1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm_vixl.h"
21 #endif
22
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34
35 #include "art_method-inl.h"
36 #include "base/bit_utils.h"
37 #include "base/bit_utils_iterator.h"
38 #include "base/casts.h"
39 #include "base/leb128.h"
40 #include "class_linker.h"
41 #include "class_root-inl.h"
42 #include "compiled_method.h"
43 #include "dex/bytecode_utils.h"
44 #include "dex/code_item_accessors-inl.h"
45 #include "graph_visualizer.h"
46 #include "image.h"
47 #include "gc/space/image_space.h"
48 #include "intern_table.h"
49 #include "intrinsics.h"
50 #include "mirror/array-inl.h"
51 #include "mirror/object_array-inl.h"
52 #include "mirror/object_reference.h"
53 #include "mirror/reference.h"
54 #include "mirror/string.h"
55 #include "parallel_move_resolver.h"
56 #include "scoped_thread_state_change-inl.h"
57 #include "ssa_liveness_analysis.h"
58 #include "stack_map.h"
59 #include "stack_map_stream.h"
60 #include "string_builder_append.h"
61 #include "thread-current-inl.h"
62 #include "utils/assembler.h"
63
64 namespace art {
65
66 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)67 static bool CheckType(DataType::Type type, Location location) {
68 if (location.IsFpuRegister()
69 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
70 return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
71 } else if (location.IsRegister() ||
72 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
73 return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
74 } else if (location.IsRegisterPair()) {
75 return type == DataType::Type::kInt64;
76 } else if (location.IsFpuRegisterPair()) {
77 return type == DataType::Type::kFloat64;
78 } else if (location.IsStackSlot()) {
79 return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
80 || (type == DataType::Type::kFloat32)
81 || (type == DataType::Type::kReference);
82 } else if (location.IsDoubleStackSlot()) {
83 return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
84 } else if (location.IsConstant()) {
85 if (location.GetConstant()->IsIntConstant()) {
86 return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
87 } else if (location.GetConstant()->IsNullConstant()) {
88 return type == DataType::Type::kReference;
89 } else if (location.GetConstant()->IsLongConstant()) {
90 return type == DataType::Type::kInt64;
91 } else if (location.GetConstant()->IsFloatConstant()) {
92 return type == DataType::Type::kFloat32;
93 } else {
94 return location.GetConstant()->IsDoubleConstant()
95 && (type == DataType::Type::kFloat64);
96 }
97 } else {
98 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
99 }
100 }
101
102 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)103 static bool CheckTypeConsistency(HInstruction* instruction) {
104 LocationSummary* locations = instruction->GetLocations();
105 if (locations == nullptr) {
106 return true;
107 }
108
109 if (locations->Out().IsUnallocated()
110 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
111 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
112 << instruction->GetType()
113 << " " << locations->InAt(0);
114 } else {
115 DCHECK(CheckType(instruction->GetType(), locations->Out()))
116 << instruction->GetType()
117 << " " << locations->Out();
118 }
119
120 HConstInputsRef inputs = instruction->GetInputs();
121 for (size_t i = 0; i < inputs.size(); ++i) {
122 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
123 << inputs[i]->GetType() << " " << locations->InAt(i);
124 }
125
126 HEnvironment* environment = instruction->GetEnvironment();
127 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
128 if (environment->GetInstructionAt(i) != nullptr) {
129 DataType::Type type = environment->GetInstructionAt(i)->GetType();
130 DCHECK(CheckType(type, environment->GetLocationAt(i)))
131 << type << " " << environment->GetLocationAt(i);
132 } else {
133 DCHECK(environment->GetLocationAt(i).IsInvalid())
134 << environment->GetLocationAt(i);
135 }
136 }
137 return true;
138 }
139
140 class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
141 public:
Create(ArenaStack * arena_stack,InstructionSet instruction_set)142 static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
143 InstructionSet instruction_set) {
144 ScopedArenaAllocator allocator(arena_stack);
145 void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
146 return std::unique_ptr<CodeGenerationData>(
147 ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
148 }
149
GetScopedAllocator()150 ScopedArenaAllocator* GetScopedAllocator() {
151 return &allocator_;
152 }
153
AddSlowPath(SlowPathCode * slow_path)154 void AddSlowPath(SlowPathCode* slow_path) {
155 slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
156 }
157
GetSlowPaths() const158 ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
159 return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
160 }
161
GetStackMapStream()162 StackMapStream* GetStackMapStream() { return &stack_map_stream_; }
163
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)164 void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
165 jit_string_roots_.Overwrite(string_reference,
166 reinterpret_cast64<uint64_t>(string.GetReference()));
167 }
168
GetJitStringRootIndex(StringReference string_reference) const169 uint64_t GetJitStringRootIndex(StringReference string_reference) const {
170 return jit_string_roots_.Get(string_reference);
171 }
172
GetNumberOfJitStringRoots() const173 size_t GetNumberOfJitStringRoots() const {
174 return jit_string_roots_.size();
175 }
176
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)177 void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
178 jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
179 }
180
GetJitClassRootIndex(TypeReference type_reference) const181 uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
182 return jit_class_roots_.Get(type_reference);
183 }
184
GetNumberOfJitClassRoots() const185 size_t GetNumberOfJitClassRoots() const {
186 return jit_class_roots_.size();
187 }
188
GetNumberOfJitRoots() const189 size_t GetNumberOfJitRoots() const {
190 return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
191 }
192
193 void EmitJitRoots(/*out*/std::vector<Handle<mirror::Object>>* roots)
194 REQUIRES_SHARED(Locks::mutator_lock_);
195
196 private:
CodeGenerationData(ScopedArenaAllocator && allocator,InstructionSet instruction_set)197 CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
198 : allocator_(std::move(allocator)),
199 stack_map_stream_(&allocator_, instruction_set),
200 slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
201 jit_string_roots_(StringReferenceValueComparator(),
202 allocator_.Adapter(kArenaAllocCodeGenerator)),
203 jit_class_roots_(TypeReferenceValueComparator(),
204 allocator_.Adapter(kArenaAllocCodeGenerator)) {
205 slow_paths_.reserve(kDefaultSlowPathsCapacity);
206 }
207
208 static constexpr size_t kDefaultSlowPathsCapacity = 8;
209
210 ScopedArenaAllocator allocator_;
211 StackMapStream stack_map_stream_;
212 ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;
213
214 // Maps a StringReference (dex_file, string_index) to the index in the literal table.
215 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
216 // will compute all the indices.
217 ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;
218
219 // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
220 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
221 // will compute all the indices.
222 ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
223 };
224
EmitJitRoots(std::vector<Handle<mirror::Object>> * roots)225 void CodeGenerator::CodeGenerationData::EmitJitRoots(
226 /*out*/std::vector<Handle<mirror::Object>>* roots) {
227 DCHECK(roots->empty());
228 roots->reserve(GetNumberOfJitRoots());
229 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
230 size_t index = 0;
231 for (auto& entry : jit_string_roots_) {
232 // Update the `roots` with the string, and replace the address temporarily
233 // stored to the index in the table.
234 uint64_t address = entry.second;
235 roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
236 DCHECK(roots->back() != nullptr);
237 DCHECK(roots->back()->IsString());
238 entry.second = index;
239 // Ensure the string is strongly interned. This is a requirement on how the JIT
240 // handles strings. b/32995596
241 class_linker->GetInternTable()->InternStrong(roots->back()->AsString());
242 ++index;
243 }
244 for (auto& entry : jit_class_roots_) {
245 // Update the `roots` with the class, and replace the address temporarily
246 // stored to the index in the table.
