• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_GPU_IR_EMITTER_H_
17 #define TENSORFLOW_COMPILER_XLA_SERVICE_GPU_IR_EMITTER_H_
18 
19 #include <functional>
20 #include <map>
21 #include <memory>
22 #include <utility>
23 #include <vector>
24 
25 #include "absl/strings/string_view.h"
26 #include "absl/types/span.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/Value.h"
30 #include "tensorflow/compiler/xla/service/buffer_assignment.h"
31 #include "tensorflow/compiler/xla/service/dfs_hlo_visitor_with_default.h"
32 #include "tensorflow/compiler/xla/service/gpu/elemental_ir_emitter.h"
33 #include "tensorflow/compiler/xla/service/gpu/hlo_to_ir_bindings.h"
34 #include "tensorflow/compiler/xla/service/gpu/ir_emitter_context.h"
35 #include "tensorflow/compiler/xla/service/gpu/kernel_thunk.h"
36 #include "tensorflow/compiler/xla/service/gpu/thunk.h"
37 #include "tensorflow/compiler/xla/service/hlo_computation.h"
38 #include "tensorflow/compiler/xla/service/hlo_instruction.h"
39 #include "tensorflow/compiler/xla/service/llvm_ir/fused_ir_emitter.h"
40 #include "tensorflow/compiler/xla/service/llvm_ir/ir_array.h"
41 #include "tensorflow/compiler/xla/service/llvm_ir/ir_builder_mixin.h"
42 #include "tensorflow/compiler/xla/service/llvm_ir/llvm_loop.h"
43 #include "tensorflow/compiler/xla/service/llvm_ir/loop_emitter.h"
44 #include "tensorflow/compiler/xla/statusor.h"
45 #include "tensorflow/compiler/xla/types.h"
46 #include "tensorflow/compiler/xla/xla_data.pb.h"
47 #include "tensorflow/core/platform/types.h"
48 
49 namespace xla {
50 namespace gpu {
51 
52 // Abstract base class for translating HLO graphs to LLVM IR for a GPU.
53 //
54 // There are two concrete subclasses of IrEmitter: IrEmitterNested and
55 // IrEmitterUnnested.  In the unnested variety, each HLO gets its own kernel
56 // function, whereas in the nested version the whole computation is emitted as
57 // one *non-kernel* function.
58 //
59 // In XLA, kernel functions never call other kernel functions.  This means that
60 // if we have a kernel -- e.g. implementing a kReduce HLO -- that wants to use
61 // an HLO computation as a "subroutine" -- e.g. the HLO computation that
62 // specifies how to reduce two elements -- then the subroutine computation must
63 // be emitted using IrEmitterNested.
64 //
65 // Fusion nodes are a special case.  A fusion node is emitted using
66 // IrEmitterUnnested, but the code is generated using FusedIrEmitter, which is
67 // not a subclass of gpu::IrEmitter, and in fact is better understood as an IR
68 // generator generator.  See comments on that class.
69 class IrEmitter : public DfsHloVisitorWithDefault,
70                   public IrBuilderMixin<IrEmitter> {
71  public:
72   using GeneratorForOperandIrArrays =
73       std::function<std::vector<llvm_ir::IrArray>()>;
74 
75   IrEmitter(const IrEmitter&) = delete;
76   IrEmitter& operator=(const IrEmitter&) = delete;
77 
78   Status DefaultAction(HloInstruction* hlo) override;
79   Status HandleConstant(HloInstruction* constant) override;
80   Status HandleGetTupleElement(HloInstruction* get_tuple_element) override;
81   Status HandleConvolution(HloInstruction* convolution) override;
82   Status HandleFft(HloInstruction* fft) override;
83   Status HandleAllReduce(HloInstruction* crs) override;
84   Status HandleInfeed(HloInstruction* infeed) override;
85   Status HandleOutfeed(HloInstruction* outfeed) override;
86   Status HandleSend(HloInstruction* send) override;
87   Status HandleSendDone(HloInstruction* send_done) override;
88   Status HandleRecv(HloInstruction* recv) override;
89   Status HandleRecvDone(HloInstruction* recv_done) override;
90   Status HandleParameter(HloInstruction* parameter) override;
91   Status HandleTuple(HloInstruction* tuple) override;
92   Status HandleScatter(HloInstruction* scatter) override;
93   Status HandleTupleSelect(HloInstruction* tuple_select) override;
94   Status HandleFusion(HloInstruction* fusion) override;
95   Status HandleCall(HloInstruction* call) override;
96   Status HandleCustomCall(HloInstruction* custom_call) override;
97   Status HandleBatchNormInference(HloInstruction* batch_norm) override;
98   Status HandleBatchNormTraining(HloInstruction* batch_norm) override;
99   Status HandleBatchNormGrad(HloInstruction* batch_norm) override;
100   Status HandleAddDependency(HloInstruction* add_dependency) override;
101 
FinishVisit(HloInstruction * root)102   Status FinishVisit(HloInstruction* root) override { return Status::OK(); }
103 
builder()104   llvm::IRBuilder<>* builder() { return &b_; }
105 
106   // Emits constants to generated LLVM IR, and also populate related
107   // inforamtion to ir_emitter_context for large-constant initializations.
108   Status EmitConstants(const HloComputation& computation);
109 
110  protected:
111   // Constructs an IrEmitter with the given IrEmitter context.
112   // ir_emitter_context is owned by the caller and should outlive the IrEmitter
113   // object.
