• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19 
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23 
24 #include "art_method.h"
25 #include "base/arena_allocator.h"
26 #include "base/arena_bit_vector.h"
27 #include "base/arena_containers.h"
28 #include "base/arena_object.h"
29 #include "base/array_ref.h"
30 #include "base/intrusive_forward_list.h"
31 #include "base/iteration_range.h"
32 #include "base/mutex.h"
33 #include "base/quasi_atomic.h"
34 #include "base/stl_util.h"
35 #include "base/transform_array_ref.h"
36 #include "block_namer.h"
37 #include "class_root.h"
38 #include "compilation_kind.h"
39 #include "data_type.h"
40 #include "deoptimization_kind.h"
41 #include "dex/dex_file.h"
42 #include "dex/dex_file_types.h"
43 #include "dex/invoke_type.h"
44 #include "dex/method_reference.h"
45 #include "entrypoints/quick/quick_entrypoints_enum.h"
46 #include "handle.h"
47 #include "handle_scope.h"
48 #include "intrinsics_enum.h"
49 #include "locations.h"
50 #include "mirror/class.h"
51 #include "mirror/method_type.h"
52 #include "offsets.h"
53 
54 namespace art {
55 
56 class ArenaStack;
57 class CodeGenerator;
58 class GraphChecker;
59 class HBasicBlock;
60 class HConstructorFence;
61 class HCurrentMethod;
62 class HDoubleConstant;
63 class HEnvironment;
64 class HFloatConstant;
65 class HGraphBuilder;
66 class HGraphVisitor;
67 class HInstruction;
68 class HIntConstant;
69 class HInvoke;
70 class HLongConstant;
71 class HNullConstant;
72 class HParameterValue;
73 class HPhi;
74 class HSuspendCheck;
75 class HTryBoundary;
76 class FieldInfo;
77 class LiveInterval;
78 class LocationSummary;
79 class ProfilingInfo;
80 class SlowPathCode;
81 class SsaBuilder;
82 
83 namespace mirror {
84 class DexCache;
85 }  // namespace mirror
86 
87 static const int kDefaultNumberOfBlocks = 8;
88 static const int kDefaultNumberOfSuccessors = 2;
89 static const int kDefaultNumberOfPredecessors = 2;
90 static const int kDefaultNumberOfExceptionalPredecessors = 0;
91 static const int kDefaultNumberOfDominatedBlocks = 1;
92 static const int kDefaultNumberOfBackEdges = 1;
93 
94 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
95 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
96 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
97 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
98 
99 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
100 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
101 
102 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
103 
104 static constexpr uint32_t kNoDexPc = -1;
105 
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)106 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
107   // For the purposes of the compiler, the dex files must actually be the same object
108   // if we want to safely treat them as the same. This is especially important for JIT
109   // as custom class loaders can open the same underlying file (or memory) multiple
110   // times and provide different class resolution but no two class loaders should ever
111   // use the same DexFile object - doing so is an unsupported hack that can lead to
112   // all sorts of weird failures.
113   return &lhs == &rhs;
114 }
115 
116 enum IfCondition {
117   // All types.
118   kCondEQ,  // ==
119   kCondNE,  // !=
120   // Signed integers and floating-point numbers.
121   kCondLT,  // <
122   kCondLE,  // <=
123   kCondGT,  // >
124   kCondGE,  // >=
125   // Unsigned integers.
126   kCondB,   // <
127   kCondBE,  // <=
128   kCondA,   // >
129   kCondAE,  // >=
130   // First and last aliases.
131   kCondFirst = kCondEQ,
132   kCondLast = kCondAE,
133 };
134 
135 enum GraphAnalysisResult {
136   kAnalysisSkipped,
137   kAnalysisInvalidBytecode,
138   kAnalysisFailThrowCatchLoop,
139   kAnalysisFailAmbiguousArrayOp,
140   kAnalysisFailIrreducibleLoopAndStringInit,
141   kAnalysisFailPhiEquivalentInOsr,
142   kAnalysisSuccess,
143 };
144 
145 template <typename T>
MakeUnsigned(T x)146 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
147   return static_cast<typename std::make_unsigned<T>::type>(x);
148 }
149 
150 class HInstructionList : public ValueObject {
151  public:
HInstructionList()152   HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
153 
154   void AddInstruction(HInstruction* instruction);
155   void RemoveInstruction(HInstruction* instruction);
156 
157   // Insert `instruction` before/after an existing instruction `cursor`.
158   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
159   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
160 
161   // Return true if this list contains `instruction`.
162   bool Contains(HInstruction* instruction) const;
163 
164   // Return true if `instruction1` is found before `instruction2` in
165   // this instruction list and false otherwise.  Abort if none
166   // of these instructions is found.
167   bool FoundBefore(const HInstruction* instruction1,
168                    const HInstruction* instruction2) const;
169 
IsEmpty()170   bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()171   void Clear() { first_instruction_ = last_instruction_ = nullptr; }
172 
173   // Update the block of all instructions to be `block`.
174   void SetBlockOfInstructions(HBasicBlock* block) const;
175 
176   void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
177   void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
178   void Add(const HInstructionList& instruction_list);
179 
180   // Return the number of instructions in the list. This is an expensive operation.
181   size_t CountSize() const;
182 
183  private:
184   HInstruction* first_instruction_;
185   HInstruction* last_instruction_;
186 
187   friend class HBasicBlock;
188   friend class HGraph;
189   friend class HInstruction;
190   friend class HInstructionIterator;
191   friend class HInstructionIteratorHandleChanges;
192   friend class HBackwardInstructionIterator;
193 
194   DISALLOW_COPY_AND_ASSIGN(HInstructionList);
195 };
196 
197 class ReferenceTypeInfo : ValueObject {
198  public:
199   using TypeHandle = Handle<mirror::Class>;
200 
201   static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
202 
Create(TypeHandle type_handle)203   static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
204     return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
205   }
206 
CreateUnchecked(TypeHandle type_handle,bool is_exact)207   static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
208     return ReferenceTypeInfo(type_handle, is_exact);
209   }
210 
CreateInvalid()211   static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
212 
IsValidHandle(TypeHandle handle)213   static bool IsValidHandle(TypeHandle handle) {
214     return handle.GetReference() != nullptr;
215   }
216 
IsValid()217   bool IsValid() const {
218     return IsValidHandle(type_handle_);
219   }
220 
IsExact()221   bool IsExact() const { return is_exact_; }
222 
IsObjectClass()223   bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
224     DCHECK(IsValid());
225     return GetTypeHandle()->IsObjectClass();
226   }
227 
IsStringClass()228   bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
229     DCHECK(IsValid());
230     return GetTypeHandle()->IsStringClass();
231   }
232 
IsObjectArray()233   bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
234     DCHECK(IsValid());
235     return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
236   }
237 
IsInterface()238   bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
239     DCHECK(IsValid());
240     return GetTypeHandle()->IsInterface();
241   }
242 
IsArrayClass()243   bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
244     DCHECK(IsValid());
245     return GetTypeHandle()->IsArrayClass();
246   }
247 
IsPrimitiveArrayClass()248   bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
249     DCHECK(IsValid());
250     return GetTypeHandle()->IsPrimitiveArray();
251   }
252 
IsNonPrimitiveArrayClass()253   bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
254     DCHECK(IsValid());
255     return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
256   }
257 
CanArrayHold(ReferenceTypeInfo rti)258   bool CanArrayHold(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
259     DCHECK(IsValid());
260     if (!IsExact()) return false;
261     if (!IsArrayClass()) return false;
262     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
263   }
264 
CanArrayHoldValuesOf(ReferenceTypeInfo rti)265   bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
266     DCHECK(IsValid());
267     if (!IsExact()) return false;
268     if (!IsArrayClass()) return false;
269     if (!rti.IsArrayClass()) return false;
270     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
271         rti.GetTypeHandle()->GetComponentType());
272   }
273 
GetTypeHandle()274   Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
275 
IsSupertypeOf(ReferenceTypeInfo rti)276   bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
277     DCHECK(IsValid());
278     DCHECK(rti.IsValid());
279     return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
280   }
281 
282   // Returns true if the type information provide the same amount of details.
283   // Note that it does not mean that the instructions have the same actual type
284   // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)285   bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
286     if (!IsValid() && !rti.IsValid()) {
287       // Invalid types are equal.
288       return true;
289     }
290     if (!IsValid() || !rti.IsValid()) {
291       // One is valid, the other not.
292       return false;
293     }
294     return IsExact() == rti.IsExact()
295         && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
296   }
297 
298  private:
ReferenceTypeInfo()299   ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)300   ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
301       : type_handle_(type_handle), is_exact_(is_exact) { }
302 
303   // The class of the object.
304   TypeHandle type_handle_;
305   // Whether or not the type is exact or a superclass of the actual type.
306   // Whether or not we have any information about this type.
307   bool is_exact_;
308 };
309 
310 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
311 
312 class HandleCache {
313  public:
HandleCache(VariableSizedHandleScope * handles)314   explicit HandleCache(VariableSizedHandleScope* handles) : handles_(handles) { }
315 
GetHandles()316   VariableSizedHandleScope* GetHandles() { return handles_; }
317 
318   template <typename T>
NewHandle(T * object)319   MutableHandle<T> NewHandle(T* object) REQUIRES_SHARED(Locks::mutator_lock_) {
320     return handles_->NewHandle(object);
321   }
322 
323   template <typename T>
NewHandle(ObjPtr<T> object)324   MutableHandle<T> NewHandle(ObjPtr<T> object) REQUIRES_SHARED(Locks::mutator_lock_) {
325     return handles_->NewHandle(object);
326   }
327 
GetObjectClassHandle()328   ReferenceTypeInfo::TypeHandle GetObjectClassHandle() {
329     return GetRootHandle(ClassRoot::kJavaLangObject, &object_class_handle_);
330   }
331 
GetClassClassHandle()332   ReferenceTypeInfo::TypeHandle GetClassClassHandle() {
333     return GetRootHandle(ClassRoot::kJavaLangClass, &class_class_handle_);
334   }
335 
GetMethodHandleClassHandle()336   ReferenceTypeInfo::TypeHandle GetMethodHandleClassHandle() {
337     return GetRootHandle(ClassRoot::kJavaLangInvokeMethodHandleImpl, &method_handle_class_handle_);
338   }
339 
GetMethodTypeClassHandle()340   ReferenceTypeInfo::TypeHandle GetMethodTypeClassHandle() {
341     return GetRootHandle(ClassRoot::kJavaLangInvokeMethodType, &method_type_class_handle_);
342   }
343 
GetStringClassHandle()344   ReferenceTypeInfo::TypeHandle GetStringClassHandle() {
345     return GetRootHandle(ClassRoot::kJavaLangString, &string_class_handle_);
346   }
347 
GetThrowableClassHandle()348   ReferenceTypeInfo::TypeHandle GetThrowableClassHandle() {
349     return GetRootHandle(ClassRoot::kJavaLangThrowable, &throwable_class_handle_);
350   }
351 
352 
353  private:
GetRootHandle(ClassRoot class_root,ReferenceTypeInfo::TypeHandle * cache)354   inline ReferenceTypeInfo::TypeHandle GetRootHandle(ClassRoot class_root,
355                                                      ReferenceTypeInfo::TypeHandle* cache) {
356     if (UNLIKELY(!ReferenceTypeInfo::IsValidHandle(*cache))) {
357       *cache = CreateRootHandle(handles_, class_root);
358     }
359     return *cache;
360   }
361 
362   static ReferenceTypeInfo::TypeHandle CreateRootHandle(VariableSizedHandleScope* handles,
363                                                         ClassRoot class_root);
364 
365   VariableSizedHandleScope* handles_;
366 
367   ReferenceTypeInfo::TypeHandle object_class_handle_;
368   ReferenceTypeInfo::TypeHandle class_class_handle_;
369   ReferenceTypeInfo::TypeHandle method_handle_class_handle_;
370   ReferenceTypeInfo::TypeHandle method_type_class_handle_;
371   ReferenceTypeInfo::TypeHandle string_class_handle_;
372   ReferenceTypeInfo::TypeHandle throwable_class_handle_;
373 };
374 
375 // Control-flow graph of a method. Contains a list of basic blocks.
376 class HGraph : public ArenaObject<kArenaAllocGraph> {
377  public:
378   HGraph(ArenaAllocator* allocator,
379          ArenaStack* arena_stack,
380          VariableSizedHandleScope* handles,
381          const DexFile& dex_file,
382          uint32_t method_idx,
383          InstructionSet instruction_set,
384          InvokeType invoke_type = kInvalidInvokeType,
385          bool dead_reference_safe = false,
386          bool debuggable = false,
387          CompilationKind compilation_kind = CompilationKind::kOptimized,
388          int start_instruction_id = 0)
allocator_(allocator)389       : allocator_(allocator),
390         arena_stack_(arena_stack),
391         handle_cache_(handles),
392         blocks_(allocator->Adapter(kArenaAllocBlockList)),
393         reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
394         linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
395         reachability_graph_(allocator, 0, 0, true, kArenaAllocReachabilityGraph),
396         entry_block_(nullptr),
397         exit_block_(nullptr),
398         maximum_number_of_out_vregs_(0),
399         number_of_vregs_(0),
400         number_of_in_vregs_(0),
401         temporaries_vreg_slots_(0),
402         has_bounds_checks_(false),
403         has_try_catch_(false),
404         has_monitor_operations_(false),
405         has_simd_(false),
406         has_loops_(false),
407         has_irreducible_loops_(false),
408         has_direct_critical_native_call_(false),
409         dead_reference_safe_(dead_reference_safe),
410         debuggable_(debuggable),
411         current_instruction_id_(start_instruction_id),
412         dex_file_(dex_file),
413         method_idx_(method_idx),
414         invoke_type_(invoke_type),
415         in_ssa_form_(false),
416         number_of_cha_guards_(0),
417         instruction_set_(instruction_set),
418         cached_null_constant_(nullptr),
419         cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
420         cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
421         cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
422         cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
423         cached_current_method_(nullptr),
424         art_method_(nullptr),
425         compilation_kind_(compilation_kind),
426         cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) {
427     blocks_.reserve(kDefaultNumberOfBlocks);
428   }
429 
430   std::ostream& Dump(std::ostream& os,
431                      CodeGenerator* codegen,
432                      std::optional<std::reference_wrapper<const BlockNamer>> namer = std::nullopt);
433 
GetAllocator()434   ArenaAllocator* GetAllocator() const { return allocator_; }
GetArenaStack()435   ArenaStack* GetArenaStack() const { return arena_stack_; }
436 
GetHandleCache()437   HandleCache* GetHandleCache() { return &handle_cache_; }
438 
GetBlocks()439   const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
440 
441   // An iterator to only blocks that are still actually in the graph (when
442   // blocks are removed they are replaced with 'nullptr' in GetBlocks to
443   // simplify block-id assignment and avoid memmoves in the block-list).
GetActiveBlocks()444   IterationRange<FilterNull<ArenaVector<HBasicBlock*>::const_iterator>> GetActiveBlocks() const {
445     return FilterOutNull(MakeIterationRange(GetBlocks()));
446   }
447 
IsInSsaForm()448   bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()449   void SetInSsaForm() { in_ssa_form_ = true; }
450 
GetEntryBlock()451   HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()452   HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()453   bool HasExitBlock() const { return exit_block_ != nullptr; }
454 
SetEntryBlock(HBasicBlock * block)455   void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)456   void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
457 
458   void AddBlock(HBasicBlock* block);
459 
460   void ComputeDominanceInformation();
461   void ClearDominanceInformation();
462   void ComputeReachabilityInformation();
463   void ClearReachabilityInformation();
464   void ClearLoopInformation();
465   void FindBackEdges(ArenaBitVector* visited);
466   GraphAnalysisResult BuildDominatorTree();
467   void SimplifyCFG();
468   void SimplifyCatchBlocks();
469 
470   // Analyze all natural loops in this graph. Returns a code specifying that it
471   // was successful or the reason for failure. The method will fail if a loop
472   // is a throw-catch loop, i.e. the header is a catch block.
473   GraphAnalysisResult AnalyzeLoops() const;
474 
475   // Iterate over blocks to compute try block membership. Needs reverse post
476   // order and loop information.
477   void ComputeTryBlockInformation();
478 
479   // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
480   // Returns the instruction to replace the invoke expression or null if the
481   // invoke is for a void method. Note that the caller is responsible for replacing
482   // and removing the invoke instruction.
483   HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
484 
485   // Update the loop and try membership of `block`, which was spawned from `reference`.
486   // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
487   // should be the new back edge.
488   void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
489                                              HBasicBlock* reference,
490                                              bool replace_if_back_edge);
491 
492   // Need to add a couple of blocks to test if the loop body is entered and
493   // put deoptimization instructions, etc.
494   void TransformLoopHeaderForBCE(HBasicBlock* header);
495 
496   // Adds a new loop directly after the loop with the given header and exit.
497   // Returns the new preheader.
498   HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
499                                              HBasicBlock* body,
500                                              HBasicBlock* exit);
501 
502   // Removes `block` from the graph. Assumes `block` has been disconnected from
503   // other blocks and has no instructions or phis.
504   void DeleteDeadEmptyBlock(HBasicBlock* block);
505 
506   // Splits the edge between `block` and `successor` while preserving the
507   // indices in the predecessor/successor lists. If there are multiple edges
508   // between the blocks, the lowest indices are used.
509   // Returns the new block which is empty and has the same dex pc as `successor`.
510   HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
511 
512   void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
513   void OrderLoopHeaderPredecessors(HBasicBlock* header);
514 
515   // Transform a loop into a format with a single preheader.
516   //
517   // Each phi in the header should be split: original one in the header should only hold
518   // inputs reachable from the back edges and a single input from the preheader. The newly created
519   // phi in the preheader should collate the inputs from the original multiple incoming blocks.
520   //
521   // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
522   // that no longer have this property.
523   void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
524 
525   void SimplifyLoop(HBasicBlock* header);
526 
GetNextInstructionId()527   int32_t GetNextInstructionId() {
528     CHECK_NE(current_instruction_id_, INT32_MAX);
529     return current_instruction_id_++;
530   }
531 
GetCurrentInstructionId()532   int32_t GetCurrentInstructionId() const {
533     return current_instruction_id_;
534   }
535 
SetCurrentInstructionId(int32_t id)536   void SetCurrentInstructionId(int32_t id) {
537     CHECK_GE(id, current_instruction_id_);
538     current_instruction_id_ = id;
539   }
540 
GetMaximumNumberOfOutVRegs()541   uint16_t GetMaximumNumberOfOutVRegs() const {
542     return maximum_number_of_out_vregs_;
543   }
544 
SetMaximumNumberOfOutVRegs(uint16_t new_value)545   void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
546     maximum_number_of_out_vregs_ = new_value;
547   }
548 
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)549   void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
550     maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
551   }
552 
UpdateTemporariesVRegSlots(size_t slots)553   void UpdateTemporariesVRegSlots(size_t slots) {
554     temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
555   }
556 
GetTemporariesVRegSlots()557   size_t GetTemporariesVRegSlots() const {
558     DCHECK(!in_ssa_form_);
559     return temporaries_vreg_slots_;
560   }
561 
SetNumberOfVRegs(uint16_t number_of_vregs)562   void SetNumberOfVRegs(uint16_t number_of_vregs) {
563     number_of_vregs_ = number_of_vregs;
564   }
565 
GetNumberOfVRegs()566   uint16_t GetNumberOfVRegs() const {
567     return number_of_vregs_;
568   }
569 
SetNumberOfInVRegs(uint16_t value)570   void SetNumberOfInVRegs(uint16_t value) {
571     number_of_in_vregs_ = value;
572   }
573 
GetNumberOfInVRegs()574   uint16_t GetNumberOfInVRegs() const {
575     return number_of_in_vregs_;
576   }
577 
GetNumberOfLocalVRegs()578   uint16_t GetNumberOfLocalVRegs() const {
579     DCHECK(!in_ssa_form_);
580     return number_of_vregs_ - number_of_in_vregs_;
581   }
582 
GetReversePostOrder()583   const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
584     return reverse_post_order_;
585   }
586 
GetReversePostOrderSkipEntryBlock()587   ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
588     DCHECK(GetReversePostOrder()[0] == entry_block_);
589     return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
590   }
591 
GetPostOrder()592   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
593     return ReverseRange(GetReversePostOrder());
594   }
595 
GetLinearOrder()596   const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
597     return linear_order_;
598   }
599 
GetLinearPostOrder()600   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
601     return ReverseRange(GetLinearOrder());
602   }
603 
HasBoundsChecks()604   bool HasBoundsChecks() const {
605     return has_bounds_checks_;
606   }
607 
SetHasBoundsChecks(bool value)608   void SetHasBoundsChecks(bool value) {
609     has_bounds_checks_ = value;
610   }
611 
612   // Returns true if dest is reachable from source, using either blocks or block-ids.
613   bool PathBetween(const HBasicBlock* source, const HBasicBlock* dest) const;
614   bool PathBetween(uint32_t source_id, uint32_t dest_id) const;
615 
616   // Is the code known to be robust against eliminating dead references
617   // and the effects of early finalization?
IsDeadReferenceSafe()618   bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
619 
MarkDeadReferenceUnsafe()620   void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
621 
IsDebuggable()622   bool IsDebuggable() const { return debuggable_; }
623 
624   // Returns a constant of the given type and value. If it does not exist
625   // already, it is created and inserted into the graph. This method is only for
626   // integral types.
627   HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
628 
629   // TODO: This is problematic for the consistency of reference type propagation
630   // because it can be created anytime after the pass and thus it will be left
631   // with an invalid type.
632   HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
633 
634   HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
635     return CreateConstant(value, &cached_int_constants_, dex_pc);
636   }
637   HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
638     return CreateConstant(value, &cached_long_constants_, dex_pc);
639   }
640   HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
641     return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
642   }
643   HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
644     return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
645   }
646 
647   HCurrentMethod* GetCurrentMethod();
648 
GetDexFile()649   const DexFile& GetDexFile() const {
650     return dex_file_;
651   }
652 
GetMethodIdx()653   uint32_t GetMethodIdx() const {
654     return method_idx_;
655   }
656 
657   // Get the method name (without the signature), e.g. "<init>"
658   const char* GetMethodName() const;
659 
660   // Get the pretty method name (class + name + optionally signature).
661   std::string PrettyMethod(bool with_signature = true) const;
662 
GetInvokeType()663   InvokeType GetInvokeType() const {
664     return invoke_type_;
665   }
666 
GetInstructionSet()667   InstructionSet GetInstructionSet() const {
668     return instruction_set_;
669   }
670 
IsCompilingOsr()671   bool IsCompilingOsr() const { return compilation_kind_ == CompilationKind::kOsr; }
672 
IsCompilingBaseline()673   bool IsCompilingBaseline() const { return compilation_kind_ == CompilationKind::kBaseline; }
674 
GetCompilationKind()675   CompilationKind GetCompilationKind() const { return compilation_kind_; }
676 
GetCHASingleImplementationList()677   ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
678     return cha_single_implementation_list_;
679   }
680 
AddCHASingleImplementationDependency(ArtMethod * method)681   void AddCHASingleImplementationDependency(ArtMethod* method) {
682     cha_single_implementation_list_.insert(method);
683   }
684 
HasShouldDeoptimizeFlag()685   bool HasShouldDeoptimizeFlag() const {
686     return number_of_cha_guards_ != 0 || debuggable_;
687   }
688 
HasTryCatch()689   bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)690   void SetHasTryCatch(bool value) { has_try_catch_ = value; }
691 
HasMonitorOperations()692   bool HasMonitorOperations() const { return has_monitor_operations_; }
SetHasMonitorOperations(bool value)693   void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
694 
HasSIMD()695   bool HasSIMD() const { return has_simd_; }
SetHasSIMD(bool value)696   void SetHasSIMD(bool value) { has_simd_ = value; }
697 
HasLoops()698   bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)699   void SetHasLoops(bool value) { has_loops_ = value; }
700 
HasIrreducibleLoops()701   bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)702   void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
703 
HasDirectCriticalNativeCall()704   bool HasDirectCriticalNativeCall() const { return has_direct_critical_native_call_; }
SetHasDirectCriticalNativeCall(bool value)705   void SetHasDirectCriticalNativeCall(bool value) { has_direct_critical_native_call_ = value; }
706 
GetArtMethod()707   ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)708   void SetArtMethod(ArtMethod* method) { art_method_ = method; }
709 
SetProfilingInfo(ProfilingInfo * info)710   void SetProfilingInfo(ProfilingInfo* info) { profiling_info_ = info; }
GetProfilingInfo()711   ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
712 
713   // Returns an instruction with the opposite Boolean value from 'cond'.
714   // The instruction has been inserted into the graph, either as a constant, or
715   // before cursor.
