location::RequiresRegister());
2456 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2457 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2458 }
2459
VisitIntermediateAddress(HIntermediateAddress * instruction)2460 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2461 __ Add(OutputRegister(instruction),
2462 InputRegisterAt(instruction, 0),
2463 Operand(InputOperandAt(instruction, 1)));
2464 }
2465
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2466 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
2467 LocationSummary* locations =
2468 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2469
2470 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
2471
2472 locations->SetInAt(0, Location::RequiresRegister());
2473 // For byte case we don't need to shift the index variable so we can encode the data offset into
2474 // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
2475 // data offset constant generation out of the loop and reduce the critical path length in the
2476 // loop.
2477 locations->SetInAt(1, shift->GetValue() == 0
2478 ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant())
2479 : Location::RequiresRegister());
2480 locations->SetInAt(2, Location::ConstantLocation(shift));
2481 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2482 }
2483
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2484 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
2485 HIntermediateAddressIndex* instruction) {
2486 Register index_reg = InputRegisterAt(instruction, 0);
2487 uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
2488 uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
2489
2490 if (shift == 0) {
2491 __ Add(OutputRegister(instruction), index_reg, offset);
2492 } else {
2493 Register offset_reg = InputRegisterAt(instruction, 1);
2494 __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
2495 }
2496 }
2497
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2498 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2499 LocationSummary* locations =
2500 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
2501 HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2502 if (instr->GetOpKind() == HInstruction::kSub &&
2503 accumulator->IsConstant() &&
2504 accumulator->AsConstant()->IsArithmeticZero()) {
2505 // Don't allocate register for Mneg instruction.
2506 } else {
2507 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
2508 Location::RequiresRegister());
2509 }
2510 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2511 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2512 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2513 }
2514
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2515 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2516 Register res = OutputRegister(instr);
2517 Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
2518 Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
2519
2520 // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2521 // This fixup should be carried out for all multiply-accumulate instructions:
2522 // madd, msub, smaddl, smsubl, umaddl and umsubl.
2523 if (instr->GetType() == DataType::Type::kInt64 &&
2524 codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2525 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2526 ptrdiff_t off = masm->GetCursorOffset();
2527 if (off >= static_cast<ptrdiff_t>(kInstructionSize) &&
2528 masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) {
2529 // Make sure we emit only exactly one nop.
2530 ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2531 __ nop();
2532 }
2533 }
2534
2535 if (instr->GetOpKind() == HInstruction::kAdd) {
2536 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2537 __ Madd(res, mul_left, mul_right, accumulator);
2538 } else {
2539 DCHECK(instr->GetOpKind() == HInstruction::kSub);
2540 HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2541 if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2542 __ Mneg(res, mul_left, mul_right);
2543 } else {
2544 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2545 __ Msub(res, mul_left, mul_right, accumulator);
2546 }
2547 }
2548 }
2549
VisitArrayGet(HArrayGet * instruction)2550 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2551 bool object_array_get_with_read_barrier =
2552 kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
2553 LocationSummary* locations =
2554 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2555 object_array_get_with_read_barrier
2556 ? LocationSummary::kCallOnSlowPath
2557 : LocationSummary::kNoCall);
2558 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2559 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2560 if (instruction->GetIndex()->IsConstant()) {
2561 // Array loads with constant index are treated as field loads.
2562 // We need a temporary register for the read barrier load in
2563 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2564 // only if the offset is too big.
2565 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2566 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
2567 offset += index << DataType::SizeShift(DataType::Type::kReference);
2568 if (offset >= kReferenceLoadMinFarOffset) {
2569 locations->AddTemp(FixedTempLocation());
2570 }
2571 } else if (!instruction->GetArray()->IsIntermediateAddress()) {
2572 // We need a non-scratch temporary for the array data pointer in
2573 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
2574 // intermediate address.
2575 locations->AddTemp(Location::RequiresRegister());
2576 }
2577 }
2578 locations->SetInAt(0, Location::RequiresRegister());
2579 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2580 if (DataType::IsFloatingPointType(instruction->GetType())) {
2581 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2582 } else {
2583 // The output overlaps in the case of an object array get with
2584 // read barriers enabled: we do not want the move to overwrite the
2585 // array's location, as we need it to emit the read barrier.
2586 locations->SetOut(
2587 Location::RequiresRegister(),
2588 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2589 }
2590 }
2591
VisitArrayGet(HArrayGet * instruction)2592 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2593 DataType::Type type = instruction->GetType();
2594 Register obj = InputRegisterAt(instruction, 0);
2595 LocationSummary* locations = instruction->GetLocations();
2596 Location index = locations->InAt(1);
2597 Location out = locations->Out();
2598 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2599 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2600 instruction->IsStringCharAt();
2601 MacroAssembler* masm = GetVIXLAssembler();
2602 UseScratchRegisterScope temps(masm);
2603
2604 // The non-Baker read barrier instrumentation of object ArrayGet instructions
2605 // does not support the HIntermediateAddress instruction.
2606 DCHECK(!((type == DataType::Type::kReference) &&
2607 instruction->GetArray()->IsIntermediateAddress() &&
2608 kEmitCompilerReadBarrier &&
2609 !kUseBakerReadBarrier));
2610
2611 if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2612 // Object ArrayGet with Baker's read barrier case.
2613 // Note that a potential implicit null check is handled in the
2614 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2615 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2616 if (index.IsConstant()) {
2617 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2618 // Array load with a constant index can be treated as a field load.
2619 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2620 Location maybe_temp =
2621 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2622 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2623 out,
2624 obj.W(),
2625 offset,
2626 maybe_temp,
2627 /* needs_null_check= */ false,
2628 /* use_load_acquire= */ false);
2629 } else {
2630 codegen_->GenerateArrayLoadWithBakerReadBarrier(
2631 instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
2632 }
2633 } else {
2634 // General case.
2635 MemOperand source = HeapOperand(obj);
2636 Register length;
2637 if (maybe_compressed_char_at) {
2638 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2639 length = temps.AcquireW();
2640 {
2641 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2642 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2643
2644 if (instruction->GetArray()->IsIntermediateAddress()) {
2645 DCHECK_LT(count_offset, offset);
2646 int64_t adjusted_offset =
2647 static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
2648 // Note that `adjusted_offset` is negative, so this will be a LDUR.
2649 __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
2650 } else {
2651 __ Ldr(length, HeapOperand(obj, count_offset));
2652 }
2653 codegen_->MaybeRecordImplicitNullCheck(instruction);
2654 }
2655 }
2656 if (index.IsConstant()) {
2657 if (maybe_compressed_char_at) {
2658 vixl::aarch64::Label uncompressed_load, done;
2659 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2660 "Expecting 0=compressed, 1=uncompressed");
2661 __ Tbnz(length.W(), 0, &uncompressed_load);
2662 __ Ldrb(Register(OutputCPURegister(instruction)),
2663 HeapOperand(obj, offset + Int64FromLocation(index)));
2664 __ B(&done);
2665 __ Bind(&uncompressed_load);
2666 __ Ldrh(Register(OutputCPURegister(instruction)),
2667 HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
2668 __ Bind(&done);
2669 } else {
2670 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2671 source = HeapOperand(obj, offset);
2672 }
2673 } else {
2674 Register temp = temps.AcquireSameSizeAs(obj);
2675 if (instruction->GetArray()->IsIntermediateAddress()) {
2676 // We do not need to compute the intermediate address from the array: the
2677 // input instruction has done it already. See the comment in
2678 // `TryExtractArrayAccessAddress()`.
2679 if (kIsDebugBuild) {
2680 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2681 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2682 }
2683 temp = obj;
2684 } else {
2685 __ Add(temp, obj, offset);
2686 }
2687 if (maybe_compressed_char_at) {
2688 vixl::aarch64::Label uncompressed_load, done;
2689 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2690 "Expecting 0=compressed, 1=uncompressed");
2691 __ Tbnz(length.W(), 0, &uncompressed_load);
2692 __ Ldrb(Register(OutputCPURegister(instruction)),
2693 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
2694 __ B(&done);
2695 __ Bind(&uncompressed_load);
2696 __ Ldrh(Register(OutputCPURegister(instruction)),
2697 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
2698 __ Bind(&done);
2699 } else {
2700 source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
2701 }
2702 }
2703 if (!maybe_compressed_char_at) {
2704 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2705 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2706 codegen_->Load(type, OutputCPURegister(instruction), source);
2707 codegen_->MaybeRecordImplicitNullCheck(instruction);
2708 }
2709
2710 if (type == DataType::Type::kReference) {
2711 static_assert(
2712 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2713 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2714 Location obj_loc = locations->InAt(0);
2715 if (index.IsConstant()) {
2716 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2717 } else {
2718 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2719 }
2720 }
2721 }
2722 }
2723
VisitArrayLength(HArrayLength * instruction)2724 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2725 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2726 locations->SetInAt(0, Location::RequiresRegister());
2727 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2728 }
2729
VisitArrayLength(HArrayLength * instruction)2730 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2731 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2732 vixl::aarch64::Register out = OutputRegister(instruction);
2733 {
2734 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2735 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2736 __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
2737 codegen_->MaybeRecordImplicitNullCheck(instruction);
2738 }
2739 // Mask out compression flag from String's array length.
2740 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
2741 __ Lsr(out.W(), out.W(), 1u);
2742 }
2743 }
2744
VisitArraySet(HArraySet * instruction)2745 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2746 DataType::Type value_type = instruction->GetComponentType();
2747
2748 bool needs_type_check = instruction->NeedsTypeCheck();
2749 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
2750 instruction,
2751 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
2752 locations->SetInAt(0, Location::RequiresRegister());
2753 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2754 if (IsConstantZeroBitPattern(instruction->InputAt(2))) {
2755 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
2756 } else if (DataType::IsFloatingPointType(value_type)) {
2757 locations->SetInAt(2, Location::RequiresFpuRegister());
2758 } else {
2759 locations->SetInAt(2, Location::RequiresRegister());
2760 }
2761 }
2762
VisitArraySet(HArraySet * instruction)2763 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2764 DataType::Type value_type = instruction->GetComponentType();
2765 LocationSummary* locations = instruction->GetLocations();
2766 bool needs_type_check = instruction->NeedsTypeCheck();
2767 bool needs_write_barrier =
2768 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2769
2770 Register array = InputRegisterAt(instruction, 0);
2771 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
2772 CPURegister source = value;
2773 Location index = locations->InAt(1);
2774 size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
2775 MemOperand destination = HeapOperand(array);
2776 MacroAssembler* masm = GetVIXLAssembler();
2777
2778 if (!needs_write_barrier) {
2779 DCHECK(!needs_type_check);
2780 if (index.IsConstant()) {
2781 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2782 destination = HeapOperand(array, offset);
2783 } else {
2784 UseScratchRegisterScope temps(masm);
2785 Register temp = temps.AcquireSameSizeAs(array);
2786 if (instruction->GetArray()->IsIntermediateAddress()) {
2787 // We do not need to compute the intermediate address from the array: the
2788 // input instruction has done it already. See the comment in
2789 // `TryExtractArrayAccessAddress()`.
2790 if (kIsDebugBuild) {
2791 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2792 DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2793 }
2794 temp = array;
2795 } else {
2796 __ Add(temp, array, offset);
2797 }
2798 destination = HeapOperand(temp,
2799 XRegisterFrom(index),
2800 LSL,
2801 DataType::SizeShift(value_type));
2802 }
2803 {
2804 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2805 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2806 codegen_->Store(value_type, value, destination);
2807 codegen_->MaybeRecordImplicitNullCheck(instruction);
2808 }
2809 } else {
2810 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2811
2812 bool can_value_be_null = instruction->GetValueCanBeNull();
2813 vixl::aarch64::Label do_store;
2814 if (can_value_be_null) {
2815 __ Cbz(Register(value), &do_store);
2816 }
2817
2818 SlowPathCodeARM64* slow_path = nullptr;
2819 if (needs_type_check) {
2820 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
2821 codegen_->AddSlowPath(slow_path);
2822
2823 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2824 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2825 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2826
2827 UseScratchRegisterScope temps(masm);
2828 Register temp = temps.AcquireSameSizeAs(array);
2829 Register temp2 = temps.AcquireSameSizeAs(array);
2830
2831 // Note that when Baker read barriers are enabled, the type
2832 // checks are performed without read barriers. This is fine,
2833 // even in the case where a class object is in the from-space
2834 // after the flip, as a comparison involving such a type would
2835 // not produce a false positive; it may of course produce a
2836 // false negative, in which case we would take the ArraySet
2837 // slow path.
2838
2839 // /* HeapReference<Class> */ temp = array->klass_
2840 {
2841 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2842 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2843 __ Ldr(temp, HeapOperand(array, class_offset));
2844 codegen_->MaybeRecordImplicitNullCheck(instruction);
2845 }
2846 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2847
2848 // /* HeapReference<Class> */ temp = temp->component_type_
2849 __ Ldr(temp, HeapOperand(temp, component_offset));
2850 // /* HeapReference<Class> */ temp2 = value->klass_
2851 __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2852 // If heap poisoning is enabled, no need to unpoison `temp`
2853 // nor `temp2`, as we are comparing two poisoned references.
2854 __ Cmp(temp, temp2);
2855
2856 if (instruction->StaticTypeOfArrayIsObjectArray()) {
2857 vixl::aarch64::Label do_put;
2858 __ B(eq, &do_put);
2859 // If heap poisoning is enabled, the `temp` reference has
2860 // not been unpoisoned yet; unpoison it now.
2861 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2862
2863 // /* HeapReference<Class> */ temp = temp->super_class_
2864 __ Ldr(temp, HeapOperand(temp, super_offset));
2865 // If heap poisoning is enabled, no need to unpoison
2866 // `temp`, as we are comparing against null below.
2867 __ Cbnz(temp, slow_path->GetEntryLabel());
2868 __ Bind(&do_put);
2869 } else {
2870 __ B(ne, slow_path->GetEntryLabel());
2871 }
2872 }
2873
2874 codegen_->MarkGCCard(array, value.W(), /* value_can_be_null= */ false);
2875
2876 if (can_value_be_null) {
2877 DCHECK(do_store.IsLinked());
2878 __ Bind(&do_store);
2879 }
2880
2881 UseScratchRegisterScope temps(masm);
2882 if (kPoisonHeapReferences) {
2883 Register temp_source = temps.AcquireSameSizeAs(array);
2884 DCHECK(value.IsW());
2885 __ Mov(temp_source, value.W());
2886 GetAssembler()->PoisonHeapReference(temp_source);
2887 source = temp_source;
2888 }
2889
2890 if (index.IsConstant()) {
2891 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2892 destination = HeapOperand(array, offset);
2893 } else {
2894 Register temp_base = temps.AcquireSameSizeAs(array);
2895 __ Add(temp_base, array, offset);
2896 destination = HeapOperand(temp_base,
2897 XRegisterFrom(index),
2898 LSL,
2899 DataType::SizeShift(value_type));
2900 }
2901
2902 {
2903 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2904 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2905 __ Str(source, destination);
2906
2907 if (can_value_be_null || !needs_type_check) {
2908 codegen_->MaybeRecordImplicitNullCheck(instruction);
2909 }
2910 }
2911
2912 if (slow_path != nullptr) {
2913 __ Bind(slow_path->GetExitLabel());
2914 }
2915 }
2916 }
2917
VisitBoundsCheck(HBoundsCheck * instruction)2918 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2919 RegisterSet caller_saves = RegisterSet::Empty();
2920 InvokeRuntimeCallingConvention calling_convention;
2921 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
2922 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
2923 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
2924
2925 // If both index and length are constant, we can check the bounds statically and
2926 // generate code accordingly. We want to make sure we generate constant locations
2927 // in that case, regardless of whether they are encodable in the comparison or not.
2928 HInstruction* index = instruction->InputAt(0);
2929 HInstruction* length = instruction->InputAt(1);
2930 bool both_const = index->IsConstant() && length->IsConstant();
2931 locations->SetInAt(0, both_const
2932 ? Location::ConstantLocation(index->AsConstant())
2933 : ARM64EncodableConstantOrRegister(index, instruction));
2934 locations->SetInAt(1, both_const
2935 ? Location::ConstantLocation(length->AsConstant())
2936 : ARM64EncodableConstantOrRegister(length, instruction));
2937 }
2938
VisitBoundsCheck(HBoundsCheck * instruction)2939 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2940 LocationSummary* locations = instruction->GetLocations();
2941 Location index_loc = locations->InAt(0);
2942 Location length_loc = locations->InAt(1);
2943
2944 int cmp_first_input = 0;
2945 int cmp_second_input = 1;
2946 Condition cond = hs;
2947
2948 if (index_loc.IsConstant()) {
2949 int64_t index = Int64FromLocation(index_loc);
2950 if (length_loc.IsConstant()) {
2951 int64_t length = Int64FromLocation(length_loc);
2952 if (index < 0 || index >= length) {
2953 BoundsCheckSlowPathARM64* slow_path =
2954 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
2955 codegen_->AddSlowPath(slow_path);
2956 __ B(slow_path->GetEntryLabel());
2957 } else {
2958 // BCE will remove the bounds check if we are guaranteed to pass.
2959 // However, some optimization after BCE may have generated this, and we should not
2960 // generate a bounds check if it is a valid range.
2961 }
2962 return;
2963 }
2964 // Only the index is constant: change the order of the operands and commute the condition
2965 // so we can use an immediate constant for the index (only the second input to a cmp
2966 // instruction can be an immediate).
2967 cmp_first_input = 1;
2968 cmp_second_input = 0;
2969 cond = ls;
2970 }
2971 BoundsCheckSlowPathARM64* slow_path =
2972 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
2973 __ Cmp(InputRegisterAt(instruction, cmp_first_input),
2974 InputOperandAt(instruction, cmp_second_input));
2975 codegen_->AddSlowPath(slow_path);
2976 __ B(slow_path->GetEntryLabel(), cond);
2977 }
2978
VisitClinitCheck(HClinitCheck * check)2979 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
2980 LocationSummary* locations =
2981 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
2982 locations->SetInAt(0, Location::RequiresRegister());
2983 if (check->HasUses()) {
2984 locations->SetOut(Location::SameAsFirstInput());
2985 }
2986 // Rely on the type initialization to save everything we need.
2987 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
2988 }
2989
VisitClinitCheck(HClinitCheck * check)2990 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
2991 // We assume the class is not null.
2992 SlowPathCodeARM64* slow_path =
2993 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
2994 codegen_->AddSlowPath(slow_path);
2995 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
2996 }
2997
IsFloatingPointZeroConstant(HInstruction * inst)2998 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
2999 return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
3000 || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
3001 }
3002
GenerateFcmp(HInstruction * instruction)3003 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
3004 VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
3005 Location rhs_loc = instruction->GetLocations()->InAt(1);
3006 if (rhs_loc.IsConstant()) {
3007 // 0.0 is the only immediate that can be encoded directly in
3008 // an FCMP instruction.
3009 //
3010 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
3011 // specify that in a floating-point comparison, positive zero
3012 // and negative zero are considered equal, so we can use the
3013 // literal 0.0 for both cases here.
3014 //
3015 // Note however that some methods (Float.equal, Float.compare,
3016 // Float.compareTo, Double.equal, Double.compare,
3017 // Double.compareTo, Math.max, Math.min, StrictMath.max,
3018 // StrictMath.min) consider 0.0 to be (strictly) greater than
3019 // -0.0. So if we ever translate calls to these methods into a
3020 // HCompare instruction, we must handle the -0.0 case with
3021 // care here.