247 uint64_t address = entry.second;
248 roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
249 DCHECK(roots->back() != nullptr);
250 DCHECK(roots->back()->IsClass());
251 entry.second = index;
252 ++index;
253 }
254 }
255
GetScopedAllocator()256 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
257 DCHECK(code_generation_data_ != nullptr);
258 return code_generation_data_->GetScopedAllocator();
259 }
260
GetStackMapStream()261 StackMapStream* CodeGenerator::GetStackMapStream() {
262 DCHECK(code_generation_data_ != nullptr);
263 return code_generation_data_->GetStackMapStream();
264 }
265
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)266 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
267 Handle<mirror::String> string) {
268 DCHECK(code_generation_data_ != nullptr);
269 code_generation_data_->ReserveJitStringRoot(string_reference, string);
270 }
271
GetJitStringRootIndex(StringReference string_reference)272 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
273 DCHECK(code_generation_data_ != nullptr);
274 return code_generation_data_->GetJitStringRootIndex(string_reference);
275 }
276
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)277 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
278 DCHECK(code_generation_data_ != nullptr);
279 code_generation_data_->ReserveJitClassRoot(type_reference, klass);
280 }
281
GetJitClassRootIndex(TypeReference type_reference)282 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
283 DCHECK(code_generation_data_ != nullptr);
284 return code_generation_data_->GetJitClassRootIndex(type_reference);
285 }
286
EmitJitRootPatches(uint8_t * code ATTRIBUTE_UNUSED,const uint8_t * roots_data ATTRIBUTE_UNUSED)287 void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
288 const uint8_t* roots_data ATTRIBUTE_UNUSED) {
289 DCHECK(code_generation_data_ != nullptr);
290 DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
291 DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
292 }
293
GetArrayLengthOffset(HArrayLength * array_length)294 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
295 return array_length->IsStringLength()
296 ? mirror::String::CountOffset().Uint32Value()
297 : mirror::Array::LengthOffset().Uint32Value();
298 }
299
GetArrayDataOffset(HArrayGet * array_get)300 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
301 DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
302 return array_get->IsStringCharAt()
303 ? mirror::String::ValueOffset().Uint32Value()
304 : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
305 }
306
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const307 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
308 DCHECK_EQ((*block_order_)[current_block_index_], current);
309 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
310 }
311
GetNextBlockToEmit() const312 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
313 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
314 HBasicBlock* block = (*block_order_)[i];
315 if (!block->IsSingleJump()) {
316 return block;
317 }
318 }
319 return nullptr;
320 }
321
FirstNonEmptyBlock(HBasicBlock * block) const322 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
323 while (block->IsSingleJump()) {
324 block = block->GetSuccessors()[0];
325 }
326 return block;
327 }
328
329 class DisassemblyScope {
330 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)331 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
332 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
333 if (codegen_.GetDisassemblyInformation() != nullptr) {
334 start_offset_ = codegen_.GetAssembler().CodeSize();
335 }
336 }
337
~DisassemblyScope()338 ~DisassemblyScope() {
339 // We avoid building this data when we know it will not be used.
340 if (codegen_.GetDisassemblyInformation() != nullptr) {
341 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
342 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
343 }
344 }
345
346 private:
347 const CodeGenerator& codegen_;
348 HInstruction* instruction_;
349 size_t start_offset_;
350 };
351
352
GenerateSlowPaths()353 void CodeGenerator::GenerateSlowPaths() {
354 DCHECK(code_generation_data_ != nullptr);
355 size_t code_start = 0;
356 for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
357 SlowPathCode* slow_path = slow_path_ptr.get();
358 current_slow_path_ = slow_path;
359 if (disasm_info_ != nullptr) {
360 code_start = GetAssembler()->CodeSize();
361 }
362 // Record the dex pc at start of slow path (required for java line number mapping).
363 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
364 slow_path->EmitNativeCode(this);
365 if (disasm_info_ != nullptr) {
366 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
367 }
368 }
369 current_slow_path_ = nullptr;
370 }
371
InitializeCodeGenerationData()372 void CodeGenerator::InitializeCodeGenerationData() {
373 DCHECK(code_generation_data_ == nullptr);
374 code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
375 }
376
Compile(CodeAllocator * allocator)377 void CodeGenerator::Compile(CodeAllocator* allocator) {
378 InitializeCodeGenerationData();
379
380 // The register allocator already called `InitializeCodeGeneration`,
381 // where the frame size has been computed.
382 DCHECK(block_order_ != nullptr);
383 Initialize();
384
385 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
386 DCHECK_EQ(current_block_index_, 0u);
387
388 GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
389 core_spill_mask_,
390 fpu_spill_mask_,
391 GetGraph()->GetNumberOfVRegs(),
392 GetGraph()->IsCompilingBaseline());
393
394 size_t frame_start = GetAssembler()->CodeSize();
395 GenerateFrameEntry();
396 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
397 if (disasm_info_ != nullptr) {
398 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
399 }
400
401 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
402 HBasicBlock* block = (*block_order_)[current_block_index_];
403 // Don't generate code for an empty block. Its predecessors will branch to its successor
404 // directly. Also, the label of that block will not be emitted, so this helps catch
405 // errors where we reference that label.
406 if (block->IsSingleJump()) continue;
407 Bind(block);
408 // This ensures that we have correct native line mapping for all native instructions.
409 // It is necessary to make stepping over a statement work. Otherwise, any initial
410 // instructions (e.g. moves) would be assumed to be the start of next statement.
411 MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
412 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
413 HInstruction* current = it.Current();
414 if (current->HasEnvironment()) {
415 // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
416 // Note that we need correct mapping for the native PC of the call instruction,
417 // so the runtime's stackmap is not sufficient since it is at PC after the call.
418 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
419 }
420 DisassemblyScope disassembly_scope(current, *this);
421 DCHECK(CheckTypeConsistency(current));
422 current->Accept(instruction_visitor);
423 }
424 }
425
426 GenerateSlowPaths();
427
428 // Emit catch stack maps at the end of the stack map stream as expected by the
429 // runtime exception handler.
430 if (graph_->HasTryCatch()) {
431 RecordCatchBlockInfo();
432 }
433
434 // Finalize instructions in assember;
435 Finalize(allocator);
436
437 GetStackMapStream()->EndMethod(GetAssembler()->CodeSize());
438 }
439
Finalize(CodeAllocator * allocator)440 void CodeGenerator::Finalize(CodeAllocator* allocator) {
441 size_t code_size = GetAssembler()->CodeSize();
442 uint8_t* buffer = allocator->Allocate(code_size);
443
444 MemoryRegion code(buffer, code_size);
445 GetAssembler()->FinalizeInstructions(code);
446 }
447
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)448 void CodeGenerator::EmitLinkerPatches(
449 ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
450 // No linker patches by default.
451 }
452
NeedsThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED) const453 bool CodeGenerator::NeedsThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED) const {
454 // Code generators that create patches requiring thunk compilation should override this function.
455 return false;
456 }
457
EmitThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED,ArenaVector<uint8_t> * code ATTRIBUTE_UNUSED,std::string * debug_name ATTRIBUTE_UNUSED)458 void CodeGenerator::EmitThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED,
459 /*out*/ ArenaVector<uint8_t>* code ATTRIBUTE_UNUSED,
460 /*out*/ std::string* debug_name ATTRIBUTE_UNUSED) {
461 // Code generators that create patches requiring thunk compilation should override this function.