716   HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
717 
GetInexactObjectRti()718   ReferenceTypeInfo GetInexactObjectRti() {
719     return ReferenceTypeInfo::Create(handle_cache_.GetObjectClassHandle(), /* is_exact= */ false);
720   }
721 
GetNumberOfCHAGuards()722   uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)723   void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()724   void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
725 
726  private:
727   void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
728   void RemoveDeadBlocks(const ArenaBitVector& visited);
729 
730   template <class InstructionType, typename ValueType>
731   InstructionType* CreateConstant(ValueType value,
732                                   ArenaSafeMap<ValueType, InstructionType*>* cache,
733                                   uint32_t dex_pc = kNoDexPc) {
734     // Try to find an existing constant of the given value.
735     InstructionType* constant = nullptr;
736     auto cached_constant = cache->find(value);
737     if (cached_constant != cache->end()) {
738       constant = cached_constant->second;
739     }
740 
741     // If not found or previously deleted, create and cache a new instruction.
742     // Don't bother reviving a previously deleted instruction, for simplicity.
743     if (constant == nullptr || constant->GetBlock() == nullptr) {
744       constant = new (allocator_) InstructionType(value, dex_pc);
745       cache->Overwrite(value, constant);
746       InsertConstant(constant);
747     }
748     return constant;
749   }
750 
751   void InsertConstant(HConstant* instruction);
752 
753   // Cache a float constant into the graph. This method should only be
754   // called by the SsaBuilder when creating "equivalent" instructions.
755   void CacheFloatConstant(HFloatConstant* constant);
756 
757   // See CacheFloatConstant comment.
758   void CacheDoubleConstant(HDoubleConstant* constant);
759 
760   ArenaAllocator* const allocator_;
761   ArenaStack* const arena_stack_;
762 
763   HandleCache handle_cache_;
764 
765   // List of blocks in insertion order.
766   ArenaVector<HBasicBlock*> blocks_;
767 
768   // List of blocks to perform a reverse post order tree traversal.
769   ArenaVector<HBasicBlock*> reverse_post_order_;
770 
771   // List of blocks to perform a linear order tree traversal. Unlike the reverse
772   // post order, this order is not incrementally kept up-to-date.
773   ArenaVector<HBasicBlock*> linear_order_;
774 
775   // Reachability graph for checking connectedness between nodes. Acts as a partitioned vector where
776   // each RoundUp(blocks_.size(), BitVector::kWordBits) is the reachability of each node.
777   ArenaBitVectorArray reachability_graph_;
778 
779   HBasicBlock* entry_block_;
780   HBasicBlock* exit_block_;
781 
782   // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
783   uint16_t maximum_number_of_out_vregs_;
784 
785   // The number of virtual registers in this method. Contains the parameters.
786   uint16_t number_of_vregs_;
787 
788   // The number of virtual registers used by parameters of this method.
789   uint16_t number_of_in_vregs_;
790 
791   // Number of vreg size slots that the temporaries use (used in baseline compiler).
792   size_t temporaries_vreg_slots_;
793 
794   // Flag whether there are bounds checks in the graph. We can skip
795   // BCE if it's false. It's only best effort to keep it up to date in
796   // the presence of code elimination so there might be false positives.
797   bool has_bounds_checks_;
798 
799   // Flag whether there are try/catch blocks in the graph. We will skip
800   // try/catch-related passes if it's false. It's only best effort to keep
801   // it up to date in the presence of code elimination so there might be
802   // false positives.
803   bool has_try_catch_;
804 
805   // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
806   // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
807   bool has_monitor_operations_;
808 
809   // Flag whether SIMD instructions appear in the graph. If true, the
810   // code generators may have to be more careful spilling the wider
811   // contents of SIMD registers.
812   bool has_simd_;
813 
814   // Flag whether there are any loops in the graph. We can skip loop
815   // optimization if it's false. It's only best effort to keep it up
816   // to date in the presence of code elimination so there might be false
817   // positives.
818   bool has_loops_;
819 
820   // Flag whether there are any irreducible loops in the graph. It's only
821   // best effort to keep it up to date in the presence of code elimination
822   // so there might be false positives.
823   bool has_irreducible_loops_;
824 
825   // Flag whether there are any direct calls to native code registered
826   // for @CriticalNative methods.
827   bool has_direct_critical_native_call_;
828 
829   // Is the code known to be robust against eliminating dead references
830   // and the effects of early finalization? If false, dead reference variables
831   // are kept if they might be visible to the garbage collector.
832   // Currently this means that the class was declared to be dead-reference-safe,
833   // the method accesses no reachability-sensitive fields or data, and the same
834   // is true for any methods that were inlined into the current one.
835   bool dead_reference_safe_;
836 
837   // Indicates whether the graph should be compiled in a way that
838   // ensures full debuggability. If false, we can apply more
839   // aggressive optimizations that may limit the level of debugging.
840   const bool debuggable_;
841 
842   // The current id to assign to a newly added instruction. See HInstruction.id_.
843   int32_t current_instruction_id_;
844 
845   // The dex file from which the method is from.
846   const DexFile& dex_file_;
847 
848   // The method index in the dex file.
849   const uint32_t method_idx_;
850 
851   // If inlined, this encodes how the callee is being invoked.
852   const InvokeType invoke_type_;
853 
854   // Whether the graph has been transformed to SSA form. Only used
855   // in debug mode to ensure we are not using properties only valid
856   // for non-SSA form (like the number of temporaries).
857   bool in_ssa_form_;
858 
859   // Number of CHA guards in the graph. Used to short-circuit the
860   // CHA guard optimization pass when there is no CHA guard left.
861   uint32_t number_of_cha_guards_;
862 
863   const InstructionSet instruction_set_;
864 
865   // Cached constants.
866   HNullConstant* cached_null_constant_;
867   ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
868   ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
869   ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
870   ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
871 
872   HCurrentMethod* cached_current_method_;
873 
874   // The ArtMethod this graph is for. Note that for AOT, it may be null,
875   // for example for methods whose declaring class could not be resolved
876   // (such as when the superclass could not be found).
877   ArtMethod* art_method_;
878 
879   // The `ProfilingInfo` associated with the method being compiled.
880   ProfilingInfo* profiling_info_;
881 
882   // How we are compiling the graph: either optimized, osr, or baseline.
883   // For osr, we will make all loops seen as irreducible and emit special
884   // stack maps to mark compiled code entries which the interpreter can
885   // directly jump to.
886   const CompilationKind compilation_kind_;
887 
888   // List of methods that are assumed to have single implementation.
889   ArenaSet<ArtMethod*> cha_single_implementation_list_;
890 
891   friend class SsaBuilder;           // For caching constants.
892   friend class SsaLivenessAnalysis;  // For the linear order.
893   friend class HInliner;             // For the reverse post order.
894   ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
895   DISALLOW_COPY_AND_ASSIGN(HGraph);
896 };
897 
898 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
899  public:
HLoopInformation(HBasicBlock * header,HGraph * graph)900   HLoopInformation(HBasicBlock* header, HGraph* graph)
901       : header_(header),
902         suspend_check_(nullptr),
903         irreducible_(false),
904         contains_irreducible_loop_(false),
905         back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
906         // Make bit vector growable, as the number of blocks may change.
907         blocks_(graph->GetAllocator(),
908                 graph->GetBlocks().size(),
909                 true,
910                 kArenaAllocLoopInfoBackEdges) {
911     back_edges_.reserve(kDefaultNumberOfBackEdges);
912   }
913 
IsIrreducible()914   bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()915   bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
916 
917   void Dump(std::ostream& os);
918 
GetHeader()919   HBasicBlock* GetHeader() const {
920     return header_;
921   }
922 
SetHeader(HBasicBlock * block)923   void SetHeader(HBasicBlock* block) {
924     header_ = block;
925   }
926 
GetSuspendCheck()927   HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)928   void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()929   bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
930 
AddBackEdge(HBasicBlock * back_edge)931   void AddBackEdge(HBasicBlock* back_edge) {
932     back_edges_.push_back(back_edge);
933   }
934 
RemoveBackEdge(HBasicBlock * back_edge)935   void RemoveBackEdge(HBasicBlock* back_edge) {
936     RemoveElement(back_edges_, back_edge);
937   }
938 
IsBackEdge(const HBasicBlock & block)939   bool IsBackEdge(const HBasicBlock& block) const {
940     return ContainsElement(back_edges_, &block);
941   }
942 
NumberOfBackEdges()943   size_t NumberOfBackEdges() const {
944     return back_edges_.size();
945   }
946 
947   HBasicBlock* GetPreHeader() const;
948 
GetBackEdges()949   const ArenaVector<HBasicBlock*>& GetBackEdges() const {
950     return back_edges_;
951   }
952 
953   // Returns the lifetime position of the back edge that has the
954   // greatest lifetime position.
955   size_t GetLifetimeEnd() const;
956 
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)957   void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
958     ReplaceElement(back_edges_, existing, new_back_edge);
959   }
960 
961   // Finds blocks that are part of this loop.
962   void Populate();
963 
964   // Updates blocks population of the loop and all of its outer' ones recursively after the
965   // population of the inner loop is updated.
966   void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
967 
968   // Returns whether this loop information contains `block`.
969   // Note that this loop information *must* be populated before entering this function.
970   bool Contains(const HBasicBlock& block) const;
971 
972   // Returns whether this loop information is an inner loop of `other`.
973   // Note that `other` *must* be populated before entering this function.
974   bool IsIn(const HLoopInformation& other) const;
975 
976   // Returns true if instruction is not defined within this loop.
977   bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
978 
GetBlocks()979   const ArenaBitVector& GetBlocks() const { return blocks_; }
980 
981   void Add(HBasicBlock* block);
982   void Remove(HBasicBlock* block);
983 
ClearAllBlocks()984   void ClearAllBlocks() {
985     blocks_.ClearAllBits();
986   }
987 
988   bool HasBackEdgeNotDominatedByHeader() const;
989 
IsPopulated()990   bool IsPopulated() const {
991     return blocks_.GetHighestBitSet() != -1;
992   }
993 
994   bool DominatesAllBackEdges(HBasicBlock* block);
995 
996   bool HasExitEdge() const;
997 
998   // Resets back edge and blocks-in-loop data.
ResetBasicBlockData()999   void ResetBasicBlockData() {
1000     back_edges_.clear();
1001     ClearAllBlocks();
1002   }
1003 
1004  private:
1005   // Internal recursive implementation of `Populate`.
1006   void PopulateRecursive(HBasicBlock* block);
1007   void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
1008 
1009   HBasicBlock* header_;
1010   HSuspendCheck* suspend_check_;
1011   bool irreducible_;
1012   bool contains_irreducible_loop_;
1013   ArenaVector<HBasicBlock*> back_edges_;
1014   ArenaBitVector blocks_;
1015 
1016   DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
1017 };
1018 
1019 // Stores try/catch information for basic blocks.
1020 // Note that HGraph is constructed so that catch blocks cannot simultaneously
1021 // be try blocks.
1022 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
1023  public:
1024   // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)1025   explicit TryCatchInformation(const HTryBoundary& try_entry)
1026       : try_entry_(&try_entry),
1027         catch_dex_file_(nullptr),
1028         catch_type_index_(dex::TypeIndex::Invalid()) {
1029     DCHECK(try_entry_ != nullptr);
1030   }
1031 
1032   // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)1033   TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
1034       : try_entry_(nullptr),
1035         catch_dex_file_(&dex_file),
1036         catch_type_index_(catch_type_index) {}
1037 
IsTryBlock()1038   bool IsTryBlock() const { return try_entry_ != nullptr; }
1039 
GetTryEntry()1040   const HTryBoundary& GetTryEntry() const {
1041     DCHECK(IsTryBlock());
1042     return *try_entry_;
1043   }
1044 
IsCatchBlock()1045   bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
1046 
IsValidTypeIndex()1047   bool IsValidTypeIndex() const {
1048     DCHECK(IsCatchBlock());
1049     return catch_type_index_.IsValid();
1050   }
1051 
GetCatchTypeIndex()1052   dex::TypeIndex GetCatchTypeIndex() const {
1053     DCHECK(IsCatchBlock());
1054     return catch_type_index_;
1055   }
1056 
GetCatchDexFile()1057   const DexFile& GetCatchDexFile() const {
1058     DCHECK(IsCatchBlock());
1059     return *catch_dex_file_;
1060   }
1061 
SetInvalidTypeIndex()1062   void SetInvalidTypeIndex() {
1063     catch_type_index_ = dex::TypeIndex::Invalid();
1064   }
1065 
1066  private:
1067   // One of possibly several TryBoundary instructions entering the block's try.
1068   // Only set for try blocks.
1069   const HTryBoundary* try_entry_;
1070 
1071   // Exception type information. Only set for catch blocks.
1072   const DexFile* catch_dex_file_;
1073   dex::TypeIndex catch_type_index_;
1074 };
1075 
1076 static constexpr size_t kNoLifetime = -1;
1077 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
1078 
1079 // A block in a method. Contains the list of instructions represented
1080 // as a double linked list. Each block knows its predecessors and
1081 // successors.
1082 
1083 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
1084  public:
1085   explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)1086       : graph_(graph),
1087         predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
1088         successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
1089         loop_information_(nullptr),
1090         dominator_(nullptr),
1091         dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
1092         block_id_(kInvalidBlockId),
1093         dex_pc_(dex_pc),
1094         lifetime_start_(kNoLifetime),
1095         lifetime_end_(kNoLifetime),
1096         try_catch_information_(nullptr) {
1097     predecessors_.reserve(kDefaultNumberOfPredecessors);
1098     successors_.reserve(kDefaultNumberOfSuccessors);
1099     dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
1100   }
1101 
GetPredecessors()1102   const ArenaVector<HBasicBlock*>& GetPredecessors() const {
1103     return predecessors_;
1104   }
1105 
GetNumberOfPredecessors()1106   size_t GetNumberOfPredecessors() const {
1107     return GetPredecessors().size();
1108   }
1109 
GetSuccessors()1110   const ArenaVector<HBasicBlock*>& GetSuccessors() const {
1111     return successors_;
1112   }
1113 
1114   ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
1115   ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
1116 
1117   bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
1118     return ContainsElement(successors_, block, start_from);
1119   }
1120 
GetDominatedBlocks()1121   const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
1122     return dominated_blocks_;
1123   }
1124 
IsEntryBlock()1125   bool IsEntryBlock() const {
1126     return graph_->GetEntryBlock() == this;
1127   }
1128 
IsExitBlock()1129   bool IsExitBlock() const {
1130     return graph_->GetExitBlock() == this;
1131   }
1132 
1133   bool IsSingleGoto() const;
1134   bool IsSingleReturn() const;
1135   bool IsSingleReturnOrReturnVoidAllowingPhis() const;
1136   bool IsSingleTryBoundary() const;
1137 
1138   // Returns true if this block emits nothing but a jump.
IsSingleJump()1139   bool IsSingleJump() const {
1140     HLoopInformation* loop_info = GetLoopInformation();
1141     return (IsSingleGoto() || IsSingleTryBoundary())
1142            // Back edges generate a suspend check.
1143            && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
1144   }
1145 
AddBackEdge(HBasicBlock * back_edge)1146   void AddBackEdge(HBasicBlock* back_edge) {
1147     if (loop_information_ == nullptr) {
1148       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1149     }
1150     DCHECK_EQ(loop_information_->GetHeader(), this);
1151     loop_information_->AddBackEdge(back_edge);
1152   }
1153 
1154   // Registers a back edge; if the block was not a loop header before the call associates a newly
1155   // created loop info with it.
1156   //
1157   // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
1158   // info for all blocks during back edges recalculation.
AddBackEdgeWhileUpdating(HBasicBlock * back_edge)1159   void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
1160     if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
1161       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1162     }
1163     loop_information_->AddBackEdge(back_edge);
1164   }
1165 
GetGraph()1166   HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)1167   void SetGraph(HGraph* graph) { graph_ = graph; }
1168 
GetBlockId()1169   uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)1170   void SetBlockId(int id) { block_id_ = id; }
GetDexPc()1171   uint32_t GetDexPc() const { return dex_pc_; }
1172 
GetDominator()1173   HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)1174   void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)1175   void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
1176 
RemoveDominatedBlock(HBasicBlock * block)1177   void RemoveDominatedBlock(HBasicBlock* block) {
1178     RemoveElement(dominated_blocks_, block);
1179   }
1180 
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)1181   void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
1182     ReplaceElement(dominated_blocks_, existing, new_block);
1183   }
1184 
1185   void ClearDominanceInformation();
1186 
NumberOfBackEdges()1187   int NumberOfBackEdges() const {
1188     return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
1189   }
1190 
GetFirstInstruction()1191   HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()1192   HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()1193   const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()1194   HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()1195   HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()1196   const HInstructionList& GetPhis() const { return phis_; }
1197 
1198   HInstruction* GetFirstInstructionDisregardMoves() const;
1199 
AddSuccessor(HBasicBlock * block)1200   void AddSuccessor(HBasicBlock* block) {
1201     successors_.push_back(block);
1202     block->predecessors_.push_back(this);
1203   }
1204 
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1205   void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1206     size_t successor_index = GetSuccessorIndexOf(existing);
1207     existing->RemovePredecessor(this);
1208     new_block->predecessors_.push_back(this);
1209     successors_[successor_index] = new_block;
1210   }
1211 
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1212   void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1213     size_t predecessor_index = GetPredecessorIndexOf(existing);
1214     existing->RemoveSuccessor(this);
1215     new_block->successors_.push_back(this);
1216     predecessors_[predecessor_index] = new_block;
1217   }
1218 
1219   // Insert `this` between `predecessor` and `successor. This method
1220   // preserves the indices, and will update the first edge found between
1221   // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1222   void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1223     size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1224     size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1225     successor->predecessors_[predecessor_index] = this;
1226     predecessor->successors_[successor_index] = this;
1227     successors_.push_back(successor);
1228     predecessors_.push_back(predecessor);
1229   }
1230 
RemovePredecessor(HBasicBlock * block)1231   void RemovePredecessor(HBasicBlock* block) {
1232     predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1233   }
1234 
RemoveSuccessor(HBasicBlock * block)1235   void RemoveSuccessor(HBasicBlock* block) {
1236     successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1237   }
1238 
ClearAllPredecessors()1239   void ClearAllPredecessors() {
1240     predecessors_.clear();
1241   }
1242 
AddPredecessor(HBasicBlock * block)1243   void AddPredecessor(HBasicBlock* block) {
1244     predecessors_.push_back(block);
1245     block->successors_.push_back(this);
1246   }
1247 
SwapPredecessors()1248   void SwapPredecessors() {
1249     DCHECK_EQ(predecessors_.size(), 2u);
1250     std::swap(predecessors_[0], predecessors_[1]);
1251   }
1252 
SwapSuccessors()1253   void SwapSuccessors() {
1254     DCHECK_EQ(successors_.size(), 2u);
1255     std::swap(successors_[0], successors_[1]);
1256   }
1257 
GetPredecessorIndexOf(HBasicBlock * predecessor)1258   size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1259     return IndexOfElement(predecessors_, predecessor);
1260   }
1261 
GetSuccessorIndexOf(HBasicBlock * successor)1262   size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1263     return IndexOfElement(successors_, successor);
1264   }
1265 
GetSinglePredecessor()1266   HBasicBlock* GetSinglePredecessor() const {
1267     DCHECK_EQ(GetPredecessors().size(), 1u);
1268     return GetPredecessors()[0];
1269   }
1270 
GetSingleSuccessor()1271   HBasicBlock* GetSingleSuccessor() const {
1272     DCHECK_EQ(GetSuccessors().size(), 1u);
1273     return GetSuccessors()[0];
1274   }
1275 
1276   // Returns whether the first occurrence of `predecessor` in the list of
1277   // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1278   bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1279     DCHECK_EQ(GetPredecessors()[idx], predecessor);
1280     return GetPredecessorIndexOf(predecessor) == idx;
1281   }
1282 
1283   // Create a new block between this block and its predecessors. The new block
1284   // is added to the graph, all predecessor edges are relinked to it and an edge
1285   // is created to `this`. Returns the new empty block. Reverse post order or
1286   // loop and try/catch information are not updated.
1287   HBasicBlock* CreateImmediateDominator();
1288 
1289   // Split the block into two blocks just before `cursor`. Returns the newly
1290   // created, latter block. Note that this method will add the block to the
1291   // graph, create a Goto at the end of the former block and will create an edge
1292   // between the blocks. It will not, however, update the reverse post order or
1293   // loop and try/catch information.
1294   HBasicBlock* SplitBefore(HInstruction* cursor);
1295 
1296   // Split the block into two blocks just before `cursor`. Returns the newly
1297   // created block. Note that this method just updates raw block information,
1298   // like predecessors, successors, dominators, and instruction list. It does not
1299   // update the graph, reverse post order, loop information, nor make sure the
1300   // blocks are consistent (for example ending with a control flow instruction).
1301   HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1302 
1303   // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1304   HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1305 
1306   // Merge `other` at the end of `this`. Successors and dominated blocks of
1307   // `other` are changed to be successors and dominated blocks of `this`. Note
1308   // that this method does not update the graph, reverse post order, loop
1309   // information, nor make sure the blocks are consistent (for example ending
1310   // with a control flow instruction).
1311   void MergeWithInlined(HBasicBlock* other);
1312 
1313   // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1314   // of `this` are moved to `other`.
1315   // Note that this method does not update the graph, reverse post order, loop
1316   // information, nor make sure the blocks are consistent (for example ending
1317   // with a control flow instruction).
1318   void ReplaceWith(HBasicBlock* other);
1319 
1320   // Merges the instructions of `other` at the end of `this`.
1321   void MergeInstructionsWith(HBasicBlock* other);
1322 
1323   // Merge `other` at the end of `this`. This method updates loops, reverse post
1324   // order, links to predecessors, successors, dominators and deletes the block
1325   // from the graph. The two blocks must be successive, i.e. `this` the only
1326   // predecessor of `other` and vice versa.
1327   void MergeWith(HBasicBlock* other);
1328 
1329   // Disconnects `this` from all its predecessors, successors and dominator,
1330   // removes it from all loops it is included in and eventually from the graph.
1331   // The block must not dominate any other block. Predecessors and successors
1332   // are safely updated.
1333   void DisconnectAndDelete();
1334 
1335   void AddInstruction(HInstruction* instruction);
1336   // Insert `instruction` before/after an existing instruction `cursor`.
1337   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1338   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1339   // Replace phi `initial` with `replacement` within this block.
1340   void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
1341   // Replace instruction `initial` with `replacement` within this block.
1342   void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1343                                        HInstruction* replacement);
1344   void AddPhi(HPhi* phi);
1345   void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1346   // RemoveInstruction and RemovePhi delete a given instruction from the respective
1347   // instruction list. With 'ensure_safety' set to true, it verifies that the
1348   // instruction is not in use and removes it from the use lists of its inputs.
1349   void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1350   void RemovePhi(HPhi* phi, bool ensure_safety = true);
1351   void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1352 
IsLoopHeader()1353   bool IsLoopHeader() const {
1354     return IsInLoop() && (loop_information_->GetHeader() == this);
1355   }
1356 
IsLoopPreHeaderFirstPredecessor()1357   bool IsLoopPreHeaderFirstPredecessor() const {
1358     DCHECK(IsLoopHeader());
1359     return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1360   }
1361 
IsFirstPredecessorBackEdge()1362   bool IsFirstPredecessorBackEdge() const {
1363     DCHECK(IsLoopHeader());
1364     return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1365   }
1366 
GetLoopInformation()1367   HLoopInformation* GetLoopInformation() const {
1368     return loop_information_;
1369   }
1370 
1371   // Set the loop_information_ on this block. Overrides the current
1372   // loop_information if it is an outer loop of the passed loop information.
1373   // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1374   void SetInLoop(HLoopInformation* info) {
1375     if (IsLoopHeader()) {
1376       // Nothing to do. This just means `info` is an outer loop.
1377     } else if (!IsInLoop()) {
1378       loop_information_ = info;
1379     } else if (loop_information_->Contains(*info->GetHeader())) {
1380       // Block is currently part of an outer loop. Make it part of this inner loop.
1381       // Note that a non loop header having a loop information means this loop information
1382       // has already been populated
1383       loop_information_ = info;
1384     } else {
1385       // Block is part of an inner loop. Do not update the loop information.
1386       // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1387       // at this point, because this method is being called while populating `info`.