3022 DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
3023 __ Fcmp(lhs_reg, 0.0);
3024 } else {
3025 __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
3026 }
3027 }
3028
VisitCompare(HCompare * compare)3029 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
3030 LocationSummary* locations =
3031 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
3032 DataType::Type in_type = compare->InputAt(0)->GetType();
3033 switch (in_type) {
3034 case DataType::Type::kBool:
3035 case DataType::Type::kUint8:
3036 case DataType::Type::kInt8:
3037 case DataType::Type::kUint16:
3038 case DataType::Type::kInt16:
3039 case DataType::Type::kInt32:
3040 case DataType::Type::kInt64: {
3041 locations->SetInAt(0, Location::RequiresRegister());
3042 locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
3043 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3044 break;
3045 }
3046 case DataType::Type::kFloat32:
3047 case DataType::Type::kFloat64: {
3048 locations->SetInAt(0, Location::RequiresFpuRegister());
3049 locations->SetInAt(1,
3050 IsFloatingPointZeroConstant(compare->InputAt(1))
3051 ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
3052 : Location::RequiresFpuRegister());
3053 locations->SetOut(Location::RequiresRegister());
3054 break;
3055 }
3056 default:
3057 LOG(FATAL) << "Unexpected type for compare operation " << in_type;
3058 }
3059 }
3060
VisitCompare(HCompare * compare)3061 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
3062 DataType::Type in_type = compare->InputAt(0)->GetType();
3063
3064 // 0 if: left == right
3065 // 1 if: left > right
3066 // -1 if: left < right
3067 switch (in_type) {
3068 case DataType::Type::kBool:
3069 case DataType::Type::kUint8:
3070 case DataType::Type::kInt8:
3071 case DataType::Type::kUint16:
3072 case DataType::Type::kInt16:
3073 case DataType::Type::kInt32:
3074 case DataType::Type::kInt64: {
3075 Register result = OutputRegister(compare);
3076 Register left = InputRegisterAt(compare, 0);
3077 Operand right = InputOperandAt(compare, 1);
3078 __ Cmp(left, right);
3079 __ Cset(result, ne); // result == +1 if NE or 0 otherwise
3080 __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise
3081 break;
3082 }
3083 case DataType::Type::kFloat32:
3084 case DataType::Type::kFloat64: {
3085 Register result = OutputRegister(compare);
3086 GenerateFcmp(compare);
3087 __ Cset(result, ne);
3088 __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
3089 break;
3090 }
3091 default:
3092 LOG(FATAL) << "Unimplemented compare type " << in_type;
3093 }
3094 }
3095
HandleCondition(HCondition * instruction)3096 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
3097 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3098
3099 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3100 locations->SetInAt(0, Location::RequiresFpuRegister());
3101 locations->SetInAt(1,
3102 IsFloatingPointZeroConstant(instruction->InputAt(1))
3103 ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
3104 : Location::RequiresFpuRegister());
3105 } else {
3106 // Integer cases.
3107 locations->SetInAt(0, Location::RequiresRegister());
3108 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
3109 }
3110
3111 if (!instruction->IsEmittedAtUseSite()) {
3112 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3113 }
3114 }
3115
HandleCondition(HCondition * instruction)3116 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
3117 if (instruction->IsEmittedAtUseSite()) {
3118 return;
3119 }
3120
3121 LocationSummary* locations = instruction->GetLocations();
3122 Register res = RegisterFrom(locations->Out(), instruction->GetType());
3123 IfCondition if_cond = instruction->GetCondition();
3124
3125 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3126 GenerateFcmp(instruction);
3127 __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
3128 } else {
3129 // Integer cases.
3130 Register lhs = InputRegisterAt(instruction, 0);
3131 Operand rhs = InputOperandAt(instruction, 1);
3132 __ Cmp(lhs, rhs);
3133 __ Cset(res, ARM64Condition(if_cond));
3134 }
3135 }
3136
3137 #define FOR_EACH_CONDITION_INSTRUCTION(M) \
3138 M(Equal) \
3139 M(NotEqual) \
3140 M(LessThan) \
3141 M(LessThanOrEqual) \
3142 M(GreaterThan) \
3143 M(GreaterThanOrEqual) \
3144 M(Below) \
3145 M(BelowOrEqual) \
3146 M(Above) \
3147 M(AboveOrEqual)
3148 #define DEFINE_CONDITION_VISITORS(Name) \
3149 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
3150 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)3151 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
3152 #undef DEFINE_CONDITION_VISITORS
3153 #undef FOR_EACH_CONDITION_INSTRUCTION
3154
3155 void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
3156 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3157 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3158 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
3159
3160 Register out = OutputRegister(instruction);
3161 Register dividend = InputRegisterAt(instruction, 0);
3162
3163 Register final_dividend;
3164 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
3165 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
3166 // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends:
3167 // imm == 2
3168 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
3169 // asr out, out(0x80000001), #1 => out = 0xc0000000
3170 // This is the same as 'asr out, 0x80000000, #1'
3171 //
3172 // imm > 2
3173 // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number
3174 // of the rightmost 1s is ctz_imm.
3175 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3176 // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1
3177 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
3178 // leftmost 1s is ctz_imm + 1.
3179 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
3180 //
3181 // imm == INT32_MIN
3182 // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1
3183 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3184 // csel out, temp(-1), dividend(0x80000000), lt => out = -1
3185 // neg out, out(-1), asr #31 => out = 1
3186 // This is the same as 'neg out, dividend(0x80000000), asr #31'.
3187 final_dividend = dividend;
3188 } else {
3189 if (abs_imm == 2) {
3190 int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
3191 __ Add(out, dividend, Operand(dividend, LSR, bits - 1));
3192 } else {
3193 UseScratchRegisterScope temps(GetVIXLAssembler());
3194 Register temp = temps.AcquireSameSizeAs(out);
3195 __ Add(temp, dividend, abs_imm - 1);
3196 __ Cmp(dividend, 0);
3197 __ Csel(out, temp, dividend, lt);
3198 }
3199 final_dividend = out;
3200 }
3201
3202 int ctz_imm = CTZ(abs_imm);
3203 if (imm > 0) {
3204 __ Asr(out, final_dividend, ctz_imm);
3205 } else {
3206 __ Neg(out, Operand(final_dividend, ASR, ctz_imm));
3207 }
3208 }
3209
3210 // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div).
3211 // So dividend needs to be added.
NeedToAddDividend(int64_t magic_number,int64_t divisor)3212 static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) {
3213 return divisor > 0 && magic_number < 0;
3214 }
3215
3216 // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div).
3217 // So dividend needs to be subtracted.
NeedToSubDividend(int64_t magic_number,int64_t divisor)3218 static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) {
3219 return divisor < 0 && magic_number > 0;
3220 }
3221
3222 // Generate code which increments the value in register 'in' by 1 if the value is negative.
3223 // It is done with 'add out, in, in, lsr #31 or #63'.
3224 // If the value is a result of an operation setting the N flag, CINC MI can be used
3225 // instead of ADD. 'use_cond_inc' controls this.
GenerateIncrementNegativeByOne(Register out,Register in,bool use_cond_inc)3226 void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne(
3227 Register out,
3228 Register in,
3229 bool use_cond_inc) {
3230 if (use_cond_inc) {
3231 __ Cinc(out, in, mi);
3232 } else {
3233 __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1));
3234 }
3235 }
3236
3237 // Helper to generate code producing the result of HRem with a constant divisor.
GenerateResultRemWithAnyConstant(Register out,Register dividend,Register quotient,int64_t divisor,UseScratchRegisterScope * temps_scope)3238 void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant(
3239 Register out,
3240 Register dividend,
3241 Register quotient,
3242 int64_t divisor,
3243 UseScratchRegisterScope* temps_scope) {
3244 Register temp_imm = temps_scope->AcquireSameSizeAs(out);
3245 __ Mov(temp_imm, divisor);
3246 __ Msub(out, quotient, temp_imm, dividend);
3247 }
3248
3249 // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and
3250 // a divisor is a positive constant, not power of 2.
GenerateInt64UnsignedDivRemWithAnyPositiveConstant(HBinaryOperation * instruction)3251 void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant(
3252 HBinaryOperation* instruction) {
3253 DCHECK(instruction->IsDiv() || instruction->IsRem());
3254 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3255
3256 LocationSummary* locations = instruction->GetLocations();
3257 Location second = locations->InAt(1);
3258 DCHECK(second.IsConstant());
3259
3260 Register out = OutputRegister(instruction);
3261 Register dividend = InputRegisterAt(instruction, 0);
3262 int64_t imm = Int64FromConstant(second.GetConstant());
3263 DCHECK_GT(imm, 0);
3264
3265 int64_t magic;
3266 int shift;
3267 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3268
3269 UseScratchRegisterScope temps(GetVIXLAssembler());
3270 Register temp = temps.AcquireSameSizeAs(out);
3271
3272 auto generate_unsigned_div_code = [this, magic, shift](Register out,
3273 Register dividend,
3274 Register temp) {
3275 // temp = get_high(dividend * magic)
3276 __ Mov(temp, magic);
3277 if (magic > 0 && shift == 0) {
3278 __ Smulh(out, dividend, temp);
3279 } else {
3280 __ Smulh(temp, dividend, temp);
3281 if (magic < 0) {
3282 // The negative magic means that the multiplier m is greater than INT64_MAX.
3283 // In such a case shift is never 0. See the proof in
3284 // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant.
3285 __ Add(temp, temp, dividend);
3286 }
3287 DCHECK_NE(shift, 0);
3288 __ Lsr(out, temp, shift);
3289 }
3290 };
3291
3292 if (instruction->IsDiv()) {
3293 generate_unsigned_div_code(out, dividend, temp);
3294 } else {
3295 generate_unsigned_div_code(temp, dividend, temp);
3296 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3297 }
3298 }
3299
3300 // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor
3301 // (not power of 2).
GenerateInt64DivRemWithAnyConstant(HBinaryOperation * instruction)3302 void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant(
3303 HBinaryOperation* instruction) {
3304 DCHECK(instruction->IsDiv() || instruction->IsRem());
3305 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3306
3307 LocationSummary* locations = instruction->GetLocations();
3308 Location second = locations->InAt(1);
3309 DCHECK(second.IsConstant());
3310
3311 Register out = OutputRegister(instruction);
3312 Register dividend = InputRegisterAt(instruction, 0);
3313 int64_t imm = Int64FromConstant(second.GetConstant());
3314
3315 int64_t magic;
3316 int shift;
3317 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3318
3319 UseScratchRegisterScope temps(GetVIXLAssembler());
3320 Register temp = temps.AcquireSameSizeAs(out);
3321
3322 // temp = get_high(dividend * magic)
3323 __ Mov(temp, magic);
3324 __ Smulh(temp, dividend, temp);
3325
3326 // The multiplication result might need some corrections to be finalized.
3327 // The last correction is to increment by 1, if the result is negative.
3328 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3329 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3330 // However if one of the corrections is ADD or SUB, the sign can be detected
3331 // with ADDS/SUBS. They set the N flag if the result is negative.
3332 // This allows to use CINC MI which has latency 1.
3333 bool use_cond_inc = false;
3334
3335 // Some combinations of magic_number and the divisor require to correct the result.
3336 // Check whether the correction is needed.
3337 if (NeedToAddDividend(magic, imm)) {
3338 __ Adds(temp, temp, dividend);
3339 use_cond_inc = true;
3340 } else if (NeedToSubDividend(magic, imm)) {
3341 __ Subs(temp, temp, dividend);
3342 use_cond_inc = true;
3343 }
3344
3345 if (shift != 0) {
3346 __ Asr(temp, temp, shift);
3347 }
3348
3349 if (instruction->IsRem()) {
3350 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3351 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3352 } else {
3353 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3354 }
3355 }
3356
GenerateInt32DivRemWithAnyConstant(HBinaryOperation * instruction)3357 void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant(
3358 HBinaryOperation* instruction) {
3359 DCHECK(instruction->IsDiv() || instruction->IsRem());
3360 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
3361
3362 LocationSummary* locations = instruction->GetLocations();
3363 Location second = locations->InAt(1);
3364 DCHECK(second.IsConstant());
3365
3366 Register out = OutputRegister(instruction);
3367 Register dividend = InputRegisterAt(instruction, 0);
3368 int64_t imm = Int64FromConstant(second.GetConstant());
3369
3370 int64_t magic;
3371 int shift;
3372 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
3373 UseScratchRegisterScope temps(GetVIXLAssembler());
3374 Register temp = temps.AcquireSameSizeAs(out);
3375
3376 // temp = get_high(dividend * magic)
3377 __ Mov(temp, magic);
3378 __ Smull(temp.X(), dividend, temp);
3379
3380 // The multiplication result might need some corrections to be finalized.
3381 // The last correction is to increment by 1, if the result is negative.
3382 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3383 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3384 // However if one of the corrections is ADD or SUB, the sign can be detected
3385 // with ADDS/SUBS. They set the N flag if the result is negative.
3386 // This allows to use CINC MI which has latency 1.
3387 bool use_cond_inc = false;
3388
3389 // ADD/SUB correction is performed in the high 32 bits
3390 // as high 32 bits are ignored because type are kInt32.
3391 if (NeedToAddDividend(magic, imm)) {
3392 __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3393 use_cond_inc = true;
3394 } else if (NeedToSubDividend(magic, imm)) {
3395 __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3396 use_cond_inc = true;
3397 }
3398
3399 // Extract the result from the high 32 bits and apply the final right shift.
3400 DCHECK_LT(shift, 32);
3401 if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
3402 // No need to adjust the result for a non-negative dividend and a positive divisor.
3403 if (instruction->IsDiv()) {
3404 __ Lsr(out.X(), temp.X(), 32 + shift);
3405 } else {
3406 __ Lsr(temp.X(), temp.X(), 32 + shift);
3407 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3408 }
3409 } else {
3410 __ Asr(temp.X(), temp.X(), 32 + shift);
3411
3412 if (instruction->IsRem()) {
3413 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3414 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3415 } else {
3416 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3417 }
3418 }
3419 }
3420
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction,int64_t divisor)3421 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction,
3422 int64_t divisor) {
3423 DCHECK(instruction->IsDiv() || instruction->IsRem());
3424 if (instruction->GetResultType() == DataType::Type::kInt64) {
3425 if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) {
3426 GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction);
3427 } else {
3428 GenerateInt64DivRemWithAnyConstant(instruction);
3429 }
3430 } else {
3431 GenerateInt32DivRemWithAnyConstant(instruction);
3432 }
3433 }
3434
GenerateIntDivForConstDenom(HDiv * instruction)3435 void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
3436 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3437
3438 if (imm == 0) {
3439 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3440 return;
3441 }
3442
3443 if (IsPowerOfTwo(AbsOrMin(imm))) {
3444 GenerateIntDivForPower2Denom(instruction);
3445 } else {
3446 // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
3447 DCHECK(imm < -2 || imm > 2) << imm;
3448 GenerateDivRemWithAnyConstant(instruction, imm);
3449 }
3450 }
3451
GenerateIntDiv(HDiv * instruction)3452 void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
3453 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
3454 << instruction->GetResultType();
3455
3456 if (instruction->GetLocations()->InAt(1).IsConstant()) {
3457 GenerateIntDivForConstDenom(instruction);
3458 } else {
3459 Register out = OutputRegister(instruction);
3460 Register dividend = InputRegisterAt(instruction, 0);
3461 Register divisor = InputRegisterAt(instruction, 1);
3462 __ Sdiv(out, dividend, divisor);
3463 }
3464 }
3465
VisitDiv(HDiv * div)3466 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
3467 LocationSummary* locations =
3468 new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
3469 switch (div->GetResultType()) {
3470 case DataType::Type::kInt32:
3471 case DataType::Type::kInt64:
3472 locations->SetInAt(0, Location::RequiresRegister());
3473 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3474 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3475 break;
3476
3477 case DataType::Type::kFloat32:
3478 case DataType::Type::kFloat64:
3479 locations->SetInAt(0, Location::RequiresFpuRegister());
3480 locations->SetInAt(1, Location::RequiresFpuRegister());
3481 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3482 break;
3483
3484 default:
3485 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3486 }
3487 }
3488
VisitDiv(HDiv * div)3489 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
3490 DataType::Type type = div->GetResultType();
3491 switch (type) {
3492 case DataType::Type::kInt32:
3493 case DataType::Type::kInt64:
3494 GenerateIntDiv(div);
3495 break;
3496
3497 case DataType::Type::kFloat32:
3498 case DataType::Type::kFloat64:
3499 __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
3500 break;
3501
3502 default:
3503 LOG(FATAL) << "Unexpected div type " << type;
3504 }
3505 }
3506
VisitDivZeroCheck(HDivZeroCheck * instruction)3507 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3508 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3509 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3510 }
3511
VisitDivZeroCheck(HDivZeroCheck * instruction)3512 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3513 SlowPathCodeARM64* slow_path =
3514 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
3515 codegen_->AddSlowPath(slow_path);
3516 Location value = instruction->GetLocations()->InAt(0);
3517
3518 DataType::Type type = instruction->GetType();
3519
3520 if (!DataType::IsIntegralType(type)) {
3521 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3522 UNREACHABLE();
3523 }
3524
3525 if (value.IsConstant()) {
3526 int64_t divisor = Int64FromLocation(value);
3527 if (divisor == 0) {
3528 __ B(slow_path->GetEntryLabel());
3529 } else {
3530 // A division by a non-null constant is valid. We don't need to perform
3531 // any check, so simply fall through.
3532 }
3533 } else {
3534 __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
3535 }
3536 }
3537
VisitDoubleConstant(HDoubleConstant * constant)3538 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
3539 LocationSummary* locations =
3540 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3541 locations->SetOut(Location::ConstantLocation(constant));
3542 }
3543
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3544 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
3545 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3546 // Will be generated at use site.
3547 }
3548
VisitExit(HExit * exit)3549 void LocationsBuilderARM64::VisitExit(HExit* exit) {
3550 exit->SetLocations(nullptr);
3551 }
3552
VisitExit(HExit * exit ATTRIBUTE_UNUSED)3553 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
3554 }
3555
VisitFloatConstant(HFloatConstant * constant)3556 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
3557 LocationSummary* locations =
3558 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3559 locations->SetOut(Location::ConstantLocation(constant));
3560 }
3561
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3562 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
3563 // Will be generated at use site.
3564 }
3565
HandleGoto(HInstruction * got,HBasicBlock * successor)3566 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
3567 if (successor->IsExitBlock()) {
3568 DCHECK(got->GetPrevious()->AlwaysThrows());
3569 return; // no code needed
3570 }
3571
3572 HBasicBlock* block = got->GetBlock();
3573 HInstruction* previous = got->GetPrevious();
3574 HLoopInformation* info = block->GetLoopInformation();
3575
3576 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
3577 codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
3578 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
3579 return; // `GenerateSuspendCheck()` emitted the jump.
3580 }
3581 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
3582 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
3583 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
3584 }
3585 if (!codegen_->GoesToNextBlock(block, successor)) {
3586 __ B(codegen_->GetLabelOf(successor));
3587 }
3588 }
3589
VisitGoto(HGoto * got)3590 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
3591 got->SetLocations(nullptr);
3592 }
3593
VisitGoto(HGoto * got)3594 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
3595 HandleGoto(got, got->GetSuccessor());
3596 }
3597
VisitTryBoundary(HTryBoundary * try_boundary)3598 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3599 try_boundary->SetLocations(nullptr);
3600 }
3601
VisitTryBoundary(HTryBoundary * try_boundary)3602 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3603 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
3604 if (!successor->IsExitBlock()) {
3605 HandleGoto(try_boundary, successor);
3606 }
3607 }
3608
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::aarch64::Label * true_target,vixl::aarch64::Label * false_target)3609 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
3610 size_t condition_input_index,
3611 vixl::aarch64::Label* true_target,
3612 vixl::aarch64::Label* false_target) {
3613 HInstruction* cond = instruction->InputAt(condition_input_index);
3614
3615 if (true_target == nullptr && false_target == nullptr) {
3616 // Nothing to do. The code always falls through.