462 LOG(FATAL) << "Unexpected call to EmitThunkCode().";
463 }
464
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)465 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
466 size_t maximum_safepoint_spill_size,
467 size_t number_of_out_slots,
468 const ArenaVector<HBasicBlock*>& block_order) {
469 block_order_ = &block_order;
470 DCHECK(!block_order.empty());
471 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
472 ComputeSpillMask();
473 first_register_slot_in_slow_path_ = RoundUp(
474 (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
475
476 if (number_of_spill_slots == 0
477 && !HasAllocatedCalleeSaveRegisters()
478 && IsLeafMethod()
479 && !RequiresCurrentMethod()) {
480 DCHECK_EQ(maximum_safepoint_spill_size, 0u);
481 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
482 } else {
483 SetFrameSize(RoundUp(
484 first_register_slot_in_slow_path_
485 + maximum_safepoint_spill_size
486 + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
487 + FrameEntrySpillSize(),
488 kStackAlignment));
489 }
490 }
491
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)492 void CodeGenerator::CreateCommonInvokeLocationSummary(
493 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
494 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
495 LocationSummary* locations = new (allocator) LocationSummary(invoke,
496 LocationSummary::kCallOnMainOnly);
497
498 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
499 HInstruction* input = invoke->InputAt(i);
500 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
501 }
502
503 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
504
505 if (invoke->IsInvokeStaticOrDirect()) {
506 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
507 MethodLoadKind method_load_kind = call->GetMethodLoadKind();
508 CodePtrLocation code_ptr_location = call->GetCodePtrLocation();
509 if (code_ptr_location == CodePtrLocation::kCallCriticalNative) {
510 locations->AddTemp(Location::RequiresRegister()); // For target method.
511 }
512 if (code_ptr_location == CodePtrLocation::kCallCriticalNative ||
513 method_load_kind == MethodLoadKind::kRecursive) {
514 // For `kCallCriticalNative` we need the current method as the hidden argument
515 // if we reach the dlsym lookup stub for @CriticalNative.
516 locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation());
517 } else {
518 locations->AddTemp(visitor->GetMethodLocation());
519 if (method_load_kind == MethodLoadKind::kRuntimeCall) {
520 locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister());
521 }
522 }
523 } else if (!invoke->IsInvokePolymorphic()) {
524 locations->AddTemp(visitor->GetMethodLocation());
525 }
526 }
527
PrepareCriticalNativeArgumentMoves(HInvokeStaticOrDirect * invoke,InvokeDexCallingConventionVisitor * visitor,HParallelMove * parallel_move)528 void CodeGenerator::PrepareCriticalNativeArgumentMoves(
529 HInvokeStaticOrDirect* invoke,
530 /*inout*/InvokeDexCallingConventionVisitor* visitor,
531 /*out*/HParallelMove* parallel_move) {
532 LocationSummary* locations = invoke->GetLocations();
533 for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) {
534 Location in_location = locations->InAt(i);
535 DataType::Type type = invoke->InputAt(i)->GetType();
536 DCHECK_NE(type, DataType::Type::kReference);
537 Location out_location = visitor->GetNextLocation(type);
538 if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) {
539 // Stack arguments will need to be moved after adjusting the SP.
540 parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr);
541 } else {
542 // Register arguments should have been assigned their final locations for register allocation.
543 DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location;
544 }
545 }
546 }
547
FinishCriticalNativeFrameSetup(size_t out_frame_size,HParallelMove * parallel_move)548 void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size,
549 /*inout*/HParallelMove* parallel_move) {
550 DCHECK_NE(out_frame_size, 0u);
551 IncreaseFrame(out_frame_size);
552 // Adjust the source stack offsets by `out_frame_size`, i.e. the additional
553 // frame size needed for outgoing stack arguments.
554 for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) {
555 MoveOperands* operands = parallel_move->MoveOperandsAt(i);
556 Location source = operands->GetSource();
557 if (operands->GetSource().IsStackSlot()) {
558 operands->SetSource(Location::StackSlot(source.GetStackIndex() + out_frame_size));
559 } else if (operands->GetSource().IsDoubleStackSlot()) {
560 operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() + out_frame_size));
561 }
562 }
563 // Emit the moves.
564 GetMoveResolver()->EmitNativeCode(parallel_move);
565 }
566
GetCriticalNativeShorty(HInvokeStaticOrDirect * invoke,uint32_t * shorty_len)567 const char* CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke,
568 uint32_t* shorty_len) {
569 ScopedObjectAccess soa(Thread::Current());
570 DCHECK(invoke->GetResolvedMethod()->IsCriticalNative());
571 return invoke->GetResolvedMethod()->GetShorty(shorty_len);
572 }
573
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)574 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
575 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
576 MethodReference method_reference(invoke->GetMethodReference());
577 MoveConstant(temp, method_reference.index);
578
579 // The access check is unnecessary but we do not want to introduce
580 // extra entrypoints for the codegens that do not support some
581 // invoke type and fall back to the runtime call.
582
583 // Initialize to anything to silent compiler warnings.
584 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
585 switch (invoke->GetInvokeType()) {
586 case kStatic:
587 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
588 break;
589 case kDirect:
590 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
591 break;
592 case kSuper:
593 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
594 break;
595 case kVirtual:
596 case kInterface:
597 case kPolymorphic:
598 case kCustom:
599 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
600 UNREACHABLE();
601 }
602
603 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
604 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)605 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
606 MethodReference method_reference(invoke->GetMethodReference());
607 MoveConstant(invoke->GetLocations()->GetTemp(0), method_reference.index);
608
609 // Initialize to anything to silent compiler warnings.
610 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
611 switch (invoke->GetInvokeType()) {
612 case kStatic:
613 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
614 break;
615 case kDirect:
616 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
617 break;
618 case kVirtual:
619 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
620 break;
621 case kSuper:
622 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
623 break;
624 case kInterface:
625 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
626 break;
627 case kPolymorphic:
628 case kCustom:
629 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
630 UNREACHABLE();
631 }
632 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
633 }
634
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke,SlowPathCode * slow_path)635 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke,
636 SlowPathCode* slow_path) {
637 // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
638 // method index) since it requires multiple info from the instruction (registers A, B, H). Not
639 // using the reservation has no effect on the registers used in the runtime call.
640 QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
641 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
642 }
643
GenerateInvokeCustomCall(HInvokeCustom * invoke)644 void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
645 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
646 QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
647 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
648 }
649
CreateStringBuilderAppendLocations(HStringBuilderAppend * instruction,Location out)650 void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction,
651 Location out) {
652 ArenaAllocator* allocator = GetGraph()->GetAllocator();
653 LocationSummary* locations =
654 new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
655 locations->SetOut(out);
656 instruction->GetLocations()->SetInAt(instruction->FormatIndex(),
657 Location::ConstantLocation(instruction->GetFormat()));
658
659 uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue());
660 uint32_t f = format;
661 PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
662 size_t stack_offset = static_cast<size_t>(pointer_size); // Start after the ArtMethod*.
663 for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) {
664 StringBuilderAppend::Argument arg_type =
665 static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask);
666 switch (arg_type) {
667 case StringBuilderAppend::Argument::kStringBuilder:
668 case StringBuilderAppend::Argument::kString:
669 case StringBuilderAppend::Argument::kCharArray:
670 static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check.");
671 FALLTHROUGH_INTENDED;
672 case StringBuilderAppend::Argument::kBoolean:
673 case StringBuilderAppend::Argument::kChar:
674 case StringBuilderAppend::Argument::kInt:
675 case StringBuilderAppend::Argument::kFloat:
676 locations->SetInAt(i, Location::StackSlot(stack_offset));
677 break;
678 case StringBuilderAppend::Argument::kLong:
679 case StringBuilderAppend::Argument::kDouble:
680 stack_offset = RoundUp(stack_offset, sizeof(uint64_t));
681 locations->SetInAt(i, Location::DoubleStackSlot(stack_offset));
682 // Skip the low word, let the common code skip the high word.
683 stack_offset += sizeof(uint32_t);
684 break;
685 default:
686 LOG(FATAL) << "Unexpected arg format: 0x" << std::hex
687 << (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format;
688 UNREACHABLE();
689 }
690 f >>= StringBuilderAppend::kBitsPerArg;
691 stack_offset += sizeof(uint32_t);
692 }
693 DCHECK_EQ(f, 0u);
694
695 size_t param_size = stack_offset - static_cast<size_t>(pointer_size);
696 DCHECK_ALIGNED(param_size, kVRegSize);
697 size_t num_vregs = param_size / kVRegSize;
698 graph_->UpdateMaximumNumberOfOutVRegs(num_vregs);
699 }
700
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)701 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
702 HInstruction* field_access,
703 DataType::Type field_type,
704 const FieldAccessCallingConvention& calling_convention) {
705 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
706 || field_access->IsUnresolvedInstanceFieldSet();
707 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
708 || field_access->IsUnresolvedStaticFieldGet();
709
710 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
711 LocationSummary* locations =
712 new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
713
714 locations->AddTemp(calling_convention.GetFieldIndexLocation());
715
716 if (is_instance) {
717 // Add the `this` object for instance field accesses.