1388     }
1389   }
1390 
1391   // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1392   void SetLoopInformation(HLoopInformation* info) {
1393     loop_information_ = info;
1394   }
1395 
IsInLoop()1396   bool IsInLoop() const { return loop_information_ != nullptr; }
1397 
GetTryCatchInformation()1398   TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1399 
SetTryCatchInformation(TryCatchInformation * try_catch_information)1400   void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1401     try_catch_information_ = try_catch_information;
1402   }
1403 
IsTryBlock()1404   bool IsTryBlock() const {
1405     return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1406   }
1407 
IsCatchBlock()1408   bool IsCatchBlock() const {
1409     return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1410   }
1411 
1412   // Returns the try entry that this block's successors should have. They will
1413   // be in the same try, unless the block ends in a try boundary. In that case,
1414   // the appropriate try entry will be returned.
1415   const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1416 
1417   bool HasThrowingInstructions() const;
1418 
1419   // Returns whether this block dominates the blocked passed as parameter.
1420   bool Dominates(const HBasicBlock* block) const;
1421 
GetLifetimeStart()1422   size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1423   size_t GetLifetimeEnd() const { return lifetime_end_; }
1424 
SetLifetimeStart(size_t start)1425   void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1426   void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1427 
1428   bool EndsWithControlFlowInstruction() const;
1429   bool EndsWithReturn() const;
1430   bool EndsWithIf() const;
1431   bool EndsWithTryBoundary() const;
1432   bool HasSinglePhi() const;
1433 
1434  private:
1435   HGraph* graph_;
1436   ArenaVector<HBasicBlock*> predecessors_;
1437   ArenaVector<HBasicBlock*> successors_;
1438   HInstructionList instructions_;
1439   HInstructionList phis_;
1440   HLoopInformation* loop_information_;
1441   HBasicBlock* dominator_;
1442   ArenaVector<HBasicBlock*> dominated_blocks_;
1443   uint32_t block_id_;
1444   // The dex program counter of the first instruction of this block.
1445   const uint32_t dex_pc_;
1446   size_t lifetime_start_;
1447   size_t lifetime_end_;
1448   TryCatchInformation* try_catch_information_;
1449 
1450   friend class HGraph;
1451   friend class HInstruction;
1452   // Allow manual control of the ordering of predecessors/successors
1453   friend class OptimizingUnitTestHelper;
1454 
1455   DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1456 };
1457 
1458 // Iterates over the LoopInformation of all loops which contain 'block'
1459 // from the innermost to the outermost.
1460 class HLoopInformationOutwardIterator : public ValueObject {
1461  public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1462   explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1463       : current_(block.GetLoopInformation()) {}
1464 
Done()1465   bool Done() const { return current_ == nullptr; }
1466 
Advance()1467   void Advance() {
1468     DCHECK(!Done());
1469     current_ = current_->GetPreHeader()->GetLoopInformation();
1470   }
1471 
Current()1472   HLoopInformation* Current() const {
1473     DCHECK(!Done());
1474     return current_;
1475   }
1476 
1477  private:
1478   HLoopInformation* current_;
1479 
1480   DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1481 };
1482 
1483 #define FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M)                  \
1484   M(Above, Condition)                                                   \
1485   M(AboveOrEqual, Condition)                                            \
1486   M(Abs, UnaryOperation)                                                \
1487   M(Add, BinaryOperation)                                               \
1488   M(And, BinaryOperation)                                               \
1489   M(ArrayGet, Instruction)                                              \
1490   M(ArrayLength, Instruction)                                           \
1491   M(ArraySet, Instruction)                                              \
1492   M(Below, Condition)                                                   \
1493   M(BelowOrEqual, Condition)                                            \
1494   M(BooleanNot, UnaryOperation)                                         \
1495   M(BoundsCheck, Instruction)                                           \
1496   M(BoundType, Instruction)                                             \
1497   M(CheckCast, Instruction)                                             \
1498   M(ClassTableGet, Instruction)                                         \
1499   M(ClearException, Instruction)                                        \
1500   M(ClinitCheck, Instruction)                                           \
1501   M(Compare, BinaryOperation)                                           \
1502   M(ConstructorFence, Instruction)                                      \
1503   M(CurrentMethod, Instruction)                                         \
1504   M(ShouldDeoptimizeFlag, Instruction)                                  \
1505   M(Deoptimize, Instruction)                                            \
1506   M(Div, BinaryOperation)                                               \
1507   M(DivZeroCheck, Instruction)                                          \
1508   M(DoubleConstant, Constant)                                           \
1509   M(Equal, Condition)                                                   \
1510   M(Exit, Instruction)                                                  \
1511   M(FloatConstant, Constant)                                            \
1512   M(Goto, Instruction)                                                  \
1513   M(GreaterThan, Condition)                                             \
1514   M(GreaterThanOrEqual, Condition)                                      \
1515   M(If, Instruction)                                                    \
1516   M(InstanceFieldGet, Instruction)                                      \
1517   M(InstanceFieldSet, Instruction)                                      \
1518   M(PredicatedInstanceFieldGet, Instruction)                            \
1519   M(InstanceOf, Instruction)                                            \
1520   M(IntConstant, Constant)                                              \
1521   M(IntermediateAddress, Instruction)                                   \
1522   M(InvokeUnresolved, Invoke)                                           \
1523   M(InvokeInterface, Invoke)                                            \
1524   M(InvokeStaticOrDirect, Invoke)                                       \
1525   M(InvokeVirtual, Invoke)                                              \
1526   M(InvokePolymorphic, Invoke)                                          \
1527   M(InvokeCustom, Invoke)                                               \
1528   M(LessThan, Condition)                                                \
1529   M(LessThanOrEqual, Condition)                                         \
1530   M(LoadClass, Instruction)                                             \
1531   M(LoadException, Instruction)                                         \
1532   M(LoadMethodHandle, Instruction)                                      \
1533   M(LoadMethodType, Instruction)                                        \
1534   M(LoadString, Instruction)                                            \
1535   M(LongConstant, Constant)                                             \
1536   M(Max, Instruction)                                                   \
1537   M(MemoryBarrier, Instruction)                                         \
1538   M(MethodEntryHook, Instruction)                                       \
1539   M(MethodExitHook, Instruction)                                        \
1540   M(Min, BinaryOperation)                                               \
1541   M(MonitorOperation, Instruction)                                      \
1542   M(Mul, BinaryOperation)                                               \
1543   M(NativeDebugInfo, Instruction)                                       \
1544   M(Neg, UnaryOperation)                                                \
1545   M(NewArray, Instruction)                                              \
1546   M(NewInstance, Instruction)                                           \
1547   M(Not, UnaryOperation)                                                \
1548   M(NotEqual, Condition)                                                \
1549   M(NullConstant, Instruction)                                          \
1550   M(NullCheck, Instruction)                                             \
1551   M(Or, BinaryOperation)                                                \
1552   M(PackedSwitch, Instruction)                                          \
1553   M(ParallelMove, Instruction)                                          \
1554   M(ParameterValue, Instruction)                                        \
1555   M(Phi, Instruction)                                                   \
1556   M(Rem, BinaryOperation)                                               \
1557   M(Return, Instruction)                                                \
1558   M(ReturnVoid, Instruction)                                            \
1559   M(Ror, BinaryOperation)                                               \
1560   M(Shl, BinaryOperation)                                               \
1561   M(Shr, BinaryOperation)                                               \
1562   M(StaticFieldGet, Instruction)                                        \
1563   M(StaticFieldSet, Instruction)                                        \
1564   M(StringBuilderAppend, Instruction)                                   \
1565   M(UnresolvedInstanceFieldGet, Instruction)                            \
1566   M(UnresolvedInstanceFieldSet, Instruction)                            \
1567   M(UnresolvedStaticFieldGet, Instruction)                              \
1568   M(UnresolvedStaticFieldSet, Instruction)                              \
1569   M(Select, Instruction)                                                \
1570   M(Sub, BinaryOperation)                                               \
1571   M(SuspendCheck, Instruction)                                          \
1572   M(Throw, Instruction)                                                 \
1573   M(TryBoundary, Instruction)                                           \
1574   M(TypeConversion, Instruction)                                        \
1575   M(UShr, BinaryOperation)                                              \
1576   M(Xor, BinaryOperation)
1577 
1578 #define FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)                  \
1579   M(VecReplicateScalar, VecUnaryOperation)                              \
1580   M(VecExtractScalar, VecUnaryOperation)                                \
1581   M(VecReduce, VecUnaryOperation)                                       \
1582   M(VecCnv, VecUnaryOperation)                                          \
1583   M(VecNeg, VecUnaryOperation)                                          \
1584   M(VecAbs, VecUnaryOperation)                                          \
1585   M(VecNot, VecUnaryOperation)                                          \
1586   M(VecAdd, VecBinaryOperation)                                         \
1587   M(VecHalvingAdd, VecBinaryOperation)                                  \
1588   M(VecSub, VecBinaryOperation)                                         \
1589   M(VecMul, VecBinaryOperation)                                         \
1590   M(VecDiv, VecBinaryOperation)                                         \
1591   M(VecMin, VecBinaryOperation)                                         \
1592   M(VecMax, VecBinaryOperation)                                         \
1593   M(VecAnd, VecBinaryOperation)                                         \
1594   M(VecAndNot, VecBinaryOperation)                                      \
1595   M(VecOr, VecBinaryOperation)                                          \
1596   M(VecXor, VecBinaryOperation)                                         \
1597   M(VecSaturationAdd, VecBinaryOperation)                               \
1598   M(VecSaturationSub, VecBinaryOperation)                               \
1599   M(VecShl, VecBinaryOperation)                                         \
1600   M(VecShr, VecBinaryOperation)                                         \
1601   M(VecUShr, VecBinaryOperation)                                        \
1602   M(VecSetScalars, VecOperation)                                        \
1603   M(VecMultiplyAccumulate, VecOperation)                                \
1604   M(VecSADAccumulate, VecOperation)                                     \
1605   M(VecDotProd, VecOperation)                                           \
1606   M(VecLoad, VecMemoryOperation)                                        \
1607   M(VecStore, VecMemoryOperation)                                       \
1608   M(VecPredSetAll, VecPredSetOperation)                                 \
1609   M(VecPredWhile, VecPredSetOperation)                                  \
1610   M(VecPredCondition, VecOperation)                                     \
1611 
1612 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1613   FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M)                        \
1614   FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)
1615 
1616 /*
1617  * Instructions, shared across several (not all) architectures.
1618  */
1619 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1620 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1621 #else
1622 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
1623   M(BitwiseNegatedRight, Instruction)                                   \
1624   M(DataProcWithShifterOp, Instruction)                                 \
1625   M(MultiplyAccumulate, Instruction)                                    \
1626   M(IntermediateAddressIndex, Instruction)
1627 #endif
1628 
1629 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1630 
1631 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1632 
1633 #ifndef ART_ENABLE_CODEGEN_x86
1634 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1635 #else
1636 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1637   M(X86ComputeBaseMethodAddress, Instruction)                           \
1638   M(X86LoadFromConstantTable, Instruction)                              \
1639   M(X86FPNeg, Instruction)                                              \
1640   M(X86PackedSwitch, Instruction)
1641 #endif
1642 
1643 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
1644 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)                     \
1645   M(X86AndNot, Instruction)                                             \
1646   M(X86MaskOrResetLeastSetBit, Instruction)
1647 #else
1648 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1649 #endif
1650 
1651 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1652 
1653 #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1654   FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1655   FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
1656   FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1657   FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1658   FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1659   FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)                               \
1660   FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1661 
1662 #define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1663   M(Condition, BinaryOperation)                                         \
1664   M(Constant, Instruction)                                              \
1665   M(UnaryOperation, Instruction)                                        \
1666   M(BinaryOperation, Instruction)                                       \
1667   M(Invoke, Instruction)                                                \
1668   M(VecOperation, Instruction)                                          \
1669   M(VecUnaryOperation, VecOperation)                                    \
1670   M(VecBinaryOperation, VecOperation)                                   \
1671   M(VecMemoryOperation, VecOperation)                                   \
1672   M(VecPredSetOperation, VecOperation)
1673 
1674 #define FOR_EACH_INSTRUCTION(M)                                         \
1675   FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1676   FOR_EACH_ABSTRACT_INSTRUCTION(M)
1677 
1678 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1679 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1680 #undef FORWARD_DECLARATION
1681 
1682 #define DECLARE_INSTRUCTION(type)                                         \
1683   private:                                                                \
1684   H##type& operator=(const H##type&) = delete;                            \
1685   public:                                                                 \
1686   const char* DebugName() const override { return #type; }                \
1687   HInstruction* Clone(ArenaAllocator* arena) const override {             \
1688     DCHECK(IsClonable());                                                 \
1689     return new (arena) H##type(*this->As##type());                        \
1690   }                                                                       \
1691   void Accept(HGraphVisitor* visitor) override
1692 
1693 #define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1694   private:                                                              \
1695   H##type& operator=(const H##type&) = delete;                          \
1696   public:
1697 
1698 #define DEFAULT_COPY_CONSTRUCTOR(type) H##type(const H##type& other) = default;
1699 
1700 template <typename T>
1701 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1702                      public IntrusiveForwardListNode<HUseListNode<T>> {
1703  public:
1704   // Get the instruction which has this use as one of the inputs.
1705   T GetUser() const { return user_; }
1706   // Get the position of the input record that this use corresponds to.
1707   size_t GetIndex() const { return index_; }
1708   // Set the position of the input record that this use corresponds to.
1709   void SetIndex(size_t index) { index_ = index; }
1710 
1711  private:
1712   HUseListNode(T user, size_t index)
1713       : user_(user), index_(index) {}
1714 
1715   T const user_;
1716   size_t index_;
1717 
1718   friend class HInstruction;
1719 
1720   DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1721 };
1722 
1723 template <typename T>
1724 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1725 
1726 // This class is used by HEnvironment and HInstruction classes to record the
1727 // instructions they use and pointers to the corresponding HUseListNodes kept
1728 // by the used instructions.
1729 template <typename T>
1730 class HUserRecord : public ValueObject {
1731  public:
HUserRecord()1732   HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1733   explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1734 
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1735   HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1736       : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1737   HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1738       : instruction_(instruction), before_use_node_(before_use_node) {
1739     DCHECK(instruction_ != nullptr);
1740   }
1741 
GetInstruction()1742   HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1743   typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1744   typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1745 
1746  private:
1747   // Instruction used by the user.
1748   HInstruction* instruction_;
1749 
1750   // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1751   typename HUseList<T>::iterator before_use_node_;
1752 };
1753 
1754 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1755 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1756 // HInstruction* values even though the underlying container has HUserRecord<>s.
1757 struct HInputExtractor {
operatorHInputExtractor1758   HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1759     return record.GetInstruction();
1760   }
operatorHInputExtractor1761   const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1762     return record.GetInstruction();
1763   }
1764 };
1765 
1766 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1767 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1768 
1769 /**
1770  * Side-effects representation.
1771  *
1772  * For write/read dependences on fields/arrays, the dependence analysis uses
1773  * type disambiguation (e.g. a float field write cannot modify the value of an
1774  * integer field read) and the access type (e.g.  a reference array write cannot
1775  * modify the value of a reference field read [although it may modify the
1776  * reference fetch prior to reading the field, which is represented by its own
1777  * write/read dependence]). The analysis makes conservative points-to
1778  * assumptions on reference types (e.g. two same typed arrays are assumed to be
1779  * the same, and any reference read depends on any reference read without
1780  * further regard of its type).
1781  *
1782  * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
1783  * alive across the point where garbage collection might happen.
1784  *
1785  * Note: Instructions with kCanTriggerGCBit do not depend on each other.
1786  *
1787  * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
1788  * those instructions from the compiler perspective (between this instruction and the next one
1789  * in the IR).
1790  *
1791  * Note: Instructions which can cause GC only on a fatal slow path do not need
1792  *       kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
1793  *       one. However the execution may return to compiled code if there is a catch block in the
1794  *       current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
1795  *       set.
1796  *
1797  * The internal representation uses 38-bit and is described in the table below.
1798  * The first line indicates the side effect, and for field/array accesses the
1799  * second line indicates the type of the access (in the order of the
1800  * DataType::Type enum).
1801  * The two numbered lines below indicate the bit position in the bitfield (read
1802  * vertically).
1803  *
1804  *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1805  *   +-------------+---------+---------+--------------+---------+---------+
1806  *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1807  *   |      3      |333333322|222222221|       1      |111111110|000000000|
1808  *   |      7      |654321098|765432109|       8      |765432109|876543210|
1809  *
1810  * Note that, to ease the implementation, 'changes' bits are least significant
1811  * bits, while 'dependency' bits are most significant bits.
1812  */
1813 class SideEffects : public ValueObject {
1814  public:
SideEffects()1815   SideEffects() : flags_(0) {}
1816 
None()1817   static SideEffects None() {
1818     return SideEffects(0);
1819   }
1820 
All()1821   static SideEffects All() {
1822     return SideEffects(kAllChangeBits | kAllDependOnBits);
1823   }
1824 
AllChanges()1825   static SideEffects AllChanges() {
1826     return SideEffects(kAllChangeBits);
1827   }
1828 
AllDependencies()1829   static SideEffects AllDependencies() {
1830     return SideEffects(kAllDependOnBits);
1831   }
1832 
AllExceptGCDependency()1833   static SideEffects AllExceptGCDependency() {
1834     return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1835   }
1836 
AllWritesAndReads()1837   static SideEffects AllWritesAndReads() {
1838     return SideEffects(kAllWrites | kAllReads);
1839   }
1840 
AllWrites()1841   static SideEffects AllWrites() {
1842     return SideEffects(kAllWrites);
1843   }
1844 
AllReads()1845   static SideEffects AllReads() {
1846     return SideEffects(kAllReads);
1847   }
1848 
FieldWriteOfType(DataType::Type type,bool is_volatile)1849   static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
1850     return is_volatile
1851         ? AllWritesAndReads()
1852         : SideEffects(TypeFlag(type, kFieldWriteOffset));
1853   }
1854 
ArrayWriteOfType(DataType::Type type)1855   static SideEffects ArrayWriteOfType(DataType::Type type) {
1856     return SideEffects(TypeFlag(type, kArrayWriteOffset));
1857   }
1858 
FieldReadOfType(DataType::Type type,bool is_volatile)1859   static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
1860     return is_volatile
1861         ? AllWritesAndReads()
1862         : SideEffects(TypeFlag(type, kFieldReadOffset));
1863   }
1864 
ArrayReadOfType(DataType::Type type)1865   static SideEffects ArrayReadOfType(DataType::Type type) {
1866     return SideEffects(TypeFlag(type, kArrayReadOffset));
1867   }
1868 
1869   // Returns whether GC might happen across this instruction from the compiler perspective so
1870   // the next instruction in the IR would see that.
1871   //
1872   // See the SideEffect class comments.
CanTriggerGC()1873   static SideEffects CanTriggerGC() {
1874     return SideEffects(1ULL << kCanTriggerGCBit);
1875   }
1876 
1877   // Returns whether the instruction must not be alive across a GC point.
1878   //
1879   // See the SideEffect class comments.
DependsOnGC()1880   static SideEffects DependsOnGC() {
1881     return SideEffects(1ULL << kDependsOnGCBit);
1882   }
1883 
1884   // Combines the side-effects of this and the other.
Union(SideEffects other)1885   SideEffects Union(SideEffects other) const {
1886     return SideEffects(flags_ | other.flags_);
1887   }
1888 
Exclusion(SideEffects other)1889   SideEffects Exclusion(SideEffects other) const {
1890     return SideEffects(flags_ & ~other.flags_);
1891   }
1892 
Add(SideEffects other)1893   void Add(SideEffects other) {
1894     flags_ |= other.flags_;
1895   }
1896 
Includes(SideEffects other)1897   bool Includes(SideEffects other) const {
1898     return (other.flags_ & flags_) == other.flags_;
1899   }
1900 
HasSideEffects()1901   bool HasSideEffects() const {
1902     return (flags_ & kAllChangeBits);
1903   }
1904 
HasDependencies()1905   bool HasDependencies() const {
1906     return (flags_ & kAllDependOnBits);
1907   }
1908 
1909   // Returns true if there are no side effects or dependencies.
DoesNothing()1910   bool DoesNothing() const {
1911     return flags_ == 0;
1912   }
1913 
1914   // Returns true if something is written.
DoesAnyWrite()1915   bool DoesAnyWrite() const {
1916     return (flags_ & kAllWrites);
1917   }
1918 
1919   // Returns true if something is read.
DoesAnyRead()1920   bool DoesAnyRead() const {
1921     return (flags_ & kAllReads);
1922   }
1923 
1924   // Returns true if potentially everything is written and read
1925   // (every type and every kind of access).
DoesAllReadWrite()1926   bool DoesAllReadWrite() const {
1927     return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1928   }
1929 
DoesAll()1930   bool DoesAll() const {
1931     return flags_ == (kAllChangeBits | kAllDependOnBits);
1932   }
1933 
1934   // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1935   bool MayDependOn(SideEffects other) const {
1936     const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1937     return (other.flags_ & depends_on_flags);
1938   }
1939 
1940   // Returns string representation of flags (for debugging only).
1941   // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1942   std::string ToString() const {
1943     std::string flags = "|";
1944     for (int s = kLastBit; s >= 0; s--) {
1945       bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1946       if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1947         // This is a bit for the GC side effect.
1948         if (current_bit_is_set) {
1949           flags += "GC";
1950         }
1951         flags += "|";
1952       } else {
1953         // This is a bit for the array/field analysis.
1954         // The underscore character stands for the 'can trigger GC' bit.
1955         static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1956         if (current_bit_is_set) {
1957           flags += kDebug[s];
1958         }
1959         if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1960             (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1961           flags += "|";
1962         }
1963       }
1964     }
1965     return flags;
1966   }
1967 
Equals(const SideEffects & other)1968   bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1969 
1970  private:
1971   static constexpr int kFieldArrayAnalysisBits = 9;
1972 
1973   static constexpr int kFieldWriteOffset = 0;
1974   static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1975   static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1976   static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1977 
1978   static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1979 
1980   static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1981   static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1982   static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1983   static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1984 
1985   static constexpr int kLastBit = kDependsOnGCBit;
1986   static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1987 
1988   // Aliases.
1989 
1990   static_assert(kChangeBits == kDependOnBits,
1991                 "the 'change' bits should match the 'depend on' bits.");
1992 
1993   static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1994   static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1995   static constexpr uint64_t kAllWrites =
1996       ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1997   static constexpr uint64_t kAllReads =
1998       ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1999 
2000   // Translates type to bit flag. The type must correspond to a Java type.
TypeFlag(DataType::Type type,int offset)2001   static uint64_t TypeFlag(DataType::Type type, int offset) {
2002     int shift;
2003     switch (type) {
2004       case DataType::Type::kReference: shift = 0; break;
2005       case DataType::Type::kBool:      shift = 1; break;
2006       case DataType::Type::kInt8:      shift = 2; break;
2007       case DataType::Type::kUint16:    shift = 3; break;
2008       case DataType::Type::kInt16:     shift = 4; break;
2009       case DataType::Type::kInt32:     shift = 5; break;
2010       case DataType::Type::kInt64:     shift = 6; break;
2011       case DataType::Type::kFloat32:   shift = 7; break;
2012       case DataType::Type::kFloat64:   shift = 8; break;
2013       default:
2014         LOG(FATAL) << "Unexpected data type " << type;
2015         UNREACHABLE();
2016     }
2017     DCHECK_LE(kFieldWriteOffset, shift);
2018     DCHECK_LT(shift, kArrayWriteOffset);
2019     return UINT64_C(1) << (shift + offset);
2020   }
2021 
2022   // Private constructor on direct flags value.
SideEffects(uint64_t flags)2023   explicit SideEffects(uint64_t flags) : flags_(flags) {}
2024 
2025   uint64_t flags_;
2026 };
2027 
2028 // A HEnvironment object contains the values of virtual registers at a given location.
2029 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
2030  public:
HEnvironment(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)2031   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
2032                              size_t number_of_vregs,
2033                              ArtMethod* method,
2034                              uint32_t dex_pc,
2035                              HInstruction* holder)
2036      : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
2037        locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
2038        parent_(nullptr),
2039        method_(method),
2040        dex_pc_(dex_pc),
2041        holder_(holder) {
2042   }
2043 
HEnvironment(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)2044   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
2045                              const HEnvironment& to_copy,
2046                              HInstruction* holder)
2047       : HEnvironment(allocator,
2048                      to_copy.Size(),
2049                      to_copy.GetMethod(),
2050                      to_copy.GetDexPc(),
2051                      holder) {}
2052 
AllocateLocations()2053   void AllocateLocations() {
2054     DCHECK(locations_.empty());
2055     locations_.resize(vregs_.size());
2056   }
2057 
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)2058   void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
2059     if (parent_ != nullptr) {
2060       parent_->SetAndCopyParentChain(allocator, parent);
2061     } else {
2062       parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
2063       parent_->CopyFrom(parent);
2064       if (parent->GetParent() != nullptr) {
2065         parent_->SetAndCopyParentChain(allocator, parent->GetParent());
2066       }
2067     }
2068   }
2069 
2070   void CopyFrom(ArrayRef<HInstruction* const> locals);
2071   void CopyFrom(HEnvironment* environment);
2072 
2073   // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
2074   // input to the loop phi instead. This is for inserting instructions that
2075   // require an environment (like HDeoptimization) in the loop pre-header.