3617 return;
3618 } else if (cond->IsIntConstant()) {
3619 // Constant condition, statically compared against "true" (integer value 1).
3620 if (cond->AsIntConstant()->IsTrue()) {
3621 if (true_target != nullptr) {
3622 __ B(true_target);
3623 }
3624 } else {
3625 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
3626 if (false_target != nullptr) {
3627 __ B(false_target);
3628 }
3629 }
3630 return;
3631 }
3632
3633 // The following code generates these patterns:
3634 // (1) true_target == nullptr && false_target != nullptr
3635 // - opposite condition true => branch to false_target
3636 // (2) true_target != nullptr && false_target == nullptr
3637 // - condition true => branch to true_target
3638 // (3) true_target != nullptr && false_target != nullptr
3639 // - condition true => branch to true_target
3640 // - branch to false_target
3641 if (IsBooleanValueOrMaterializedCondition(cond)) {
3642 // The condition instruction has been materialized, compare the output to 0.
3643 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
3644 DCHECK(cond_val.IsRegister());
3645 if (true_target == nullptr) {
3646 __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
3647 } else {
3648 __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
3649 }
3650 } else {
3651 // The condition instruction has not been materialized, use its inputs as
3652 // the comparison and its condition as the branch condition.
3653 HCondition* condition = cond->AsCondition();
3654
3655 DataType::Type type = condition->InputAt(0)->GetType();
3656 if (DataType::IsFloatingPointType(type)) {
3657 GenerateFcmp(condition);
3658 if (true_target == nullptr) {
3659 IfCondition opposite_condition = condition->GetOppositeCondition();
3660 __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
3661 } else {
3662 __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
3663 }
3664 } else {
3665 // Integer cases.
3666 Register lhs = InputRegisterAt(condition, 0);
3667 Operand rhs = InputOperandAt(condition, 1);
3668
3669 Condition arm64_cond;
3670 vixl::aarch64::Label* non_fallthrough_target;
3671 if (true_target == nullptr) {
3672 arm64_cond = ARM64Condition(condition->GetOppositeCondition());
3673 non_fallthrough_target = false_target;
3674 } else {
3675 arm64_cond = ARM64Condition(condition->GetCondition());
3676 non_fallthrough_target = true_target;
3677 }
3678
3679 if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
3680 rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
3681 switch (arm64_cond) {
3682 case eq:
3683 __ Cbz(lhs, non_fallthrough_target);
3684 break;
3685 case ne:
3686 __ Cbnz(lhs, non_fallthrough_target);
3687 break;
3688 case lt:
3689 // Test the sign bit and branch accordingly.
3690 __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3691 break;
3692 case ge:
3693 // Test the sign bit and branch accordingly.
3694 __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3695 break;
3696 default:
3697 // Without the `static_cast` the compiler throws an error for
3698 // `-Werror=sign-promo`.
3699 LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
3700 }
3701 } else {
3702 __ Cmp(lhs, rhs);
3703 __ B(arm64_cond, non_fallthrough_target);
3704 }
3705 }
3706 }
3707
3708 // If neither branch falls through (case 3), the conditional branch to `true_target`
3709 // was already emitted (case 2) and we need to emit a jump to `false_target`.
3710 if (true_target != nullptr && false_target != nullptr) {
3711 __ B(false_target);
3712 }
3713 }
3714
VisitIf(HIf * if_instr)3715 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
3716 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
3717 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
3718 locations->SetInAt(0, Location::RequiresRegister());
3719 }
3720 }
3721
VisitIf(HIf * if_instr)3722 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
3723 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
3724 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
3725 vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
3726 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
3727 true_target = nullptr;
3728 }
3729 vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
3730 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
3731 false_target = nullptr;
3732 }
3733 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
3734 }
3735
VisitDeoptimize(HDeoptimize * deoptimize)3736 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3737 LocationSummary* locations = new (GetGraph()->GetAllocator())
3738 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
3739 InvokeRuntimeCallingConvention calling_convention;
3740 RegisterSet caller_saves = RegisterSet::Empty();
3741 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3742 locations->SetCustomSlowPathCallerSaves(caller_saves);
3743 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
3744 locations->SetInAt(0, Location::RequiresRegister());
3745 }
3746 }
3747
VisitDeoptimize(HDeoptimize * deoptimize)3748 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3749 SlowPathCodeARM64* slow_path =
3750 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
3751 GenerateTestAndBranch(deoptimize,
3752 /* condition_input_index= */ 0,
3753 slow_path->GetEntryLabel(),
3754 /* false_target= */ nullptr);
3755 }
3756
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3757 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3758 LocationSummary* locations = new (GetGraph()->GetAllocator())
3759 LocationSummary(flag, LocationSummary::kNoCall);
3760 locations->SetOut(Location::RequiresRegister());
3761 }
3762
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3763 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3764 __ Ldr(OutputRegister(flag),
3765 MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
3766 }
3767
IsConditionOnFloatingPointValues(HInstruction * condition)3768 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
3769 return condition->IsCondition() &&
3770 DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
3771 }
3772
GetConditionForSelect(HCondition * condition)3773 static inline Condition GetConditionForSelect(HCondition* condition) {
3774 IfCondition cond = condition->AsCondition()->GetCondition();
3775 return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
3776 : ARM64Condition(cond);
3777 }
3778
VisitSelect(HSelect * select)3779 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
3780 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
3781 if (DataType::IsFloatingPointType(select->GetType())) {
3782 locations->SetInAt(0, Location::RequiresFpuRegister());
3783 locations->SetInAt(1, Location::RequiresFpuRegister());
3784 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3785 } else {
3786 HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
3787 HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
3788 bool is_true_value_constant = cst_true_value != nullptr;
3789 bool is_false_value_constant = cst_false_value != nullptr;
3790 // Ask VIXL whether we should synthesize constants in registers.
3791 // We give an arbitrary register to VIXL when dealing with non-constant inputs.
3792 Operand true_op = is_true_value_constant ?
3793 Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
3794 Operand false_op = is_false_value_constant ?
3795 Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
3796 bool true_value_in_register = false;
3797 bool false_value_in_register = false;
3798 MacroAssembler::GetCselSynthesisInformation(
3799 x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
3800 true_value_in_register |= !is_true_value_constant;
3801 false_value_in_register |= !is_false_value_constant;
3802
3803 locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
3804 : Location::ConstantLocation(cst_true_value));
3805 locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
3806 : Location::ConstantLocation(cst_false_value));
3807 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3808 }
3809
3810 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3811 locations->SetInAt(2, Location::RequiresRegister());
3812 }
3813 }
3814
VisitSelect(HSelect * select)3815 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3816 HInstruction* cond = select->GetCondition();
3817 Condition csel_cond;
3818
3819 if (IsBooleanValueOrMaterializedCondition(cond)) {
3820 if (cond->IsCondition() && cond->GetNext() == select) {
3821 // Use the condition flags set by the previous instruction.
3822 csel_cond = GetConditionForSelect(cond->AsCondition());
3823 } else {
3824 __ Cmp(InputRegisterAt(select, 2), 0);
3825 csel_cond = ne;
3826 }
3827 } else if (IsConditionOnFloatingPointValues(cond)) {
3828 GenerateFcmp(cond);
3829 csel_cond = GetConditionForSelect(cond->AsCondition());
3830 } else {
3831 __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
3832 csel_cond = GetConditionForSelect(cond->AsCondition());
3833 }
3834
3835 if (DataType::IsFloatingPointType(select->GetType())) {
3836 __ Fcsel(OutputFPRegister(select),
3837 InputFPRegisterAt(select, 1),
3838 InputFPRegisterAt(select, 0),
3839 csel_cond);
3840 } else {
3841 __ Csel(OutputRegister(select),
3842 InputOperandAt(select, 1),
3843 InputOperandAt(select, 0),
3844 csel_cond);
3845 }
3846 }
3847
VisitNativeDebugInfo(HNativeDebugInfo * info)3848 void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3849 new (GetGraph()->GetAllocator()) LocationSummary(info);
3850 }
3851
VisitNativeDebugInfo(HNativeDebugInfo *)3852 void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
3853 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
3854 }
3855
IncreaseFrame(size_t adjustment)3856 void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) {
3857 __ Claim(adjustment);
3858 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
3859 }
3860
DecreaseFrame(size_t adjustment)3861 void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) {
3862 __ Drop(adjustment);
3863 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
3864 }
3865
GenerateNop()3866 void CodeGeneratorARM64::GenerateNop() {
3867 __ Nop();
3868 }
3869
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)3870 void LocationsBuilderARM64::VisitPredicatedInstanceFieldGet(
3871 HPredicatedInstanceFieldGet* instruction) {
3872 HandleFieldGet(instruction, instruction->GetFieldInfo());
3873 }
3874
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3875 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3876 HandleFieldGet(instruction, instruction->GetFieldInfo());
3877 }
3878
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)3879 void InstructionCodeGeneratorARM64::VisitPredicatedInstanceFieldGet(
3880 HPredicatedInstanceFieldGet* instruction) {
3881 vixl::aarch64::Label finish;
3882 __ Cbz(InputRegisterAt(instruction, 1), &finish);
3883 HandleFieldGet(instruction, instruction->GetFieldInfo());
3884 __ Bind(&finish);
3885 }
3886
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3887 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3888 HandleFieldGet(instruction, instruction->GetFieldInfo());
3889 }
3890
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3891 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3892 HandleFieldSet(instruction);
3893 }
3894
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3895 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3896 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
3897 }
3898
3899 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)3900 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
3901 if (kEmitCompilerReadBarrier &&
3902 (kUseBakerReadBarrier ||
3903 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3904 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3905 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
3906 return 1;
3907 }
3908 return 0;
3909 }
3910
3911 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
3912 // interface pointer, one for loading the current interface.
3913 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)3914 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
3915 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
3916 return 3;
3917 }
3918 return 1 + NumberOfInstanceOfTemps(type_check_kind);
3919 }
3920
VisitInstanceOf(HInstanceOf * instruction)3921 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
3922 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3923 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3924 bool baker_read_barrier_slow_path = false;
3925 switch (type_check_kind) {
3926 case TypeCheckKind::kExactCheck:
3927 case TypeCheckKind::kAbstractClassCheck:
3928 case TypeCheckKind::kClassHierarchyCheck:
3929 case TypeCheckKind::kArrayObjectCheck: {
3930 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
3931 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3932 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
3933 break;
3934 }
3935 case TypeCheckKind::kArrayCheck:
3936 case TypeCheckKind::kUnresolvedCheck:
3937 case TypeCheckKind::kInterfaceCheck:
3938 call_kind = LocationSummary::kCallOnSlowPath;
3939 break;
3940 case TypeCheckKind::kBitstringCheck:
3941 break;
3942 }
3943
3944 LocationSummary* locations =
3945 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3946 if (baker_read_barrier_slow_path) {
3947 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
3948 }
3949 locations->SetInAt(0, Location::RequiresRegister());
3950 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3951 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
3952 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
3953 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
3954 } else {
3955 locations->SetInAt(1, Location::RequiresRegister());
3956 }
3957 // The "out" register is used as a temporary, so it overlaps with the inputs.
3958 // Note that TypeCheckSlowPathARM64 uses this register too.
3959 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3960 // Add temps if necessary for read barriers.
3961 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
3962 }
3963
VisitInstanceOf(HInstanceOf * instruction)3964 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
3965 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3966 LocationSummary* locations = instruction->GetLocations();
3967 Location obj_loc = locations->InAt(0);
3968 Register obj = InputRegisterAt(instruction, 0);
3969 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
3970 ? Register()
3971 : InputRegisterAt(instruction, 1);
3972 Location out_loc = locations->Out();
3973 Register out = OutputRegister(instruction);
3974 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
3975 DCHECK_LE(num_temps, 1u);
3976 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
3977 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3978 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3979 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3980 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3981
3982 vixl::aarch64::Label done, zero;
3983 SlowPathCodeARM64* slow_path = nullptr;
3984
3985 // Return 0 if `obj` is null.
3986 // Avoid null check if we know `obj` is not null.
3987 if (instruction->MustDoNullCheck()) {
3988 __ Cbz(obj, &zero);
3989 }
3990
3991 switch (type_check_kind) {
3992 case TypeCheckKind::kExactCheck: {
3993 ReadBarrierOption read_barrier_option =
3994 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
3995 // /* HeapReference<Class> */ out = obj->klass_
3996 GenerateReferenceLoadTwoRegisters(instruction,
3997 out_loc,
3998 obj_loc,
3999 class_offset,
4000 maybe_temp_loc,
4001 read_barrier_option);
4002 __ Cmp(out, cls);
4003 __ Cset(out, eq);
4004 if (zero.IsLinked()) {
4005 __ B(&done);
4006 }
4007 break;
4008 }
4009
4010 case TypeCheckKind::kAbstractClassCheck: {
4011 ReadBarrierOption read_barrier_option =
4012 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4013 // /* HeapReference<Class> */ out = obj->klass_
4014 GenerateReferenceLoadTwoRegisters(instruction,
4015 out_loc,
4016 obj_loc,
4017 class_offset,
4018 maybe_temp_loc,
4019 read_barrier_option);
4020 // If the class is abstract, we eagerly fetch the super class of the
4021 // object to avoid doing a comparison we know will fail.
4022 vixl::aarch64::Label loop, success;
4023 __ Bind(&loop);
4024 // /* HeapReference<Class> */ out = out->super_class_
4025 GenerateReferenceLoadOneRegister(instruction,
4026 out_loc,
4027 super_offset,
4028 maybe_temp_loc,
4029 read_barrier_option);
4030 // If `out` is null, we use it for the result, and jump to `done`.
4031 __ Cbz(out, &done);
4032 __ Cmp(out, cls);
4033 __ B(ne, &loop);
4034 __ Mov(out, 1);
4035 if (zero.IsLinked()) {
4036 __ B(&done);
4037 }
4038 break;
4039 }
4040
4041 case TypeCheckKind::kClassHierarchyCheck: {
4042 ReadBarrierOption read_barrier_option =
4043 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4044 // /* HeapReference<Class> */ out = obj->klass_
4045 GenerateReferenceLoadTwoRegisters(instruction,
4046 out_loc,
4047 obj_loc,
4048 class_offset,
4049 maybe_temp_loc,
4050 read_barrier_option);
4051 // Walk over the class hierarchy to find a match.
4052 vixl::aarch64::Label loop, success;
4053 __ Bind(&loop);
4054 __ Cmp(out, cls);
4055 __ B(eq, &success);
4056 // /* HeapReference<Class> */ out = out->super_class_
4057 GenerateReferenceLoadOneRegister(instruction,
4058 out_loc,
4059 super_offset,
4060 maybe_temp_loc,
4061 read_barrier_option);
4062 __ Cbnz(out, &loop);
4063 // If `out` is null, we use it for the result, and jump to `done`.
4064 __ B(&done);
4065 __ Bind(&success);
4066 __ Mov(out, 1);
4067 if (zero.IsLinked()) {
4068 __ B(&done);
4069 }
4070 break;
4071 }
4072
4073 case TypeCheckKind::kArrayObjectCheck: {
4074 ReadBarrierOption read_barrier_option =
4075 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4076 // /* HeapReference<Class> */ out = obj->klass_
4077 GenerateReferenceLoadTwoRegisters(instruction,
4078 out_loc,
4079 obj_loc,
4080 class_offset,
4081 maybe_temp_loc,
4082 read_barrier_option);
4083 // Do an exact check.
4084 vixl::aarch64::Label exact_check;
4085 __ Cmp(out, cls);
4086 __ B(eq, &exact_check);
4087 // Otherwise, we need to check that the object's class is a non-primitive array.
4088 // /* HeapReference<Class> */ out = out->component_type_
4089 GenerateReferenceLoadOneRegister(instruction,
4090 out_loc,
4091 component_offset,
4092 maybe_temp_loc,
4093 read_barrier_option);
4094 // If `out` is null, we use it for the result, and jump to `done`.
4095 __ Cbz(out, &done);
4096 __ Ldrh(out, HeapOperand(out, primitive_offset));
4097 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4098 __ Cbnz(out, &zero);
4099 __ Bind(&exact_check);
4100 __ Mov(out, 1);
4101 __ B(&done);
4102 break;
4103 }
4104
4105 case TypeCheckKind::kArrayCheck: {
4106 // No read barrier since the slow path will retry upon failure.
4107 // /* HeapReference<Class> */ out = obj->klass_
4108 GenerateReferenceLoadTwoRegisters(instruction,
4109 out_loc,
4110 obj_loc,
4111 class_offset,
4112 maybe_temp_loc,
4113 kWithoutReadBarrier);
4114 __ Cmp(out, cls);
4115 DCHECK(locations->OnlyCallsOnSlowPath());
4116 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4117 instruction, /* is_fatal= */ false);
4118 codegen_->AddSlowPath(slow_path);
4119 __ B(ne, slow_path->GetEntryLabel());
4120 __ Mov(out, 1);
4121 if (zero.IsLinked()) {
4122 __ B(&done);
4123 }
4124 break;
4125 }
4126
4127 case TypeCheckKind::kUnresolvedCheck:
4128 case TypeCheckKind::kInterfaceCheck: {
4129 // Note that we indeed only call on slow path, but we always go
4130 // into the slow path for the unresolved and interface check
4131 // cases.
4132 //
4133 // We cannot directly call the InstanceofNonTrivial runtime
4134 // entry point without resorting to a type checking slow path
4135 // here (i.e. by calling InvokeRuntime directly), as it would
4136 // require to assign fixed registers for the inputs of this
4137 // HInstanceOf instruction (following the runtime calling
4138 // convention), which might be cluttered by the potential first
4139 // read barrier emission at the beginning of this method.
4140 //
4141 // TODO: Introduce a new runtime entry point taking the object
4142 // to test (instead of its class) as argument, and let it deal
4143 // with the read barrier issues. This will let us refactor this
4144 // case of the `switch` code as it was previously (with a direct
4145 // call to the runtime not using a type checking slow path).
4146 // This should also be beneficial for the other cases above.
4147 DCHECK(locations->OnlyCallsOnSlowPath());
4148 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4149 instruction, /* is_fatal= */ false);
4150 codegen_->AddSlowPath(slow_path);
4151 __ B(slow_path->GetEntryLabel());
4152 if (zero.IsLinked()) {
4153 __ B(&done);
4154 }
4155 break;
4156 }
4157
4158 case TypeCheckKind::kBitstringCheck: {
4159 // /* HeapReference<Class> */ temp = obj->klass_
4160 GenerateReferenceLoadTwoRegisters(instruction,
4161 out_loc,
4162 obj_loc,
4163 class_offset,
4164 maybe_temp_loc,
4165 kWithoutReadBarrier);
4166
4167 GenerateBitstringTypeCheckCompare(instruction, out);
4168 __ Cset(out, eq);
4169 if (zero.IsLinked()) {
4170 __ B(&done);
4171 }
4172 break;
4173 }
4174 }
4175
4176 if (zero.IsLinked()) {
4177 __ Bind(&zero);
4178 __ Mov(out, 0);
4179 }
4180
4181 if (done.IsLinked()) {
4182 __ Bind(&done);
4183 }
4184
4185 if (slow_path != nullptr) {
4186 __ Bind(slow_path->GetExitLabel());
4187 }
4188 }
4189
VisitCheckCast(HCheckCast * instruction)4190 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
4191 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4192 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
4193 LocationSummary* locations =
4194 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4195 locations->SetInAt(0, Location::RequiresRegister());
4196 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4197 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
4198 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
4199 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
4200 } else {
4201 locations->SetInAt(1, Location::RequiresRegister());
4202 }
4203 // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64.