718 locations->SetInAt(0, calling_convention.GetObjectLocation());
719 }
720
721 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
722 // regardless of the the type. Because of that we forced to special case
723 // the access to floating point values.
724 if (is_get) {
725 if (DataType::IsFloatingPointType(field_type)) {
726 // The return value will be stored in regular registers while register
727 // allocator expects it in a floating point register.
728 // Note We don't need to request additional temps because the return
729 // register(s) are already blocked due the call and they may overlap with
730 // the input or field index.
731 // The transfer between the two will be done at codegen level.
732 locations->SetOut(calling_convention.GetFpuLocation(field_type));
733 } else {
734 locations->SetOut(calling_convention.GetReturnLocation(field_type));
735 }
736 } else {
737 size_t set_index = is_instance ? 1 : 0;
738 if (DataType::IsFloatingPointType(field_type)) {
739 // The set value comes from a float location while the calling convention
740 // expects it in a regular register location. Allocate a temp for it and
741 // make the transfer at codegen.
742 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
743 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
744 } else {
745 locations->SetInAt(set_index,
746 calling_convention.GetSetValueLocation(field_type, is_instance));
747 }
748 }
749 }
750
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)751 void CodeGenerator::GenerateUnresolvedFieldAccess(
752 HInstruction* field_access,
753 DataType::Type field_type,
754 uint32_t field_index,
755 uint32_t dex_pc,
756 const FieldAccessCallingConvention& calling_convention) {
757 LocationSummary* locations = field_access->GetLocations();
758
759 MoveConstant(locations->GetTemp(0), field_index);
760
761 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
762 || field_access->IsUnresolvedInstanceFieldSet();
763 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
764 || field_access->IsUnresolvedStaticFieldGet();
765
766 if (!is_get && DataType::IsFloatingPointType(field_type)) {
767 // Copy the float value to be set into the calling convention register.
768 // Note that using directly the temp location is problematic as we don't
769 // support temp register pairs. To avoid boilerplate conversion code, use
770 // the location from the calling convention.
771 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
772 locations->InAt(is_instance ? 1 : 0),
773 (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
774 : DataType::Type::kInt32));
775 }
776
777 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
778 switch (field_type) {
779 case DataType::Type::kBool:
780 entrypoint = is_instance
781 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
782 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
783 break;
784 case DataType::Type::kInt8:
785 entrypoint = is_instance
786 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
787 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
788 break;
789 case DataType::Type::kInt16:
790 entrypoint = is_instance
791 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
792 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
793 break;
794 case DataType::Type::kUint16:
795 entrypoint = is_instance
796 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
797 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
798 break;
799 case DataType::Type::kInt32:
800 case DataType::Type::kFloat32:
801 entrypoint = is_instance
802 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
803 : (is_get ? kQuickGet32Static : kQuickSet32Static);
804 break;
805 case DataType::Type::kReference:
806 entrypoint = is_instance
807 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
808 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
809 break;
810 case DataType::Type::kInt64:
811 case DataType::Type::kFloat64:
812 entrypoint = is_instance
813 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
814 : (is_get ? kQuickGet64Static : kQuickSet64Static);
815 break;
816 default:
817 LOG(FATAL) << "Invalid type " << field_type;
818 }
819 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
820
821 if (is_get && DataType::IsFloatingPointType(field_type)) {
822 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
823 }
824 }
825
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)826 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
827 Location runtime_type_index_location,
828 Location runtime_return_location) {
829 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
830 DCHECK_EQ(cls->InputCount(), 1u);
831 LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
832 cls, LocationSummary::kCallOnMainOnly);
833 locations->SetInAt(0, Location::NoLocation());
834 locations->AddTemp(runtime_type_index_location);
835 locations->SetOut(runtime_return_location);
836 }
837
GenerateLoadClassRuntimeCall(HLoadClass * cls)838 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
839 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
840 DCHECK(!cls->MustGenerateClinitCheck());
841 LocationSummary* locations = cls->GetLocations();
842 MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
843 if (cls->NeedsAccessCheck()) {
844 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
845 InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
846 } else {
847 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
848 InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
849 }
850 }
851
CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle * method_handle,Location runtime_proto_index_location,Location runtime_return_location)852 void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
853 HLoadMethodHandle* method_handle,
854 Location runtime_proto_index_location,
855 Location runtime_return_location) {
856 DCHECK_EQ(method_handle->InputCount(), 1u);
857 LocationSummary* locations =
858 new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
859 method_handle, LocationSummary::kCallOnMainOnly);
860 locations->SetInAt(0, Location::NoLocation());
861 locations->AddTemp(runtime_proto_index_location);
862 locations->SetOut(runtime_return_location);
863 }
864
GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle * method_handle)865 void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
866 LocationSummary* locations = method_handle->GetLocations();
867 MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
868 CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
869 InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
870 }
871
CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType * method_type,Location runtime_proto_index_location,Location runtime_return_location)872 void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
873 HLoadMethodType* method_type,
874 Location runtime_proto_index_location,
875 Location runtime_return_location) {
876 DCHECK_EQ(method_type->InputCount(), 1u);
877 LocationSummary* locations =
878 new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
879 method_type, LocationSummary::kCallOnMainOnly);
880 locations->SetInAt(0, Location::NoLocation());
881 locations->AddTemp(runtime_proto_index_location);
882 locations->SetOut(runtime_return_location);
883 }
884
GenerateLoadMethodTypeRuntimeCall(HLoadMethodType * method_type)885 void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
886 LocationSummary* locations = method_type->GetLocations();
887 MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
888 CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
889 InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
890 }
891
GetBootImageOffsetImpl(const void * object,ImageHeader::ImageSections section)892 static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
893 Runtime* runtime = Runtime::Current();
894 const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
895 runtime->GetHeap()->GetBootImageSpaces();
896 // Check that the `object` is in the expected section of one of the boot image files.
897 DCHECK(std::any_of(boot_image_spaces.begin(),
898 boot_image_spaces.end(),
899 [object, section](gc::space::ImageSpace* space) {
900 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
901 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
902 return space->GetImageHeader().GetImageSection(section).Contains(offset);
903 }));
904 uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
905 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
906 return dchecked_integral_cast<uint32_t>(offset);
907 }
908
GetBootImageOffset(ObjPtr<mirror::Object> object)909 uint32_t CodeGenerator::GetBootImageOffset(ObjPtr<mirror::Object> object) {
910 return GetBootImageOffsetImpl(object.Ptr(), ImageHeader::kSectionObjects);
911 }
912
913 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffset(HLoadClass * load_class)914 uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
915 DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
916 ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
917 DCHECK(klass != nullptr);
918 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
919 }
920
921 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
GetBootImageOffset(HLoadString * load_string)922 uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
923 DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
924 ObjPtr<mirror::String> string = load_string->GetString().Get();
925 DCHECK(string != nullptr);
926 return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
927 }
928
GetBootImageOffset(HInvoke * invoke)929 uint32_t CodeGenerator::GetBootImageOffset(HInvoke* invoke) {
930 ArtMethod* method = invoke->GetResolvedMethod();
931 DCHECK(method != nullptr);
932 return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
933 }
934
935 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image objects are non-moveable.