2076   void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
2077 
SetRawEnvAt(size_t index,HInstruction * instruction)2078   void SetRawEnvAt(size_t index, HInstruction* instruction) {
2079     vregs_[index] = HUserRecord<HEnvironment*>(instruction);
2080   }
2081 
GetInstructionAt(size_t index)2082   HInstruction* GetInstructionAt(size_t index) const {
2083     return vregs_[index].GetInstruction();
2084   }
2085 
2086   void RemoveAsUserOfInput(size_t index) const;
2087 
2088   // Replaces the input at the position 'index' with the replacement; the replacement and old
2089   // input instructions' env_uses_ lists are adjusted. The function works similar to
2090   // HInstruction::ReplaceInput.
2091   void ReplaceInput(HInstruction* replacement, size_t index);
2092 
Size()2093   size_t Size() const { return vregs_.size(); }
2094 
GetParent()2095   HEnvironment* GetParent() const { return parent_; }
2096 
SetLocationAt(size_t index,Location location)2097   void SetLocationAt(size_t index, Location location) {
2098     locations_[index] = location;
2099   }
2100 
GetLocationAt(size_t index)2101   Location GetLocationAt(size_t index) const {
2102     return locations_[index];
2103   }
2104 
GetDexPc()2105   uint32_t GetDexPc() const {
2106     return dex_pc_;
2107   }
2108 
GetMethod()2109   ArtMethod* GetMethod() const {
2110     return method_;
2111   }
2112 
GetHolder()2113   HInstruction* GetHolder() const {
2114     return holder_;
2115   }
2116 
2117 
IsFromInlinedInvoke()2118   bool IsFromInlinedInvoke() const {
2119     return GetParent() != nullptr;
2120   }
2121 
2122   class EnvInputSelector {
2123    public:
EnvInputSelector(const HEnvironment * e)2124     explicit EnvInputSelector(const HEnvironment* e) : env_(e) {}
operator()2125     HInstruction* operator()(size_t s) const {
2126       return env_->GetInstructionAt(s);
2127     }
2128    private:
2129     const HEnvironment* env_;
2130   };
2131 
2132   using HConstEnvInputRef = TransformIterator<CountIter, EnvInputSelector>;
GetEnvInputs()2133   IterationRange<HConstEnvInputRef> GetEnvInputs() const {
2134     IterationRange<CountIter> range(Range(Size()));
2135     return MakeIterationRange(MakeTransformIterator(range.begin(), EnvInputSelector(this)),
2136                               MakeTransformIterator(range.end(), EnvInputSelector(this)));
2137   }
2138 
2139  private:
2140   ArenaVector<HUserRecord<HEnvironment*>> vregs_;
2141   ArenaVector<Location> locations_;
2142   HEnvironment* parent_;
2143   ArtMethod* method_;
2144   const uint32_t dex_pc_;
2145 
2146   // The instruction that holds this environment.
2147   HInstruction* const holder_;
2148 
2149   friend class HInstruction;
2150 
2151   DISALLOW_COPY_AND_ASSIGN(HEnvironment);
2152 };
2153 
2154 std::ostream& operator<<(std::ostream& os, const HInstruction& rhs);
2155 
2156 // Iterates over the Environments
2157 class HEnvironmentIterator : public ValueObject,
2158                              public std::iterator<std::forward_iterator_tag, HEnvironment*> {
2159  public:
HEnvironmentIterator(HEnvironment * cur)2160   explicit HEnvironmentIterator(HEnvironment* cur) : cur_(cur) {}
2161 
2162   HEnvironment* operator*() const {
2163     return cur_;
2164   }
2165 
2166   HEnvironmentIterator& operator++() {
2167     DCHECK(cur_ != nullptr);
2168     cur_ = cur_->GetParent();
2169     return *this;
2170   }
2171 
2172   HEnvironmentIterator operator++(int) {
2173     HEnvironmentIterator prev(*this);
2174     ++(*this);
2175     return prev;
2176   }
2177 
2178   bool operator==(const HEnvironmentIterator& other) const {
2179     return other.cur_ == cur_;
2180   }
2181 
2182   bool operator!=(const HEnvironmentIterator& other) const {
2183     return !(*this == other);
2184   }
2185 
2186  private:
2187   HEnvironment* cur_;
2188 };
2189 
2190 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
2191  public:
2192 #define DECLARE_KIND(type, super) k##type,
2193   enum InstructionKind {  // private marker to avoid generate-operator-out.py from processing.
2194     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
2195     kLastInstructionKind
2196   };
2197 #undef DECLARE_KIND
2198 
HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2199   HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2200       : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
2201 
HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2202   HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
2203       : previous_(nullptr),
2204         next_(nullptr),
2205         block_(nullptr),
2206         dex_pc_(dex_pc),
2207         id_(-1),
2208         ssa_index_(-1),
2209         packed_fields_(0u),
2210         environment_(nullptr),
2211         locations_(nullptr),
2212         live_interval_(nullptr),
2213         lifetime_position_(kNoLifetime),
2214         side_effects_(side_effects),
2215         reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
2216     SetPackedField<InstructionKindField>(kind);
2217     SetPackedField<TypeField>(type);
2218     SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
2219   }
2220 
~HInstruction()2221   virtual ~HInstruction() {}
2222 
2223   std::ostream& Dump(std::ostream& os, bool dump_args = false);
2224 
2225   // Helper for dumping without argument information using operator<<
2226   struct NoArgsDump {
2227     const HInstruction* ins;
2228   };
DumpWithoutArgs()2229   NoArgsDump DumpWithoutArgs() const {
2230     return NoArgsDump{this};
2231   }
2232   // Helper for dumping with argument information using operator<<
2233   struct ArgsDump {
2234     const HInstruction* ins;
2235   };
DumpWithArgs()2236   ArgsDump DumpWithArgs() const {
2237     return ArgsDump{this};
2238   }
2239 
GetNext()2240   HInstruction* GetNext() const { return next_; }
GetPrevious()2241   HInstruction* GetPrevious() const { return previous_; }
2242 
2243   HInstruction* GetNextDisregardingMoves() const;
2244   HInstruction* GetPreviousDisregardingMoves() const;
2245 
GetBlock()2246   HBasicBlock* GetBlock() const { return block_; }
GetAllocator()2247   ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
SetBlock(HBasicBlock * block)2248   void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()2249   bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()2250   bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()2251   bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()2252   bool IsIrreducibleLoopHeaderPhi() const {
2253     return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
2254   }
2255 
2256   virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
2257 
GetInputRecords()2258   ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
2259     // One virtual method is enough, just const_cast<> and then re-add the const.
2260     return ArrayRef<const HUserRecord<HInstruction*>>(
2261         const_cast<HInstruction*>(this)->GetInputRecords());
2262   }
2263 
GetInputs()2264   HInputsRef GetInputs() {
2265     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2266   }
2267 
GetInputs()2268   HConstInputsRef GetInputs() const {
2269     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2270   }
2271 
InputCount()2272   size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)2273   HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
2274 
HasInput(HInstruction * input)2275   bool HasInput(HInstruction* input) const {
2276     for (const HInstruction* i : GetInputs()) {
2277       if (i == input) {
2278         return true;
2279       }
2280     }
2281     return false;
2282   }
2283 
SetRawInputAt(size_t index,HInstruction * input)2284   void SetRawInputAt(size_t index, HInstruction* input) {
2285     SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
2286   }
2287 
2288   virtual void Accept(HGraphVisitor* visitor) = 0;
2289   virtual const char* DebugName() const = 0;
2290 
GetType()2291   DataType::Type GetType() const {
2292     return TypeField::Decode(GetPackedFields());
2293   }
2294 
NeedsEnvironment()2295   virtual bool NeedsEnvironment() const { return false; }
NeedsBss()2296   virtual bool NeedsBss() const {
2297     return false;
2298   }
2299 
GetDexPc()2300   uint32_t GetDexPc() const { return dex_pc_; }
2301 
IsControlFlow()2302   virtual bool IsControlFlow() const { return false; }
2303 
2304   // Can the instruction throw?
2305   // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
2306   // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()2307   virtual bool CanThrow() const { return false; }
2308 
2309   // Does the instruction always throw an exception unconditionally?
AlwaysThrows()2310   virtual bool AlwaysThrows() const { return false; }
2311   // Will this instruction only cause async exceptions if it causes any at all?
OnlyThrowsAsyncExceptions()2312   virtual bool OnlyThrowsAsyncExceptions() const {
2313     return false;
2314   }
2315 
CanThrowIntoCatchBlock()2316   bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
2317 
HasSideEffects()2318   bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()2319   bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
2320 
2321   // Does not apply for all instructions, but having this at top level greatly
2322   // simplifies the null check elimination.
2323   // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()2324   virtual bool CanBeNull() const {
2325     DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
2326     return true;
2327   }
2328 
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)2329   virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
2330     return false;
2331   }
2332 
2333   // If this instruction will do an implicit null check, return the `HNullCheck` associated
2334   // with it. Otherwise return null.
GetImplicitNullCheck()2335   HNullCheck* GetImplicitNullCheck() const {
2336     // Go over previous non-move instructions that are emitted at use site.
2337     HInstruction* prev_not_move = GetPreviousDisregardingMoves();
2338     while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
2339       if (prev_not_move->IsNullCheck()) {
2340         return prev_not_move->AsNullCheck();
2341       }
2342       prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
2343     }
2344     return nullptr;
2345   }
2346 
IsActualObject()2347   virtual bool IsActualObject() const {
2348     return GetType() == DataType::Type::kReference;
2349   }
2350 
2351   void SetReferenceTypeInfo(ReferenceTypeInfo rti);
2352 
GetReferenceTypeInfo()2353   ReferenceTypeInfo GetReferenceTypeInfo() const {
2354     DCHECK_EQ(GetType(), DataType::Type::kReference);
2355     return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
2356                                               GetPackedFlag<kFlagReferenceTypeIsExact>());
2357   }
2358 
AddUseAt(HInstruction * user,size_t index)2359   void AddUseAt(HInstruction* user, size_t index) {
2360     DCHECK(user != nullptr);
2361     // Note: fixup_end remains valid across push_front().
2362     auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
2363     ArenaAllocator* allocator = user->GetBlock()->GetGraph()->GetAllocator();
2364     HUseListNode<HInstruction*>* new_node =
2365         new (allocator) HUseListNode<HInstruction*>(user, index);
2366     uses_.push_front(*new_node);
2367     FixUpUserRecordsAfterUseInsertion(fixup_end);
2368   }
2369 
AddEnvUseAt(HEnvironment * user,size_t index)2370   void AddEnvUseAt(HEnvironment* user, size_t index) {
2371     DCHECK(user != nullptr);
2372     // Note: env_fixup_end remains valid across push_front().
2373     auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
2374     HUseListNode<HEnvironment*>* new_node =
2375         new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
2376     env_uses_.push_front(*new_node);
2377     FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
2378   }
2379 
RemoveAsUserOfInput(size_t input)2380   void RemoveAsUserOfInput(size_t input) {
2381     HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2382     HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2383     input_use.GetInstruction()->uses_.erase_after(before_use_node);
2384     input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2385   }
2386 
RemoveAsUserOfAllInputs()2387   void RemoveAsUserOfAllInputs() {
2388     for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2389       HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2390       input_use.GetInstruction()->uses_.erase_after(before_use_node);
2391       input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2392     }
2393   }
2394 
GetUses()2395   const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2396   const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2397 
HasUses()2398   bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2399   bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2400   bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2401   bool HasOnlyOneNonEnvironmentUse() const {
2402     return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2403   }
2404 
IsRemovable()2405   bool IsRemovable() const {
2406     return
2407         !DoesAnyWrite() &&
2408         !CanThrow() &&
2409         !IsSuspendCheck() &&
2410         !IsControlFlow() &&
2411         !IsNativeDebugInfo() &&
2412         !IsParameterValue() &&
2413         // If we added an explicit barrier then we should keep it.
2414         !IsMemoryBarrier() &&
2415         !IsConstructorFence();
2416   }
2417 
IsDeadAndRemovable()2418   bool IsDeadAndRemovable() const {
2419     return IsRemovable() && !HasUses();
2420   }
2421 
2422   // Does this instruction strictly dominate `other_instruction`?
2423   // Returns false if this instruction and `other_instruction` are the same.
2424   // Aborts if this instruction and `other_instruction` are both phis.
2425   bool StrictlyDominates(HInstruction* other_instruction) const;
2426 
GetId()2427   int GetId() const { return id_; }
SetId(int id)2428   void SetId(int id) { id_ = id; }
2429 
GetSsaIndex()2430   int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2431   void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2432   bool HasSsaIndex() const { return ssa_index_ != -1; }
2433 
HasEnvironment()2434   bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2435   HEnvironment* GetEnvironment() const { return environment_; }
GetAllEnvironments()2436   IterationRange<HEnvironmentIterator> GetAllEnvironments() const {
2437     return MakeIterationRange(HEnvironmentIterator(GetEnvironment()),
2438                               HEnvironmentIterator(nullptr));
2439   }
2440   // Set the `environment_` field. Raw because this method does not
2441   // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2442   void SetRawEnvironment(HEnvironment* environment) {
2443     DCHECK(environment_ == nullptr);
2444     DCHECK_EQ(environment->GetHolder(), this);
2445     environment_ = environment;
2446   }
2447 
InsertRawEnvironment(HEnvironment * environment)2448   void InsertRawEnvironment(HEnvironment* environment) {
2449     DCHECK(environment_ != nullptr);
2450     DCHECK_EQ(environment->GetHolder(), this);
2451     DCHECK(environment->GetParent() == nullptr);
2452     environment->parent_ = environment_;
2453     environment_ = environment;
2454   }
2455 
2456   void RemoveEnvironment();
2457 
2458   // Set the environment of this instruction, copying it from `environment`. While
2459   // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2460   void CopyEnvironmentFrom(HEnvironment* environment) {
2461     DCHECK(environment_ == nullptr);
2462     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2463     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2464     environment_->CopyFrom(environment);
2465     if (environment->GetParent() != nullptr) {
2466       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2467     }
2468   }
2469 
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2470   void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2471                                                 HBasicBlock* block) {
2472     DCHECK(environment_ == nullptr);
2473     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2474     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2475     environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2476     if (environment->GetParent() != nullptr) {
2477       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2478     }
2479   }
2480 
2481   // Returns the number of entries in the environment. Typically, that is the
2482   // number of dex registers in a method. It could be more in case of inlining.
2483   size_t EnvironmentSize() const;
2484 
GetLocations()2485   LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2486   void SetLocations(LocationSummary* locations) { locations_ = locations; }
2487 
2488   void ReplaceWith(HInstruction* instruction);
2489   void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2490   void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2491   void ReplaceInput(HInstruction* replacement, size_t index);
2492 
2493   // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2494   // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2495   void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2496     ReplaceWith(other);
2497     other->ReplaceInput(this, use_index);
2498   }
2499 
2500   // Move `this` instruction before `cursor`
2501   void MoveBefore(HInstruction* cursor, bool do_checks = true);
2502 
2503   // Move `this` before its first user and out of any loops. If there is no
2504   // out-of-loop user that dominates all other users, move the instruction
2505   // to the end of the out-of-loop common dominator of the user's blocks.
2506   //
2507   // This can be used only on non-throwing instructions with no side effects that
2508   // have at least one use but no environment uses.
2509   void MoveBeforeFirstUserAndOutOfLoops();
2510 
2511 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2512   bool Is##type() const;
2513 
2514   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2515 #undef INSTRUCTION_TYPE_CHECK
2516 
2517 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
2518   const H##type* As##type() const;                                             \
2519   H##type* As##type();
2520 
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2521   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
2522 #undef INSTRUCTION_TYPE_CAST
2523 
2524   // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
2525   // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
2526   // the instruction then the behaviour of this function is undefined.
2527   //
2528   // Note: It is semantically valid to create a clone of the instruction only until
2529   // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
2530   // copied.
2531   //
2532   // Note: HEnvironment and some other fields are not copied and are set to default values, see
2533   // 'explicit HInstruction(const HInstruction& other)' for details.
2534   virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
2535     LOG(FATAL) << "Cloning is not implemented for the instruction " <<
2536                   DebugName() << " " << GetId();
2537     UNREACHABLE();
2538   }
2539 
IsFieldAccess()2540   virtual bool IsFieldAccess() const {
2541     return false;
2542   }
2543 
GetFieldInfo()2544   virtual const FieldInfo& GetFieldInfo() const {
2545     CHECK(IsFieldAccess()) << "Only callable on field accessors not " << DebugName() << " "
2546                            << *this;
2547     LOG(FATAL) << "Must be overridden by field accessors. Not implemented by " << *this;
2548     UNREACHABLE();
2549   }
2550 
2551   // Return whether instruction can be cloned (copied).
IsClonable()2552   virtual bool IsClonable() const { return false; }
2553 
2554   // Returns whether the instruction can be moved within the graph.
2555   // TODO: this method is used by LICM and GVN with possibly different
2556   //       meanings? split and rename?
CanBeMoved()2557   virtual bool CanBeMoved() const { return false; }
2558 
2559   // Returns whether any data encoded in the two instructions is equal.
2560   // This method does not look at the inputs. Both instructions must be
2561   // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2562   virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2563     return false;
2564   }
2565 
2566   // Returns whether two instructions are equal, that is:
2567   // 1) They have the same type and contain the same data (InstructionDataEquals).
2568   // 2) Their inputs are identical.
2569   bool Equals(const HInstruction* other) const;
2570 
GetKind()2571   InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
2572 
ComputeHashCode()2573   virtual size_t ComputeHashCode() const {
2574     size_t result = GetKind();
2575     for (const HInstruction* input : GetInputs()) {
2576       result = (result * 31) + input->GetId();
2577     }
2578     return result;
2579   }
2580 
GetSideEffects()2581   SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2582   void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2583   void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2584 
GetLifetimePosition()2585   size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2586   void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2587   LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2588   void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2589   bool HasLiveInterval() const { return live_interval_ != nullptr; }
2590 
IsSuspendCheckEntry()2591   bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2592 
2593   // Returns whether the code generation of the instruction will require to have access
2594   // to the current method. Such instructions are:
2595   // (1): Instructions that require an environment, as calling the runtime requires
2596   //      to walk the stack and have the current method stored at a specific stack address.
2597   // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2598   //      to access the dex cache.
NeedsCurrentMethod()2599   bool NeedsCurrentMethod() const {
2600     return NeedsEnvironment() || IsCurrentMethod();
2601   }
2602 
2603   // Does this instruction have any use in an environment before
2604   // control flow hits 'other'?
2605   bool HasAnyEnvironmentUseBefore(HInstruction* other);
2606 
2607   // Remove all references to environment uses of this instruction.
2608   // The caller must ensure that this is safe to do.
2609   void RemoveEnvironmentUsers();
2610 
IsEmittedAtUseSite()2611   bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2612   void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2613 
2614  protected:
2615   // If set, the machine code for this instruction is assumed to be generated by
2616   // its users. Used by liveness analysis to compute use positions accordingly.
2617   static constexpr size_t kFlagEmittedAtUseSite = 0u;
2618   static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2619   static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
2620   static constexpr size_t kFieldInstructionKindSize =
2621       MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
2622   static constexpr size_t kFieldType =
2623       kFieldInstructionKind + kFieldInstructionKindSize;
2624   static constexpr size_t kFieldTypeSize =
2625       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
2626   static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
2627   static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2628 
2629   static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
2630                 "Too many generic packed fields");
2631 
2632   using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
2633 
InputRecordAt(size_t i)2634   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2635     return GetInputRecords()[i];
2636   }
2637 
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2638   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2639     ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2640     input_records[index] = input;
2641   }
2642 
GetPackedFields()2643   uint32_t GetPackedFields() const {
2644     return packed_fields_;
2645   }
2646 
2647   template <size_t flag>
GetPackedFlag()2648   bool GetPackedFlag() const {
2649     return (packed_fields_ & (1u << flag)) != 0u;
2650   }
2651 
2652   template <size_t flag>
2653   void SetPackedFlag(bool value = true) {
2654     packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2655   }
2656 
2657   template <typename BitFieldType>
GetPackedField()2658   typename BitFieldType::value_type GetPackedField() const {
2659     return BitFieldType::Decode(packed_fields_);
2660   }
2661 
2662   template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2663   void SetPackedField(typename BitFieldType::value_type value) {
2664     DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2665     packed_fields_ = BitFieldType::Update(value, packed_fields_);
2666   }
2667 
2668   // Copy construction for the instruction (used for Clone function).
2669   //
2670   // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
2671   // prepare_for_register_allocator are not copied (set to default values).
2672   //
2673   // Copy constructors must be provided for every HInstruction type; default copy constructor is
2674   // fine for most of them. However for some of the instructions a custom copy constructor must be
2675   // specified (when instruction has non-trivially copyable fields and must have a special behaviour
2676   // for copying them).
HInstruction(const HInstruction & other)2677   explicit HInstruction(const HInstruction& other)
2678       : previous_(nullptr),
2679         next_(nullptr),
2680         block_(nullptr),
2681         dex_pc_(other.dex_pc_),
2682         id_(-1),
2683         ssa_index_(-1),
2684         packed_fields_(other.packed_fields_),
2685         environment_(nullptr),
2686         locations_(nullptr),
2687         live_interval_(nullptr),
2688         lifetime_position_(kNoLifetime),
2689         side_effects_(other.side_effects_),
2690         reference_type_handle_(other.reference_type_handle_) {
2691   }
2692 
2693  private:
2694   using InstructionKindField =
2695      BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
2696 
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2697   void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2698     auto before_use_node = uses_.before_begin();
2699     for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2700       HInstruction* user = use_node->GetUser();
2701       size_t input_index = use_node->GetIndex();
2702       user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2703       before_use_node = use_node;
2704     }
2705   }
2706 
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2707   void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2708     auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2709     if (next != uses_.end()) {
2710       HInstruction* next_user = next->GetUser();
2711       size_t next_index = next->GetIndex();
2712       DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2713       next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2714     }
2715   }
2716 
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2717   void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2718     auto before_env_use_node = env_uses_.before_begin();
2719     for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2720       HEnvironment* user = env_use_node->GetUser();
2721       size_t input_index = env_use_node->GetIndex();
2722       user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2723       before_env_use_node = env_use_node;
2724     }
2725   }
2726 
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2727   void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2728     auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2729     if (next != env_uses_.end()) {
2730       HEnvironment* next_user = next->GetUser();
2731       size_t next_index = next->GetIndex();
2732       DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2733       next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2734     }
2735   }
2736 
2737   HInstruction* previous_;
2738   HInstruction* next_;
2739   HBasicBlock* block_;
2740   const uint32_t dex_pc_;
2741 
2742   // An instruction gets an id when it is added to the graph.
2743   // It reflects creation order. A negative id means the instruction
2744   // has not been added to the graph.
2745   int id_;
2746 
2747   // When doing liveness analysis, instructions that have uses get an SSA index.
2748   int ssa_index_;
2749 
2750   // Packed fields.
2751   uint32_t packed_fields_;
2752 
2753   // List of instructions that have this instruction as input.
2754   HUseList<HInstruction*> uses_;
2755 
2756   // List of environments that contain this instruction.
2757   HUseList<HEnvironment*> env_uses_;
2758 
2759   // The environment associated with this instruction. Not null if the instruction
2760   // might jump out of the method.
2761   HEnvironment* environment_;
2762 
2763   // Set by the code generator.
2764   LocationSummary* locations_;
2765 
2766   // Set by the liveness analysis.
2767   LiveInterval* live_interval_;
2768 
2769   // Set by the liveness analysis, this is the position in a linear
2770   // order of blocks where this instruction's live interval start.
2771   size_t lifetime_position_;
2772 
2773   SideEffects side_effects_;
2774 
2775   // The reference handle part of the reference type info.
2776   // The IsExact() flag is stored in packed fields.
2777   // TODO: for primitive types this should be marked as invalid.
2778   ReferenceTypeInfo::TypeHandle reference_type_handle_;
2779 
2780   friend class GraphChecker;
2781   friend class HBasicBlock;
2782   friend class HEnvironment;
2783   friend class HGraph;
2784   friend class HInstructionList;
2785 };
2786 
2787 std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs);
2788 std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs);
2789 std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs);
2790 std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst);
2791 std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst);
2792 
2793 // Forward declarations for friends
2794 template <typename InnerIter> struct HSTLInstructionIterator;
2795 
2796 // Iterates over the instructions, while preserving the next instruction
2797 // in case the current instruction gets removed from the list by the user
2798 // of this iterator.