4204 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
4205 }
4206
VisitCheckCast(HCheckCast * instruction)4207 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
4208 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4209 LocationSummary* locations = instruction->GetLocations();
4210 Location obj_loc = locations->InAt(0);
4211 Register obj = InputRegisterAt(instruction, 0);
4212 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4213 ? Register()
4214 : InputRegisterAt(instruction, 1);
4215 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
4216 DCHECK_GE(num_temps, 1u);
4217 DCHECK_LE(num_temps, 3u);
4218 Location temp_loc = locations->GetTemp(0);
4219 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
4220 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
4221 Register temp = WRegisterFrom(temp_loc);
4222 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4223 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4224 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4225 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4226 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4227 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4228 const uint32_t object_array_data_offset =
4229 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4230
4231 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
4232 SlowPathCodeARM64* type_check_slow_path =
4233 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4234 instruction, is_type_check_slow_path_fatal);
4235 codegen_->AddSlowPath(type_check_slow_path);
4236
4237 vixl::aarch64::Label done;
4238 // Avoid null check if we know obj is not null.
4239 if (instruction->MustDoNullCheck()) {
4240 __ Cbz(obj, &done);
4241 }
4242
4243 switch (type_check_kind) {
4244 case TypeCheckKind::kExactCheck:
4245 case TypeCheckKind::kArrayCheck: {
4246 // /* HeapReference<Class> */ temp = obj->klass_
4247 GenerateReferenceLoadTwoRegisters(instruction,
4248 temp_loc,
4249 obj_loc,
4250 class_offset,
4251 maybe_temp2_loc,
4252 kWithoutReadBarrier);
4253
4254 __ Cmp(temp, cls);
4255 // Jump to slow path for throwing the exception or doing a
4256 // more involved array check.
4257 __ B(ne, type_check_slow_path->GetEntryLabel());
4258 break;
4259 }
4260
4261 case TypeCheckKind::kAbstractClassCheck: {
4262 // /* HeapReference<Class> */ temp = obj->klass_
4263 GenerateReferenceLoadTwoRegisters(instruction,
4264 temp_loc,
4265 obj_loc,
4266 class_offset,
4267 maybe_temp2_loc,
4268 kWithoutReadBarrier);
4269
4270 // If the class is abstract, we eagerly fetch the super class of the
4271 // object to avoid doing a comparison we know will fail.
4272 vixl::aarch64::Label loop;
4273 __ Bind(&loop);
4274 // /* HeapReference<Class> */ temp = temp->super_class_
4275 GenerateReferenceLoadOneRegister(instruction,
4276 temp_loc,
4277 super_offset,
4278 maybe_temp2_loc,
4279 kWithoutReadBarrier);
4280
4281 // If the class reference currently in `temp` is null, jump to the slow path to throw the
4282 // exception.
4283 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4284 // Otherwise, compare classes.
4285 __ Cmp(temp, cls);
4286 __ B(ne, &loop);
4287 break;
4288 }
4289
4290 case TypeCheckKind::kClassHierarchyCheck: {
4291 // /* HeapReference<Class> */ temp = obj->klass_
4292 GenerateReferenceLoadTwoRegisters(instruction,
4293 temp_loc,
4294 obj_loc,
4295 class_offset,
4296 maybe_temp2_loc,
4297 kWithoutReadBarrier);
4298
4299 // Walk over the class hierarchy to find a match.
4300 vixl::aarch64::Label loop;
4301 __ Bind(&loop);
4302 __ Cmp(temp, cls);
4303 __ B(eq, &done);
4304
4305 // /* HeapReference<Class> */ temp = temp->super_class_
4306 GenerateReferenceLoadOneRegister(instruction,
4307 temp_loc,
4308 super_offset,
4309 maybe_temp2_loc,
4310 kWithoutReadBarrier);
4311
4312 // If the class reference currently in `temp` is not null, jump
4313 // back at the beginning of the loop.
4314 __ Cbnz(temp, &loop);
4315 // Otherwise, jump to the slow path to throw the exception.
4316 __ B(type_check_slow_path->GetEntryLabel());
4317 break;
4318 }
4319
4320 case TypeCheckKind::kArrayObjectCheck: {
4321 // /* HeapReference<Class> */ temp = obj->klass_
4322 GenerateReferenceLoadTwoRegisters(instruction,
4323 temp_loc,
4324 obj_loc,
4325 class_offset,
4326 maybe_temp2_loc,
4327 kWithoutReadBarrier);
4328
4329 // Do an exact check.
4330 __ Cmp(temp, cls);
4331 __ B(eq, &done);
4332
4333 // Otherwise, we need to check that the object's class is a non-primitive array.
4334 // /* HeapReference<Class> */ temp = temp->component_type_
4335 GenerateReferenceLoadOneRegister(instruction,
4336 temp_loc,
4337 component_offset,
4338 maybe_temp2_loc,
4339 kWithoutReadBarrier);
4340
4341 // If the component type is null, jump to the slow path to throw the exception.
4342 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4343 // Otherwise, the object is indeed an array. Further check that this component type is not a
4344 // primitive type.
4345 __ Ldrh(temp, HeapOperand(temp, primitive_offset));
4346 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4347 __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
4348 break;
4349 }
4350
4351 case TypeCheckKind::kUnresolvedCheck:
4352 // We always go into the type check slow path for the unresolved check cases.
4353 //
4354 // We cannot directly call the CheckCast runtime entry point
4355 // without resorting to a type checking slow path here (i.e. by
4356 // calling InvokeRuntime directly), as it would require to
4357 // assign fixed registers for the inputs of this HInstanceOf
4358 // instruction (following the runtime calling convention), which
4359 // might be cluttered by the potential first read barrier
4360 // emission at the beginning of this method.
4361 __ B(type_check_slow_path->GetEntryLabel());
4362 break;
4363 case TypeCheckKind::kInterfaceCheck: {
4364 // /* HeapReference<Class> */ temp = obj->klass_
4365 GenerateReferenceLoadTwoRegisters(instruction,
4366 temp_loc,
4367 obj_loc,
4368 class_offset,
4369 maybe_temp2_loc,
4370 kWithoutReadBarrier);
4371
4372 // /* HeapReference<Class> */ temp = temp->iftable_
4373 GenerateReferenceLoadTwoRegisters(instruction,
4374 temp_loc,
4375 temp_loc,
4376 iftable_offset,
4377 maybe_temp2_loc,
4378 kWithoutReadBarrier);
4379 // Iftable is never null.
4380 __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
4381 // Loop through the iftable and check if any class matches.
4382 vixl::aarch64::Label start_loop;
4383 __ Bind(&start_loop);
4384 __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
4385 __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
4386 GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
4387 // Go to next interface.
4388 __ Add(temp, temp, 2 * kHeapReferenceSize);
4389 __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
4390 // Compare the classes and continue the loop if they do not match.
4391 __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
4392 __ B(ne, &start_loop);
4393 break;
4394 }
4395
4396 case TypeCheckKind::kBitstringCheck: {
4397 // /* HeapReference<Class> */ temp = obj->klass_
4398 GenerateReferenceLoadTwoRegisters(instruction,
4399 temp_loc,
4400 obj_loc,
4401 class_offset,
4402 maybe_temp2_loc,
4403 kWithoutReadBarrier);
4404
4405 GenerateBitstringTypeCheckCompare(instruction, temp);
4406 __ B(ne, type_check_slow_path->GetEntryLabel());
4407 break;
4408 }
4409 }
4410 __ Bind(&done);
4411
4412 __ Bind(type_check_slow_path->GetExitLabel());
4413 }
4414
VisitIntConstant(HIntConstant * constant)4415 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
4416 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4417 locations->SetOut(Location::ConstantLocation(constant));
4418 }
4419
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)4420 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
4421 // Will be generated at use site.
4422 }
4423
VisitNullConstant(HNullConstant * constant)4424 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
4425 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4426 locations->SetOut(Location::ConstantLocation(constant));
4427 }
4428
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)4429 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
4430 // Will be generated at use site.
4431 }
4432
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4433 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4434 // The trampoline uses the same calling convention as dex calling conventions,
4435 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
4436 // the method_idx.
4437 HandleInvoke(invoke);
4438 }
4439
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4440 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4441 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
4442 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4443 }
4444
HandleInvoke(HInvoke * invoke)4445 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
4446 InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
4447 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4448 }
4449
VisitInvokeInterface(HInvokeInterface * invoke)4450 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4451 HandleInvoke(invoke);
4452 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4453 // We cannot request ip1 as it's blocked by the register allocator.
4454 invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
4455 }
4456 }
4457
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)4458 void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
4459 Register klass) {
4460 DCHECK_EQ(klass.GetCode(), 0u);
4461 // We know the destination of an intrinsic, so no need to record inline
4462 // caches.
4463 if (!instruction->GetLocations()->Intrinsified() &&
4464 GetGraph()->IsCompilingBaseline() &&
4465 !Runtime::Current()->IsAotCompiler()) {
4466 DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
4467 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
4468 DCHECK(info != nullptr);
4469 InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
4470 uint64_t address = reinterpret_cast64<uint64_t>(cache);
4471 vixl::aarch64::Label done;
4472 __ Mov(x8, address);
4473 __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
4474 // Fast path for a monomorphic cache.
4475 __ Cmp(klass, x9);
4476 __ B(eq, &done);
4477 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
4478 __ Bind(&done);
4479 }
4480 }
4481
VisitInvokeInterface(HInvokeInterface * invoke)4482 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4483 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
4484 LocationSummary* locations = invoke->GetLocations();
4485 Register temp = XRegisterFrom(locations->GetTemp(0));
4486 Location receiver = locations->InAt(0);
4487 Offset class_offset = mirror::Object::ClassOffset();
4488 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4489
4490 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4491 if (receiver.IsStackSlot()) {
4492 __ Ldr(temp.W(), StackOperandFrom(receiver));
4493 {
4494 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4495 // /* HeapReference<Class> */ temp = temp->klass_
4496 __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
4497 codegen_->MaybeRecordImplicitNullCheck(invoke);
4498 }
4499 } else {
4500 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4501 // /* HeapReference<Class> */ temp = receiver->klass_
4502 __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
4503 codegen_->MaybeRecordImplicitNullCheck(invoke);
4504 }
4505
4506 // Instead of simply (possibly) unpoisoning `temp` here, we should
4507 // emit a read barrier for the previous class reference load.
4508 // However this is not required in practice, as this is an
4509 // intermediate/temporary reference and because the current
4510 // concurrent copying collector keeps the from-space memory
4511 // intact/accessible until the end of the marking phase (the
4512 // concurrent copying collector may not in the future).
4513 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4514
4515 // If we're compiling baseline, update the inline cache.
4516 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
4517
4518 // The register ip1 is required to be used for the hidden argument in
4519 // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
4520 MacroAssembler* masm = GetVIXLAssembler();
4521 UseScratchRegisterScope scratch_scope(masm);
4522 scratch_scope.Exclude(ip1);
4523 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4524 Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
4525 if (interface_method.IsStackSlot()) {
4526 __ Ldr(ip1, StackOperandFrom(interface_method));
4527 } else {
4528 __ Mov(ip1, XRegisterFrom(interface_method));
4529 }
4530 // If the load kind is through a runtime call, we will pass the method we
4531 // fetch the IMT, which will either be a no-op if we don't hit the conflict
4532 // stub, or will make us always go through the trampoline when there is a
4533 // conflict.
4534 } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
4535 codegen_->LoadMethod(
4536 invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke);
4537 }
4538
4539 __ Ldr(temp,
4540 MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
4541 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4542 invoke->GetImtIndex(), kArm64PointerSize));
4543 // temp = temp->GetImtEntryAt(method_offset);
4544 __ Ldr(temp, MemOperand(temp, method_offset));
4545 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
4546 // We pass the method from the IMT in case of a conflict. This will ensure
4547 // we go into the runtime to resolve the actual method.
4548 __ Mov(ip1, temp);
4549 }
4550 // lr = temp->GetEntryPoint();
4551 __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
4552
4553 {
4554 // Ensure the pc position is recorded immediately after the `blr` instruction.
4555 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4556
4557 // lr();
4558 __ blr(lr);
4559 DCHECK(!codegen_->IsLeafMethod());
4560 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
4561 }
4562
4563 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4564 }
4565
VisitInvokeVirtual(HInvokeVirtual * invoke)4566 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4567 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4568 if (intrinsic.TryDispatch(invoke)) {
4569 return;
4570 }
4571
4572 HandleInvoke(invoke);
4573 }
4574
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4575 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4576 // Explicit clinit checks triggered by static invokes must have been pruned by
4577 // art::PrepareForRegisterAllocation.
4578 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4579
4580 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4581 if (intrinsic.TryDispatch(invoke)) {
4582 return;
4583 }
4584
4585 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4586 CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor(
4587 /*for_register_allocation=*/ true);
4588 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4589 } else {
4590 HandleInvoke(invoke);
4591 }
4592 }
4593
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)4594 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
4595 if (invoke->GetLocations()->Intrinsified()) {
4596 IntrinsicCodeGeneratorARM64 intrinsic(codegen);
4597 intrinsic.Dispatch(invoke);
4598 return true;
4599 }
4600 return false;
4601 }
4602
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)4603 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
4604 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4605 ArtMethod* method ATTRIBUTE_UNUSED) {
4606 // On ARM64 we support all dispatch types.
4607 return desired_dispatch_info;
4608 }
4609
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)4610 void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
4611 switch (load_kind) {
4612 case MethodLoadKind::kBootImageLinkTimePcRelative: {
4613 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4614 // Add ADRP with its PC-relative method patch.
4615 vixl::aarch64::Label* adrp_label =
4616 NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
4617 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4618 // Add ADD with its PC-relative method patch.
4619 vixl::aarch64::Label* add_label =
4620 NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
4621 EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
4622 break;
4623 }
4624 case MethodLoadKind::kBootImageRelRo: {
4625 // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
4626 uint32_t boot_image_offset = GetBootImageOffset(invoke);
4627 LoadBootImageRelRoEntry(WRegisterFrom(temp), boot_image_offset);
4628 break;
4629 }
4630 case MethodLoadKind::kBssEntry: {
4631 // Add ADRP with its PC-relative .bss entry patch.
4632 vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference());
4633 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4634 // Add LDR with its PC-relative .bss entry patch.
4635 vixl::aarch64::Label* ldr_label =
4636 NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label);
4637 // All aligned loads are implicitly atomic consume operations on ARM64.
4638 EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
4639 break;
4640 }
4641 case MethodLoadKind::kJitDirectAddress: {
4642 // Load method address from literal pool.
4643 __ Ldr(XRegisterFrom(temp),
4644 DeduplicateUint64Literal(reinterpret_cast<uint64_t>(invoke->GetResolvedMethod())));
4645 break;
4646 }
4647 case MethodLoadKind::kRuntimeCall: {
4648 // Test situation, don't do anything.
4649 break;
4650 }
4651 default: {
4652 LOG(FATAL) << "Load kind should have already been handled " << load_kind;
4653 UNREACHABLE();
4654 }
4655 }
4656 }
4657
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)4658 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
4659 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
4660 // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
4661 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
4662 switch (invoke->GetMethodLoadKind()) {
4663 case MethodLoadKind::kStringInit: {
4664 uint32_t offset =
4665 GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
4666 // temp = thread->string_init_entrypoint
4667 __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
4668 break;
4669 }
4670 case MethodLoadKind::kRecursive: {
4671 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
4672 break;
4673 }
4674 case MethodLoadKind::kRuntimeCall: {
4675 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
4676 return; // No code pointer retrieval; the runtime performs the call directly.
4677 }
4678 case MethodLoadKind::kBootImageLinkTimePcRelative:
4679 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4680 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4681 // Do not materialize the method pointer, load directly the entrypoint.
4682 // Add ADRP with its PC-relative JNI entrypoint patch.
4683 vixl::aarch64::Label* adrp_label =
4684 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference());
4685 EmitAdrpPlaceholder(adrp_label, lr);
4686 // Add the LDR with its PC-relative method patch.
4687 vixl::aarch64::Label* add_label =
4688 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label);
4689 EmitLdrOffsetPlaceholder(add_label, lr, lr);
4690 break;
4691 }
4692 FALLTHROUGH_INTENDED;
4693 default: {
4694 LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
4695 break;
4696 }
4697 }
4698
4699 auto call_lr = [&]() {
4700 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4701 ExactAssemblyScope eas(GetVIXLAssembler(),
4702 kInstructionSize,
4703 CodeBufferCheckScope::kExactSize);
4704 // lr()
4705 __ blr(lr);
4706 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4707 };
4708 switch (invoke->GetCodePtrLocation()) {
4709 case CodePtrLocation::kCallSelf:
4710 {
4711 DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
4712 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4713 ExactAssemblyScope eas(GetVIXLAssembler(),
4714 kInstructionSize,
4715 CodeBufferCheckScope::kExactSize);
4716 __ bl(&frame_entry_label_);
4717 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4718 }
4719 break;
4720 case CodePtrLocation::kCallCriticalNative: {
4721 size_t out_frame_size =
4722 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64,
4723 kAapcs64StackAlignment,
4724 GetCriticalNativeDirectCallFrameSize>(invoke);
4725 if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
4726 call_lr();
4727 } else {
4728 // LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni
4729 MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize);
4730 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
4731 // lr()
4732 call_lr();
4733 }
4734 // Zero-/sign-extend the result when needed due to native and managed ABI mismatch.
4735 switch (invoke->GetType()) {
4736 case DataType::Type::kBool:
4737 __ Ubfx(w0, w0, 0, 8);
4738 break;
4739 case DataType::Type::kInt8:
4740 __ Sbfx(w0, w0, 0, 8);
4741 break;
4742 case DataType::Type::kUint16:
4743 __ Ubfx(w0, w0, 0, 16);
4744 break;
4745 case DataType::Type::kInt16:
4746 __ Sbfx(w0, w0, 0, 16);
4747 break;
4748 case DataType::Type::kInt32:
4749 case DataType::Type::kInt64:
4750 case DataType::Type::kFloat32:
4751 case DataType::Type::kFloat64:
4752 case DataType::Type::kVoid:
4753 break;
4754 default:
4755 DCHECK(false) << invoke->GetType();
4756 break;
4757 }
4758 if (out_frame_size != 0u) {
4759 DecreaseFrame(out_frame_size);
4760 }
4761 break;
4762 }
4763 case CodePtrLocation::kCallArtMethod: {
4764 // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_;
4765 MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4766 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
4767 // lr()
4768 call_lr();
4769 break;
4770 }
4771 }
4772
4773 DCHECK(!IsLeafMethod());
4774 }
4775
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)4776 void CodeGeneratorARM64::GenerateVirtualCall(
4777 HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
4778 // Use the calling convention instead of the location of the receiver, as
4779 // intrinsics may have put the receiver in a different register. In the intrinsics
4780 // slow path, the arguments have been moved to the right place, so here we are
4781 // guaranteed that the receiver is the first register of the calling convention.