114   explicit IrEmitter(const HloModuleConfig& hlo_module_config,
115                      IrEmitterContext* ir_emitter_context, bool is_nested);
116 
117   // Helper for calling HloToIrBindings::GetIrArray.
118   //
119   // Gets the IrArray which contains inst.  This array has metadata that makes
120   // it valid only within the IR that implements consumer.  If you are
121   // implementing an HLO and want to get its own output buffer, call
122   // GetIrArray(hlo, hlo).
123   llvm_ir::IrArray GetIrArray(const HloInstruction& inst,
124                               const HloInstruction& consumer,
125                               const ShapeIndex& shape_index = {}) {
126     return bindings_.GetIrArray(inst, consumer, shape_index);
127   }
128   // A convenient helper for calling HloToIrBindings::GetBasePointer.
129   llvm::Value* GetBasePointer(const HloInstruction& inst,
130                               ShapeIndexView shape_index = {}) const {
131     return bindings_.GetBasePointer(inst, shape_index);
132   }
133 
134   // Generates the IrArray for each output of an hlo instruction and returns
135   // a vector containing such IrArrays.
136   std::vector<llvm_ir::IrArray> ConstructIrArrayForOutputs(
137       const HloInstruction& hlo);
138 
139   // Emit a singlethreaded or multithreaded loop that computes every element in
140   // the result of the given HLO instruction. This produces a series of nested
141   // loops (e.g. one for each dimension of the `hlo`'s shape). The body of the
142   // inner-most loop is provided by the body_emitter function.
143   virtual Status EmitTargetElementLoop(
144       const HloInstruction& hlo,
145       const llvm_ir::ElementGenerator& body_emitter) = 0;
146 
147   // Emits a call in IR to the given nested computation with the given operands
148   // and output. If no IR function has been previously emitted for the
149   // computation, also emits such a function.
150   Status EmitCallToNestedComputation(const HloComputation& nested_computation,
151                                      absl::Span<llvm::Value* const> operands,
152                                      llvm::Value* output);
153 
154   // Emits an atomic operation that implements `nested_computation` in the
155   // sequentially consistent memory model. `output_address` and `source_address`
156   // are the arguments of the nested computation. For example,
157   // atomicAdd(output_address, *source_address).
158   Status EmitAtomicOperationForNestedComputation(
159       const HloComputation& nested_computation, llvm::Value* output_address,
160       llvm::Value* source_address);
161 
GetNestedComputer()162   GpuElementalIrEmitter::NestedComputer GetNestedComputer() {
163     return std::bind(&IrEmitter::ComputeNestedElement, this,
164                      std::placeholders::_1, std::placeholders::_2);
165   }
166 
167   IrEmitterContext* ir_emitter_context_;
168   llvm::Module* module_;
169 
170   // The following fields track the IR emission state. According to LLVM memory
171   // management rules, their memory is owned by the module.
172   llvm::IRBuilder<> b_;
173 
174   // Mapping from HLO to its underlying LLVM value.
175   HloToIrBindings bindings_;
176 
177   // Hlo configuration data used during code generation.
178   const HloModuleConfig& hlo_module_config_;
179 
180  protected:
181   // Bind all argument IrArrays of `fusion` to `fused_emitter`.
182   void BindFusionArguments(const HloInstruction* fusion,
183                            FusedIrEmitter* fused_emitter);
184 
185  private:
186   // A helper method for EmitAtomicOperationForNestedComputation. Certain
187   // computations, such as floating-point addition and integer maximization, can
188   // be simply implemented using an LLVM atomic instruction. If "computation" is
189   // one of this kind, emits code to do that and returns true; otherwise,
190   // returns false.
191   bool MaybeEmitDirectAtomicOperation(const HloComputation& computation,
192                                       llvm::Value* output_address,
193                                       llvm::Value* source_address);
194 
195   // A helper method for EmitAtomicOperationForNestedComputation. It implements
196   // binary atomic operations using atomicCAS with special handling to support
197   // small data types.
198   Status EmitAtomicOperationUsingCAS(const HloComputation& computation,
199                                      llvm::Value* output_address,
200                                      llvm::Value* source_address);
201 
202   // A helper method for HandleSort(). It adds the inner comparison loop where
203   // we compare elements pointed to by 'keys_index' and 'compare_keys_index'.
204   void EmitCompareLoop(int64_t dimension_to_sort,
205                        const llvm_ir::IrArray::Index& keys_index,
206                        const llvm_ir::IrArray::Index& compare_keys_index,
207                        const llvm_ir::IrArray& keys_array);
208 
209   StatusOr<std::vector<llvm::Value*>> ComputeNestedElement(
210       const HloComputation& computation,
211       absl::Span<llvm::Value* const> parameter_elements);
212 
213   // Emits an atomic operation that implements `nested_computation` in the
214   // sequentially consistent memory model. `output_address` and `source_address`
215   // are the arguments of the nested computation. For example,
216   // atomicAdd(output_address, *source_address).
217   StatusOr<llvm::Function*> EmitAtomicFunctionForNestedComputation(
218       const HloComputation& nested_computation, llvm::Type* element_ir_type);
219 
220   // Map nested computations to emitted IR functions. This serves as a cache so
221   // that IrEmitter does not emit multiple functions for the same
222   // HloComputation.
223   std::map<const HloComputation*, llvm::Function*> computation_to_ir_function_;
224 };
225 
226 }  // namespace gpu
227 }  // namespace xla
228 
229 #endif  // TENSORFLOW_COMPILER_XLA_SERVICE_GPU_IR_EMITTER_H_
230