2799 class HInstructionIterator : public ValueObject {
2800  public:
HInstructionIterator(const HInstructionList & instructions)2801   explicit HInstructionIterator(const HInstructionList& instructions)
2802       : instruction_(instructions.first_instruction_) {
2803     next_ = Done() ? nullptr : instruction_->GetNext();
2804   }
2805 
Done()2806   bool Done() const { return instruction_ == nullptr; }
Current()2807   HInstruction* Current() const { return instruction_; }
Advance()2808   void Advance() {
2809     instruction_ = next_;
2810     next_ = Done() ? nullptr : instruction_->GetNext();
2811   }
2812 
2813  private:
HInstructionIterator()2814   HInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
2815 
2816   HInstruction* instruction_;
2817   HInstruction* next_;
2818 
2819   friend struct HSTLInstructionIterator<HInstructionIterator>;
2820 };
2821 
2822 // Iterates over the instructions without saving the next instruction,
2823 // therefore handling changes in the graph potentially made by the user
2824 // of this iterator.
2825 class HInstructionIteratorHandleChanges : public ValueObject {
2826  public:
2827   explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2828       : instruction_(instructions.first_instruction_) {
2829   }
2830 
2831   bool Done() const { return instruction_ == nullptr; }
2832   HInstruction* Current() const { return instruction_; }
2833   void Advance() {
2834     instruction_ = instruction_->GetNext();
2835   }
2836 
2837  private:
2838   HInstructionIteratorHandleChanges() : instruction_(nullptr) {}
2839 
2840   HInstruction* instruction_;
2841 
2842   friend struct HSTLInstructionIterator<HInstructionIteratorHandleChanges>;
2843 };
2844 
2845 
2846 class HBackwardInstructionIterator : public ValueObject {
2847  public:
2848   explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2849       : instruction_(instructions.last_instruction_) {
2850     next_ = Done() ? nullptr : instruction_->GetPrevious();
2851   }
2852 
2853   bool Done() const { return instruction_ == nullptr; }
2854   HInstruction* Current() const { return instruction_; }
2855   void Advance() {
2856     instruction_ = next_;
2857     next_ = Done() ? nullptr : instruction_->GetPrevious();
2858   }
2859 
2860  private:
2861   HBackwardInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
2862 
2863   HInstruction* instruction_;
2864   HInstruction* next_;
2865 
2866   friend struct HSTLInstructionIterator<HBackwardInstructionIterator>;
2867 };
2868 
2869 template <typename InnerIter>
2870 struct HSTLInstructionIterator : public ValueObject,
2871                                  public std::iterator<std::forward_iterator_tag, HInstruction*> {
2872  public:
2873   static_assert(std::is_same_v<InnerIter, HBackwardInstructionIterator> ||
2874                     std::is_same_v<InnerIter, HInstructionIterator> ||
2875                     std::is_same_v<InnerIter, HInstructionIteratorHandleChanges>,
2876                 "Unknown wrapped iterator!");
2877 
2878   explicit HSTLInstructionIterator(InnerIter inner) : inner_(inner) {}
2879   HInstruction* operator*() const {
2880     DCHECK(inner_.Current() != nullptr);
2881     return inner_.Current();
2882   }
2883 
2884   HSTLInstructionIterator<InnerIter>& operator++() {
2885     DCHECK(*this != HSTLInstructionIterator<InnerIter>::EndIter());
2886     inner_.Advance();
2887     return *this;
2888   }
2889 
2890   HSTLInstructionIterator<InnerIter> operator++(int) {
2891     HSTLInstructionIterator<InnerIter> prev(*this);
2892     ++(*this);
2893     return prev;
2894   }
2895 
2896   bool operator==(const HSTLInstructionIterator<InnerIter>& other) const {
2897     return inner_.Current() == other.inner_.Current();
2898   }
2899 
2900   bool operator!=(const HSTLInstructionIterator<InnerIter>& other) const {
2901     return !(*this == other);
2902   }
2903 
2904   static HSTLInstructionIterator<InnerIter> EndIter() {
2905     return HSTLInstructionIterator<InnerIter>(InnerIter());
2906   }
2907 
2908  private:
2909   InnerIter inner_;
2910 };
2911 
2912 template <typename InnerIter>
2913 IterationRange<HSTLInstructionIterator<InnerIter>> MakeSTLInstructionIteratorRange(InnerIter iter) {
2914   return MakeIterationRange(HSTLInstructionIterator<InnerIter>(iter),
2915                             HSTLInstructionIterator<InnerIter>::EndIter());
2916 }
2917 
2918 class HVariableInputSizeInstruction : public HInstruction {
2919  public:
2920   using HInstruction::GetInputRecords;  // Keep the const version visible.
2921   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
2922     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2923   }
2924 
2925   void AddInput(HInstruction* input);
2926   void InsertInputAt(size_t index, HInstruction* input);
2927   void RemoveInputAt(size_t index);
2928 
2929   // Removes all the inputs.
2930   // Also removes this instructions from each input's use list
2931   // (for non-environment uses only).
2932   void RemoveAllInputs();
2933 
2934  protected:
2935   HVariableInputSizeInstruction(InstructionKind inst_kind,
2936                                 SideEffects side_effects,
2937                                 uint32_t dex_pc,
2938                                 ArenaAllocator* allocator,
2939                                 size_t number_of_inputs,
2940                                 ArenaAllocKind kind)
2941       : HInstruction(inst_kind, side_effects, dex_pc),
2942         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2943   HVariableInputSizeInstruction(InstructionKind inst_kind,
2944                                 DataType::Type type,
2945                                 SideEffects side_effects,
2946                                 uint32_t dex_pc,
2947                                 ArenaAllocator* allocator,
2948                                 size_t number_of_inputs,
2949                                 ArenaAllocKind kind)
2950       : HInstruction(inst_kind, type, side_effects, dex_pc),
2951         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2952 
2953   DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
2954 
2955   ArenaVector<HUserRecord<HInstruction*>> inputs_;
2956 };
2957 
2958 template<size_t N>
2959 class HExpression : public HInstruction {
2960  public:
2961   HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2962       : HInstruction(kind, side_effects, dex_pc), inputs_() {}
2963   HExpression<N>(InstructionKind kind,
2964                  DataType::Type type,
2965                  SideEffects side_effects,
2966                  uint32_t dex_pc)
2967       : HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
2968   virtual ~HExpression() {}
2969 
2970   using HInstruction::GetInputRecords;  // Keep the const version visible.
2971   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2972     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2973   }
2974 
2975  protected:
2976   DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
2977 
2978  private:
2979   std::array<HUserRecord<HInstruction*>, N> inputs_;
2980 
2981   friend class SsaBuilder;
2982 };
2983 
2984 // HExpression specialization for N=0.
2985 template<>
2986 class HExpression<0> : public HInstruction {
2987  public:
2988   using HInstruction::HInstruction;
2989 
2990   virtual ~HExpression() {}
2991 
2992   using HInstruction::GetInputRecords;  // Keep the const version visible.
2993   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2994     return ArrayRef<HUserRecord<HInstruction*>>();
2995   }
2996 
2997  protected:
2998   DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
2999 
3000  private:
3001   friend class SsaBuilder;
3002 };
3003 
3004 class HMethodEntryHook : public HExpression<0> {
3005  public:
3006   explicit HMethodEntryHook(uint32_t dex_pc)
3007       : HExpression(kMethodEntryHook, SideEffects::All(), dex_pc) {}
3008 
3009   bool NeedsEnvironment() const override {
3010     return true;
3011   }
3012 
3013   bool CanThrow() const override { return true; }
3014 
3015   DECLARE_INSTRUCTION(MethodEntryHook);
3016 
3017  protected:
3018   DEFAULT_COPY_CONSTRUCTOR(MethodEntryHook);
3019 };
3020 
3021 class HMethodExitHook : public HExpression<1> {
3022  public:
3023   HMethodExitHook(HInstruction* value, uint32_t dex_pc)
3024       : HExpression(kMethodExitHook, SideEffects::All(), dex_pc) {
3025     SetRawInputAt(0, value);
3026   }
3027 
3028   bool NeedsEnvironment() const override {
3029     return true;
3030   }
3031 
3032   bool CanThrow() const override { return true; }
3033 
3034   DECLARE_INSTRUCTION(MethodExitHook);
3035 
3036  protected:
3037   DEFAULT_COPY_CONSTRUCTOR(MethodExitHook);
3038 };
3039 
3040 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
3041 // instruction that branches to the exit block.
3042 class HReturnVoid final : public HExpression<0> {
3043  public:
3044   explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
3045       : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
3046   }
3047 
3048   bool IsControlFlow() const override { return true; }
3049 
3050   DECLARE_INSTRUCTION(ReturnVoid);
3051 
3052  protected:
3053   DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
3054 };
3055 
3056 // Represents dex's RETURN opcodes. A HReturn is a control flow
3057 // instruction that branches to the exit block.
3058 class HReturn final : public HExpression<1> {
3059  public:
3060   explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
3061       : HExpression(kReturn, SideEffects::None(), dex_pc) {
3062     SetRawInputAt(0, value);
3063   }
3064 
3065   bool IsControlFlow() const override { return true; }
3066 
3067   DECLARE_INSTRUCTION(Return);
3068 
3069  protected:
3070   DEFAULT_COPY_CONSTRUCTOR(Return);
3071 };
3072 
3073 class HPhi final : public HVariableInputSizeInstruction {
3074  public:
3075   HPhi(ArenaAllocator* allocator,
3076        uint32_t reg_number,
3077        size_t number_of_inputs,
3078        DataType::Type type,
3079        uint32_t dex_pc = kNoDexPc)
3080       : HVariableInputSizeInstruction(
3081             kPhi,
3082             ToPhiType(type),
3083             SideEffects::None(),
3084             dex_pc,
3085             allocator,
3086             number_of_inputs,
3087             kArenaAllocPhiInputs),
3088         reg_number_(reg_number) {
3089     DCHECK_NE(GetType(), DataType::Type::kVoid);
3090     // Phis are constructed live and marked dead if conflicting or unused.
3091     // Individual steps of SsaBuilder should assume that if a phi has been
3092     // marked dead, it can be ignored and will be removed by SsaPhiElimination.
3093     SetPackedFlag<kFlagIsLive>(true);
3094     SetPackedFlag<kFlagCanBeNull>(true);
3095   }
3096 
3097   bool IsClonable() const override { return true; }
3098 
3099   // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3100   static DataType::Type ToPhiType(DataType::Type type) {
3101     return DataType::Kind(type);
3102   }
3103 
3104   bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
3105 
3106   void SetType(DataType::Type new_type) {
3107     // Make sure that only valid type changes occur. The following are allowed:
3108     //  (1) int  -> float/ref (primitive type propagation),
3109     //  (2) long -> double (primitive type propagation).
3110     DCHECK(GetType() == new_type ||
3111            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
3112            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
3113            (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
3114     SetPackedField<TypeField>(new_type);
3115   }
3116 
3117   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
3118   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
3119 
3120   uint32_t GetRegNumber() const { return reg_number_; }
3121 
3122   void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
3123   void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
3124   bool IsDead() const { return !IsLive(); }
3125   bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
3126 
3127   bool IsVRegEquivalentOf(const HInstruction* other) const {
3128     return other != nullptr
3129         && other->IsPhi()
3130         && other->AsPhi()->GetBlock() == GetBlock()
3131         && other->AsPhi()->GetRegNumber() == GetRegNumber();
3132   }
3133 
3134   bool HasEquivalentPhi() const {
3135     if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
3136       return true;
3137     }
3138     if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
3139       return true;
3140     }
3141     return false;
3142   }
3143 
3144   // Returns the next equivalent phi (starting from the current one) or null if there is none.
3145   // An equivalent phi is a phi having the same dex register and type.
3146   // It assumes that phis with the same dex register are adjacent.
3147   HPhi* GetNextEquivalentPhiWithSameType() {
3148     HInstruction* next = GetNext();
3149     while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3150       if (next->GetType() == GetType()) {
3151         return next->AsPhi();
3152       }
3153       next = next->GetNext();
3154     }
3155     return nullptr;
3156   }
3157 
3158   DECLARE_INSTRUCTION(Phi);
3159 
3160  protected:
3161   DEFAULT_COPY_CONSTRUCTOR(Phi);
3162 
3163  private:
3164   static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
3165   static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
3166   static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
3167   static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3168 
3169   const uint32_t reg_number_;
3170 };
3171 
3172 // The exit instruction is the only instruction of the exit block.
3173 // Instructions aborting the method (HThrow and HReturn) must branch to the
3174 // exit block.
3175 class HExit final : public HExpression<0> {
3176  public:
3177   explicit HExit(uint32_t dex_pc = kNoDexPc)
3178       : HExpression(kExit, SideEffects::None(), dex_pc) {
3179   }
3180 
3181   bool IsControlFlow() const override { return true; }
3182 
3183   DECLARE_INSTRUCTION(Exit);
3184 
3185  protected:
3186   DEFAULT_COPY_CONSTRUCTOR(Exit);
3187 };
3188 
3189 // Jumps from one block to another.
3190 class HGoto final : public HExpression<0> {
3191  public:
3192   explicit HGoto(uint32_t dex_pc = kNoDexPc)
3193       : HExpression(kGoto, SideEffects::None(), dex_pc) {
3194   }
3195 
3196   bool IsClonable() const override { return true; }
3197   bool IsControlFlow() const override { return true; }
3198 
3199   HBasicBlock* GetSuccessor() const {
3200     return GetBlock()->GetSingleSuccessor();
3201   }
3202 
3203   DECLARE_INSTRUCTION(Goto);
3204 
3205  protected:
3206   DEFAULT_COPY_CONSTRUCTOR(Goto);
3207 };
3208 
3209 class HConstant : public HExpression<0> {
3210  public:
3211   explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
3212       : HExpression(kind, type, SideEffects::None(), dex_pc) {
3213   }
3214 
3215   bool CanBeMoved() const override { return true; }
3216 
3217   // Is this constant -1 in the arithmetic sense?
3218   virtual bool IsMinusOne() const { return false; }
3219   // Is this constant 0 in the arithmetic sense?
3220   virtual bool IsArithmeticZero() const { return false; }
3221   // Is this constant a 0-bit pattern?
3222   virtual bool IsZeroBitPattern() const { return false; }
3223   // Is this constant 1 in the arithmetic sense?
3224   virtual bool IsOne() const { return false; }
3225 
3226   virtual uint64_t GetValueAsUint64() const = 0;
3227 
3228   DECLARE_ABSTRACT_INSTRUCTION(Constant);
3229 
3230  protected:
3231   DEFAULT_COPY_CONSTRUCTOR(Constant);
3232 };
3233 
3234 class HNullConstant final : public HConstant {
3235  public:
3236   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3237     return true;
3238   }
3239 
3240   uint64_t GetValueAsUint64() const override { return 0; }
3241 
3242   size_t ComputeHashCode() const override { return 0; }
3243 
3244   // The null constant representation is a 0-bit pattern.
3245   bool IsZeroBitPattern() const override { return true; }
3246 
3247   DECLARE_INSTRUCTION(NullConstant);
3248 
3249  protected:
3250   DEFAULT_COPY_CONSTRUCTOR(NullConstant);
3251 
3252  private:
3253   explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
3254       : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
3255   }
3256 
3257   friend class HGraph;
3258 };
3259 
3260 // Constants of the type int. Those can be from Dex instructions, or
3261 // synthesized (for example with the if-eqz instruction).
3262 class HIntConstant final : public HConstant {
3263  public:
3264   int32_t GetValue() const { return value_; }
3265 
3266   uint64_t GetValueAsUint64() const override {
3267     return static_cast<uint64_t>(static_cast<uint32_t>(value_));
3268   }
3269 
3270   bool InstructionDataEquals(const HInstruction* other) const override {
3271     DCHECK(other->IsIntConstant()) << other->DebugName();
3272     return other->AsIntConstant()->value_ == value_;
3273   }
3274 
3275   size_t ComputeHashCode() const override { return GetValue(); }
3276 
3277   bool IsMinusOne() const override { return GetValue() == -1; }
3278   bool IsArithmeticZero() const override { return GetValue() == 0; }
3279   bool IsZeroBitPattern() const override { return GetValue() == 0; }
3280   bool IsOne() const override { return GetValue() == 1; }
3281 
3282   // Integer constants are used to encode Boolean values as well,
3283   // where 1 means true and 0 means false.
3284   bool IsTrue() const { return GetValue() == 1; }
3285   bool IsFalse() const { return GetValue() == 0; }
3286 
3287   DECLARE_INSTRUCTION(IntConstant);
3288 
3289  protected:
3290   DEFAULT_COPY_CONSTRUCTOR(IntConstant);
3291 
3292  private:
3293   explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3294       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
3295   }
3296   explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
3297       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
3298         value_(value ? 1 : 0) {
3299   }
3300 
3301   const int32_t value_;
3302 
3303   friend class HGraph;
3304   ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
3305   ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
3306 };
3307 
3308 class HLongConstant final : public HConstant {
3309  public:
3310   int64_t GetValue() const { return value_; }
3311 
3312   uint64_t GetValueAsUint64() const override { return value_; }
3313 
3314   bool InstructionDataEquals(const HInstruction* other) const override {
3315     DCHECK(other->IsLongConstant()) << other->DebugName();
3316     return other->AsLongConstant()->value_ == value_;
3317   }
3318 
3319   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3320 
3321   bool IsMinusOne() const override { return GetValue() == -1; }
3322   bool IsArithmeticZero() const override { return GetValue() == 0; }
3323   bool IsZeroBitPattern() const override { return GetValue() == 0; }
3324   bool IsOne() const override { return GetValue() == 1; }
3325 
3326   DECLARE_INSTRUCTION(LongConstant);
3327 
3328  protected:
3329   DEFAULT_COPY_CONSTRUCTOR(LongConstant);
3330 
3331  private:
3332   explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3333       : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
3334         value_(value) {
3335   }
3336 
3337   const int64_t value_;
3338 
3339   friend class HGraph;
3340 };
3341 
3342 class HFloatConstant final : public HConstant {
3343  public:
3344   float GetValue() const { return value_; }
3345 
3346   uint64_t GetValueAsUint64() const override {
3347     return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3348   }
3349 
3350   bool InstructionDataEquals(const HInstruction* other) const override {
3351     DCHECK(other->IsFloatConstant()) << other->DebugName();
3352     return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3353   }
3354 
3355   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3356 
3357   bool IsMinusOne() const override {
3358     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3359   }
3360   bool IsArithmeticZero() const override {
3361     return std::fpclassify(value_) == FP_ZERO;
3362   }
3363   bool IsArithmeticPositiveZero() const {
3364     return IsArithmeticZero() && !std::signbit(value_);
3365   }
3366   bool IsArithmeticNegativeZero() const {
3367     return IsArithmeticZero() && std::signbit(value_);
3368   }
3369   bool IsZeroBitPattern() const override {
3370     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
3371   }
3372   bool IsOne() const override {
3373     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3374   }
3375   bool IsNaN() const {
3376     return std::isnan(value_);
3377   }
3378 
3379   DECLARE_INSTRUCTION(FloatConstant);
3380 
3381  protected:
3382   DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
3383 
3384  private:
3385   explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3386       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3387         value_(value) {
3388   }
3389   explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3390       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3391         value_(bit_cast<float, int32_t>(value)) {
3392   }
3393 
3394   const float value_;
3395 
3396   // Only the SsaBuilder and HGraph can create floating-point constants.
3397   friend class SsaBuilder;
3398   friend class HGraph;
3399 };
3400 
3401 class HDoubleConstant final : public HConstant {
3402  public:
3403   double GetValue() const { return value_; }
3404 
3405   uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
3406 
3407   bool InstructionDataEquals(const HInstruction* other) const override {
3408     DCHECK(other->IsDoubleConstant()) << other->DebugName();
3409     return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3410   }
3411 
3412   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3413 
3414   bool IsMinusOne() const override {
3415     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3416   }
3417   bool IsArithmeticZero() const override {
3418     return std::fpclassify(value_) == FP_ZERO;
3419   }
3420   bool IsArithmeticPositiveZero() const {
3421     return IsArithmeticZero() && !std::signbit(value_);
3422   }
3423   bool IsArithmeticNegativeZero() const {
3424     return IsArithmeticZero() && std::signbit(value_);
3425   }
3426   bool IsZeroBitPattern() const override {
3427     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
3428   }
3429   bool IsOne() const override {
3430     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3431   }
3432   bool IsNaN() const {
3433     return std::isnan(value_);
3434   }
3435 
3436   DECLARE_INSTRUCTION(DoubleConstant);
3437 
3438  protected:
3439   DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
3440 
3441  private:
3442   explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3443       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3444         value_(value) {
3445   }
3446   explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3447       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3448         value_(bit_cast<double, int64_t>(value)) {
3449   }
3450 
3451   const double value_;
3452 
3453   // Only the SsaBuilder and HGraph can create floating-point constants.
3454   friend class SsaBuilder;
3455   friend class HGraph;
3456 };
3457 
3458 // Conditional branch. A block ending with an HIf instruction must have
3459 // two successors.
3460 class HIf final : public HExpression<1> {
3461  public:
3462   explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
3463       : HExpression(kIf, SideEffects::None(), dex_pc) {
3464     SetRawInputAt(0, input);
3465   }
3466 
3467   bool IsClonable() const override { return true; }
3468   bool IsControlFlow() const override { return true; }
3469 
3470   HBasicBlock* IfTrueSuccessor() const {
3471     return GetBlock()->GetSuccessors()[0];
3472   }
3473 
3474   HBasicBlock* IfFalseSuccessor() const {
3475     return GetBlock()->GetSuccessors()[1];
3476   }
3477 
3478   DECLARE_INSTRUCTION(If);
3479 
3480  protected:
3481   DEFAULT_COPY_CONSTRUCTOR(If);
3482 };
3483 
3484 
3485 // Abstract instruction which marks the beginning and/or end of a try block and
3486 // links it to the respective exception handlers. Behaves the same as a Goto in
3487 // non-exceptional control flow.
3488 // Normal-flow successor is stored at index zero, exception handlers under
3489 // higher indices in no particular order.
3490 class HTryBoundary final : public HExpression<0> {
3491  public:
3492   enum class BoundaryKind {
3493     kEntry,
3494     kExit,
3495     kLast = kExit
3496   };
3497 
3498   // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
3499   // across the catch block entering edges as GC might happen during throwing an exception.
3500   // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
3501   // HInstruction which a catch block must start from.
3502   explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
3503       : HExpression(kTryBoundary,
3504                     (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
3505                                                   : SideEffects::None(),
3506                     dex_pc) {
3507     SetPackedField<BoundaryKindField>(kind);
3508   }
3509 
3510   bool IsControlFlow() const override { return true; }
3511 
3512   // Returns the block's non-exceptional successor (index zero).
3513   HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
3514 
3515   ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
3516     return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
3517   }
3518 
3519   // Returns whether `handler` is among its exception handlers (non-zero index
3520   // successors).
3521   bool HasExceptionHandler(const HBasicBlock& handler) const {
3522     DCHECK(handler.IsCatchBlock());
3523     return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
3524   }
3525 
3526   // If not present already, adds `handler` to its block's list of exception
3527   // handlers.
3528   void AddExceptionHandler(HBasicBlock* handler) {
3529     if (!HasExceptionHandler(*handler)) {
3530       GetBlock()->AddSuccessor(handler);
3531     }
3532   }
3533 
3534   BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
3535   bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
3536 
3537   bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
3538 
3539   DECLARE_INSTRUCTION(TryBoundary);
3540 
3541  protected:
3542   DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
3543 
3544  private:
3545   static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
3546   static constexpr size_t kFieldBoundaryKindSize =
3547       MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
3548   static constexpr size_t kNumberOfTryBoundaryPackedBits =
3549       kFieldBoundaryKind + kFieldBoundaryKindSize;
3550   static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
3551                 "Too many packed fields.");
3552   using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
3553 };
3554 
3555 // Deoptimize to interpreter, upon checking a condition.
3556 class HDeoptimize final : public HVariableInputSizeInstruction {
3557  public:
3558   // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3559   // across.
3560   HDeoptimize(ArenaAllocator* allocator,
3561               HInstruction* cond,
3562               DeoptimizationKind kind,
3563               uint32_t dex_pc)
3564       : HVariableInputSizeInstruction(
3565             kDeoptimize,
3566             SideEffects::All(),
3567             dex_pc,
3568             allocator,
3569             /* number_of_inputs= */ 1,
3570             kArenaAllocMisc) {
3571     SetPackedFlag<kFieldCanBeMoved>(false);
3572     SetPackedField<DeoptimizeKindField>(kind);
3573     SetRawInputAt(0, cond);
3574   }
3575 
3576   bool IsClonable() const override { return true; }
3577 
3578   // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3579   // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3580   // instead of `guard`.