4782 InvokeDexCallingConvention calling_convention;
4783 Register receiver = calling_convention.GetRegisterAt(0);
4784 Register temp = XRegisterFrom(temp_in);
4785 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4786 invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
4787 Offset class_offset = mirror::Object::ClassOffset();
4788 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4789
4790 DCHECK(receiver.IsRegister());
4791
4792 {
4793 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4794 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4795 // /* HeapReference<Class> */ temp = receiver->klass_
4796 __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
4797 MaybeRecordImplicitNullCheck(invoke);
4798 }
4799 // Instead of simply (possibly) unpoisoning `temp` here, we should
4800 // emit a read barrier for the previous class reference load.
4801 // intermediate/temporary reference and because the current
4802 // concurrent copying collector keeps the from-space memory
4803 // intact/accessible until the end of the marking phase (the
4804 // concurrent copying collector may not in the future).
4805 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4806
4807 // If we're compiling baseline, update the inline cache.
4808 MaybeGenerateInlineCacheCheck(invoke, temp);
4809
4810 // temp = temp->GetMethodAt(method_offset);
4811 __ Ldr(temp, MemOperand(temp, method_offset));
4812 // lr = temp->GetEntryPoint();
4813 __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
4814 {
4815 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4816 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4817 // lr();
4818 __ blr(lr);
4819 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4820 }
4821 }
4822
MoveFromReturnRegister(Location trg,DataType::Type type)4823 void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) {
4824 if (!trg.IsValid()) {
4825 DCHECK(type == DataType::Type::kVoid);
4826 return;
4827 }
4828
4829 DCHECK_NE(type, DataType::Type::kVoid);
4830
4831 if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
4832 Register trg_reg = RegisterFrom(trg, type);
4833 Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
4834 __ Mov(trg_reg, res_reg, kDiscardForSameWReg);
4835 } else {
4836 VRegister trg_reg = FPRegisterFrom(trg, type);
4837 VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
4838 __ Fmov(trg_reg, res_reg);
4839 }
4840 }
4841
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4842 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4843 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4844 if (intrinsic.TryDispatch(invoke)) {
4845 return;
4846 }
4847 HandleInvoke(invoke);
4848 }
4849
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4850 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4851 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4852 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4853 return;
4854 }
4855 codegen_->GenerateInvokePolymorphicCall(invoke);
4856 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4857 }
4858
VisitInvokeCustom(HInvokeCustom * invoke)4859 void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4860 HandleInvoke(invoke);
4861 }
4862
VisitInvokeCustom(HInvokeCustom * invoke)4863 void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4864 codegen_->GenerateInvokeCustomCall(invoke);
4865 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4866 }
4867
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,vixl::aarch64::Label * adrp_label)4868 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
4869 uint32_t intrinsic_data,
4870 vixl::aarch64::Label* adrp_label) {
4871 return NewPcRelativePatch(
4872 /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
4873 }
4874
NewBootImageRelRoPatch(uint32_t boot_image_offset,vixl::aarch64::Label * adrp_label)4875 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
4876 uint32_t boot_image_offset,
4877 vixl::aarch64::Label* adrp_label) {
4878 return NewPcRelativePatch(
4879 /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
4880 }
4881
NewBootImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4882 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
4883 MethodReference target_method,
4884 vixl::aarch64::Label* adrp_label) {
4885 return NewPcRelativePatch(
4886 target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
4887 }
4888
NewMethodBssEntryPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4889 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
4890 MethodReference target_method,
4891 vixl::aarch64::Label* adrp_label) {
4892 return NewPcRelativePatch(
4893 target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
4894 }
4895
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)4896 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
4897 const DexFile& dex_file,
4898 dex::TypeIndex type_index,
4899 vixl::aarch64::Label* adrp_label) {
4900 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
4901 }
4902
NewBssEntryTypePatch(HLoadClass * load_class,vixl::aarch64::Label * adrp_label)4903 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
4904 HLoadClass* load_class,
4905 vixl::aarch64::Label* adrp_label) {
4906 const DexFile& dex_file = load_class->GetDexFile();
4907 dex::TypeIndex type_index = load_class->GetTypeIndex();
4908 ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
4909 switch (load_class->GetLoadKind()) {
4910 case HLoadClass::LoadKind::kBssEntry:
4911 patches = &type_bss_entry_patches_;
4912 break;
4913 case HLoadClass::LoadKind::kBssEntryPublic:
4914 patches = &public_type_bss_entry_patches_;
4915 break;
4916 case HLoadClass::LoadKind::kBssEntryPackage:
4917 patches = &package_type_bss_entry_patches_;
4918 break;
4919 default:
4920 LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
4921 UNREACHABLE();
4922 }
4923 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches);
4924 }
4925
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)4926 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
4927 const DexFile& dex_file,
4928 dex::StringIndex string_index,
4929 vixl::aarch64::Label* adrp_label) {
4930 return NewPcRelativePatch(
4931 &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
4932 }
4933
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)4934 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
4935 const DexFile& dex_file,
4936 dex::StringIndex string_index,
4937 vixl::aarch64::Label* adrp_label) {
4938 return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
4939 }
4940
NewBootImageJniEntrypointPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4941 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch(
4942 MethodReference target_method,
4943 vixl::aarch64::Label* adrp_label) {
4944 return NewPcRelativePatch(
4945 target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_);
4946 }
4947
EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset)4948 void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
4949 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
4950 DCHECK(!GetCompilerOptions().IsJitCompiler());
4951 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
4952 vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
4953 __ bind(bl_label);
4954 __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
4955 }
4956
EmitBakerReadBarrierCbnz(uint32_t custom_data)4957 void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
4958 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
4959 if (GetCompilerOptions().IsJitCompiler()) {
4960 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
4961 vixl::aarch64::Label* slow_path_entry = &it->second.label;
4962 __ cbnz(mr, slow_path_entry);
4963 } else {
4964 baker_read_barrier_patches_.emplace_back(custom_data);
4965 vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
4966 __ bind(cbnz_label);
4967 __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
4968 }
4969 }
4970
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,vixl::aarch64::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)4971 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
4972 const DexFile* dex_file,
4973 uint32_t offset_or_index,
4974 vixl::aarch64::Label* adrp_label,
4975 ArenaDeque<PcRelativePatchInfo>* patches) {
4976 // Add a patch entry and return the label.
4977 patches->emplace_back(dex_file, offset_or_index);
4978 PcRelativePatchInfo* info = &patches->back();
4979 vixl::aarch64::Label* label = &info->label;
4980 // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
4981 info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
4982 return label;
4983 }
4984
DeduplicateBootImageAddressLiteral(uint64_t address)4985 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(
4986 uint64_t address) {
4987 return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address));
4988 }
4989
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)4990 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral(
4991 const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) {
4992 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
4993 return jit_string_patches_.GetOrCreate(
4994 StringReference(&dex_file, string_index),
4995 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
4996 }
4997
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)4998 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral(
4999 const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) {
5000 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
5001 return jit_class_patches_.GetOrCreate(
5002 TypeReference(&dex_file, type_index),
5003 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
5004 }
5005
EmitAdrpPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register reg)5006 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
5007 vixl::aarch64::Register reg) {
5008 DCHECK(reg.IsX());
5009 SingleEmissionCheckScope guard(GetVIXLAssembler());
5010 __ Bind(fixup_label);
5011 __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
5012 }
5013
EmitAddPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5014 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
5015 vixl::aarch64::Register out,
5016 vixl::aarch64::Register base) {
5017 DCHECK(out.IsX());
5018 DCHECK(base.IsX());
5019 SingleEmissionCheckScope guard(GetVIXLAssembler());
5020 __ Bind(fixup_label);
5021 __ add(out, base, Operand(/* offset placeholder */ 0));
5022 }
5023
EmitLdrOffsetPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5024 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
5025 vixl::aarch64::Register out,
5026 vixl::aarch64::Register base) {
5027 DCHECK(base.IsX());
5028 SingleEmissionCheckScope guard(GetVIXLAssembler());
5029 __ Bind(fixup_label);
5030 __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
5031 }
5032
LoadBootImageRelRoEntry(vixl::aarch64::Register reg,uint32_t boot_image_offset)5033 void CodeGeneratorARM64::LoadBootImageRelRoEntry(vixl::aarch64::Register reg,
5034 uint32_t boot_image_offset) {
5035 DCHECK(reg.IsW());
5036 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
5037 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
5038 EmitAdrpPlaceholder(adrp_label, reg.X());
5039 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
5040 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5041 EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
5042 }
5043
LoadBootImageAddress(vixl::aarch64::Register reg,uint32_t boot_image_reference)5044 void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
5045 uint32_t boot_image_reference) {
5046 if (GetCompilerOptions().IsBootImage()) {
5047 // Add ADRP with its PC-relative type patch.
5048 vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
5049 EmitAdrpPlaceholder(adrp_label, reg.X());
5050 // Add ADD with its PC-relative type patch.
5051 vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
5052 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5053 } else if (GetCompilerOptions().GetCompilePic()) {
5054 LoadBootImageRelRoEntry(reg, boot_image_reference);
5055 } else {
5056 DCHECK(GetCompilerOptions().IsJitCompiler());
5057 gc::Heap* heap = Runtime::Current()->GetHeap();
5058 DCHECK(!heap->GetBootImageSpaces().empty());
5059 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
5060 __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
5061 }
5062 }
5063
LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,TypeReference target_type)5064 void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,
5065 TypeReference target_type) {
5066 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
5067 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5068 // Add ADRP with its PC-relative type patch.
5069 vixl::aarch64::Label* adrp_label =
5070 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
5071 EmitAdrpPlaceholder(adrp_label, reg.X());
5072 // Add ADD with its PC-relative type patch.
5073 vixl::aarch64::Label* add_label =
5074 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label);
5075 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5076 }
5077
LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg,HInvoke * invoke)5078 void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) {
5079 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
5080 if (GetCompilerOptions().IsBootImage()) {
5081 MethodReference target_method = invoke->GetResolvedMethodReference();
5082 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
5083 LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
5084 } else {
5085 uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
5086 LoadBootImageAddress(reg, boot_image_offset);
5087 }
5088 }
5089
LoadClassRootForIntrinsic(vixl::aarch64::Register reg,ClassRoot class_root)5090 void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg,
5091 ClassRoot class_root) {
5092 if (GetCompilerOptions().IsBootImage()) {
5093 ScopedObjectAccess soa(Thread::Current());
5094 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
5095 TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
5096 LoadTypeForBootImageIntrinsic(reg, target_type);
5097 } else {
5098 uint32_t boot_image_offset = GetBootImageOffset(class_root);
5099 LoadBootImageAddress(reg, boot_image_offset);
5100 }
5101 }
5102
5103 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)5104 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
5105 const ArenaDeque<PcRelativePatchInfo>& infos,
5106 ArenaVector<linker::LinkerPatch>* linker_patches) {
5107 for (const PcRelativePatchInfo& info : infos) {
5108 linker_patches->push_back(Factory(info.label.GetLocation(),
5109 info.target_dex_file,
5110 info.pc_insn_label->GetLocation(),
5111 info.offset_or_index));
5112 }
5113 }
5114
5115 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)5116 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
5117 const DexFile* target_dex_file,
5118 uint32_t pc_insn_offset,
5119 uint32_t boot_image_offset) {
5120 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
5121 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
5122 }
5123
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)5124 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
5125 DCHECK(linker_patches->empty());
5126 size_t size =
5127 boot_image_method_patches_.size() +
5128 method_bss_entry_patches_.size() +
5129 boot_image_type_patches_.size() +
5130 type_bss_entry_patches_.size() +
5131 public_type_bss_entry_patches_.size() +
5132 package_type_bss_entry_patches_.size() +
5133 boot_image_string_patches_.size() +
5134 string_bss_entry_patches_.size() +
5135 boot_image_jni_entrypoint_patches_.size() +
5136 boot_image_other_patches_.size() +
5137 call_entrypoint_patches_.size() +
5138 baker_read_barrier_patches_.size();
5139 linker_patches->reserve(size);
5140 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
5141 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
5142 boot_image_method_patches_, linker_patches);
5143 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
5144 boot_image_type_patches_, linker_patches);
5145 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
5146 boot_image_string_patches_, linker_patches);
5147 } else {
5148 DCHECK(boot_image_method_patches_.empty());
5149 DCHECK(boot_image_type_patches_.empty());
5150 DCHECK(boot_image_string_patches_.empty());
5151 }
5152 if (GetCompilerOptions().IsBootImage()) {
5153 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
5154 boot_image_other_patches_, linker_patches);
5155 } else {
5156 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
5157 boot_image_other_patches_, linker_patches);
5158 }
5159 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
5160 method_bss_entry_patches_, linker_patches);
5161 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
5162 type_bss_entry_patches_, linker_patches);
5163 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
5164 public_type_bss_entry_patches_, linker_patches);
5165 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
5166 package_type_bss_entry_patches_, linker_patches);
5167 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
5168 string_bss_entry_patches_, linker_patches);
5169 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
5170 boot_image_jni_entrypoint_patches_, linker_patches);
5171 for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
5172 DCHECK(info.target_dex_file == nullptr);
5173 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
5174 info.label.GetLocation(), info.offset_or_index));
5175 }
5176 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
5177 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
5178 info.label.GetLocation(), info.custom_data));
5179 }
5180 DCHECK_EQ(size, linker_patches->size());
5181 }
5182
NeedsThunkCode(const linker::LinkerPatch & patch) const5183 bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
5184 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
5185 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
5186 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
5187 }
5188
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)5189 void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
5190 /*out*/ ArenaVector<uint8_t>* code,
5191 /*out*/ std::string* debug_name) {
5192 Arm64Assembler assembler(GetGraph()->GetAllocator());
5193 switch (patch.GetType()) {
5194 case linker::LinkerPatch::Type::kCallRelative: {
5195 // The thunk just uses the entry point in the ArtMethod. This works even for calls
5196 // to the generic JNI and interpreter trampolines.
5197 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
5198 kArm64PointerSize).Int32Value());
5199 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
5200 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5201 *debug_name = "MethodCallThunk";
5202 }
5203 break;
5204 }
5205 case linker::LinkerPatch::Type::kCallEntrypoint: {
5206 Offset offset(patch.EntrypointOffset());
5207 assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
5208 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5209 *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
5210 }
5211 break;
5212 }
5213 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
5214 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
5215 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
5216 break;
5217 }
5218 default:
5219 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
5220 UNREACHABLE();
5221 }
5222
5223 // Ensure we emit the literal pool if any.
5224 assembler.FinalizeCode();
5225 code->resize(assembler.CodeSize());
5226 MemoryRegion code_region(code->data(), code->size());
5227 assembler.FinalizeInstructions(code_region);
5228 }
5229
DeduplicateUint32Literal(uint32_t value)5230 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) {
5231 return uint32_literals_.GetOrCreate(
5232 value,
5233 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
5234 }
5235
DeduplicateUint64Literal(uint64_t value)5236 vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
5237 return uint64_literals_.GetOrCreate(
5238 value,
5239 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
5240 }
5241
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)5242 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
5243 // Explicit clinit checks triggered by static invokes must have been pruned by
5244 // art::PrepareForRegisterAllocation.
5245 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
5246
5247 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5248 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5249 return;
5250 }
5251
5252 LocationSummary* locations = invoke->GetLocations();
5253 codegen_->GenerateStaticOrDirectCall(
5254 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
5255
5256 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5257 }
5258
VisitInvokeVirtual(HInvokeVirtual * invoke)5259 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
5260 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5261 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5262 return;
5263 }
5264
5265 {
5266 // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there
5267 // are no pools emitted.
5268 EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
5269 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
5270 DCHECK(!codegen_->IsLeafMethod());
5271 }
5272
5273 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5274 }
5275
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)5276 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
5277 HLoadClass::LoadKind desired_class_load_kind) {
5278 switch (desired_class_load_kind) {
5279 case HLoadClass::LoadKind::kInvalid:
5280 LOG(FATAL) << "UNREACHABLE";
5281 UNREACHABLE();
5282 case HLoadClass::LoadKind::kReferrersClass:
5283 break;
5284 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5285 case HLoadClass::LoadKind::kBootImageRelRo:
5286 case HLoadClass::LoadKind::kBssEntry:
5287 case HLoadClass::LoadKind::kBssEntryPublic:
5288 case HLoadClass::LoadKind::kBssEntryPackage:
5289 DCHECK(!GetCompilerOptions().IsJitCompiler());
5290 break;
5291 case HLoadClass::LoadKind::kJitBootImageAddress:
5292 case HLoadClass::LoadKind::kJitTableAddress:
5293 DCHECK(GetCompilerOptions().IsJitCompiler());
5294 break;
5295 case HLoadClass::LoadKind::kRuntimeCall:
5296 break;
5297 }
5298 return desired_class_load_kind;
5299 }
5300
VisitLoadClass(HLoadClass * cls)5301 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
5302 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5303 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5304 InvokeRuntimeCallingConvention calling_convention;
5305 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
5306 cls,
5307 LocationFrom(calling_convention.GetRegisterAt(0)),
5308 LocationFrom(vixl::aarch64::x0));
5309 DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
5310 return;
5311 }
5312 DCHECK_EQ(cls->NeedsAccessCheck(),
5313 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5314 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5315
5316 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
5317 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5318 ? LocationSummary::kCallOnSlowPath
5319 : LocationSummary::kNoCall;
5320 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
5321 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5322 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5323 }
5324
5325 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
5326 locations->SetInAt(0, Location::RequiresRegister());
5327 }
5328 locations->SetOut(Location::RequiresRegister());
5329 if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
5330 if (!kUseReadBarrier || kUseBakerReadBarrier) {
5331 // Rely on the type resolution or initialization and marking to save everything we need.
5332 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5333 } else {
5334 // For non-Baker read barrier we have a temp-clobbering call.
5335 }
5336 }
5337 }
5338
5339 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5340 // move.
VisitLoadClass(HLoadClass * cls)5341 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
5342 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5343 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5344 codegen_->GenerateLoadClassRuntimeCall(cls);
5345 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5346 return;
5347 }
5348 DCHECK_EQ(cls->NeedsAccessCheck(),
5349 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5350 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5351
5352 Location out_loc = cls->GetLocations()->Out();
5353 Register out = OutputRegister(cls);
5354
5355 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
5356 ? kWithoutReadBarrier
5357 : kCompilerReadBarrierOption;
5358 bool generate_null_check = false;
5359 switch (load_kind) {
5360 case HLoadClass::LoadKind::kReferrersClass: {
5361 DCHECK(!cls->CanCallRuntime());
5362 DCHECK(!cls->MustGenerateClinitCheck());
5363 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5364 Register current_method = InputRegisterAt(cls, 0);
5365 codegen_->GenerateGcRootFieldLoad(cls,
5366 out_loc,
5367 current_method,
5368 ArtMethod::DeclaringClassOffset().Int32Value(),
5369 /* fixup_label= */ nullptr,
5370 read_barrier_option);
5371 break;
5372 }
5373 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5374 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5375 codegen_->GetCompilerOptions().IsBootImageExtension());
5376 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5377 // Add ADRP with its PC-relative type patch.
5378 const DexFile& dex_file = cls->GetDexFile();
5379 dex::TypeIndex type_index = cls->GetTypeIndex();
5380 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
5381 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5382 // Add ADD with its PC-relative type patch.
5383 vixl::aarch64::Label* add_label =
5384 codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
5385 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5386 break;
5387 }
5388 case HLoadClass::LoadKind::kBootImageRelRo: {
5389 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5390 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
5391 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
5392 break;
5393 }
5394 case HLoadClass::LoadKind::kBssEntry:
5395 case HLoadClass::LoadKind::kBssEntryPublic:
5396 case HLoadClass::LoadKind::kBssEntryPackage: {
5397 // Add ADRP with its PC-relative Class .bss entry patch.