GetBootImageOffset(ClassRoot class_root)936 uint32_t CodeGenerator::GetBootImageOffset(ClassRoot class_root) NO_THREAD_SAFETY_ANALYSIS {
937 ObjPtr<mirror::Class> klass = GetClassRoot<kWithoutReadBarrier>(class_root);
938 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
939 }
940
941 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke * invoke)942 uint32_t CodeGenerator::GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke)
943 NO_THREAD_SAFETY_ANALYSIS {
944 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
945 ArtMethod* method = invoke->GetResolvedMethod();
946 DCHECK(method != nullptr);
947 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass<kWithoutReadBarrier>();
948 return GetBootImageOffsetImpl(declaring_class.Ptr(), ImageHeader::kSectionObjects);
949 }
950
BlockIfInRegister(Location location,bool is_out) const951 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
952 // The DCHECKS below check that a register is not specified twice in
953 // the summary. The out location can overlap with an input, so we need
954 // to special case it.
955 if (location.IsRegister()) {
956 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
957 blocked_core_registers_[location.reg()] = true;
958 } else if (location.IsFpuRegister()) {
959 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
960 blocked_fpu_registers_[location.reg()] = true;
961 } else if (location.IsFpuRegisterPair()) {
962 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
963 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
964 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
965 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
966 } else if (location.IsRegisterPair()) {
967 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
968 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
969 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
970 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
971 }
972 }
973
AllocateLocations(HInstruction * instruction)974 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
975 for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
976 env->AllocateLocations();
977 }
978 instruction->Accept(GetLocationBuilder());
979 DCHECK(CheckTypeConsistency(instruction));
980 LocationSummary* locations = instruction->GetLocations();
981 if (!instruction->IsSuspendCheckEntry()) {
982 if (locations != nullptr) {
983 if (locations->CanCall()) {
984 MarkNotLeaf();
985 if (locations->NeedsSuspendCheckEntry()) {
986 MarkNeedsSuspendCheckEntry();
987 }
988 } else if (locations->Intrinsified() &&
989 instruction->IsInvokeStaticOrDirect() &&
990 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
991 // A static method call that has been fully intrinsified, and cannot call on the slow
992 // path or refer to the current method directly, no longer needs current method.
993 return;
994 }
995 }
996 if (instruction->NeedsCurrentMethod()) {
997 SetRequiresCurrentMethod();
998 }
999 }
1000 }
1001
Create(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1002 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
1003 const CompilerOptions& compiler_options,
1004 OptimizingCompilerStats* stats) {
1005 ArenaAllocator* allocator = graph->GetAllocator();
1006 switch (compiler_options.GetInstructionSet()) {
1007 #ifdef ART_ENABLE_CODEGEN_arm
1008 case InstructionSet::kArm:
1009 case InstructionSet::kThumb2: {
1010 return std::unique_ptr<CodeGenerator>(
1011 new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
1012 }
1013 #endif
1014 #ifdef ART_ENABLE_CODEGEN_arm64
1015 case InstructionSet::kArm64: {
1016 return std::unique_ptr<CodeGenerator>(
1017 new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
1018 }
1019 #endif
1020 #ifdef ART_ENABLE_CODEGEN_x86
1021 case InstructionSet::kX86: {
1022 return std::unique_ptr<CodeGenerator>(
1023 new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
1024 }
1025 #endif
1026 #ifdef ART_ENABLE_CODEGEN_x86_64
1027 case InstructionSet::kX86_64: {
1028 return std::unique_ptr<CodeGenerator>(
1029 new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
1030 }
1031 #endif
1032 default:
1033 return nullptr;
1034 }
1035 }
1036
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1037 CodeGenerator::CodeGenerator(HGraph* graph,
1038 size_t number_of_core_registers,
1039 size_t number_of_fpu_registers,
1040 size_t number_of_register_pairs,
1041 uint32_t core_callee_save_mask,
1042 uint32_t fpu_callee_save_mask,
1043 const CompilerOptions& compiler_options,
1044 OptimizingCompilerStats* stats)
1045 : frame_size_(0),
1046 core_spill_mask_(0),
1047 fpu_spill_mask_(0),
1048 first_register_slot_in_slow_path_(0),
1049 allocated_registers_(RegisterSet::Empty()),
1050 blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
1051 kArenaAllocCodeGenerator)),
1052 blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
1053 kArenaAllocCodeGenerator)),
1054 number_of_core_registers_(number_of_core_registers),
1055 number_of_fpu_registers_(number_of_fpu_registers),
1056 number_of_register_pairs_(number_of_register_pairs),
1057 core_callee_save_mask_(core_callee_save_mask),
1058 fpu_callee_save_mask_(fpu_callee_save_mask),
1059 block_order_(nullptr),
1060 disasm_info_(nullptr),
1061 stats_(stats),
1062 graph_(graph),
1063 compiler_options_(compiler_options),
1064 current_slow_path_(nullptr),
1065 current_block_index_(0),
1066 is_leaf_(true),
1067 needs_suspend_check_entry_(false),
1068 requires_current_method_(false),
1069 code_generation_data_() {
1070 if (GetGraph()->IsCompilingOsr()) {
1071 // Make OSR methods have all registers spilled, this simplifies the logic of
1072 // jumping to the compiled code directly.
1073 for (size_t i = 0; i < number_of_core_registers_; ++i) {
1074 if (IsCoreCalleeSaveRegister(i)) {
1075 AddAllocatedRegister(Location::RegisterLocation(i));
1076 }
1077 }
1078 for (size_t i = 0; i < number_of_fpu_registers_; ++i) {
1079 if (IsFloatingPointCalleeSaveRegister(i)) {
1080 AddAllocatedRegister(Location::FpuRegisterLocation(i));
1081 }
1082 }
1083 }
1084 if (GetGraph()->IsCompilingBaseline()) {
1085 // We need the current method in case we reach the hotness threshold. As a
1086 // side effect this makes the frame non-empty.
1087 SetRequiresCurrentMethod();
1088 }
1089 }
1090
~CodeGenerator()1091 CodeGenerator::~CodeGenerator() {}
1092
GetNumberOfJitRoots() const1093 size_t CodeGenerator::GetNumberOfJitRoots() const {
1094 DCHECK(code_generation_data_ != nullptr);
1095 return code_generation_data_->GetNumberOfJitRoots();
1096 }
1097
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)1098 static void CheckCovers(uint32_t dex_pc,
1099 const HGraph& graph,
1100 const CodeInfo& code_info,
1101 const ArenaVector<HSuspendCheck*>& loop_headers,
1102 ArenaVector<size_t>* covered) {
1103 for (size_t i = 0; i < loop_headers.size(); ++i) {
1104 if (loop_headers[i]->GetDexPc() == dex_pc) {
1105 if (graph.IsCompilingOsr()) {
1106 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
1107 }
1108 ++(*covered)[i];
1109 }
1110 }
1111 }
1112
1113 // Debug helper to ensure loop entries in compiled code are matched by
1114 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const dex::CodeItem & code_item)1115 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
1116 const CodeInfo& code_info,
1117 const dex::CodeItem& code_item) {
1118 if (graph.HasTryCatch()) {
1119 // One can write loops through try/catch, which we do not support for OSR anyway.
1120 return;
1121 }
1122 ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
1123 for (HBasicBlock* block : graph.GetReversePostOrder()) {
1124 if (block->IsLoopHeader()) {
1125 HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
1126 if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
1127 loop_headers.push_back(suspend_check);
1128 }
1129 }
1130 }
1131 ArenaVector<size_t> covered(
1132 loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
1133 for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
1134 &code_item)) {
1135 const uint32_t dex_pc = pair.DexPc();
1136 const Instruction& instruction = pair.Inst();
1137 if (instruction.IsBranch()) {
1138 uint32_t target = dex_pc + instruction.GetTargetOffset();
1139 CheckCovers(target, graph, code_info, loop_headers, &covered);
1140 } else if (instruction.IsSwitch()) {
1141 DexSwitchTable table(instruction, dex_pc);
1142 uint16_t num_entries = table.GetNumEntries();
1143 size_t offset = table.GetFirstValueIndex();
1144
1145 // Use a larger loop counter type to avoid overflow issues.