3581   // We set CanTriggerGC to prevent any intermediate address to be live
3582   // at the point of the `HDeoptimize`.
3583   HDeoptimize(ArenaAllocator* allocator,
3584               HInstruction* cond,
3585               HInstruction* guard,
3586               DeoptimizationKind kind,
3587               uint32_t dex_pc)
3588       : HVariableInputSizeInstruction(
3589             kDeoptimize,
3590             guard->GetType(),
3591             SideEffects::CanTriggerGC(),
3592             dex_pc,
3593             allocator,
3594             /* number_of_inputs= */ 2,
3595             kArenaAllocMisc) {
3596     SetPackedFlag<kFieldCanBeMoved>(true);
3597     SetPackedField<DeoptimizeKindField>(kind);
3598     SetRawInputAt(0, cond);
3599     SetRawInputAt(1, guard);
3600   }
3601 
3602   bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
3603 
3604   bool InstructionDataEquals(const HInstruction* other) const override {
3605     return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
3606   }
3607 
3608   bool NeedsEnvironment() const override { return true; }
3609 
3610   bool CanThrow() const override { return true; }
3611 
3612   DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3613 
3614   bool GuardsAnInput() const {
3615     return InputCount() == 2;
3616   }
3617 
3618   HInstruction* GuardedInput() const {
3619     DCHECK(GuardsAnInput());
3620     return InputAt(1);
3621   }
3622 
3623   void RemoveGuard() {
3624     RemoveInputAt(1);
3625   }
3626 
3627   DECLARE_INSTRUCTION(Deoptimize);
3628 
3629  protected:
3630   DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
3631 
3632  private:
3633   static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3634   static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3635   static constexpr size_t kFieldDeoptimizeKindSize =
3636       MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3637   static constexpr size_t kNumberOfDeoptimizePackedBits =
3638       kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3639   static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3640                 "Too many packed fields.");
3641   using DeoptimizeKindField =
3642       BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3643 };
3644 
3645 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3646 // The compiled code checks this flag value in a guard before devirtualized call and
3647 // if it's true, starts to do deoptimization.
3648 // It has a 4-byte slot on stack.
3649 // TODO: allocate a register for this flag.
3650 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
3651  public:
3652   // CHA guards are only optimized in a separate pass and it has no side effects
3653   // with regard to other passes.
3654   HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
3655       : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
3656                                       DataType::Type::kInt32,
3657                                       SideEffects::None(),
3658                                       dex_pc,
3659                                       allocator,
3660                                       0,
3661                                       kArenaAllocCHA) {
3662   }
3663 
3664   // We do all CHA guard elimination/motion in a single pass, after which there is no
3665   // further guard elimination/motion since a guard might have been used for justification
3666   // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3667   // to avoid other optimizations trying to move it.
3668   bool CanBeMoved() const override { return false; }
3669 
3670   DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3671 
3672  protected:
3673   DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
3674 };
3675 
3676 // Represents the ArtMethod that was passed as a first argument to
3677 // the method. It is used by instructions that depend on it, like
3678 // instructions that work with the dex cache.
3679 class HCurrentMethod final : public HExpression<0> {
3680  public:
3681   explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
3682       : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
3683   }
3684 
3685   DECLARE_INSTRUCTION(CurrentMethod);
3686 
3687  protected:
3688   DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
3689 };
3690 
3691 // Fetches an ArtMethod from the virtual table or the interface method table
3692 // of a class.
3693 class HClassTableGet final : public HExpression<1> {
3694  public:
3695   enum class TableKind {
3696     kVTable,
3697     kIMTable,
3698     kLast = kIMTable
3699   };
3700   HClassTableGet(HInstruction* cls,
3701                  DataType::Type type,
3702                  TableKind kind,
3703                  size_t index,
3704                  uint32_t dex_pc)
3705       : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
3706         index_(index) {
3707     SetPackedField<TableKindField>(kind);
3708     SetRawInputAt(0, cls);
3709   }
3710 
3711   bool IsClonable() const override { return true; }
3712   bool CanBeMoved() const override { return true; }
3713   bool InstructionDataEquals(const HInstruction* other) const override {
3714     return other->AsClassTableGet()->GetIndex() == index_ &&
3715         other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3716   }
3717 
3718   TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
3719   size_t GetIndex() const { return index_; }
3720 
3721   DECLARE_INSTRUCTION(ClassTableGet);
3722 
3723  protected:
3724   DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
3725 
3726  private:
3727   static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
3728   static constexpr size_t kFieldTableKindSize =
3729       MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3730   static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3731   static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3732                 "Too many packed fields.");
3733   using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
3734 
3735   // The index of the ArtMethod in the table.
3736   const size_t index_;
3737 };
3738 
3739 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3740 // have one successor for each entry in the switch table, and the final successor
3741 // will be the block containing the next Dex opcode.
3742 class HPackedSwitch final : public HExpression<1> {
3743  public:
3744   HPackedSwitch(int32_t start_value,
3745                 uint32_t num_entries,
3746                 HInstruction* input,
3747                 uint32_t dex_pc = kNoDexPc)
3748     : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
3749       start_value_(start_value),
3750       num_entries_(num_entries) {
3751     SetRawInputAt(0, input);
3752   }
3753 
3754   bool IsClonable() const override { return true; }
3755 
3756   bool IsControlFlow() const override { return true; }
3757 
3758   int32_t GetStartValue() const { return start_value_; }
3759 
3760   uint32_t GetNumEntries() const { return num_entries_; }
3761 
3762   HBasicBlock* GetDefaultBlock() const {
3763     // Last entry is the default block.
3764     return GetBlock()->GetSuccessors()[num_entries_];
3765   }
3766   DECLARE_INSTRUCTION(PackedSwitch);
3767 
3768  protected:
3769   DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
3770 
3771  private:
3772   const int32_t start_value_;
3773   const uint32_t num_entries_;
3774 };
3775 
3776 class HUnaryOperation : public HExpression<1> {
3777  public:
3778   HUnaryOperation(InstructionKind kind,
3779                   DataType::Type result_type,
3780                   HInstruction* input,
3781                   uint32_t dex_pc = kNoDexPc)
3782       : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
3783     SetRawInputAt(0, input);
3784   }
3785 
3786   // All of the UnaryOperation instructions are clonable.
3787   bool IsClonable() const override { return true; }
3788 
3789   HInstruction* GetInput() const { return InputAt(0); }
3790   DataType::Type GetResultType() const { return GetType(); }
3791 
3792   bool CanBeMoved() const override { return true; }
3793   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3794     return true;
3795   }
3796 
3797   // Try to statically evaluate `this` and return a HConstant
3798   // containing the result of this evaluation.  If `this` cannot
3799   // be evaluated as a constant, return null.
3800   HConstant* TryStaticEvaluation() const;
3801 
3802   // Apply this operation to `x`.
3803   virtual HConstant* Evaluate(HIntConstant* x) const = 0;
3804   virtual HConstant* Evaluate(HLongConstant* x) const = 0;
3805   virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
3806   virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
3807 
3808   DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3809 
3810  protected:
3811   DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
3812 };
3813 
3814 class HBinaryOperation : public HExpression<2> {
3815  public:
3816   HBinaryOperation(InstructionKind kind,
3817                    DataType::Type result_type,
3818                    HInstruction* left,
3819                    HInstruction* right,
3820                    SideEffects side_effects = SideEffects::None(),
3821                    uint32_t dex_pc = kNoDexPc)
3822       : HExpression(kind, result_type, side_effects, dex_pc) {
3823     SetRawInputAt(0, left);
3824     SetRawInputAt(1, right);
3825   }
3826 
3827   // All of the BinaryOperation instructions are clonable.
3828   bool IsClonable() const override { return true; }
3829 
3830   HInstruction* GetLeft() const { return InputAt(0); }
3831   HInstruction* GetRight() const { return InputAt(1); }
3832   DataType::Type GetResultType() const { return GetType(); }
3833 
3834   virtual bool IsCommutative() const { return false; }
3835 
3836   // Put constant on the right.
3837   // Returns whether order is changed.
3838   bool OrderInputsWithConstantOnTheRight() {
3839     HInstruction* left = InputAt(0);
3840     HInstruction* right = InputAt(1);
3841     if (left->IsConstant() && !right->IsConstant()) {
3842       ReplaceInput(right, 0);
3843       ReplaceInput(left, 1);
3844       return true;
3845     }
3846     return false;
3847   }
3848 
3849   // Order inputs by instruction id, but favor constant on the right side.
3850   // This helps GVN for commutative ops.
3851   void OrderInputs() {
3852     DCHECK(IsCommutative());
3853     HInstruction* left = InputAt(0);
3854     HInstruction* right = InputAt(1);
3855     if (left == right || (!left->IsConstant() && right->IsConstant())) {
3856       return;
3857     }
3858     if (OrderInputsWithConstantOnTheRight()) {
3859       return;
3860     }
3861     // Order according to instruction id.
3862     if (left->GetId() > right->GetId()) {
3863       ReplaceInput(right, 0);
3864       ReplaceInput(left, 1);
3865     }
3866   }
3867 
3868   bool CanBeMoved() const override { return true; }
3869   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3870     return true;
3871   }
3872 
3873   // Try to statically evaluate `this` and return a HConstant
3874   // containing the result of this evaluation.  If `this` cannot
3875   // be evaluated as a constant, return null.
3876   HConstant* TryStaticEvaluation() const;
3877 
3878   // Apply this operation to `x` and `y`.
3879   virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3880                               HNullConstant* y ATTRIBUTE_UNUSED) const {
3881     LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3882     UNREACHABLE();
3883   }
3884   virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3885   virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
3886   virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3887                               HIntConstant* y ATTRIBUTE_UNUSED) const {
3888     LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3889     UNREACHABLE();
3890   }
3891   virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3892   virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3893 
3894   // Returns an input that can legally be used as the right input and is
3895   // constant, or null.
3896   HConstant* GetConstantRight() const;
3897 
3898   // If `GetConstantRight()` returns one of the input, this returns the other
3899   // one. Otherwise it returns null.
3900   HInstruction* GetLeastConstantLeft() const;
3901 
3902   DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3903 
3904  protected:
3905   DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
3906 };
3907 
3908 // The comparison bias applies for floating point operations and indicates how NaN
3909 // comparisons are treated:
3910 enum class ComparisonBias {  // private marker to avoid generate-operator-out.py from processing.
3911   kNoBias,  // bias is not applicable (i.e. for long operation)
3912   kGtBias,  // return 1 for NaN comparisons
3913   kLtBias,  // return -1 for NaN comparisons
3914   kLast = kLtBias
3915 };
3916 
3917 std::ostream& operator<<(std::ostream& os, ComparisonBias rhs);
3918 
3919 class HCondition : public HBinaryOperation {
3920  public:
3921   HCondition(InstructionKind kind,
3922              HInstruction* first,
3923              HInstruction* second,
3924              uint32_t dex_pc = kNoDexPc)
3925       : HBinaryOperation(kind,
3926                          DataType::Type::kBool,
3927                          first,
3928                          second,
3929                          SideEffects::None(),
3930                          dex_pc) {
3931     SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3932   }
3933 
3934   // For code generation purposes, returns whether this instruction is just before
3935   // `instruction`, and disregard moves in between.
3936   bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3937 
3938   DECLARE_ABSTRACT_INSTRUCTION(Condition);
3939 
3940   virtual IfCondition GetCondition() const = 0;
3941 
3942   virtual IfCondition GetOppositeCondition() const = 0;
3943 
3944   bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
3945   bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3946 
3947   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3948   void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3949 
3950   bool InstructionDataEquals(const HInstruction* other) const override {
3951     return GetPackedFields() == other->AsCondition()->GetPackedFields();
3952   }
3953 
3954   bool IsFPConditionTrueIfNaN() const {
3955     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3956     IfCondition if_cond = GetCondition();
3957     if (if_cond == kCondNE) {
3958       return true;
3959     } else if (if_cond == kCondEQ) {
3960       return false;
3961     }
3962     return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3963   }
3964 
3965   bool IsFPConditionFalseIfNaN() const {
3966     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3967     IfCondition if_cond = GetCondition();
3968     if (if_cond == kCondEQ) {
3969       return true;
3970     } else if (if_cond == kCondNE) {
3971       return false;
3972     }
3973     return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3974   }
3975 
3976  protected:
3977   // Needed if we merge a HCompare into a HCondition.
3978   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
3979   static constexpr size_t kFieldComparisonBiasSize =
3980       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3981   static constexpr size_t kNumberOfConditionPackedBits =
3982       kFieldComparisonBias + kFieldComparisonBiasSize;
3983   static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3984   using ComparisonBiasField =
3985       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3986 
3987   template <typename T>
3988   int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3989 
3990   template <typename T>
3991   int32_t CompareFP(T x, T y) const {
3992     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3993     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3994     // Handle the bias.
3995     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3996   }
3997 
3998   // Return an integer constant containing the result of a condition evaluated at compile time.
3999   HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
4000     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
4001   }
4002 
4003   DEFAULT_COPY_CONSTRUCTOR(Condition);
4004 };
4005 
4006 // Instruction to check if two inputs are equal to each other.
4007 class HEqual final : public HCondition {
4008  public:
4009   HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4010       : HCondition(kEqual, first, second, dex_pc) {
4011   }
4012 
4013   bool IsCommutative() const override { return true; }
4014 
4015   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
4016                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
4017     return MakeConstantCondition(true, GetDexPc());
4018   }
4019   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4020     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4021   }
4022   // In the following Evaluate methods, a HCompare instruction has
4023   // been merged into this HEqual instruction; evaluate it as
4024   // `Compare(x, y) == 0`.
4025   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4026     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
4027                                  GetDexPc());
4028   }
4029   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4030     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4031   }
4032   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4033     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4034   }
4035 
4036   DECLARE_INSTRUCTION(Equal);
4037 
4038   IfCondition GetCondition() const override {
4039     return kCondEQ;
4040   }
4041 
4042   IfCondition GetOppositeCondition() const override {
4043     return kCondNE;
4044   }
4045 
4046  protected:
4047   DEFAULT_COPY_CONSTRUCTOR(Equal);
4048 
4049  private:
4050   template <typename T> static bool Compute(T x, T y) { return x == y; }
4051 };
4052 
4053 class HNotEqual final : public HCondition {
4054  public:
4055   HNotEqual(HInstruction* first, HInstruction* second,
4056             uint32_t dex_pc = kNoDexPc)
4057       : HCondition(kNotEqual, first, second, dex_pc) {
4058   }
4059 
4060   bool IsCommutative() const override { return true; }
4061 
4062   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
4063                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
4064     return MakeConstantCondition(false, GetDexPc());
4065   }
4066   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4067     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4068   }
4069   // In the following Evaluate methods, a HCompare instruction has
4070   // been merged into this HNotEqual instruction; evaluate it as
4071   // `Compare(x, y) != 0`.
4072   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4073     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4074   }
4075   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4076     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4077   }
4078   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4079     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4080   }
4081 
4082   DECLARE_INSTRUCTION(NotEqual);
4083 
4084   IfCondition GetCondition() const override {
4085     return kCondNE;
4086   }
4087 
4088   IfCondition GetOppositeCondition() const override {
4089     return kCondEQ;
4090   }
4091 
4092  protected:
4093   DEFAULT_COPY_CONSTRUCTOR(NotEqual);
4094 
4095  private:
4096   template <typename T> static bool Compute(T x, T y) { return x != y; }
4097 };
4098 
4099 class HLessThan final : public HCondition {
4100  public:
4101   HLessThan(HInstruction* first, HInstruction* second,
4102             uint32_t dex_pc = kNoDexPc)
4103       : HCondition(kLessThan, first, second, dex_pc) {
4104   }
4105 
4106   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4107     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4108   }
4109   // In the following Evaluate methods, a HCompare instruction has
4110   // been merged into this HLessThan instruction; evaluate it as
4111   // `Compare(x, y) < 0`.
4112   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4113     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4114   }
4115   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4116     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4117   }
4118   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4119     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4120   }
4121 
4122   DECLARE_INSTRUCTION(LessThan);
4123 
4124   IfCondition GetCondition() const override {
4125     return kCondLT;
4126   }
4127 
4128   IfCondition GetOppositeCondition() const override {
4129     return kCondGE;
4130   }
4131 
4132  protected:
4133   DEFAULT_COPY_CONSTRUCTOR(LessThan);
4134 
4135  private:
4136   template <typename T> static bool Compute(T x, T y) { return x < y; }
4137 };
4138 
4139 class HLessThanOrEqual final : public HCondition {
4140  public:
4141   HLessThanOrEqual(HInstruction* first, HInstruction* second,
4142                    uint32_t dex_pc = kNoDexPc)
4143       : HCondition(kLessThanOrEqual, first, second, dex_pc) {
4144   }
4145 
4146   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4147     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4148   }
4149   // In the following Evaluate methods, a HCompare instruction has
4150   // been merged into this HLessThanOrEqual instruction; evaluate it as
4151   // `Compare(x, y) <= 0`.
4152   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4153     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4154   }
4155   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4156     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4157   }
4158   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4159     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4160   }
4161 
4162   DECLARE_INSTRUCTION(LessThanOrEqual);
4163 
4164   IfCondition GetCondition() const override {
4165     return kCondLE;
4166   }
4167 
4168   IfCondition GetOppositeCondition() const override {
4169     return kCondGT;
4170   }
4171 
4172  protected:
4173   DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
4174 
4175  private:
4176   template <typename T> static bool Compute(T x, T y) { return x <= y; }
4177 };
4178 
4179 class HGreaterThan final : public HCondition {
4180  public:
4181   HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4182       : HCondition(kGreaterThan, first, second, dex_pc) {
4183   }
4184 
4185   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4186     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4187   }
4188   // In the following Evaluate methods, a HCompare instruction has
4189   // been merged into this HGreaterThan instruction; evaluate it as
4190   // `Compare(x, y) > 0`.
4191   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4192     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4193   }
4194   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4195     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4196   }
4197   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4198     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4199   }
4200 
4201   DECLARE_INSTRUCTION(GreaterThan);
4202 
4203   IfCondition GetCondition() const override {
4204     return kCondGT;
4205   }
4206 
4207   IfCondition GetOppositeCondition() const override {
4208     return kCondLE;
4209   }
4210 
4211  protected:
4212   DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
4213 
4214  private:
4215   template <typename T> static bool Compute(T x, T y) { return x > y; }
4216 };
4217 
4218 class HGreaterThanOrEqual final : public HCondition {
4219  public:
4220   HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4221       : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
4222   }
4223 
4224   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4225     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4226   }
4227   // In the following Evaluate methods, a HCompare instruction has
4228   // been merged into this HGreaterThanOrEqual instruction; evaluate it as
4229   // `Compare(x, y) >= 0`.
4230   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4231     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
4232   }
4233   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4234     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4235   }
4236   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4237     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4238   }
4239 
4240   DECLARE_INSTRUCTION(GreaterThanOrEqual);
4241 
4242   IfCondition GetCondition() const override {
4243     return kCondGE;
4244   }
4245 
4246   IfCondition GetOppositeCondition() const override {
4247     return kCondLT;
4248   }
4249 
4250  protected:
4251   DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
4252 
4253  private:
4254   template <typename T> static bool Compute(T x, T y) { return x >= y; }
4255 };
4256 
4257 class HBelow final : public HCondition {
4258  public:
4259   HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4260       : HCondition(kBelow, first, second, dex_pc) {
4261   }
4262 
4263   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4264     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4265   }
4266   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4267     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4268   }
4269   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4270                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4271     LOG(FATAL) << DebugName() << " is not defined for float values";
4272     UNREACHABLE();
4273   }
4274   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4275                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4276     LOG(FATAL) << DebugName() << " is not defined for double values";
4277     UNREACHABLE();
4278   }
4279 
4280   DECLARE_INSTRUCTION(Below);
4281 
4282   IfCondition GetCondition() const override {
4283     return kCondB;
4284   }
4285 
4286   IfCondition GetOppositeCondition() const override {
4287     return kCondAE;
4288   }
4289 
4290  protected:
4291   DEFAULT_COPY_CONSTRUCTOR(Below);
4292 
4293  private:
4294   template <typename T> static bool Compute(T x, T y) {
4295     return MakeUnsigned(x) < MakeUnsigned(y);
4296   }
4297 };
4298 
4299 class HBelowOrEqual final : public HCondition {
4300  public:
4301   HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4302       : HCondition(kBelowOrEqual, first, second, dex_pc) {
4303   }
4304 
4305   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4306     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4307   }
4308   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4309     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4310   }
4311   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4312                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4313     LOG(FATAL) << DebugName() << " is not defined for float values";
4314     UNREACHABLE();
4315   }
4316   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4317                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4318     LOG(FATAL) << DebugName() << " is not defined for double values";
4319     UNREACHABLE();
4320   }
4321 
4322   DECLARE_INSTRUCTION(BelowOrEqual);
4323 
4324   IfCondition GetCondition() const override {
4325     return kCondBE;
4326   }
4327 
4328   IfCondition GetOppositeCondition() const override {
4329     return kCondA;
4330   }
4331 
4332  protected:
4333   DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
4334 
4335  private:
4336   template <typename T> static bool Compute(T x, T y) {
4337     return MakeUnsigned(x) <= MakeUnsigned(y);
4338   }
4339 };
4340 
4341 class HAbove final : public HCondition {
4342  public:
4343   HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4344       : HCondition(kAbove, first, second, dex_pc) {
4345   }
4346 
4347   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4348     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4349   }
4350   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4351     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4352   }
4353   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4354                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4355     LOG(FATAL) << DebugName() << " is not defined for float values";
4356     UNREACHABLE();
4357   }
4358   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4359                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4360     LOG(FATAL) << DebugName() << " is not defined for double values";
4361     UNREACHABLE();
4362   }
4363 
4364   DECLARE_INSTRUCTION(Above);
4365 
4366   IfCondition GetCondition() const override {
4367     return kCondA;
4368   }
4369 
4370   IfCondition GetOppositeCondition() const override {
4371     return kCondBE;
4372   }
4373 
4374  protected:
4375   DEFAULT_COPY_CONSTRUCTOR(Above);
4376 
4377  private:
4378   template <typename T> static bool Compute(T x, T y) {
4379     return MakeUnsigned(x) > MakeUnsigned(y);
4380   }
4381 };
4382 
4383 class HAboveOrEqual final : public HCondition {
4384  public:
4385   HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
4386       : HCondition(kAboveOrEqual, first, second, dex_pc) {
4387   }
4388 
4389   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4390     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4391   }
4392   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4393     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4394   }
4395   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4396                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4397     LOG(FATAL) << DebugName() << " is not defined for float values";
4398     UNREACHABLE();
4399   }
4400   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4401                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4402     LOG(FATAL) << DebugName() << " is not defined for double values";
4403     UNREACHABLE();
4404   }
4405 
4406   DECLARE_INSTRUCTION(AboveOrEqual);
4407 
4408   IfCondition GetCondition() const override {
4409     return kCondAE;
4410   }
4411 
4412   IfCondition GetOppositeCondition() const override {
4413     return kCondB;
4414   }
4415 
4416  protected:
4417   DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
4418 
4419  private:
4420   template <typename T> static bool Compute(T x, T y) {
4421     return MakeUnsigned(x) >= MakeUnsigned(y);
4422   }
4423 };
4424 
4425 // Instruction to check how two inputs compare to each other.
4426 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
4427 class HCompare final : public HBinaryOperation {
4428  public:
4429   // Note that `comparison_type` is the type of comparison performed
4430   // between the comparison's inputs, not the type of the instantiated
4431   // HCompare instruction (which is always DataType::Type::kInt).
4432   HCompare(DataType::Type comparison_type,
4433            HInstruction* first,
4434            HInstruction* second,
4435            ComparisonBias bias,
4436            uint32_t dex_pc)
4437       : HBinaryOperation(kCompare,
4438                          DataType::Type::kInt32,
4439                          first,
4440                          second,
4441                          SideEffectsForArchRuntimeCalls(comparison_type),
4442                          dex_pc) {
4443     SetPackedField<ComparisonBiasField>(bias);
4444   }
4445 
4446   template <typename T>
4447   int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
4448 
4449   template <typename T>
4450   int32_t ComputeFP(T x, T y) const {
4451     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4452     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
4453     // Handle the bias.
4454     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
4455   }
4456 
4457   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4458     // Note that there is no "cmp-int" Dex instruction so we shouldn't
4459     // reach this code path when processing a freshly built HIR
4460     // graph. However HCompare integer instructions can be synthesized
4461     // by the instruction simplifier to implement IntegerCompare and
4462     // IntegerSignum intrinsics, so we have to handle this case.