5398 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5399 vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls);
5400 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5401 // Add LDR with its PC-relative Class .bss entry patch.
5402 vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label);
5403 // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
5404 // All aligned loads are implicitly atomic consume operations on ARM64.
5405 codegen_->GenerateGcRootFieldLoad(cls,
5406 out_loc,
5407 temp,
5408 /* offset placeholder */ 0u,
5409 ldr_label,
5410 read_barrier_option);
5411 generate_null_check = true;
5412 break;
5413 }
5414 case HLoadClass::LoadKind::kJitBootImageAddress: {
5415 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5416 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
5417 DCHECK_NE(address, 0u);
5418 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5419 break;
5420 }
5421 case HLoadClass::LoadKind::kJitTableAddress: {
5422 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
5423 cls->GetTypeIndex(),
5424 cls->GetClass()));
5425 codegen_->GenerateGcRootFieldLoad(cls,
5426 out_loc,
5427 out.X(),
5428 /* offset= */ 0,
5429 /* fixup_label= */ nullptr,
5430 read_barrier_option);
5431 break;
5432 }
5433 case HLoadClass::LoadKind::kRuntimeCall:
5434 case HLoadClass::LoadKind::kInvalid:
5435 LOG(FATAL) << "UNREACHABLE";
5436 UNREACHABLE();
5437 }
5438
5439 bool do_clinit = cls->MustGenerateClinitCheck();
5440 if (generate_null_check || do_clinit) {
5441 DCHECK(cls->CanCallRuntime());
5442 SlowPathCodeARM64* slow_path =
5443 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
5444 codegen_->AddSlowPath(slow_path);
5445 if (generate_null_check) {
5446 __ Cbz(out, slow_path->GetEntryLabel());
5447 }
5448 if (cls->MustGenerateClinitCheck()) {
5449 GenerateClassInitializationCheck(slow_path, out);
5450 } else {
5451 __ Bind(slow_path->GetExitLabel());
5452 }
5453 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5454 }
5455 }
5456
VisitLoadMethodHandle(HLoadMethodHandle * load)5457 void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5458 InvokeRuntimeCallingConvention calling_convention;
5459 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5460 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
5461 }
5462
VisitLoadMethodHandle(HLoadMethodHandle * load)5463 void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5464 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
5465 }
5466
VisitLoadMethodType(HLoadMethodType * load)5467 void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
5468 InvokeRuntimeCallingConvention calling_convention;
5469 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5470 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
5471 }
5472
VisitLoadMethodType(HLoadMethodType * load)5473 void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
5474 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
5475 }
5476
GetExceptionTlsAddress()5477 static MemOperand GetExceptionTlsAddress() {
5478 return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
5479 }
5480
VisitLoadException(HLoadException * load)5481 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
5482 LocationSummary* locations =
5483 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
5484 locations->SetOut(Location::RequiresRegister());
5485 }
5486
VisitLoadException(HLoadException * instruction)5487 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
5488 __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
5489 }
5490
VisitClearException(HClearException * clear)5491 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
5492 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
5493 }
5494
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)5495 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
5496 __ Str(wzr, GetExceptionTlsAddress());
5497 }
5498
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5499 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
5500 HLoadString::LoadKind desired_string_load_kind) {
5501 switch (desired_string_load_kind) {
5502 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5503 case HLoadString::LoadKind::kBootImageRelRo:
5504 case HLoadString::LoadKind::kBssEntry:
5505 DCHECK(!GetCompilerOptions().IsJitCompiler());
5506 break;
5507 case HLoadString::LoadKind::kJitBootImageAddress:
5508 case HLoadString::LoadKind::kJitTableAddress:
5509 DCHECK(GetCompilerOptions().IsJitCompiler());
5510 break;
5511 case HLoadString::LoadKind::kRuntimeCall:
5512 break;
5513 }
5514 return desired_string_load_kind;
5515 }
5516
VisitLoadString(HLoadString * load)5517 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
5518 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
5519 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
5520 if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
5521 InvokeRuntimeCallingConvention calling_convention;
5522 locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
5523 } else {
5524 locations->SetOut(Location::RequiresRegister());
5525 if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
5526 if (!kUseReadBarrier || kUseBakerReadBarrier) {
5527 // Rely on the pResolveString and marking to save everything we need.
5528 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5529 } else {
5530 // For non-Baker read barrier we have a temp-clobbering call.
5531 }
5532 }
5533 }
5534 }
5535
5536 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5537 // move.
VisitLoadString(HLoadString * load)5538 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
5539 Register out = OutputRegister(load);
5540 Location out_loc = load->GetLocations()->Out();
5541
5542 switch (load->GetLoadKind()) {
5543 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5544 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5545 codegen_->GetCompilerOptions().IsBootImageExtension());
5546 // Add ADRP with its PC-relative String patch.
5547 const DexFile& dex_file = load->GetDexFile();
5548 const dex::StringIndex string_index = load->GetStringIndex();
5549 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
5550 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5551 // Add ADD with its PC-relative String patch.
5552 vixl::aarch64::Label* add_label =
5553 codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
5554 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5555 return;
5556 }
5557 case HLoadString::LoadKind::kBootImageRelRo: {
5558 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5559 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
5560 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
5561 return;
5562 }
5563 case HLoadString::LoadKind::kBssEntry: {
5564 // Add ADRP with its PC-relative String .bss entry patch.
5565 const DexFile& dex_file = load->GetDexFile();
5566 const dex::StringIndex string_index = load->GetStringIndex();
5567 Register temp = XRegisterFrom(out_loc);
5568 vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
5569 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5570 // Add LDR with its PC-relative String .bss entry patch.
5571 vixl::aarch64::Label* ldr_label =
5572 codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
5573 // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
5574 // All aligned loads are implicitly atomic consume operations on ARM64.
5575 codegen_->GenerateGcRootFieldLoad(load,
5576 out_loc,
5577 temp,
5578 /* offset placeholder */ 0u,
5579 ldr_label,
5580 kCompilerReadBarrierOption);
5581 SlowPathCodeARM64* slow_path =
5582 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
5583 codegen_->AddSlowPath(slow_path);
5584 __ Cbz(out.X(), slow_path->GetEntryLabel());
5585 __ Bind(slow_path->GetExitLabel());
5586 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5587 return;
5588 }
5589 case HLoadString::LoadKind::kJitBootImageAddress: {
5590 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
5591 DCHECK_NE(address, 0u);
5592 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5593 return;
5594 }
5595 case HLoadString::LoadKind::kJitTableAddress: {
5596 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
5597 load->GetStringIndex(),
5598 load->GetString()));
5599 codegen_->GenerateGcRootFieldLoad(load,
5600 out_loc,
5601 out.X(),
5602 /* offset= */ 0,
5603 /* fixup_label= */ nullptr,
5604 kCompilerReadBarrierOption);
5605 return;
5606 }
5607 default:
5608 break;
5609 }
5610
5611 // TODO: Re-add the compiler code to do string dex cache lookup again.
5612 InvokeRuntimeCallingConvention calling_convention;
5613 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
5614 __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
5615 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
5616 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
5617 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5618 }
5619
VisitLongConstant(HLongConstant * constant)5620 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
5621 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
5622 locations->SetOut(Location::ConstantLocation(constant));
5623 }
5624
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)5625 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
5626 // Will be generated at use site.
5627 }
5628
VisitMonitorOperation(HMonitorOperation * instruction)5629 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5630 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5631 instruction, LocationSummary::kCallOnMainOnly);
5632 InvokeRuntimeCallingConvention calling_convention;
5633 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5634 }
5635
VisitMonitorOperation(HMonitorOperation * instruction)5636 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5637 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
5638 instruction,
5639 instruction->GetDexPc());
5640 if (instruction->IsEnter()) {
5641 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
5642 } else {
5643 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
5644 }
5645 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5646 }
5647
VisitMul(HMul * mul)5648 void LocationsBuilderARM64::VisitMul(HMul* mul) {
5649 LocationSummary* locations =
5650 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
5651 switch (mul->GetResultType()) {
5652 case DataType::Type::kInt32:
5653 case DataType::Type::kInt64:
5654 locations->SetInAt(0, Location::RequiresRegister());
5655 locations->SetInAt(1, Location::RequiresRegister());
5656 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5657 break;
5658
5659 case DataType::Type::kFloat32:
5660 case DataType::Type::kFloat64:
5661 locations->SetInAt(0, Location::RequiresFpuRegister());
5662 locations->SetInAt(1, Location::RequiresFpuRegister());
5663 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5664 break;
5665
5666 default:
5667 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5668 }
5669 }
5670
VisitMul(HMul * mul)5671 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
5672 switch (mul->GetResultType()) {
5673 case DataType::Type::kInt32:
5674 case DataType::Type::kInt64:
5675 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
5676 break;
5677
5678 case DataType::Type::kFloat32:
5679 case DataType::Type::kFloat64:
5680 __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
5681 break;
5682
5683 default:
5684 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5685 }
5686 }
5687
VisitNeg(HNeg * neg)5688 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
5689 LocationSummary* locations =
5690 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
5691 switch (neg->GetResultType()) {
5692 case DataType::Type::kInt32:
5693 case DataType::Type::kInt64:
5694 locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
5695 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5696 break;
5697
5698 case DataType::Type::kFloat32:
5699 case DataType::Type::kFloat64:
5700 locations->SetInAt(0, Location::RequiresFpuRegister());
5701 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5702 break;
5703
5704 default:
5705 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5706 }
5707 }
5708
VisitNeg(HNeg * neg)5709 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
5710 switch (neg->GetResultType()) {
5711 case DataType::Type::kInt32:
5712 case DataType::Type::kInt64:
5713 __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
5714 break;
5715
5716 case DataType::Type::kFloat32:
5717 case DataType::Type::kFloat64:
5718 __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
5719 break;
5720
5721 default:
5722 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5723 }
5724 }
5725
VisitNewArray(HNewArray * instruction)5726 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
5727 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5728 instruction, LocationSummary::kCallOnMainOnly);
5729 InvokeRuntimeCallingConvention calling_convention;
5730 locations->SetOut(LocationFrom(x0));
5731 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5732 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5733 }
5734
VisitNewArray(HNewArray * instruction)5735 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
5736 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5737 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5738 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5739 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5740 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5741 }
5742
VisitNewInstance(HNewInstance * instruction)5743 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
5744 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5745 instruction, LocationSummary::kCallOnMainOnly);
5746 InvokeRuntimeCallingConvention calling_convention;
5747 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5748 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
5749 }
5750
VisitNewInstance(HNewInstance * instruction)5751 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
5752 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5753 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5754 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5755 }
5756
VisitNot(HNot * instruction)5757 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
5758 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5759 locations->SetInAt(0, Location::RequiresRegister());
5760 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5761 }
5762
VisitNot(HNot * instruction)5763 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
5764 switch (instruction->GetResultType()) {
5765 case DataType::Type::kInt32:
5766 case DataType::Type::kInt64:
5767 __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
5768 break;
5769
5770 default:
5771 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
5772 }
5773 }
5774
VisitBooleanNot(HBooleanNot * instruction)5775 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
5776 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5777 locations->SetInAt(0, Location::RequiresRegister());
5778 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5779 }
5780
VisitBooleanNot(HBooleanNot * instruction)5781 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
5782 __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
5783 }
5784
VisitNullCheck(HNullCheck * instruction)5785 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
5786 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5787 locations->SetInAt(0, Location::RequiresRegister());
5788 }
5789
GenerateImplicitNullCheck(HNullCheck * instruction)5790 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
5791 if (CanMoveNullCheckToUser(instruction)) {
5792 return;
5793 }
5794 {
5795 // Ensure that between load and RecordPcInfo there are no pools emitted.
5796 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5797 Location obj = instruction->GetLocations()->InAt(0);
5798 __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
5799 RecordPcInfo(instruction, instruction->GetDexPc());
5800 }
5801 }
5802
GenerateExplicitNullCheck(HNullCheck * instruction)5803 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
5804 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
5805 AddSlowPath(slow_path);
5806
5807 LocationSummary* locations = instruction->GetLocations();
5808 Location obj = locations->InAt(0);
5809
5810 __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
5811 }
5812
VisitNullCheck(HNullCheck * instruction)5813 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
5814 codegen_->GenerateNullCheck(instruction);
5815 }
5816
VisitOr(HOr * instruction)5817 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
5818 HandleBinaryOp(instruction);
5819 }
5820
VisitOr(HOr * instruction)5821 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
5822 HandleBinaryOp(instruction);
5823 }
5824
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5825 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5826 LOG(FATAL) << "Unreachable";
5827 }
5828
VisitParallelMove(HParallelMove * instruction)5829 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
5830 if (instruction->GetNext()->IsSuspendCheck() &&
5831 instruction->GetBlock()->GetLoopInformation() != nullptr) {
5832 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
5833 // The back edge will generate the suspend check.
5834 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
5835 }
5836
5837 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5838 }
5839
VisitParameterValue(HParameterValue * instruction)5840 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
5841 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5842 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5843 if (location.IsStackSlot()) {
5844 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5845 } else if (location.IsDoubleStackSlot()) {
5846 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5847 }
5848 locations->SetOut(location);
5849 }
5850
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5851 void InstructionCodeGeneratorARM64::VisitParameterValue(
5852 HParameterValue* instruction ATTRIBUTE_UNUSED) {
5853 // Nothing to do, the parameter is already at its location.
5854 }
5855
VisitCurrentMethod(HCurrentMethod * instruction)5856 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
5857 LocationSummary* locations =
5858 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5859 locations->SetOut(LocationFrom(kArtMethodRegister));
5860 }
5861
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5862 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
5863 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5864 // Nothing to do, the method is already at its location.
5865 }
5866
VisitPhi(HPhi * instruction)5867 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
5868 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5869 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5870 locations->SetInAt(i, Location::Any());
5871 }
5872 locations->SetOut(Location::Any());
5873 }
5874
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5875 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5876 LOG(FATAL) << "Unreachable";
5877 }
5878
VisitRem(HRem * rem)5879 void LocationsBuilderARM64::VisitRem(HRem* rem) {
5880 DataType::Type type = rem->GetResultType();
5881 LocationSummary::CallKind call_kind =
5882 DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
5883 : LocationSummary::kNoCall;
5884 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
5885
5886 switch (type) {
5887 case DataType::Type::kInt32:
5888 case DataType::Type::kInt64:
5889 locations->SetInAt(0, Location::RequiresRegister());
5890 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
5891 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5892 break;
5893
5894 case DataType::Type::kFloat32:
5895 case DataType::Type::kFloat64: {
5896 InvokeRuntimeCallingConvention calling_convention;
5897 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
5898 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
5899 locations->SetOut(calling_convention.GetReturnLocation(type));
5900
5901 break;
5902 }
5903
5904 default:
5905 LOG(FATAL) << "Unexpected rem type " << type;
5906 }
5907 }
5908
GenerateIntRemForPower2Denom(HRem * instruction)5909 void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
5910 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
5911 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
5912 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
5913
5914 Register out = OutputRegister(instruction);
5915 Register dividend = InputRegisterAt(instruction, 0);
5916
5917 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
5918 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
5919 // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends.
5920 // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits
5921 // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros.
5922 // So 'and' always produces zero.
5923 __ And(out, dividend, abs_imm - 1);
5924 } else {
5925 if (abs_imm == 2) {
5926 __ Cmp(dividend, 0);
5927 __ And(out, dividend, 1);
5928 __ Csneg(out, out, out, ge);
5929 } else {
5930 UseScratchRegisterScope temps(GetVIXLAssembler());
5931 Register temp = temps.AcquireSameSizeAs(out);
5932
5933 __ Negs(temp, dividend);
5934 __ And(out, dividend, abs_imm - 1);
5935 __ And(temp, temp, abs_imm - 1);
5936 __ Csneg(out, out, temp, mi);
5937 }
5938 }
5939 }
5940
GenerateIntRemForConstDenom(HRem * instruction)5941 void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
5942 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
5943
5944 if (imm == 0) {
5945 // Do not generate anything.
5946 // DivZeroCheck would prevent any code to be executed.
5947 return;
5948 }
5949
5950 if (IsPowerOfTwo(AbsOrMin(imm))) {
5951 // Cases imm == -1 or imm == 1 are handled in constant folding by
5952 // InstructionWithAbsorbingInputSimplifier.
5953 // If the cases have survided till code generation they are handled in
5954 // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
5955 // The correct code is generated for them, just more instructions.
5956 GenerateIntRemForPower2Denom(instruction);
5957 } else {
5958 DCHECK(imm < -2 || imm > 2) << imm;
5959 GenerateDivRemWithAnyConstant(instruction, imm);
5960 }
5961 }
5962
GenerateIntRem(HRem * instruction)5963 void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
5964 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
5965 << instruction->GetResultType();
5966
5967 if (instruction->GetLocations()->InAt(1).IsConstant()) {
5968 GenerateIntRemForConstDenom(instruction);
5969 } else {
5970 Register out = OutputRegister(instruction);
5971 Register dividend = InputRegisterAt(instruction, 0);
5972 Register divisor = InputRegisterAt(instruction, 1);
5973 UseScratchRegisterScope temps(GetVIXLAssembler());
5974 Register temp = temps.AcquireSameSizeAs(out);
5975 __ Sdiv(temp, dividend, divisor);
5976 __ Msub(out, temp, divisor, dividend);
5977 }
5978 }
5979
VisitRem(HRem * rem)5980 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
5981 DataType::Type type = rem->GetResultType();
5982
5983 switch (type) {
5984 case DataType::Type::kInt32:
5985 case DataType::Type::kInt64: {
5986 GenerateIntRem(rem);
5987 break;
5988 }
5989
5990 case DataType::Type::kFloat32:
5991 case DataType::Type::kFloat64: {
5992 QuickEntrypointEnum entrypoint =
5993 (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
5994 codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
5995 if (type == DataType::Type::kFloat32) {
5996 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
5997 } else {
5998 CheckEntrypointTypes<kQuickFmod, double, double, double>();
5999 }
6000 break;
6001 }
6002
6003 default:
6004 LOG(FATAL) << "Unexpected rem type " << type;
6005 UNREACHABLE();
6006 }
6007 }
6008
VisitMin(HMin * min)6009 void LocationsBuilderARM64::VisitMin(HMin* min) {
6010 HandleBinaryOp(min);
6011 }
6012
VisitMin(HMin * min)6013 void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
6014 HandleBinaryOp(min);
6015 }
6016
VisitMax(HMax * max)6017 void LocationsBuilderARM64::VisitMax(HMax* max) {
6018 HandleBinaryOp(max);
6019 }
6020
VisitMax(HMax * max)6021 void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
6022 HandleBinaryOp(max);
6023 }
6024
VisitAbs(HAbs * abs)6025 void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
6026 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
6027 switch (abs->GetResultType()) {
6028 case DataType::Type::kInt32:
6029 case DataType::Type::kInt64:
6030 locations->SetInAt(0, Location::RequiresRegister());
6031 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6032 break;
6033 case DataType::Type::kFloat32:
6034 case DataType::Type::kFloat64:
6035 locations->SetInAt(0, Location::RequiresFpuRegister());
6036 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6037 break;
6038 default:
6039 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6040 }
6041 }
6042
VisitAbs(HAbs * abs)6043 void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
6044 switch (abs->GetResultType()) {
6045 case DataType::Type::kInt32:
6046 case DataType::Type::kInt64: {
6047 Register in_reg = InputRegisterAt(abs, 0);
6048 Register out_reg = OutputRegister(abs);
6049 __ Cmp(in_reg, Operand(0));
6050 __ Cneg(out_reg, in_reg, lt);
6051 break;
6052 }
6053 case DataType::Type::kFloat32:
6054 case DataType::Type::kFloat64: {
6055 VRegister in_reg = InputFPRegisterAt(abs, 0);
6056 VRegister out_reg = OutputFPRegister(abs);
6057 __ Fabs(out_reg, in_reg);
6058 break;
6059 }
6060 default:
6061 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6062 }
6063 }
6064
VisitConstructorFence(HConstructorFence * constructor_fence)6065 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
6066 constructor_fence->SetLocations(nullptr);
6067 }
6068
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)6069 void InstructionCodeGeneratorARM64::VisitConstructorFence(
6070 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
6071 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
6072 }
6073
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6074 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6075 memory_barrier->SetLocations(nullptr);
6076 }
6077
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6078 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6079 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
6080 }
6081
VisitReturn(HReturn * instruction)6082 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
6083 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6084 DataType::Type return_type = instruction->InputAt(0)->GetType();
6085 locations->SetInAt(0, ARM64ReturnLocation(return_type));
6086 }
6087
VisitReturn(HReturn * ret)6088 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
6089 if (GetGraph()->IsCompilingOsr()) {
6090 // To simplify callers of an OSR method, we put the return value in both
6091 // floating point and core register.