1146 for (size_t i = 0; i < num_entries; ++i) {
1147 // The target of the case.
1148 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
1149 CheckCovers(target, graph, code_info, loop_headers, &covered);
1150 }
1151 }
1152 }
1153
1154 for (size_t i = 0; i < covered.size(); ++i) {
1155 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
1156 }
1157 }
1158
BuildStackMaps(const dex::CodeItem * code_item)1159 ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
1160 ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
1161 if (kIsDebugBuild && code_item != nullptr) {
1162 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
1163 }
1164 return stack_map;
1165 }
1166
1167 // Returns whether stackmap dex register info is needed for the instruction.
1168 //
1169 // The following cases mandate having a dex register map:
1170 // * Deoptimization
1171 // when we need to obtain the values to restore actual vregisters for interpreter.
1172 // * Debuggability
1173 // when we want to observe the values / asynchronously deoptimize.
1174 // * Monitor operations
1175 // to allow dumping in a stack trace locked dex registers for non-debuggable code.
1176 // * On-stack-replacement (OSR)
1177 // when entering compiled for OSR code from the interpreter we need to initialize the compiled
1178 // code values with the values from the vregisters.
1179 // * Method local catch blocks
1180 // a catch block must see the environment of the instruction from the same method that can
1181 // throw to this block.
NeedsVregInfo(HInstruction * instruction,bool osr)1182 static bool NeedsVregInfo(HInstruction* instruction, bool osr) {
1183 HGraph* graph = instruction->GetBlock()->GetGraph();
1184 return instruction->IsDeoptimize() ||
1185 graph->IsDebuggable() ||
1186 graph->HasMonitorOperations() ||
1187 osr ||
1188 instruction->CanThrowIntoCatchBlock();
1189 }
1190
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path,bool native_debug_info)1191 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1192 uint32_t dex_pc,
1193 SlowPathCode* slow_path,
1194 bool native_debug_info) {
1195 RecordPcInfo(instruction, dex_pc, GetAssembler()->CodePosition(), slow_path, native_debug_info);
1196 }
1197
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,uint32_t native_pc,SlowPathCode * slow_path,bool native_debug_info)1198 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1199 uint32_t dex_pc,
1200 uint32_t native_pc,
1201 SlowPathCode* slow_path,
1202 bool native_debug_info) {
1203 if (instruction != nullptr) {
1204 // The code generated for some type conversions
1205 // may call the runtime, thus normally requiring a subsequent
1206 // call to this method. However, the method verifier does not
1207 // produce PC information for certain instructions, which are
1208 // considered "atomic" (they cannot join a GC).
1209 // Therefore we do not currently record PC information for such
1210 // instructions. As this may change later, we added this special
1211 // case so that code generators may nevertheless call
1212 // CodeGenerator::RecordPcInfo without triggering an error in
1213 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
1214 // thereafter.
1215 if (instruction->IsTypeConversion()) {
1216 return;
1217 }
1218 if (instruction->IsRem()) {
1219 DataType::Type type = instruction->AsRem()->GetResultType();
1220 if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
1221 return;
1222 }
1223 }
1224 }
1225
1226 StackMapStream* stack_map_stream = GetStackMapStream();
1227 if (instruction == nullptr) {
1228 // For stack overflow checks and native-debug-info entries without dex register
1229 // mapping (i.e. start of basic block or start of slow path).
1230 stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
1231 stack_map_stream->EndStackMapEntry();
1232 return;
1233 }
1234
1235 LocationSummary* locations = instruction->GetLocations();
1236 uint32_t register_mask = locations->GetRegisterMask();
1237 DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
1238 if (locations->OnlyCallsOnSlowPath()) {
1239 // In case of slow path, we currently set the location of caller-save registers
1240 // to register (instead of their stack location when pushed before the slow-path
1241 // call). Therefore register_mask contains both callee-save and caller-save
1242 // registers that hold objects. We must remove the spilled caller-save from the
1243 // mask, since they will be overwritten by the callee.
1244 uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
1245 register_mask &= ~spills;
1246 } else {
1247 // The register mask must be a subset of callee-save registers.
1248 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1249 }
1250
1251 uint32_t outer_dex_pc = dex_pc;
1252 uint32_t inlining_depth = 0;
1253 HEnvironment* const environment = instruction->GetEnvironment();
1254 if (environment != nullptr) {
1255 HEnvironment* outer_environment = environment;
1256 while (outer_environment->GetParent() != nullptr) {
1257 outer_environment = outer_environment->GetParent();
1258 ++inlining_depth;
1259 }
1260 outer_dex_pc = outer_environment->GetDexPc();
1261 }
1262
1263 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1264 bool osr =
1265 instruction->IsSuspendCheck() &&
1266 (info != nullptr) &&
1267 graph_->IsCompilingOsr() &&
1268 (inlining_depth == 0);
1269 StackMap::Kind kind = native_debug_info
1270 ? StackMap::Kind::Debug
1271 : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
1272 bool needs_vreg_info = NeedsVregInfo(instruction, osr);
1273 stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1274 native_pc,
1275 register_mask,
1276 locations->GetStackMask(),
1277 kind,
1278 needs_vreg_info);
1279
1280 EmitEnvironment(environment, slow_path, needs_vreg_info);
1281 stack_map_stream->EndStackMapEntry();
1282
1283 if (osr) {
1284 DCHECK_EQ(info->GetSuspendCheck(), instruction);
1285 DCHECK(info->IsIrreducible());
1286 DCHECK(environment != nullptr);
1287 if (kIsDebugBuild) {
1288 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1289 HInstruction* in_environment = environment->GetInstructionAt(i);
1290 if (in_environment != nullptr) {
1291 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1292 Location location = environment->GetLocationAt(i);
1293 DCHECK(location.IsStackSlot() ||
1294 location.IsDoubleStackSlot() ||
1295 location.IsConstant() ||
1296 location.IsInvalid());
1297 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1298 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1299 }
1300 }
1301 }
1302 }
1303 }
1304 }
1305
HasStackMapAtCurrentPc()1306 bool CodeGenerator::HasStackMapAtCurrentPc() {
1307 uint32_t pc = GetAssembler()->CodeSize();
1308 StackMapStream* stack_map_stream = GetStackMapStream();
1309 size_t count = stack_map_stream->GetNumberOfStackMaps();
1310 if (count == 0) {
1311 return false;
1312 }
1313 return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
1314 }
1315
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1316 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1317 uint32_t dex_pc,
1318 SlowPathCode* slow_path) {
1319 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1320 if (HasStackMapAtCurrentPc()) {
1321 // Ensure that we do not collide with the stack map of the previous instruction.
1322 GenerateNop();
1323 }
1324 RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
1325 }
1326 }
1327
RecordCatchBlockInfo()1328 void CodeGenerator::RecordCatchBlockInfo() {
1329 StackMapStream* stack_map_stream = GetStackMapStream();
1330
1331 for (HBasicBlock* block : *block_order_) {
1332 if (!block->IsCatchBlock()) {
1333 continue;
1334 }
1335
1336 uint32_t dex_pc = block->GetDexPc();
1337 uint32_t num_vregs = graph_->GetNumberOfVRegs();
1338 uint32_t native_pc = GetAddressOf(block);
1339
1340 stack_map_stream->BeginStackMapEntry(dex_pc,
1341 native_pc,
1342 /* register_mask= */ 0,
1343 /* sp_mask= */ nullptr,
1344 StackMap::Kind::Catch);
1345
1346 HInstruction* current_phi = block->GetFirstPhi();
1347 for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
1348 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1349 HInstruction* next_phi = current_phi->GetNext();
1350 DCHECK(next_phi == nullptr ||
1351 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1352 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1353 current_phi = next_phi;
1354 }
1355
1356 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1357 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1358 } else {
1359 Location location = current_phi->GetLocations()->Out();
1360 switch (location.GetKind()) {
1361 case Location::kStackSlot: {
1362 stack_map_stream->AddDexRegisterEntry(
1363 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1364 break;
1365 }
1366 case Location::kDoubleStackSlot: {
1367 stack_map_stream->AddDexRegisterEntry(
1368 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1369 stack_map_stream->AddDexRegisterEntry(
1370 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1371 ++vreg;
1372 DCHECK_LT(vreg, num_vregs);
1373 break;
1374 }
1375 default: {
1376 // All catch phis must be allocated to a stack slot.