4463     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4464   }
4465   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4466     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4467   }
4468   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4469     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4470   }
4471   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4472     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4473   }
4474 
4475   bool InstructionDataEquals(const HInstruction* other) const override {
4476     return GetPackedFields() == other->AsCompare()->GetPackedFields();
4477   }
4478 
4479   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
4480 
4481   // Does this compare instruction have a "gt bias" (vs an "lt bias")?
4482   // Only meaningful for floating-point comparisons.
4483   bool IsGtBias() const {
4484     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4485     return GetBias() == ComparisonBias::kGtBias;
4486   }
4487 
4488   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
4489     // Comparisons do not require a runtime call in any back end.
4490     return SideEffects::None();
4491   }
4492 
4493   DECLARE_INSTRUCTION(Compare);
4494 
4495  protected:
4496   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
4497   static constexpr size_t kFieldComparisonBiasSize =
4498       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
4499   static constexpr size_t kNumberOfComparePackedBits =
4500       kFieldComparisonBias + kFieldComparisonBiasSize;
4501   static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4502   using ComparisonBiasField =
4503       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
4504 
4505   // Return an integer constant containing the result of a comparison evaluated at compile time.
4506   HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
4507     DCHECK(value == -1 || value == 0 || value == 1) << value;
4508     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
4509   }
4510 
4511   DEFAULT_COPY_CONSTRUCTOR(Compare);
4512 };
4513 
4514 class HNewInstance final : public HExpression<1> {
4515  public:
4516   HNewInstance(HInstruction* cls,
4517                uint32_t dex_pc,
4518                dex::TypeIndex type_index,
4519                const DexFile& dex_file,
4520                bool finalizable,
4521                QuickEntrypointEnum entrypoint)
4522       : HExpression(kNewInstance,
4523                     DataType::Type::kReference,
4524                     SideEffects::CanTriggerGC(),
4525                     dex_pc),
4526         type_index_(type_index),
4527         dex_file_(dex_file),
4528         entrypoint_(entrypoint) {
4529     SetPackedFlag<kFlagFinalizable>(finalizable);
4530     SetPackedFlag<kFlagPartialMaterialization>(false);
4531     SetRawInputAt(0, cls);
4532   }
4533 
4534   bool IsClonable() const override { return true; }
4535 
4536   void SetPartialMaterialization() {
4537     SetPackedFlag<kFlagPartialMaterialization>(true);
4538   }
4539 
4540   dex::TypeIndex GetTypeIndex() const { return type_index_; }
4541   const DexFile& GetDexFile() const { return dex_file_; }
4542 
4543   // Calls runtime so needs an environment.
4544   bool NeedsEnvironment() const override { return true; }
4545 
4546   // Can throw errors when out-of-memory or if it's not instantiable/accessible.
4547   bool CanThrow() const override { return true; }
4548   bool OnlyThrowsAsyncExceptions() const override {
4549     return !IsFinalizable() && !NeedsChecks();
4550   }
4551 
4552   bool NeedsChecks() const {
4553     return entrypoint_ == kQuickAllocObjectWithChecks;
4554   }
4555 
4556   bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
4557 
4558   bool CanBeNull() const override { return false; }
4559 
4560   bool IsPartialMaterialization() const {
4561     return GetPackedFlag<kFlagPartialMaterialization>();
4562   }
4563 
4564   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4565 
4566   void SetEntrypoint(QuickEntrypointEnum entrypoint) {
4567     entrypoint_ = entrypoint;
4568   }
4569 
4570   HLoadClass* GetLoadClass() const {
4571     HInstruction* input = InputAt(0);
4572     if (input->IsClinitCheck()) {
4573       input = input->InputAt(0);
4574     }
4575     DCHECK(input->IsLoadClass());
4576     return input->AsLoadClass();
4577   }
4578 
4579   bool IsStringAlloc() const;
4580 
4581   DECLARE_INSTRUCTION(NewInstance);
4582 
4583  protected:
4584   DEFAULT_COPY_CONSTRUCTOR(NewInstance);
4585 
4586  private:
4587   static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
4588   static constexpr size_t kFlagPartialMaterialization = kFlagFinalizable + 1;
4589   static constexpr size_t kNumberOfNewInstancePackedBits = kFlagPartialMaterialization + 1;
4590   static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
4591                 "Too many packed fields.");
4592 
4593   const dex::TypeIndex type_index_;
4594   const DexFile& dex_file_;
4595   QuickEntrypointEnum entrypoint_;
4596 };
4597 
4598 enum IntrinsicNeedsEnvironment {
4599   kNoEnvironment,        // Intrinsic does not require an environment.
4600   kNeedsEnvironment      // Intrinsic requires an environment.
4601 };
4602 
4603 enum IntrinsicSideEffects {
4604   kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
4605   kReadSideEffects,   // Intrinsic may read heap memory.
4606   kWriteSideEffects,  // Intrinsic may write heap memory.
4607   kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
4608 };
4609 
4610 enum IntrinsicExceptions {
4611   kNoThrow,  // Intrinsic does not throw any exceptions.
4612   kCanThrow  // Intrinsic may throw exceptions.
4613 };
4614 
4615 // Determines how to load an ArtMethod*.
4616 enum class MethodLoadKind {
4617   // Use a String init ArtMethod* loaded from Thread entrypoints.
4618   kStringInit,
4619 
4620   // Use the method's own ArtMethod* loaded by the register allocator.
4621   kRecursive,
4622 
4623   // Use PC-relative boot image ArtMethod* address that will be known at link time.
4624   // Used for boot image methods referenced by boot image code.
4625   kBootImageLinkTimePcRelative,
4626 
4627   // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
4628   // Used for app->boot calls with relocatable image.
4629   kBootImageRelRo,
4630 
4631   // Load from an entry in the .bss section using a PC-relative load.
4632   // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
4633   kBssEntry,
4634 
4635   // Use ArtMethod* at a known address, embed the direct address in the code.
4636   // Used for for JIT-compiled calls.
4637   kJitDirectAddress,
4638 
4639   // Make a runtime call to resolve and call the method. This is the last-resort-kind
4640   // used when other kinds are unimplemented on a particular architecture.
4641   kRuntimeCall,
4642 };
4643 
4644 // Determines the location of the code pointer of an invoke.
4645 enum class CodePtrLocation {
4646   // Recursive call, use local PC-relative call instruction.
4647   kCallSelf,
4648 
4649   // Use native pointer from the Artmethod*.
4650   // Used for @CriticalNative to avoid going through the compiled stub. This call goes through
4651   // a special resolution stub if the class is not initialized or no native code is registered.
4652   kCallCriticalNative,
4653 
4654   // Use code pointer from the ArtMethod*.
4655   // Used when we don't know the target code. This is also the last-resort-kind used when
4656   // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4657   kCallArtMethod,
4658 };
4659 
4660 static inline bool IsPcRelativeMethodLoadKind(MethodLoadKind load_kind) {
4661   return load_kind == MethodLoadKind::kBootImageLinkTimePcRelative ||
4662          load_kind == MethodLoadKind::kBootImageRelRo ||
4663          load_kind == MethodLoadKind::kBssEntry;
4664 }
4665 
4666 class HInvoke : public HVariableInputSizeInstruction {
4667  public:
4668   bool NeedsEnvironment() const override;
4669 
4670   void SetArgumentAt(size_t index, HInstruction* argument) {
4671     SetRawInputAt(index, argument);
4672   }
4673 
4674   // Return the number of arguments.  This number can be lower than
4675   // the number of inputs returned by InputCount(), as some invoke
4676   // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
4677   // inputs at the end of their list of inputs.
4678   uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4679 
4680   InvokeType GetInvokeType() const {
4681     return GetPackedField<InvokeTypeField>();
4682   }
4683 
4684   Intrinsics GetIntrinsic() const {
4685     return intrinsic_;
4686   }
4687 
4688   void SetIntrinsic(Intrinsics intrinsic,
4689                     IntrinsicNeedsEnvironment needs_env,
4690                     IntrinsicSideEffects side_effects,
4691                     IntrinsicExceptions exceptions);
4692 
4693   bool IsFromInlinedInvoke() const {
4694     return GetEnvironment()->IsFromInlinedInvoke();
4695   }
4696 
4697   void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4698 
4699   bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
4700 
4701   void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
4702 
4703   bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); }
4704 
4705   bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
4706 
4707   bool InstructionDataEquals(const HInstruction* other) const override {
4708     return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4709   }
4710 
4711   uint32_t* GetIntrinsicOptimizations() {
4712     return &intrinsic_optimizations_;
4713   }
4714 
4715   const uint32_t* GetIntrinsicOptimizations() const {
4716     return &intrinsic_optimizations_;
4717   }
4718 
4719   bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4720 
4721   ArtMethod* GetResolvedMethod() const { return resolved_method_; }
4722   void SetResolvedMethod(ArtMethod* method);
4723 
4724   MethodReference GetMethodReference() const { return method_reference_; }
4725 
4726   const MethodReference GetResolvedMethodReference() const {
4727     return resolved_method_reference_;
4728   }
4729 
4730   DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4731 
4732  protected:
4733   static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4734   static constexpr size_t kFieldInvokeTypeSize =
4735       MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4736   static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
4737   static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
4738   static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
4739   static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4740   using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4741 
4742   HInvoke(InstructionKind kind,
4743           ArenaAllocator* allocator,
4744           uint32_t number_of_arguments,
4745           uint32_t number_of_other_inputs,
4746           DataType::Type return_type,
4747           uint32_t dex_pc,
4748           MethodReference method_reference,
4749           ArtMethod* resolved_method,
4750           MethodReference resolved_method_reference,
4751           InvokeType invoke_type)
4752     : HVariableInputSizeInstruction(
4753           kind,
4754           return_type,
4755           SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
4756           dex_pc,
4757           allocator,
4758           number_of_arguments + number_of_other_inputs,
4759           kArenaAllocInvokeInputs),
4760       number_of_arguments_(number_of_arguments),
4761       method_reference_(method_reference),
4762       resolved_method_reference_(resolved_method_reference),
4763       intrinsic_(Intrinsics::kNone),
4764       intrinsic_optimizations_(0) {
4765     SetPackedField<InvokeTypeField>(invoke_type);
4766     SetPackedFlag<kFlagCanThrow>(true);
4767     SetResolvedMethod(resolved_method);
4768   }
4769 
4770   DEFAULT_COPY_CONSTRUCTOR(Invoke);
4771 
4772   uint32_t number_of_arguments_;
4773   ArtMethod* resolved_method_;
4774   const MethodReference method_reference_;
4775   // Cached values of the resolved method, to avoid needing the mutator lock.
4776   const MethodReference resolved_method_reference_;
4777   Intrinsics intrinsic_;
4778 
4779   // A magic word holding optimizations for intrinsics. See intrinsics.h.
4780   uint32_t intrinsic_optimizations_;
4781 };
4782 
4783 class HInvokeUnresolved final : public HInvoke {
4784  public:
4785   HInvokeUnresolved(ArenaAllocator* allocator,
4786                     uint32_t number_of_arguments,
4787                     DataType::Type return_type,
4788                     uint32_t dex_pc,
4789                     MethodReference method_reference,
4790                     InvokeType invoke_type)
4791       : HInvoke(kInvokeUnresolved,
4792                 allocator,
4793                 number_of_arguments,
4794                 /* number_of_other_inputs= */ 0u,
4795                 return_type,
4796                 dex_pc,
4797                 method_reference,
4798                 nullptr,
4799                 MethodReference(nullptr, 0u),
4800                 invoke_type) {
4801   }
4802 
4803   bool IsClonable() const override { return true; }
4804 
4805   DECLARE_INSTRUCTION(InvokeUnresolved);
4806 
4807  protected:
4808   DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
4809 };
4810 
4811 class HInvokePolymorphic final : public HInvoke {
4812  public:
4813   HInvokePolymorphic(ArenaAllocator* allocator,
4814                      uint32_t number_of_arguments,
4815                      DataType::Type return_type,
4816                      uint32_t dex_pc,
4817                      MethodReference method_reference,
4818                      // resolved_method is the ArtMethod object corresponding to the polymorphic
4819                      // method (e.g. VarHandle.get), resolved using the class linker. It is needed
4820                      // to pass intrinsic information to the HInvokePolymorphic node.
4821                      ArtMethod* resolved_method,
4822                      MethodReference resolved_method_reference,
4823                      dex::ProtoIndex proto_idx)
4824       : HInvoke(kInvokePolymorphic,
4825                 allocator,
4826                 number_of_arguments,
4827                 /* number_of_other_inputs= */ 0u,
4828                 return_type,
4829                 dex_pc,
4830                 method_reference,
4831                 resolved_method,
4832                 resolved_method_reference,
4833                 kPolymorphic),
4834         proto_idx_(proto_idx) {
4835   }
4836 
4837   bool IsClonable() const override { return true; }
4838 
4839   dex::ProtoIndex GetProtoIndex() { return proto_idx_; }
4840 
4841   DECLARE_INSTRUCTION(InvokePolymorphic);
4842 
4843  protected:
4844   dex::ProtoIndex proto_idx_;
4845   DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
4846 };
4847 
4848 class HInvokeCustom final : public HInvoke {
4849  public:
4850   HInvokeCustom(ArenaAllocator* allocator,
4851                 uint32_t number_of_arguments,
4852                 uint32_t call_site_index,
4853                 DataType::Type return_type,
4854                 uint32_t dex_pc,
4855                 MethodReference method_reference)
4856       : HInvoke(kInvokeCustom,
4857                 allocator,
4858                 number_of_arguments,
4859                 /* number_of_other_inputs= */ 0u,
4860                 return_type,
4861                 dex_pc,
4862                 method_reference,
4863                 /* resolved_method= */ nullptr,
4864                 MethodReference(nullptr, 0u),
4865                 kStatic),
4866       call_site_index_(call_site_index) {
4867   }
4868 
4869   uint32_t GetCallSiteIndex() const { return call_site_index_; }
4870 
4871   bool IsClonable() const override { return true; }
4872 
4873   DECLARE_INSTRUCTION(InvokeCustom);
4874 
4875  protected:
4876   DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
4877 
4878  private:
4879   uint32_t call_site_index_;
4880 };
4881 
4882 class HInvokeStaticOrDirect final : public HInvoke {
4883  public:
4884   // Requirements of this method call regarding the class
4885   // initialization (clinit) check of its declaring class.
4886   enum class ClinitCheckRequirement {  // private marker to avoid generate-operator-out.py from processing.
4887     kNone,      // Class already initialized.
4888     kExplicit,  // Static call having explicit clinit check as last input.
4889     kImplicit,  // Static call implicitly requiring a clinit check.
4890     kLast = kImplicit
4891   };
4892 
4893   struct DispatchInfo {
4894     MethodLoadKind method_load_kind;
4895     CodePtrLocation code_ptr_location;
4896     // The method load data holds
4897     //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
4898     //     Note that there are multiple string init methods, each having its own offset.
4899     //   - the method address for kDirectAddress
4900     uint64_t method_load_data;
4901   };
4902 
4903   HInvokeStaticOrDirect(ArenaAllocator* allocator,
4904                         uint32_t number_of_arguments,
4905                         DataType::Type return_type,
4906                         uint32_t dex_pc,
4907                         MethodReference method_reference,
4908                         ArtMethod* resolved_method,
4909                         DispatchInfo dispatch_info,
4910                         InvokeType invoke_type,
4911                         MethodReference resolved_method_reference,
4912                         ClinitCheckRequirement clinit_check_requirement)
4913       : HInvoke(kInvokeStaticOrDirect,
4914                 allocator,
4915                 number_of_arguments,
4916                 // There is potentially one extra argument for the HCurrentMethod input,
4917                 // and one other if the clinit check is explicit. These can be removed later.
4918                 (NeedsCurrentMethodInput(dispatch_info) ? 1u : 0u) +
4919                     (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4920                 return_type,
4921                 dex_pc,
4922                 method_reference,
4923                 resolved_method,
4924                 resolved_method_reference,
4925                 invoke_type),
4926         dispatch_info_(dispatch_info) {
4927     SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4928   }
4929 
4930   bool IsClonable() const override { return true; }
4931   bool NeedsBss() const override {
4932     return GetMethodLoadKind() == MethodLoadKind::kBssEntry;
4933   }
4934 
4935   void SetDispatchInfo(DispatchInfo dispatch_info) {
4936     bool had_current_method_input = HasCurrentMethodInput();
4937     bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info);
4938 
4939     // Using the current method is the default and once we find a better
4940     // method load kind, we should not go back to using the current method.
4941     DCHECK(had_current_method_input || !needs_current_method_input);
4942 
4943     if (had_current_method_input && !needs_current_method_input) {
4944       DCHECK_EQ(InputAt(GetCurrentMethodIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4945       RemoveInputAt(GetCurrentMethodIndex());
4946     }
4947     dispatch_info_ = dispatch_info;
4948   }
4949 
4950   DispatchInfo GetDispatchInfo() const {
4951     return dispatch_info_;
4952   }
4953 
4954   using HInstruction::GetInputRecords;  // Keep the const version visible.
4955   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
4956     ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4957     if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4958       DCHECK(!input_records.empty());
4959       DCHECK_GT(input_records.size(), GetNumberOfArguments());
4960       HInstruction* last_input = input_records.back().GetInstruction();
4961       // Note: `last_input` may be null during arguments setup.
4962       if (last_input != nullptr) {
4963         // `last_input` is the last input of a static invoke marked as having
4964         // an explicit clinit check. It must either be:
4965         // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4966         // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4967         DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4968       }
4969     }
4970     return input_records;
4971   }
4972 
4973   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
4974     // We do not access the method via object reference, so we cannot do an implicit null check.
4975     // TODO: for intrinsics we can generate implicit null checks.
4976     return false;
4977   }
4978 
4979   bool CanBeNull() const override {
4980     return GetType() == DataType::Type::kReference && !IsStringInit();
4981   }
4982 
4983   MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
4984   CodePtrLocation GetCodePtrLocation() const {
4985     // We do CHA analysis after sharpening. When a method has CHA inlining, it
4986     // cannot call itself, as if the CHA optmization is invalid we want to make
4987     // sure the method is never executed again. So, while sharpening can return
4988     // kCallSelf, we bypass it here if there is a CHA optimization.
4989     if (dispatch_info_.code_ptr_location == CodePtrLocation::kCallSelf &&
4990         GetBlock()->GetGraph()->HasShouldDeoptimizeFlag()) {
4991       return CodePtrLocation::kCallArtMethod;
4992     } else {
4993       return dispatch_info_.code_ptr_location;
4994     }
4995   }
4996   bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4997   bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
4998   bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
4999   bool HasPcRelativeMethodLoadKind() const {
5000     return IsPcRelativeMethodLoadKind(GetMethodLoadKind());
5001   }
5002 
5003   QuickEntrypointEnum GetStringInitEntryPoint() const {
5004     DCHECK(IsStringInit());
5005     return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
5006   }
5007 
5008   uint64_t GetMethodAddress() const {
5009     DCHECK(HasMethodAddress());
5010     return dispatch_info_.method_load_data;
5011   }
5012 
5013   const DexFile& GetDexFileForPcRelativeDexCache() const;
5014 
5015   ClinitCheckRequirement GetClinitCheckRequirement() const {
5016     return GetPackedField<ClinitCheckRequirementField>();
5017   }
5018 
5019   // Is this instruction a call to a static method?
5020   bool IsStatic() const {
5021     return GetInvokeType() == kStatic;
5022   }
5023 
5024   // Does this method load kind need the current method as an input?
5025   static bool NeedsCurrentMethodInput(DispatchInfo dispatch_info) {
5026     return dispatch_info.method_load_kind == MethodLoadKind::kRecursive ||
5027            dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall ||
5028            dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative;
5029   }
5030 
5031   // Get the index of the current method input.
5032   size_t GetCurrentMethodIndex() const {
5033     DCHECK(HasCurrentMethodInput());
5034     return GetCurrentMethodIndexUnchecked();
5035   }
5036   size_t GetCurrentMethodIndexUnchecked() const {
5037     return GetNumberOfArguments();
5038   }
5039 
5040   // Check if the method has a current method input.
5041   bool HasCurrentMethodInput() const {
5042     if (NeedsCurrentMethodInput(GetDispatchInfo())) {
5043       DCHECK(InputAt(GetCurrentMethodIndexUnchecked()) == nullptr ||  // During argument setup.
5044              InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
5045       return true;
5046     } else {
5047       DCHECK(InputCount() == GetCurrentMethodIndexUnchecked() ||
5048              InputAt(GetCurrentMethodIndexUnchecked()) == nullptr ||  // During argument setup.
5049              !InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
5050       return false;
5051     }
5052   }
5053 
5054   // Get the index of the special input.
5055   size_t GetSpecialInputIndex() const {
5056     DCHECK(HasSpecialInput());
5057     return GetSpecialInputIndexUnchecked();
5058   }
5059   size_t GetSpecialInputIndexUnchecked() const {
5060     return GetNumberOfArguments() + (HasCurrentMethodInput() ? 1u : 0u);
5061   }
5062 
5063   // Check if the method has a special input.
5064   bool HasSpecialInput() const {
5065     size_t other_inputs =
5066         GetSpecialInputIndexUnchecked() + (IsStaticWithExplicitClinitCheck() ? 1u : 0u);
5067     size_t input_count = InputCount();
5068     DCHECK_LE(input_count - other_inputs, 1u) << other_inputs << " " << input_count;
5069     return other_inputs != input_count;
5070   }
5071 
5072   void AddSpecialInput(HInstruction* input) {
5073     // We allow only one special input.
5074     DCHECK(!HasSpecialInput());
5075     InsertInputAt(GetSpecialInputIndexUnchecked(), input);
5076   }
5077 
5078   // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
5079   // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
5080   // instruction; only relevant for static calls with explicit clinit check.
5081   void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
5082     DCHECK(IsStaticWithExplicitClinitCheck());
5083     size_t last_input_index = inputs_.size() - 1u;
5084     HInstruction* last_input = inputs_.back().GetInstruction();
5085     DCHECK(last_input != nullptr);
5086     DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
5087     RemoveAsUserOfInput(last_input_index);
5088     inputs_.pop_back();
5089     SetPackedField<ClinitCheckRequirementField>(new_requirement);
5090     DCHECK(!IsStaticWithExplicitClinitCheck());
5091   }
5092 
5093   // Is this a call to a static method whose declaring class has an
5094   // explicit initialization check in the graph?
5095   bool IsStaticWithExplicitClinitCheck() const {
5096     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
5097   }
5098 
5099   // Is this a call to a static method whose declaring class has an
5100   // implicit intialization check requirement?
5101   bool IsStaticWithImplicitClinitCheck() const {
5102     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
5103   }
5104 
5105   DECLARE_INSTRUCTION(InvokeStaticOrDirect);
5106 
5107  protected:
5108   DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
5109 
5110  private:
5111   static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
5112   static constexpr size_t kFieldClinitCheckRequirementSize =
5113       MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
5114   static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
5115       kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
5116   static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
5117                 "Too many packed fields.");
5118   using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
5119                                                kFieldClinitCheckRequirement,
5120                                                kFieldClinitCheckRequirementSize>;
5121 
5122   DispatchInfo dispatch_info_;
5123 };
5124 std::ostream& operator<<(std::ostream& os, MethodLoadKind rhs);
5125 std::ostream& operator<<(std::ostream& os, CodePtrLocation rhs);
5126 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
5127 
5128 class HInvokeVirtual final : public HInvoke {
5129  public:
5130   HInvokeVirtual(ArenaAllocator* allocator,
5131                  uint32_t number_of_arguments,
5132                  DataType::Type return_type,
5133                  uint32_t dex_pc,
5134                  MethodReference method_reference,
5135                  ArtMethod* resolved_method,
5136                  MethodReference resolved_method_reference,
5137                  uint32_t vtable_index)
5138       : HInvoke(kInvokeVirtual,
5139                 allocator,
5140                 number_of_arguments,
5141                 0u,
5142                 return_type,
5143                 dex_pc,
5144                 method_reference,
5145                 resolved_method,
5146                 resolved_method_reference,
5147                 kVirtual),
5148         vtable_index_(vtable_index) {
5149   }
5150 
5151   bool IsClonable() const override { return true; }
5152 
5153   bool CanBeNull() const override {
5154     switch (GetIntrinsic()) {
5155       case Intrinsics::kThreadCurrentThread:
5156       case Intrinsics::kStringBufferAppend:
5157       case Intrinsics::kStringBufferToString:
5158       case Intrinsics::kStringBuilderAppendObject:
5159       case Intrinsics::kStringBuilderAppendString:
5160       case Intrinsics::kStringBuilderAppendCharSequence:
5161       case Intrinsics::kStringBuilderAppendCharArray:
5162       case Intrinsics::kStringBuilderAppendBoolean:
5163       case Intrinsics::kStringBuilderAppendChar:
5164       case Intrinsics::kStringBuilderAppendInt:
5165       case Intrinsics::kStringBuilderAppendLong:
5166       case Intrinsics::kStringBuilderAppendFloat:
5167       case Intrinsics::kStringBuilderAppendDouble:
5168       case Intrinsics::kStringBuilderToString:
5169         return false;
5170       default:
5171         return HInvoke::CanBeNull();
5172     }
5173   }
5174 
5175   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override;
5176 
5177   uint32_t GetVTableIndex() const { return vtable_index_; }
5178 
5179   DECLARE_INSTRUCTION(InvokeVirtual);
5180 
5181  protected:
5182   DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
5183 
5184  private:
5185   // Cached value of the resolved method, to avoid needing the mutator lock.