6092 switch (ret->InputAt(0)->GetType()) {
6093 case DataType::Type::kFloat32:
6094 __ Fmov(w0, s0);
6095 break;
6096 case DataType::Type::kFloat64:
6097 __ Fmov(x0, d0);
6098 break;
6099 default:
6100 break;
6101 }
6102 }
6103 codegen_->GenerateFrameExit();
6104 }
6105
VisitReturnVoid(HReturnVoid * instruction)6106 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
6107 instruction->SetLocations(nullptr);
6108 }
6109
VisitReturnVoid(HReturnVoid * instruction ATTRIBUTE_UNUSED)6110 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
6111 codegen_->GenerateFrameExit();
6112 }
6113
VisitRor(HRor * ror)6114 void LocationsBuilderARM64::VisitRor(HRor* ror) {
6115 HandleBinaryOp(ror);
6116 }
6117
VisitRor(HRor * ror)6118 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
6119 HandleBinaryOp(ror);
6120 }
6121
VisitShl(HShl * shl)6122 void LocationsBuilderARM64::VisitShl(HShl* shl) {
6123 HandleShift(shl);
6124 }
6125
VisitShl(HShl * shl)6126 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
6127 HandleShift(shl);
6128 }
6129
VisitShr(HShr * shr)6130 void LocationsBuilderARM64::VisitShr(HShr* shr) {
6131 HandleShift(shr);
6132 }
6133
VisitShr(HShr * shr)6134 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
6135 HandleShift(shr);
6136 }
6137
VisitSub(HSub * instruction)6138 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
6139 HandleBinaryOp(instruction);
6140 }
6141
VisitSub(HSub * instruction)6142 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
6143 HandleBinaryOp(instruction);
6144 }
6145
VisitStaticFieldGet(HStaticFieldGet * instruction)6146 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6147 HandleFieldGet(instruction, instruction->GetFieldInfo());
6148 }
6149
VisitStaticFieldGet(HStaticFieldGet * instruction)6150 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6151 HandleFieldGet(instruction, instruction->GetFieldInfo());
6152 }
6153
VisitStaticFieldSet(HStaticFieldSet * instruction)6154 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6155 HandleFieldSet(instruction);
6156 }
6157
VisitStaticFieldSet(HStaticFieldSet * instruction)6158 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6159 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
6160 }
6161
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6162 void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6163 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
6164 }
6165
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6166 void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6167 __ Mov(w0, instruction->GetFormat()->GetValue());
6168 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6169 }
6170
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6171 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
6172 HUnresolvedInstanceFieldGet* instruction) {
6173 FieldAccessCallingConventionARM64 calling_convention;
6174 codegen_->CreateUnresolvedFieldLocationSummary(
6175 instruction, instruction->GetFieldType(), calling_convention);
6176 }
6177
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6178 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
6179 HUnresolvedInstanceFieldGet* instruction) {
6180 FieldAccessCallingConventionARM64 calling_convention;
6181 codegen_->GenerateUnresolvedFieldAccess(instruction,
6182 instruction->GetFieldType(),
6183 instruction->GetFieldIndex(),
6184 instruction->GetDexPc(),
6185 calling_convention);
6186 }
6187
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6188 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
6189 HUnresolvedInstanceFieldSet* instruction) {
6190 FieldAccessCallingConventionARM64 calling_convention;
6191 codegen_->CreateUnresolvedFieldLocationSummary(
6192 instruction, instruction->GetFieldType(), calling_convention);
6193 }
6194
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6195 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
6196 HUnresolvedInstanceFieldSet* instruction) {
6197 FieldAccessCallingConventionARM64 calling_convention;
6198 codegen_->GenerateUnresolvedFieldAccess(instruction,
6199 instruction->GetFieldType(),
6200 instruction->GetFieldIndex(),
6201 instruction->GetDexPc(),
6202 calling_convention);
6203 }
6204
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6205 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
6206 HUnresolvedStaticFieldGet* instruction) {
6207 FieldAccessCallingConventionARM64 calling_convention;
6208 codegen_->CreateUnresolvedFieldLocationSummary(
6209 instruction, instruction->GetFieldType(), calling_convention);
6210 }
6211
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6212 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
6213 HUnresolvedStaticFieldGet* instruction) {
6214 FieldAccessCallingConventionARM64 calling_convention;
6215 codegen_->GenerateUnresolvedFieldAccess(instruction,
6216 instruction->GetFieldType(),
6217 instruction->GetFieldIndex(),
6218 instruction->GetDexPc(),
6219 calling_convention);
6220 }
6221
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6222 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
6223 HUnresolvedStaticFieldSet* instruction) {
6224 FieldAccessCallingConventionARM64 calling_convention;
6225 codegen_->CreateUnresolvedFieldLocationSummary(
6226 instruction, instruction->GetFieldType(), calling_convention);
6227 }
6228
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6229 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
6230 HUnresolvedStaticFieldSet* instruction) {
6231 FieldAccessCallingConventionARM64 calling_convention;
6232 codegen_->GenerateUnresolvedFieldAccess(instruction,
6233 instruction->GetFieldType(),
6234 instruction->GetFieldIndex(),
6235 instruction->GetDexPc(),
6236 calling_convention);
6237 }
6238
VisitSuspendCheck(HSuspendCheck * instruction)6239 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6240 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6241 instruction, LocationSummary::kCallOnSlowPath);
6242 // In suspend check slow path, usually there are no caller-save registers at all.
6243 // If SIMD instructions are present, however, we force spilling all live SIMD
6244 // registers in full width (since the runtime only saves/restores lower part).
6245 locations->SetCustomSlowPathCallerSaves(
6246 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
6247 }
6248
VisitSuspendCheck(HSuspendCheck * instruction)6249 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6250 HBasicBlock* block = instruction->GetBlock();
6251 if (block->GetLoopInformation() != nullptr) {
6252 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6253 // The back edge will generate the suspend check.
6254 return;
6255 }
6256 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6257 // The goto will generate the suspend check.
6258 return;
6259 }
6260 GenerateSuspendCheck(instruction, nullptr);
6261 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6262 }
6263
VisitThrow(HThrow * instruction)6264 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
6265 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6266 instruction, LocationSummary::kCallOnMainOnly);
6267 InvokeRuntimeCallingConvention calling_convention;
6268 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6269 }
6270
VisitThrow(HThrow * instruction)6271 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
6272 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
6273 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6274 }
6275
VisitTypeConversion(HTypeConversion * conversion)6276 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
6277 LocationSummary* locations =
6278 new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
6279 DataType::Type input_type = conversion->GetInputType();
6280 DataType::Type result_type = conversion->GetResultType();
6281 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6282 << input_type << " -> " << result_type;
6283 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
6284 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
6285 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
6286 }
6287
6288 if (DataType::IsFloatingPointType(input_type)) {
6289 locations->SetInAt(0, Location::RequiresFpuRegister());
6290 } else {
6291 locations->SetInAt(0, Location::RequiresRegister());
6292 }
6293
6294 if (DataType::IsFloatingPointType(result_type)) {
6295 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6296 } else {
6297 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6298 }
6299 }
6300
VisitTypeConversion(HTypeConversion * conversion)6301 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
6302 DataType::Type result_type = conversion->GetResultType();
6303 DataType::Type input_type = conversion->GetInputType();
6304
6305 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6306 << input_type << " -> " << result_type;
6307
6308 if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
6309 int result_size = DataType::Size(result_type);
6310 int input_size = DataType::Size(input_type);
6311 int min_size = std::min(result_size, input_size);
6312 Register output = OutputRegister(conversion);
6313 Register source = InputRegisterAt(conversion, 0);
6314 if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
6315 // 'int' values are used directly as W registers, discarding the top
6316 // bits, so we don't need to sign-extend and can just perform a move.
6317 // We do not pass the `kDiscardForSameWReg` argument to force clearing the
6318 // top 32 bits of the target register. We theoretically could leave those
6319 // bits unchanged, but we would have to make sure that no code uses a
6320 // 32bit input value as a 64bit value assuming that the top 32 bits are
6321 // zero.
6322 __ Mov(output.W(), source.W());
6323 } else if (DataType::IsUnsignedType(result_type) ||
6324 (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
6325 __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
6326 } else {
6327 __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
6328 }
6329 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
6330 __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
6331 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
6332 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
6333 __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
6334 } else if (DataType::IsFloatingPointType(result_type) &&
6335 DataType::IsFloatingPointType(input_type)) {
6336 __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
6337 } else {
6338 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
6339 << " to " << result_type;
6340 }
6341 }
6342
VisitUShr(HUShr * ushr)6343 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
6344 HandleShift(ushr);
6345 }
6346
VisitUShr(HUShr * ushr)6347 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
6348 HandleShift(ushr);
6349 }
6350
VisitXor(HXor * instruction)6351 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
6352 HandleBinaryOp(instruction);
6353 }
6354
VisitXor(HXor * instruction)6355 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
6356 HandleBinaryOp(instruction);
6357 }
6358
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6359 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6360 // Nothing to do, this should be removed during prepare for register allocator.
6361 LOG(FATAL) << "Unreachable";
6362 }
6363
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6364 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6365 // Nothing to do, this should be removed during prepare for register allocator.
6366 LOG(FATAL) << "Unreachable";
6367 }
6368
6369 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)6370 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6371 LocationSummary* locations =
6372 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
6373 locations->SetInAt(0, Location::RequiresRegister());
6374 }
6375
VisitPackedSwitch(HPackedSwitch * switch_instr)6376 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6377 int32_t lower_bound = switch_instr->GetStartValue();
6378 uint32_t num_entries = switch_instr->GetNumEntries();
6379 Register value_reg = InputRegisterAt(switch_instr, 0);
6380 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
6381
6382 // Roughly set 16 as max average assemblies generated per HIR in a graph.
6383 static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize;
6384 // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
6385 // make sure we don't emit it if the target may run out of range.
6386 // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
6387 // ranges and emit the tables only as required.
6388 static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
6389
6390 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
6391 // Current instruction id is an upper bound of the number of HIRs in the graph.
6392 GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
6393 // Create a series of compare/jumps.
6394 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6395 Register temp = temps.AcquireW();
6396 __ Subs(temp, value_reg, Operand(lower_bound));
6397
6398 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6399 // Jump to successors[0] if value == lower_bound.
6400 __ B(eq, codegen_->GetLabelOf(successors[0]));
6401 int32_t last_index = 0;
6402 for (; num_entries - last_index > 2; last_index += 2) {
6403 __ Subs(temp, temp, Operand(2));
6404 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
6405 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
6406 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
6407 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
6408 }
6409 if (num_entries - last_index == 2) {
6410 // The last missing case_value.
6411 __ Cmp(temp, Operand(1));
6412 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
6413 }
6414
6415 // And the default for any other value.
6416 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
6417 __ B(codegen_->GetLabelOf(default_block));
6418 }
6419 } else {
6420 JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
6421
6422 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6423
6424 // Below instructions should use at most one blocked register. Since there are two blocked
6425 // registers, we are free to block one.
6426 Register temp_w = temps.AcquireW();
6427 Register index;
6428 // Remove the bias.
6429 if (lower_bound != 0) {
6430 index = temp_w;
6431 __ Sub(index, value_reg, Operand(lower_bound));
6432 } else {
6433 index = value_reg;
6434 }
6435
6436 // Jump to default block if index is out of the range.
6437 __ Cmp(index, Operand(num_entries));
6438 __ B(hs, codegen_->GetLabelOf(default_block));
6439
6440 // In current VIXL implementation, it won't require any blocked registers to encode the
6441 // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
6442 // register pressure.
6443 Register table_base = temps.AcquireX();
6444 // Load jump offset from the table.
6445 __ Adr(table_base, jump_table->GetTableStartLabel());
6446 Register jump_offset = temp_w;
6447 __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
6448
6449 // Jump to target block by branching to table_base(pc related) + offset.
6450 Register target_address = table_base;
6451 __ Add(target_address, table_base, Operand(jump_offset, SXTW));
6452 __ Br(target_address);
6453 }
6454 }
6455
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6456 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
6457 HInstruction* instruction,
6458 Location out,
6459 uint32_t offset,
6460 Location maybe_temp,
6461 ReadBarrierOption read_barrier_option) {
6462 DataType::Type type = DataType::Type::kReference;
6463 Register out_reg = RegisterFrom(out, type);
6464 if (read_barrier_option == kWithReadBarrier) {
6465 CHECK(kEmitCompilerReadBarrier);
6466 if (kUseBakerReadBarrier) {
6467 // Load with fast path based Baker's read barrier.
6468 // /* HeapReference<Object> */ out = *(out + offset)
6469 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6470 out,
6471 out_reg,
6472 offset,
6473 maybe_temp,
6474 /* needs_null_check= */ false,
6475 /* use_load_acquire= */ false);
6476 } else {
6477 // Load with slow path based read barrier.
6478 // Save the value of `out` into `maybe_temp` before overwriting it
6479 // in the following move operation, as we will need it for the
6480 // read barrier below.
6481 Register temp_reg = RegisterFrom(maybe_temp, type);
6482 __ Mov(temp_reg, out_reg);
6483 // /* HeapReference<Object> */ out = *(out + offset)
6484 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6485 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6486 }
6487 } else {
6488 // Plain load with no read barrier.
6489 // /* HeapReference<Object> */ out = *(out + offset)
6490 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6491 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6492 }
6493 }
6494
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6495 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
6496 HInstruction* instruction,
6497 Location out,
6498 Location obj,
6499 uint32_t offset,
6500 Location maybe_temp,
6501 ReadBarrierOption read_barrier_option) {
6502 DataType::Type type = DataType::Type::kReference;
6503 Register out_reg = RegisterFrom(out, type);
6504 Register obj_reg = RegisterFrom(obj, type);
6505 if (read_barrier_option == kWithReadBarrier) {
6506 CHECK(kEmitCompilerReadBarrier);
6507 if (kUseBakerReadBarrier) {
6508 // Load with fast path based Baker's read barrier.
6509 // /* HeapReference<Object> */ out = *(obj + offset)
6510 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6511 out,
6512 obj_reg,
6513 offset,
6514 maybe_temp,
6515 /* needs_null_check= */ false,
6516 /* use_load_acquire= */ false);
6517 } else {
6518 // Load with slow path based read barrier.
6519 // /* HeapReference<Object> */ out = *(obj + offset)
6520 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6521 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6522 }
6523 } else {
6524 // Plain load with no read barrier.
6525 // /* HeapReference<Object> */ out = *(obj + offset)
6526 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6527 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6528 }
6529 }
6530
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,vixl::aarch64::Label * fixup_label,ReadBarrierOption read_barrier_option)6531 void CodeGeneratorARM64::GenerateGcRootFieldLoad(
6532 HInstruction* instruction,
6533 Location root,
6534 Register obj,
6535 uint32_t offset,
6536 vixl::aarch64::Label* fixup_label,
6537 ReadBarrierOption read_barrier_option) {
6538 DCHECK(fixup_label == nullptr || offset == 0u);
6539 Register root_reg = RegisterFrom(root, DataType::Type::kReference);
6540 if (read_barrier_option == kWithReadBarrier) {
6541 DCHECK(kEmitCompilerReadBarrier);
6542 if (kUseBakerReadBarrier) {
6543 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6544 // Baker's read barrier are used.
6545
6546 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
6547 // the Marking Register) to decide whether we need to enter
6548 // the slow path to mark the GC root.
6549 //
6550 // We use shared thunks for the slow path; shared within the method
6551 // for JIT, across methods for AOT. That thunk checks the reference
6552 // and jumps to the entrypoint if needed.
6553 //
6554 // lr = &return_address;
6555 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
6556 // if (mr) { // Thread::Current()->GetIsGcMarking()
6557 // goto gc_root_thunk<root_reg>(lr)
6558 // }
6559 // return_address:
6560
6561 UseScratchRegisterScope temps(GetVIXLAssembler());
6562 DCHECK(temps.IsAvailable(ip0));
6563 DCHECK(temps.IsAvailable(ip1));
6564 temps.Exclude(ip0, ip1);
6565 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
6566
6567 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6568 vixl::aarch64::Label return_address;
6569 __ adr(lr, &return_address);
6570 if (fixup_label != nullptr) {
6571 __ bind(fixup_label);
6572 }
6573 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6574 "GC root LDR must be 2 instructions (8B) before the return address label.");
6575 __ ldr(root_reg, MemOperand(obj.X(), offset));
6576 EmitBakerReadBarrierCbnz(custom_data);
6577 __ bind(&return_address);
6578 } else {
6579 // GC root loaded through a slow path for read barriers other
6580 // than Baker's.
6581 // /* GcRoot<mirror::Object>* */ root = obj + offset
6582 if (fixup_label == nullptr) {
6583 __ Add(root_reg.X(), obj.X(), offset);
6584 } else {
6585 EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
6586 }
6587 // /* mirror::Object* */ root = root->Read()
6588 GenerateReadBarrierForRootSlow(instruction, root, root);
6589 }
6590 } else {
6591 // Plain GC root load with no read barrier.
6592 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6593 if (fixup_label == nullptr) {
6594 __ Ldr(root_reg, MemOperand(obj, offset));
6595 } else {
6596 EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
6597 }
6598 // Note that GC roots are not affected by heap poisoning, thus we
6599 // do not have to unpoison `root_reg` here.
6600 }
6601 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6602 }
6603
GenerateIntrinsicCasMoveWithBakerReadBarrier(vixl::aarch64::Register marked_old_value,vixl::aarch64::Register old_value)6604 void CodeGeneratorARM64::GenerateIntrinsicCasMoveWithBakerReadBarrier(
6605 vixl::aarch64::Register marked_old_value,
6606 vixl::aarch64::Register old_value) {
6607 DCHECK(kEmitCompilerReadBarrier);
6608 DCHECK(kUseBakerReadBarrier);
6609
6610 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
6611 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode());
6612
6613 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6614 vixl::aarch64::Label return_address;
6615 __ adr(lr, &return_address);
6616 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6617 "GC root LDR must be 2 instructions (8B) before the return address label.");
6618 __ mov(marked_old_value, old_value);
6619 EmitBakerReadBarrierCbnz(custom_data);
6620 __ bind(&return_address);
6621 }
6622
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::aarch64::Register obj,const vixl::aarch64::MemOperand & src,bool needs_null_check,bool use_load_acquire)6623 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6624 Location ref,
6625 vixl::aarch64::Register obj,
6626 const vixl::aarch64::MemOperand& src,
6627 bool needs_null_check,
6628 bool use_load_acquire) {
6629 DCHECK(kEmitCompilerReadBarrier);
6630 DCHECK(kUseBakerReadBarrier);
6631
6632 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6633 // Marking Register) to decide whether we need to enter the slow
6634 // path to mark the reference. Then, in the slow path, check the
6635 // gray bit in the lock word of the reference's holder (`obj`) to
6636 // decide whether to mark `ref` or not.