1377 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1378 UNREACHABLE();
1379 }
1380 }
1381 }
1382 }
1383
1384 stack_map_stream->EndStackMapEntry();
1385 }
1386 }
1387
AddSlowPath(SlowPathCode * slow_path)1388 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1389 DCHECK(code_generation_data_ != nullptr);
1390 code_generation_data_->AddSlowPath(slow_path);
1391 }
1392
EmitVRegInfo(HEnvironment * environment,SlowPathCode * slow_path)1393 void CodeGenerator::EmitVRegInfo(HEnvironment* environment, SlowPathCode* slow_path) {
1394 StackMapStream* stack_map_stream = GetStackMapStream();
1395 // Walk over the environment, and record the location of dex registers.
1396 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1397 HInstruction* current = environment->GetInstructionAt(i);
1398 if (current == nullptr) {
1399 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1400 continue;
1401 }
1402
1403 using Kind = DexRegisterLocation::Kind;
1404 Location location = environment->GetLocationAt(i);
1405 switch (location.GetKind()) {
1406 case Location::kConstant: {
1407 DCHECK_EQ(current, location.GetConstant());
1408 if (current->IsLongConstant()) {
1409 int64_t value = current->AsLongConstant()->GetValue();
1410 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1411 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1412 ++i;
1413 DCHECK_LT(i, environment_size);
1414 } else if (current->IsDoubleConstant()) {
1415 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1416 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1417 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1418 ++i;
1419 DCHECK_LT(i, environment_size);
1420 } else if (current->IsIntConstant()) {
1421 int32_t value = current->AsIntConstant()->GetValue();
1422 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1423 } else if (current->IsNullConstant()) {
1424 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
1425 } else {
1426 DCHECK(current->IsFloatConstant()) << current->DebugName();
1427 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1428 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1429 }
1430 break;
1431 }
1432
1433 case Location::kStackSlot: {
1434 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1435 break;
1436 }
1437
1438 case Location::kDoubleStackSlot: {
1439 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1440 stack_map_stream->AddDexRegisterEntry(
1441 Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1442 ++i;
1443 DCHECK_LT(i, environment_size);
1444 break;
1445 }
1446
1447 case Location::kRegister : {
1448 int id = location.reg();
1449 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1450 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1451 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1452 if (current->GetType() == DataType::Type::kInt64) {
1453 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1454 ++i;
1455 DCHECK_LT(i, environment_size);
1456 }
1457 } else {
1458 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
1459 if (current->GetType() == DataType::Type::kInt64) {
1460 stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
1461 ++i;
1462 DCHECK_LT(i, environment_size);
1463 }
1464 }
1465 break;
1466 }
1467
1468 case Location::kFpuRegister : {
1469 int id = location.reg();
1470 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1471 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1472 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1473 if (current->GetType() == DataType::Type::kFloat64) {
1474 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1475 ++i;
1476 DCHECK_LT(i, environment_size);
1477 }
1478 } else {
1479 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
1480 if (current->GetType() == DataType::Type::kFloat64) {
1481 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
1482 ++i;
1483 DCHECK_LT(i, environment_size);
1484 }
1485 }
1486 break;
1487 }
1488
1489 case Location::kFpuRegisterPair : {
1490 int low = location.low();
1491 int high = location.high();
1492 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1493 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1494 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1495 } else {
1496 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
1497 }
1498 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1499 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1500 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1501 ++i;
1502 } else {
1503 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
1504 ++i;
1505 }
1506 DCHECK_LT(i, environment_size);
1507 break;
1508 }
1509
1510 case Location::kRegisterPair : {
1511 int low = location.low();
1512 int high = location.high();
1513 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1514 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1515 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1516 } else {
1517 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
1518 }
1519 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1520 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1521 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1522 } else {
1523 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
1524 }
1525 ++i;
1526 DCHECK_LT(i, environment_size);
1527 break;
1528 }
1529
1530 case Location::kInvalid: {
1531 stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
1532 break;
1533 }
1534
1535 default:
1536 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1537 }
1538 }
1539 }
1540
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path,bool needs_vreg_info)1541 void CodeGenerator::EmitEnvironment(HEnvironment* environment,
1542 SlowPathCode* slow_path,
1543 bool needs_vreg_info) {
1544 if (environment == nullptr) return;
1545
1546 StackMapStream* stack_map_stream = GetStackMapStream();
1547 bool emit_inline_info = environment->GetParent() != nullptr;
1548
1549 if (emit_inline_info) {
1550 // We emit the parent environment first.
1551 EmitEnvironment(environment->GetParent(), slow_path, needs_vreg_info);
1552 stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1553 environment->GetDexPc(),
1554 needs_vreg_info ? environment->Size() : 0,
1555 &graph_->GetDexFile(),
1556 this);
1557 }
1558
1559 if (needs_vreg_info) {
1560 // If a dex register map is not required we just won't emit it.
1561 EmitVRegInfo(environment, slow_path);
1562 }
1563
1564 if (emit_inline_info) {
1565 stack_map_stream->EndInlineInfoEntry();
1566 }
1567 }
1568
CanMoveNullCheckToUser(HNullCheck * null_check)1569 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1570 return null_check->IsEmittedAtUseSite();
1571 }
1572
MaybeRecordImplicitNullCheck(HInstruction * instr)1573 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1574 HNullCheck* null_check = instr->GetImplicitNullCheck();
1575 if (null_check != nullptr) {
1576 RecordPcInfo(null_check, null_check->GetDexPc(), GetAssembler()->CodePosition());
1577 }
1578 }
1579
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1580 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1581 RegisterSet caller_saves) {
1582 // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1583 // HSuspendCheck from entry block). However, it will still get a valid stack frame
1584 // because the HNullCheck needs an environment.
1585 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1586 // When throwing from a try block, we may need to retrieve dalvik registers from
1587 // physical registers and we also need to set up stack mask for GC. This is
1588 // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1589 bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1590 if (can_throw_into_catch_block) {
1591 call_kind = LocationSummary::kCallOnSlowPath;
1592 }
1593 LocationSummary* locations =
1594 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1595 if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1596 locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
1597 }
1598 DCHECK(!instruction->HasUses());
1599 return locations;
1600 }
1601
GenerateNullCheck(HNullCheck * instruction)1602 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1603 if (compiler_options_.GetImplicitNullChecks()) {
1604 MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1605 GenerateImplicitNullCheck(instruction);
1606 } else {
1607 MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1608 GenerateExplicitNullCheck(instruction);
1609 }
1610 }
1611
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1612 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1613 HParallelMove* spills) const {
1614 LocationSummary* locations = suspend_check->GetLocations();
1615 HBasicBlock* block = suspend_check->GetBlock();
1616 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1617 DCHECK(block->IsLoopHeader());
1618 DCHECK(block->GetFirstInstruction() == spills);
1619
1620 for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1621 Location dest = spills->MoveOperandsAt(i)->GetDestination();
1622 // All parallel moves in loop headers are spills.
1623 DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1624 // Clear the stack bit marking a reference. Do not bother to check if the spill is
1625 // actually a reference spill, clearing bits that are already zero is harmless.
1626 locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1627 }
1628 }
1629
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1630 void CodeGenerator::EmitParallelMoves(Location from1,
1631 Location to1,
1632 DataType::Type type1,
1633 Location from2,
1634 Location to2,
1635 DataType::Type type2) {
1636 HParallelMove parallel_move(GetGraph()->GetAllocator());
1637 parallel_move.AddMove(from1, to1, type1, nullptr);
1638 parallel_move.AddMove(from2, to2, type2, nullptr);
1639 GetMoveResolver()->EmitNativeCode(¶llel_move);
1640 }
1641
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1642 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1643 HInstruction* instruction,
1644 SlowPathCode* slow_path) {
1645 // Ensure that the call kind indication given to the register allocator is
1646 // coherent with the runtime call generated.