6637 //
6638 // We use shared thunks for the slow path; shared within the method
6639 // for JIT, across methods for AOT. That thunk checks the holder
6640 // and jumps to the entrypoint if needed. If the holder is not gray,
6641 // it creates a fake dependency and returns to the LDR instruction.
6642 //
6643 // lr = &gray_return_address;
6644 // if (mr) { // Thread::Current()->GetIsGcMarking()
6645 // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
6646 // }
6647 // not_gray_return_address:
6648 // // Original reference load. If the offset is too large to fit
6649 // // into LDR, we use an adjusted base register here.
6650 // HeapReference<mirror::Object> reference = *(obj+offset);
6651 // gray_return_address:
6652
6653 DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
6654 DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
6655
6656 UseScratchRegisterScope temps(GetVIXLAssembler());
6657 DCHECK(temps.IsAvailable(ip0));
6658 DCHECK(temps.IsAvailable(ip1));
6659 temps.Exclude(ip0, ip1);
6660 uint32_t custom_data = use_load_acquire
6661 ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
6662 : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
6663
6664 {
6665 ExactAssemblyScope guard(GetVIXLAssembler(),
6666 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6667 vixl::aarch64::Label return_address;
6668 __ adr(lr, &return_address);
6669 EmitBakerReadBarrierCbnz(custom_data);
6670 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6671 "Field LDR must be 1 instruction (4B) before the return address label; "
6672 " 2 instructions (8B) for heap poisoning.");
6673 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6674 if (use_load_acquire) {
6675 DCHECK_EQ(src.GetOffset(), 0);
6676 __ ldar(ref_reg, src);
6677 } else {
6678 __ ldr(ref_reg, src);
6679 }
6680 if (needs_null_check) {
6681 MaybeRecordImplicitNullCheck(instruction);
6682 }
6683 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6684 // macro instructions disallowed in ExactAssemblyScope.
6685 if (kPoisonHeapReferences) {
6686 __ neg(ref_reg, Operand(ref_reg));
6687 }
6688 __ bind(&return_address);
6689 }
6690 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6691 }
6692
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check,bool use_load_acquire)6693 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6694 Location ref,
6695 Register obj,
6696 uint32_t offset,
6697 Location maybe_temp,
6698 bool needs_null_check,
6699 bool use_load_acquire) {
6700 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
6701 Register base = obj;
6702 if (use_load_acquire) {
6703 DCHECK(maybe_temp.IsRegister());
6704 base = WRegisterFrom(maybe_temp);
6705 __ Add(base, obj, offset);
6706 offset = 0u;
6707 } else if (offset >= kReferenceLoadMinFarOffset) {
6708 DCHECK(maybe_temp.IsRegister());
6709 base = WRegisterFrom(maybe_temp);
6710 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
6711 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
6712 offset &= (kReferenceLoadMinFarOffset - 1u);
6713 }
6714 MemOperand src(base.X(), offset);
6715 GenerateFieldLoadWithBakerReadBarrier(
6716 instruction, ref, obj, src, needs_null_check, use_load_acquire);
6717 }
6718
GenerateArrayLoadWithBakerReadBarrier(HArrayGet * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)6719 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
6720 Location ref,
6721 Register obj,
6722 uint32_t data_offset,
6723 Location index,
6724 bool needs_null_check) {
6725 DCHECK(kEmitCompilerReadBarrier);
6726 DCHECK(kUseBakerReadBarrier);
6727
6728 static_assert(
6729 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6730 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6731 size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
6732
6733 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6734 // Marking Register) to decide whether we need to enter the slow
6735 // path to mark the reference. Then, in the slow path, check the
6736 // gray bit in the lock word of the reference's holder (`obj`) to
6737 // decide whether to mark `ref` or not.
6738 //
6739 // We use shared thunks for the slow path; shared within the method
6740 // for JIT, across methods for AOT. That thunk checks the holder
6741 // and jumps to the entrypoint if needed. If the holder is not gray,
6742 // it creates a fake dependency and returns to the LDR instruction.
6743 //
6744 // lr = &gray_return_address;
6745 // if (mr) { // Thread::Current()->GetIsGcMarking()
6746 // goto array_thunk<base_reg>(lr)
6747 // }
6748 // not_gray_return_address:
6749 // // Original reference load. If the offset is too large to fit
6750 // // into LDR, we use an adjusted base register here.
6751 // HeapReference<mirror::Object> reference = data[index];
6752 // gray_return_address:
6753
6754 DCHECK(index.IsValid());
6755 Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
6756 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6757
6758 UseScratchRegisterScope temps(GetVIXLAssembler());
6759 DCHECK(temps.IsAvailable(ip0));
6760 DCHECK(temps.IsAvailable(ip1));
6761 temps.Exclude(ip0, ip1);
6762
6763 Register temp;
6764 if (instruction->GetArray()->IsIntermediateAddress()) {
6765 // We do not need to compute the intermediate address from the array: the
6766 // input instruction has done it already. See the comment in
6767 // `TryExtractArrayAccessAddress()`.
6768 if (kIsDebugBuild) {
6769 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
6770 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
6771 }
6772 temp = obj;
6773 } else {
6774 temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
6775 __ Add(temp.X(), obj.X(), Operand(data_offset));
6776 }
6777
6778 uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
6779
6780 {
6781 ExactAssemblyScope guard(GetVIXLAssembler(),
6782 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6783 vixl::aarch64::Label return_address;
6784 __ adr(lr, &return_address);
6785 EmitBakerReadBarrierCbnz(custom_data);
6786 static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6787 "Array LDR must be 1 instruction (4B) before the return address label; "
6788 " 2 instructions (8B) for heap poisoning.");
6789 __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
6790 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
6791 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6792 // macro instructions disallowed in ExactAssemblyScope.
6793 if (kPoisonHeapReferences) {
6794 __ neg(ref_reg, Operand(ref_reg));
6795 }
6796 __ bind(&return_address);
6797 }
6798 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6799 }
6800
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)6801 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
6802 // The following condition is a compile-time one, so it does not have a run-time cost.
6803 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
6804 // The following condition is a run-time one; it is executed after the
6805 // previous compile-time test, to avoid penalizing non-debug builds.
6806 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
6807 UseScratchRegisterScope temps(GetVIXLAssembler());
6808 Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
6809 GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
6810 }
6811 }
6812 }
6813
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6814 SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction,
6815 Location out,
6816 Location ref,
6817 Location obj,
6818 uint32_t offset,
6819 Location index) {
6820 SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
6821 ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
6822 AddSlowPath(slow_path);
6823 return slow_path;
6824 }
6825
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6826 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
6827 Location out,
6828 Location ref,
6829 Location obj,
6830 uint32_t offset,
6831 Location index) {
6832 DCHECK(kEmitCompilerReadBarrier);
6833
6834 // Insert a slow path based read barrier *after* the reference load.
6835 //
6836 // If heap poisoning is enabled, the unpoisoning of the loaded
6837 // reference will be carried out by the runtime within the slow
6838 // path.
6839 //
6840 // Note that `ref` currently does not get unpoisoned (when heap
6841 // poisoning is enabled), which is alright as the `ref` argument is
6842 // not used by the artReadBarrierSlow entry point.
6843 //
6844 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6845 SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
6846
6847 __ B(slow_path->GetEntryLabel());
6848 __ Bind(slow_path->GetExitLabel());
6849 }
6850
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6851 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6852 Location out,
6853 Location ref,
6854 Location obj,
6855 uint32_t offset,
6856 Location index) {
6857 if (kEmitCompilerReadBarrier) {
6858 // Baker's read barriers shall be handled by the fast path
6859 // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
6860 DCHECK(!kUseBakerReadBarrier);
6861 // If heap poisoning is enabled, unpoisoning will be taken care of
6862 // by the runtime within the slow path.
6863 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6864 } else if (kPoisonHeapReferences) {
6865 GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
6866 }
6867 }
6868
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6869 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6870 Location out,
6871 Location root) {
6872 DCHECK(kEmitCompilerReadBarrier);
6873
6874 // Insert a slow path based read barrier *after* the GC root load.
6875 //
6876 // Note that GC roots are not affected by heap poisoning, so we do
6877 // not need to do anything special for this here.
6878 SlowPathCodeARM64* slow_path =
6879 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
6880 AddSlowPath(slow_path);
6881
6882 __ B(slow_path->GetEntryLabel());
6883 __ Bind(slow_path->GetExitLabel());
6884 }
6885
VisitClassTableGet(HClassTableGet * instruction)6886 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
6887 LocationSummary* locations =
6888 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6889 locations->SetInAt(0, Location::RequiresRegister());
6890 locations->SetOut(Location::RequiresRegister());
6891 }
6892
VisitClassTableGet(HClassTableGet * instruction)6893 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
6894 LocationSummary* locations = instruction->GetLocations();
6895 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
6896 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
6897 instruction->GetIndex(), kArm64PointerSize).SizeValue();
6898 __ Ldr(XRegisterFrom(locations->Out()),
6899 MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
6900 } else {
6901 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
6902 instruction->GetIndex(), kArm64PointerSize));
6903 __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
6904 mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
6905 __ Ldr(XRegisterFrom(locations->Out()),
6906 MemOperand(XRegisterFrom(locations->Out()), method_offset));
6907 }
6908 }
6909
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,vixl::aarch64::Literal<uint32_t> * literal,uint64_t index_in_table)6910 static void PatchJitRootUse(uint8_t* code,
6911 const uint8_t* roots_data,
6912 vixl::aarch64::Literal<uint32_t>* literal,
6913 uint64_t index_in_table) {
6914 uint32_t literal_offset = literal->GetOffset();
6915 uintptr_t address =
6916 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
6917 uint8_t* data = code + literal_offset;
6918 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
6919 }
6920
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)6921 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
6922 for (const auto& entry : jit_string_patches_) {
6923 const StringReference& string_reference = entry.first;
6924 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
6925 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
6926 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6927 }
6928 for (const auto& entry : jit_class_patches_) {
6929 const TypeReference& type_reference = entry.first;
6930 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
6931 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
6932 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6933 }
6934 }
6935
VecNEONAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)6936 MemOperand InstructionCodeGeneratorARM64::VecNEONAddress(
6937 HVecMemoryOperation* instruction,
6938 UseScratchRegisterScope* temps_scope,
6939 size_t size,
6940 bool is_string_char_at,
6941 /*out*/ Register* scratch) {
6942 LocationSummary* locations = instruction->GetLocations();
6943 Register base = InputRegisterAt(instruction, 0);
6944
6945 if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
6946 DCHECK(!is_string_char_at);
6947 return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
6948 }
6949
6950 Location index = locations->InAt(1);
6951 uint32_t offset = is_string_char_at
6952 ? mirror::String::ValueOffset().Uint32Value()
6953 : mirror::Array::DataOffset(size).Uint32Value();
6954 size_t shift = ComponentSizeShiftWidth(size);
6955
6956 // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
6957 DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
6958
6959 if (index.IsConstant()) {
6960 offset += Int64FromLocation(index) << shift;
6961 return HeapOperand(base, offset);
6962 } else {
6963 *scratch = temps_scope->AcquireSameSizeAs(base);
6964 __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
6965 return HeapOperand(*scratch, offset);
6966 }
6967 }
6968
VecSVEAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)6969 SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress(
6970 HVecMemoryOperation* instruction,
6971 UseScratchRegisterScope* temps_scope,
6972 size_t size,
6973 bool is_string_char_at,
6974 /*out*/ Register* scratch) {
6975 LocationSummary* locations = instruction->GetLocations();
6976 Register base = InputRegisterAt(instruction, 0);
6977 Location index = locations->InAt(1);
6978
6979 DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex());
6980 DCHECK(!index.IsConstant());
6981
6982 uint32_t offset = is_string_char_at
6983 ? mirror::String::ValueOffset().Uint32Value()
6984 : mirror::Array::DataOffset(size).Uint32Value();
6985 size_t shift = ComponentSizeShiftWidth(size);
6986
6987 if (instruction->InputAt(0)->IsIntermediateAddress()) {
6988 return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift);
6989 }
6990
6991 *scratch = temps_scope->AcquireSameSizeAs(base);
6992 __ Add(*scratch, base, offset);
6993 return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift);
6994 }
6995
6996 #undef __
6997 #undef QUICK_ENTRY_POINT
6998
6999 #define __ assembler.GetVIXLAssembler()->
7000
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path,vixl::aarch64::Label * throw_npe=nullptr)7001 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
7002 vixl::aarch64::Register base_reg,
7003 vixl::aarch64::MemOperand& lock_word,
7004 vixl::aarch64::Label* slow_path,
7005 vixl::aarch64::Label* throw_npe = nullptr) {
7006 // Load the lock word containing the rb_state.
7007 __ Ldr(ip0.W(), lock_word);
7008 // Given the numeric representation, it's enough to check the low bit of the rb_state.
7009 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
7010 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7011 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
7012 static_assert(
7013 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
7014 "Field and array LDR offsets must be the same to reuse the same code.");
7015 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
7016 if (throw_npe != nullptr) {
7017 __ Bind(throw_npe);
7018 }
7019 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
7020 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7021 "Field LDR must be 1 instruction (4B) before the return address label; "
7022 " 2 instructions (8B) for heap poisoning.");
7023 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7024 // Introduce a dependency on the lock_word including rb_state,
7025 // to prevent load-load reordering, and without using
7026 // a memory barrier (which would be more expensive).
7027 __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
7028 __ Br(lr); // And return back to the function.
7029 // Note: The fake dependency is unnecessary for the slow path.
7030 }
7031
7032 // Load the read barrier introspection entrypoint in register `entrypoint`.
LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler & assembler,vixl::aarch64::Register entrypoint)7033 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
7034 vixl::aarch64::Register entrypoint) {
7035 // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
7036 DCHECK_EQ(ip0.GetCode(), 16u);
7037 const int32_t entry_point_offset =
7038 Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
7039 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
7040 }
7041
CompileBakerReadBarrierThunk(Arm64Assembler & assembler,uint32_t encoded_data,std::string * debug_name)7042 void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
7043 uint32_t encoded_data,
7044 /*out*/ std::string* debug_name) {
7045 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
7046 switch (kind) {
7047 case BakerReadBarrierKind::kField:
7048 case BakerReadBarrierKind::kAcquire: {
7049 Register base_reg =
7050 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7051 CheckValidReg(base_reg.GetCode());
7052 Register holder_reg =
7053 vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data));
7054 CheckValidReg(holder_reg.GetCode());
7055 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7056 temps.Exclude(ip0, ip1);
7057 // In the case of a field load (with relaxed semantic), if `base_reg` differs from
7058 // `holder_reg`, the offset was too large and we must have emitted (during the construction
7059 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
7060 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
7061 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
7062 // not necessarily do that check before going to the thunk.
7063 //
7064 // In the case of a field load with load-acquire semantics (where `base_reg` always differs
7065 // from `holder_reg`), we also need an explicit null check when implicit null checks are
7066 // allowed, as we do not emit one before going to the thunk.
7067 vixl::aarch64::Label throw_npe_label;
7068 vixl::aarch64::Label* throw_npe = nullptr;
7069 if (GetCompilerOptions().GetImplicitNullChecks() &&
7070 (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
7071 throw_npe = &throw_npe_label;
7072 __ Cbz(holder_reg.W(), throw_npe);
7073 }
7074 // Check if the holder is gray and, if not, add fake dependency to the base register
7075 // and return to the LDR instruction to load the reference. Otherwise, use introspection
7076 // to load the reference and call the entrypoint that performs further checks on the
7077 // reference and marks it if needed.
7078 vixl::aarch64::Label slow_path;
7079 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
7080 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
7081 __ Bind(&slow_path);
7082 if (kind == BakerReadBarrierKind::kField) {
7083 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7084 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
7085 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7086 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
7087 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
7088 } else {
7089 DCHECK(kind == BakerReadBarrierKind::kAcquire);
7090 DCHECK(!base_reg.Is(holder_reg));
7091 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7092 __ Ldar(ip0.W(), MemOperand(base_reg));
7093 }
7094 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
7095 __ Br(ip1); // Jump to the entrypoint.
7096 break;
7097 }
7098 case BakerReadBarrierKind::kArray: {
7099 Register base_reg =
7100 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7101 CheckValidReg(base_reg.GetCode());
7102 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7103 BakerReadBarrierSecondRegField::Decode(encoded_data));
7104 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7105 temps.Exclude(ip0, ip1);
7106 vixl::aarch64::Label slow_path;
7107 int32_t data_offset =
7108 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
7109 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
7110 DCHECK_LT(lock_word.GetOffset(), 0);
7111 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
7112 __ Bind(&slow_path);
7113 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
7114 __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
7115 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7116 __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
7117 __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
7118 // a switch case target based on the index register.
7119 __ Mov(ip0, base_reg); // Move the base register to ip0.
7120 __ Br(ip1); // Jump to the entrypoint's array switch case.
7121 break;
7122 }
7123 case BakerReadBarrierKind::kGcRoot: {
7124 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
7125 // and it does not have a forwarding address), call the correct introspection entrypoint;
7126 // otherwise return the reference (or the extracted forwarding address).
7127 // There is no gray bit check for GC roots.
7128 Register root_reg =
7129 vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7130 CheckValidReg(root_reg.GetCode());
7131 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7132 BakerReadBarrierSecondRegField::Decode(encoded_data));
7133 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7134 temps.Exclude(ip0, ip1);
7135 vixl::aarch64::Label return_label, not_marked, forwarding_address;
7136 __ Cbz(root_reg, &return_label);
7137 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
7138 __ Ldr(ip0.W(), lock_word);
7139 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
7140 __ Bind(&return_label);
7141 __ Br(lr);
7142 __ Bind(¬_marked);
7143 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
7144 __ B(&forwarding_address, mi);
7145 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7146 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
7147 // art_quick_read_barrier_mark_introspection_gc_roots.
7148 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
7149 __ Mov(ip0.W(), root_reg);
7150 __ Br(ip1);
7151 __ Bind(&forwarding_address);
7152 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
7153 __ Br(lr);
7154 break;
7155 }
7156 default:
7157 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
7158 UNREACHABLE();
7159 }
7160
7161 // For JIT, the slow path is considered part of the compiled method,
7162 // so JIT should pass null as `debug_name`.
7163 DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
7164 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
7165 std::ostringstream oss;
7166 oss << "BakerReadBarrierThunk";
7167 switch (kind) {
7168 case BakerReadBarrierKind::kField:
7169 oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7170 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7171 break;
7172 case BakerReadBarrierKind::kAcquire:
7173 oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7174 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7175 break;
7176 case BakerReadBarrierKind::kArray:
7177 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7178 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7179 BakerReadBarrierSecondRegField::Decode(encoded_data));
7180 break;
7181 case BakerReadBarrierKind::kGcRoot:
7182 oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7183 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7184 BakerReadBarrierSecondRegField::Decode(encoded_data));
7185 break;
7186 }
7187 *debug_name = oss.str();
7188 }
7189 }
7190
7191 #undef __
7192
7193 } // namespace arm64
7194 } // namespace art
7195