1647 if (slow_path == nullptr) {
1648 DCHECK(instruction->GetLocations()->WillCall())
1649 << "instruction->DebugName()=" << instruction->DebugName();
1650 } else {
1651 DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1652 << "instruction->DebugName()=" << instruction->DebugName()
1653 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1654 }
1655
1656 // Check that the GC side effect is set when required.
1657 // TODO: Reverse EntrypointCanTriggerGC
1658 if (EntrypointCanTriggerGC(entrypoint)) {
1659 if (slow_path == nullptr) {
1660 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1661 << "instruction->DebugName()=" << instruction->DebugName()
1662 << " instruction->GetSideEffects().ToString()="
1663 << instruction->GetSideEffects().ToString();
1664 } else {
1665 // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
1666 // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
1667 // if execution never returns to the compiled code from a GC point this restriction is
1668 // unnecessary - in particular for fatal slow paths which might trigger GC.
1669 DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
1670 instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1671 // When (non-Baker) read barriers are enabled, some instructions
1672 // use a slow path to emit a read barrier, which does not trigger
1673 // GC.
1674 (kEmitCompilerReadBarrier &&
1675 !kUseBakerReadBarrier &&
1676 (instruction->IsInstanceFieldGet() ||
1677 instruction->IsPredicatedInstanceFieldGet() ||
1678 instruction->IsStaticFieldGet() ||
1679 instruction->IsArrayGet() ||
1680 instruction->IsLoadClass() ||
1681 instruction->IsLoadString() ||
1682 instruction->IsInstanceOf() ||
1683 instruction->IsCheckCast() ||
1684 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1685 << "instruction->DebugName()=" << instruction->DebugName()
1686 << " instruction->GetSideEffects().ToString()="
1687 << instruction->GetSideEffects().ToString()
1688 << " slow_path->GetDescription()=" << slow_path->GetDescription() << std::endl
1689 << "Instruction and args: " << instruction->DumpWithArgs();
1690 }
1691 } else {
1692 // The GC side effect is not required for the instruction. But the instruction might still have
1693 // it, for example if it calls other entrypoints requiring it.
1694 }
1695
1696 // Check the coherency of leaf information.
1697 DCHECK(instruction->IsSuspendCheck()
1698 || ((slow_path != nullptr) && slow_path->IsFatal())
1699 || instruction->GetLocations()->CanCall()
1700 || !IsLeafMethod())
1701 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1702 }
1703
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1704 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1705 SlowPathCode* slow_path) {
1706 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1707 << "instruction->DebugName()=" << instruction->DebugName()
1708 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1709 // Only the Baker read barrier marking slow path used by certains
1710 // instructions is expected to invoke the runtime without recording
1711 // PC-related information.
1712 DCHECK(kUseBakerReadBarrier);
1713 DCHECK(instruction->IsInstanceFieldGet() ||
1714 instruction->IsPredicatedInstanceFieldGet() ||
1715 instruction->IsStaticFieldGet() ||
1716 instruction->IsArrayGet() ||
1717 instruction->IsArraySet() ||
1718 instruction->IsLoadClass() ||
1719 instruction->IsLoadString() ||
1720 instruction->IsInstanceOf() ||
1721 instruction->IsCheckCast() ||
1722 (instruction->IsInvoke() && instruction->GetLocations()->Intrinsified()))
1723 << "instruction->DebugName()=" << instruction->DebugName()
1724 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1725 }
1726
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1727 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1728 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1729
1730 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1731 for (uint32_t i : LowToHighBits(core_spills)) {
1732 // If the register holds an object, update the stack mask.
1733 if (locations->RegisterContainsObject(i)) {
1734 locations->SetStackBit(stack_offset / kVRegSize);
1735 }
1736 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1737 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1738 saved_core_stack_offsets_[i] = stack_offset;
1739 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1740 }
1741
1742 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1743 for (uint32_t i : LowToHighBits(fp_spills)) {
1744 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1745 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1746 saved_fpu_stack_offsets_[i] = stack_offset;
1747 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1748 }
1749 }
1750
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1751 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1752 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1753
1754 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1755 for (uint32_t i : LowToHighBits(core_spills)) {
1756 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1757 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1758 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1759 }
1760
1761 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1762 for (uint32_t i : LowToHighBits(fp_spills)) {
1763 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1764 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1765 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1766 }
1767 }
1768
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1769 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1770 // Check to see if we have known failures that will cause us to have to bail out
1771 // to the runtime, and just generate the runtime call directly.
1772 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1773 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1774
1775 // The positions must be non-negative.
1776 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1777 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1778 // We will have to fail anyways.
1779 return;
1780 }
1781
1782 // The length must be >= 0.
1783 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1784 if (length != nullptr) {
1785 int32_t len = length->GetValue();
1786 if (len < 0) {
1787 // Just call as normal.
1788 return;
1789 }
1790 }
1791
1792 SystemArrayCopyOptimizations optimizations(invoke);
1793
1794 if (optimizations.GetDestinationIsSource()) {
1795 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1796 // We only support backward copying if source and destination are the same.
1797 return;
1798 }
1799 }
1800
1801 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1802 // We currently don't intrinsify primitive copying.
1803 return;
1804 }
1805
1806 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1807 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1808 LocationSummary::kCallOnSlowPath,
1809 kIntrinsified);
1810 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1811 locations->SetInAt(0, Location::RequiresRegister());
1812 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1813 locations->SetInAt(2, Location::RequiresRegister());
1814 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1815 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1816
1817 locations->AddTemp(Location::RequiresRegister());
1818 locations->AddTemp(Location::RequiresRegister());
1819 locations->AddTemp(Location::RequiresRegister());
1820 }
1821
EmitJitRoots(uint8_t * code,const uint8_t * roots_data,std::vector<Handle<mirror::Object>> * roots)1822 void CodeGenerator::EmitJitRoots(uint8_t* code,
1823 const uint8_t* roots_data,
1824 /*out*/std::vector<Handle<mirror::Object>>* roots) {
1825 code_generation_data_->EmitJitRoots(roots);
1826 EmitJitRootPatches(code, roots_data);
1827 }
1828
GetArrayAllocationEntrypoint(HNewArray * new_array)1829 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
1830 switch (new_array->GetComponentSizeShift()) {
1831 case 0: return kQuickAllocArrayResolved8;
1832 case 1: return kQuickAllocArrayResolved16;
1833 case 2: return kQuickAllocArrayResolved32;
1834 case 3: return kQuickAllocArrayResolved64;
1835 }
1836 LOG(FATAL) << "Unreachable";
1837 UNREACHABLE();
1838 }
1839
ScaleFactorForType(DataType::Type type)1840 ScaleFactor CodeGenerator::ScaleFactorForType(DataType::Type type) {
1841 switch (type) {
1842 case DataType::Type::kBool:
1843 case DataType::Type::kUint8:
1844 case DataType::Type::kInt8:
1845 return TIMES_1;
1846 case DataType::Type::kUint16:
1847 case DataType::Type::kInt16:
1848 return TIMES_2;
1849 case DataType::Type::kInt32:
1850 case DataType::Type::kUint32:
1851 case DataType::Type::kFloat32:
1852 case DataType::Type::kReference:
1853 return TIMES_4;
1854 case DataType::Type::kInt64:
1855 case DataType::Type::kUint64:
1856 case DataType::Type::kFloat64:
1857 return TIMES_8;
1858 case DataType::Type::kVoid:
1859 LOG(FATAL) << "Unreachable type " << type;
1860 UNREACHABLE();
1861 }
1862 }
1863
1864 } // namespace art
1865