5186   const uint32_t vtable_index_;
5187 };
5188 
5189 class HInvokeInterface final : public HInvoke {
5190  public:
5191   HInvokeInterface(ArenaAllocator* allocator,
5192                    uint32_t number_of_arguments,
5193                    DataType::Type return_type,
5194                    uint32_t dex_pc,
5195                    MethodReference method_reference,
5196                    ArtMethod* resolved_method,
5197                    MethodReference resolved_method_reference,
5198                    uint32_t imt_index,
5199                    MethodLoadKind load_kind)
5200       : HInvoke(kInvokeInterface,
5201                 allocator,
5202                 number_of_arguments + (NeedsCurrentMethod(load_kind) ? 1 : 0),
5203                 0u,
5204                 return_type,
5205                 dex_pc,
5206                 method_reference,
5207                 resolved_method,
5208                 resolved_method_reference,
5209                 kInterface),
5210         imt_index_(imt_index),
5211         hidden_argument_load_kind_(load_kind) {
5212   }
5213 
5214   static bool NeedsCurrentMethod(MethodLoadKind load_kind) {
5215     return load_kind == MethodLoadKind::kRecursive;
5216   }
5217 
5218   bool IsClonable() const override { return true; }
5219   bool NeedsBss() const override {
5220     return GetHiddenArgumentLoadKind() == MethodLoadKind::kBssEntry;
5221   }
5222 
5223   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5224     // TODO: Add implicit null checks in intrinsics.
5225     return (obj == InputAt(0)) && !IsIntrinsic();
5226   }
5227 
5228   size_t GetSpecialInputIndex() const {
5229     return GetNumberOfArguments();
5230   }
5231 
5232   void AddSpecialInput(HInstruction* input) {
5233     InsertInputAt(GetSpecialInputIndex(), input);
5234   }
5235 
5236   uint32_t GetImtIndex() const { return imt_index_; }
5237   MethodLoadKind GetHiddenArgumentLoadKind() const { return hidden_argument_load_kind_; }
5238 
5239   DECLARE_INSTRUCTION(InvokeInterface);
5240 
5241  protected:
5242   DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
5243 
5244  private:
5245   // Cached value of the resolved method, to avoid needing the mutator lock.
5246   const uint32_t imt_index_;
5247 
5248   // How the hidden argument (the interface method) is being loaded.
5249   const MethodLoadKind hidden_argument_load_kind_;
5250 };
5251 
5252 class HNeg final : public HUnaryOperation {
5253  public:
5254   HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5255       : HUnaryOperation(kNeg, result_type, input, dex_pc) {
5256     DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
5257   }
5258 
5259   template <typename T> static T Compute(T x) { return -x; }
5260 
5261   HConstant* Evaluate(HIntConstant* x) const override {
5262     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5263   }
5264   HConstant* Evaluate(HLongConstant* x) const override {
5265     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5266   }
5267   HConstant* Evaluate(HFloatConstant* x) const override {
5268     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
5269   }
5270   HConstant* Evaluate(HDoubleConstant* x) const override {
5271     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
5272   }
5273 
5274   DECLARE_INSTRUCTION(Neg);
5275 
5276  protected:
5277   DEFAULT_COPY_CONSTRUCTOR(Neg);
5278 };
5279 
5280 class HNewArray final : public HExpression<2> {
5281  public:
5282   HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
5283       : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
5284     SetRawInputAt(0, cls);
5285     SetRawInputAt(1, length);
5286     SetPackedField<ComponentSizeShiftField>(component_size_shift);
5287   }
5288 
5289   bool IsClonable() const override { return true; }
5290 
5291   // Calls runtime so needs an environment.
5292   bool NeedsEnvironment() const override { return true; }
5293 
5294   // May throw NegativeArraySizeException, OutOfMemoryError, etc.
5295   bool CanThrow() const override { return true; }
5296 
5297   bool CanBeNull() const override { return false; }
5298 
5299   HLoadClass* GetLoadClass() const {
5300     DCHECK(InputAt(0)->IsLoadClass());
5301     return InputAt(0)->AsLoadClass();
5302   }
5303 
5304   HInstruction* GetLength() const {
5305     return InputAt(1);
5306   }
5307 
5308   size_t GetComponentSizeShift() {
5309     return GetPackedField<ComponentSizeShiftField>();
5310   }
5311 
5312   DECLARE_INSTRUCTION(NewArray);
5313 
5314  protected:
5315   DEFAULT_COPY_CONSTRUCTOR(NewArray);
5316 
5317  private:
5318   static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
5319   static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
5320   static constexpr size_t kNumberOfNewArrayPackedBits =
5321       kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
5322   static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5323   using ComponentSizeShiftField =
5324       BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>;
5325 };
5326 
5327 class HAdd final : public HBinaryOperation {
5328  public:
5329   HAdd(DataType::Type result_type,
5330        HInstruction* left,
5331        HInstruction* right,
5332        uint32_t dex_pc = kNoDexPc)
5333       : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
5334   }
5335 
5336   bool IsCommutative() const override { return true; }
5337 
5338   template <typename T> static T Compute(T x, T y) { return x + y; }
5339 
5340   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5341     return GetBlock()->GetGraph()->GetIntConstant(
5342         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5343   }
5344   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5345     return GetBlock()->GetGraph()->GetLongConstant(
5346         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5347   }
5348   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5349     return GetBlock()->GetGraph()->GetFloatConstant(
5350         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5351   }
5352   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5353     return GetBlock()->GetGraph()->GetDoubleConstant(
5354         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5355   }
5356 
5357   DECLARE_INSTRUCTION(Add);
5358 
5359  protected:
5360   DEFAULT_COPY_CONSTRUCTOR(Add);
5361 };
5362 
5363 class HSub final : public HBinaryOperation {
5364  public:
5365   HSub(DataType::Type result_type,
5366        HInstruction* left,
5367        HInstruction* right,
5368        uint32_t dex_pc = kNoDexPc)
5369       : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
5370   }
5371 
5372   template <typename T> static T Compute(T x, T y) { return x - y; }
5373 
5374   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5375     return GetBlock()->GetGraph()->GetIntConstant(
5376         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5377   }
5378   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5379     return GetBlock()->GetGraph()->GetLongConstant(
5380         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5381   }
5382   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5383     return GetBlock()->GetGraph()->GetFloatConstant(
5384         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5385   }
5386   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5387     return GetBlock()->GetGraph()->GetDoubleConstant(
5388         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5389   }
5390 
5391   DECLARE_INSTRUCTION(Sub);
5392 
5393  protected:
5394   DEFAULT_COPY_CONSTRUCTOR(Sub);
5395 };
5396 
5397 class HMul final : public HBinaryOperation {
5398  public:
5399   HMul(DataType::Type result_type,
5400        HInstruction* left,
5401        HInstruction* right,
5402        uint32_t dex_pc = kNoDexPc)
5403       : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
5404   }
5405 
5406   bool IsCommutative() const override { return true; }
5407 
5408   template <typename T> static T Compute(T x, T y) { return x * y; }
5409 
5410   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5411     return GetBlock()->GetGraph()->GetIntConstant(
5412         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5413   }
5414   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5415     return GetBlock()->GetGraph()->GetLongConstant(
5416         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5417   }
5418   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5419     return GetBlock()->GetGraph()->GetFloatConstant(
5420         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5421   }
5422   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5423     return GetBlock()->GetGraph()->GetDoubleConstant(
5424         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5425   }
5426 
5427   DECLARE_INSTRUCTION(Mul);
5428 
5429  protected:
5430   DEFAULT_COPY_CONSTRUCTOR(Mul);
5431 };
5432 
5433 class HDiv final : public HBinaryOperation {
5434  public:
5435   HDiv(DataType::Type result_type,
5436        HInstruction* left,
5437        HInstruction* right,
5438        uint32_t dex_pc)
5439       : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
5440   }
5441 
5442   template <typename T>
5443   T ComputeIntegral(T x, T y) const {
5444     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5445     // Our graph structure ensures we never have 0 for `y` during
5446     // constant folding.
5447     DCHECK_NE(y, 0);
5448     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5449     return (y == -1) ? -x : x / y;
5450   }
5451 
5452   template <typename T>
5453   T ComputeFP(T x, T y) const {
5454     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5455     return x / y;
5456   }
5457 
5458   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5459     return GetBlock()->GetGraph()->GetIntConstant(
5460         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5461   }
5462   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5463     return GetBlock()->GetGraph()->GetLongConstant(
5464         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5465   }
5466   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5467     return GetBlock()->GetGraph()->GetFloatConstant(
5468         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5469   }
5470   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5471     return GetBlock()->GetGraph()->GetDoubleConstant(
5472         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5473   }
5474 
5475   DECLARE_INSTRUCTION(Div);
5476 
5477  protected:
5478   DEFAULT_COPY_CONSTRUCTOR(Div);
5479 };
5480 
5481 class HRem final : public HBinaryOperation {
5482  public:
5483   HRem(DataType::Type result_type,
5484        HInstruction* left,
5485        HInstruction* right,
5486        uint32_t dex_pc)
5487       : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
5488   }
5489 
5490   template <typename T>
5491   T ComputeIntegral(T x, T y) const {
5492     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5493     // Our graph structure ensures we never have 0 for `y` during
5494     // constant folding.
5495     DCHECK_NE(y, 0);
5496     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5497     return (y == -1) ? 0 : x % y;
5498   }
5499 
5500   template <typename T>
5501   T ComputeFP(T x, T y) const {
5502     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5503     return std::fmod(x, y);
5504   }
5505 
5506   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5507     return GetBlock()->GetGraph()->GetIntConstant(
5508         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5509   }
5510   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5511     return GetBlock()->GetGraph()->GetLongConstant(
5512         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5513   }
5514   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5515     return GetBlock()->GetGraph()->GetFloatConstant(
5516         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5517   }
5518   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5519     return GetBlock()->GetGraph()->GetDoubleConstant(
5520         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5521   }
5522 
5523   DECLARE_INSTRUCTION(Rem);
5524 
5525  protected:
5526   DEFAULT_COPY_CONSTRUCTOR(Rem);
5527 };
5528 
5529 class HMin final : public HBinaryOperation {
5530  public:
5531   HMin(DataType::Type result_type,
5532        HInstruction* left,
5533        HInstruction* right,
5534        uint32_t dex_pc)
5535       : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
5536 
5537   bool IsCommutative() const override { return true; }
5538 
5539   // Evaluation for integral values.
5540   template <typename T> static T ComputeIntegral(T x, T y) {
5541     return (x <= y) ? x : y;
5542   }
5543 
5544   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5545     return GetBlock()->GetGraph()->GetIntConstant(
5546         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5547   }
5548   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5549     return GetBlock()->GetGraph()->GetLongConstant(
5550         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5551   }
5552   // TODO: Evaluation for floating-point values.
5553   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5554                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5555   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5556                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5557 
5558   DECLARE_INSTRUCTION(Min);
5559 
5560  protected:
5561   DEFAULT_COPY_CONSTRUCTOR(Min);
5562 };
5563 
5564 class HMax final : public HBinaryOperation {
5565  public:
5566   HMax(DataType::Type result_type,
5567        HInstruction* left,
5568        HInstruction* right,
5569        uint32_t dex_pc)
5570       : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
5571 
5572   bool IsCommutative() const override { return true; }
5573 
5574   // Evaluation for integral values.
5575   template <typename T> static T ComputeIntegral(T x, T y) {
5576     return (x >= y) ? x : y;
5577   }
5578 
5579   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5580     return GetBlock()->GetGraph()->GetIntConstant(
5581         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5582   }
5583   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5584     return GetBlock()->GetGraph()->GetLongConstant(
5585         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5586   }
5587   // TODO: Evaluation for floating-point values.
5588   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5589                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5590   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5591                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5592 
5593   DECLARE_INSTRUCTION(Max);
5594 
5595  protected:
5596   DEFAULT_COPY_CONSTRUCTOR(Max);
5597 };
5598 
5599 class HAbs final : public HUnaryOperation {
5600  public:
5601   HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
5602       : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
5603 
5604   // Evaluation for integral values.
5605   template <typename T> static T ComputeIntegral(T x) {
5606     return x < 0 ? -x : x;
5607   }
5608 
5609   // Evaluation for floating-point values.
5610   // Note, as a "quality of implementation", rather than pure "spec compliance",
5611   // we require that Math.abs() clears the sign bit (but changes nothing else)
5612   // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
5613   // http://b/30758343
5614   template <typename T, typename S> static T ComputeFP(T x) {
5615     S bits = bit_cast<S, T>(x);
5616     return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
5617   }
5618 
5619   HConstant* Evaluate(HIntConstant* x) const override {
5620     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5621   }
5622   HConstant* Evaluate(HLongConstant* x) const override {
5623     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5624   }
5625   HConstant* Evaluate(HFloatConstant* x) const override {
5626     return GetBlock()->GetGraph()->GetFloatConstant(
5627         ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
5628   }
5629   HConstant* Evaluate(HDoubleConstant* x) const override {
5630     return GetBlock()->GetGraph()->GetDoubleConstant(
5631         ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
5632   }
5633 
5634   DECLARE_INSTRUCTION(Abs);
5635 
5636  protected:
5637   DEFAULT_COPY_CONSTRUCTOR(Abs);
5638 };
5639 
5640 class HDivZeroCheck final : public HExpression<1> {
5641  public:
5642   // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
5643   // constructor. However it can only do it on a fatal slow path so execution never returns to the
5644   // instruction following the current one; thus 'SideEffects::None()' is used.
5645   HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
5646       : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
5647     SetRawInputAt(0, value);
5648   }
5649 
5650   bool IsClonable() const override { return true; }
5651   bool CanBeMoved() const override { return true; }
5652 
5653   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5654     return true;
5655   }
5656 
5657   bool NeedsEnvironment() const override { return true; }
5658   bool CanThrow() const override { return true; }
5659 
5660   DECLARE_INSTRUCTION(DivZeroCheck);
5661 
5662  protected:
5663   DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
5664 };
5665 
5666 class HShl final : public HBinaryOperation {
5667  public:
5668   HShl(DataType::Type result_type,
5669        HInstruction* value,
5670        HInstruction* distance,
5671        uint32_t dex_pc = kNoDexPc)
5672       : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
5673     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5674     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5675   }
5676 
5677   template <typename T>
5678   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5679     return value << (distance & max_shift_distance);
5680   }
5681 
5682   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5683     return GetBlock()->GetGraph()->GetIntConstant(
5684         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5685   }
5686   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5687     return GetBlock()->GetGraph()->GetLongConstant(
5688         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5689   }
5690   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5691                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5692     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5693     UNREACHABLE();
5694   }
5695   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5696                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5697     LOG(FATAL) << DebugName() << " is not defined for float values";
5698     UNREACHABLE();
5699   }
5700   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5701                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5702     LOG(FATAL) << DebugName() << " is not defined for double values";
5703     UNREACHABLE();
5704   }
5705 
5706   DECLARE_INSTRUCTION(Shl);
5707 
5708  protected:
5709   DEFAULT_COPY_CONSTRUCTOR(Shl);
5710 };
5711 
5712 class HShr final : public HBinaryOperation {
5713  public:
5714   HShr(DataType::Type result_type,
5715        HInstruction* value,
5716        HInstruction* distance,
5717        uint32_t dex_pc = kNoDexPc)
5718       : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5719     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5720     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5721   }
5722 
5723   template <typename T>
5724   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5725     return value >> (distance & max_shift_distance);
5726   }
5727 
5728   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5729     return GetBlock()->GetGraph()->GetIntConstant(
5730         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5731   }
5732   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5733     return GetBlock()->GetGraph()->GetLongConstant(
5734         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5735   }
5736   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5737                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5738     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5739     UNREACHABLE();
5740   }
5741   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5742                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5743     LOG(FATAL) << DebugName() << " is not defined for float values";
5744     UNREACHABLE();
5745   }
5746   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5747                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5748     LOG(FATAL) << DebugName() << " is not defined for double values";
5749     UNREACHABLE();
5750   }
5751 
5752   DECLARE_INSTRUCTION(Shr);
5753 
5754  protected:
5755   DEFAULT_COPY_CONSTRUCTOR(Shr);
5756 };
5757 
5758 class HUShr final : public HBinaryOperation {
5759  public:
5760   HUShr(DataType::Type result_type,
5761         HInstruction* value,
5762         HInstruction* distance,
5763         uint32_t dex_pc = kNoDexPc)
5764       : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5765     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5766     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5767   }
5768 
5769   template <typename T>
5770   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5771     using V = std::make_unsigned_t<T>;
5772     V ux = static_cast<V>(value);
5773     return static_cast<T>(ux >> (distance & max_shift_distance));
5774   }
5775 
5776   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5777     return GetBlock()->GetGraph()->GetIntConstant(
5778         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5779   }
5780   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5781     return GetBlock()->GetGraph()->GetLongConstant(
5782         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5783   }
5784   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5785                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5786     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5787     UNREACHABLE();
5788   }
5789   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5790                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5791     LOG(FATAL) << DebugName() << " is not defined for float values";
5792     UNREACHABLE();
5793   }
5794   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5795                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5796     LOG(FATAL) << DebugName() << " is not defined for double values";
5797     UNREACHABLE();
5798   }
5799 
5800   DECLARE_INSTRUCTION(UShr);
5801 
5802  protected:
5803   DEFAULT_COPY_CONSTRUCTOR(UShr);
5804 };
5805 
5806 class HAnd final : public HBinaryOperation {
5807  public:
5808   HAnd(DataType::Type result_type,
5809        HInstruction* left,
5810        HInstruction* right,
5811        uint32_t dex_pc = kNoDexPc)
5812       : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
5813   }
5814 
5815   bool IsCommutative() const override { return true; }
5816 
5817   template <typename T> static T Compute(T x, T y) { return x & y; }
5818 
5819   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5820     return GetBlock()->GetGraph()->GetIntConstant(
5821         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5822   }
5823   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5824     return GetBlock()->GetGraph()->GetLongConstant(
5825         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5826   }
5827   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5828                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5829     LOG(FATAL) << DebugName() << " is not defined for float values";
5830     UNREACHABLE();
5831   }
5832   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5833                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5834     LOG(FATAL) << DebugName() << " is not defined for double values";
5835     UNREACHABLE();
5836   }
5837 
5838   DECLARE_INSTRUCTION(And);
5839 
5840  protected:
5841   DEFAULT_COPY_CONSTRUCTOR(And);
5842 };
5843 
5844 class HOr final : public HBinaryOperation {
5845  public:
5846   HOr(DataType::Type result_type,
5847       HInstruction* left,
5848       HInstruction* right,
5849       uint32_t dex_pc = kNoDexPc)
5850       : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
5851   }
5852 
5853   bool IsCommutative() const override { return true; }
5854 
5855   template <typename T> static T Compute(T x, T y) { return x | y; }
5856 
5857   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5858     return GetBlock()->GetGraph()->GetIntConstant(
5859         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5860   }
5861   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5862     return GetBlock()->GetGraph()->GetLongConstant(
5863         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5864   }
5865   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5866                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5867     LOG(FATAL) << DebugName() << " is not defined for float values";
5868     UNREACHABLE();
5869   }
5870   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5871                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5872     LOG(FATAL) << DebugName() << " is not defined for double values";
5873     UNREACHABLE();
5874   }
5875 
5876   DECLARE_INSTRUCTION(Or);
5877 
5878  protected:
5879   DEFAULT_COPY_CONSTRUCTOR(Or);
5880 };
5881 
5882 class HXor final : public HBinaryOperation {
5883  public:
5884   HXor(DataType::Type result_type,
5885        HInstruction* left,
5886        HInstruction* right,
5887        uint32_t dex_pc = kNoDexPc)
5888       : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
5889   }
5890 
5891   bool IsCommutative() const override { return true; }
5892 
5893   template <typename T> static T Compute(T x, T y) { return x ^ y; }
5894 
5895   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5896     return GetBlock()->GetGraph()->GetIntConstant(
5897         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5898   }
5899   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5900     return GetBlock()->GetGraph()->GetLongConstant(
5901         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5902   }
5903   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5904                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5905     LOG(FATAL) << DebugName() << " is not defined for float values";
5906     UNREACHABLE();
5907   }
5908   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5909                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5910     LOG(FATAL) << DebugName() << " is not defined for double values";
5911     UNREACHABLE();
5912   }
5913 
5914   DECLARE_INSTRUCTION(Xor);
5915 
5916  protected:
5917   DEFAULT_COPY_CONSTRUCTOR(Xor);
5918 };
5919 
5920 class HRor final : public HBinaryOperation {
5921  public:
5922   HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5923       : HBinaryOperation(kRor, result_type, value, distance) {
5924   }
5925 
5926   template <typename T>
5927   static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5928     using V = std::make_unsigned_t<T>;
5929     V ux = static_cast<V>(value);
5930     if ((distance & max_shift_value) == 0) {
5931       return static_cast<T>(ux);
5932     } else {
5933       const V reg_bits = sizeof(T) * 8;
5934       return static_cast<T>(ux >> (distance & max_shift_value)) |
5935                            (value << (reg_bits - (distance & max_shift_value)));
5936     }
5937   }
5938 
5939   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5940     return GetBlock()->GetGraph()->GetIntConstant(
5941         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5942   }
5943   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5944     return GetBlock()->GetGraph()->GetLongConstant(
5945         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5946   }
5947   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5948                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5949     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5950     UNREACHABLE();
5951   }
5952   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5953                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5954     LOG(FATAL) << DebugName() << " is not defined for float values";
5955     UNREACHABLE();
5956   }
5957   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5958                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5959     LOG(FATAL) << DebugName() << " is not defined for double values";
5960     UNREACHABLE();
5961   }
5962 
5963   DECLARE_INSTRUCTION(Ror);
5964 
5965  protected:
5966   DEFAULT_COPY_CONSTRUCTOR(Ror);
5967 };
5968 
5969 // The value of a parameter in this method. Its location depends on
5970 // the calling convention.
5971 class HParameterValue final : public HExpression<0> {
5972  public:
5973   HParameterValue(const DexFile& dex_file,
5974                   dex::TypeIndex type_index,
5975                   uint8_t index,
5976                   DataType::Type parameter_type,
5977                   bool is_this = false)
5978       : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
5979         dex_file_(dex_file),
5980         type_index_(type_index),
5981         index_(index) {
5982     SetPackedFlag<kFlagIsThis>(is_this);
5983     SetPackedFlag<kFlagCanBeNull>(!is_this);
5984   }
5985 
5986   const DexFile& GetDexFile() const { return dex_file_; }
5987   dex::TypeIndex GetTypeIndex() const { return type_index_; }
5988   uint8_t GetIndex() const { return index_; }
5989   bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5990 
5991   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
5992   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5993 
5994   DECLARE_INSTRUCTION(ParameterValue);
5995 
5996  protected:
5997   DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
5998 
5999  private:
6000   // Whether or not the parameter value corresponds to 'this' argument.
6001   static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
6002   static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
6003   static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
6004   static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
6005                 "Too many packed fields.");
6006 
6007   const DexFile& dex_file_;
6008   const dex::TypeIndex type_index_;
6009   // The index of this parameter in the parameters list. Must be less
6010   // than HGraph::number_of_in_vregs_.
6011   const uint8_t index_;
6012 };
6013 
6014 class HNot final : public HUnaryOperation {
6015  public:
6016   HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
6017       : HUnaryOperation(kNot, result_type, input, dex_pc) {
6018   }
6019 
6020   bool CanBeMoved() const override { return true; }
6021   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6022     return true;
6023   }
6024 
6025   template <typename T> static T Compute(T x) { return ~x; }
6026 
6027   HConstant* Evaluate(HIntConstant* x) const override {
6028     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
6029   }
6030   HConstant* Evaluate(HLongConstant* x) const override {
6031     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
6032   }
6033   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
6034     LOG(FATAL) << DebugName() << " is not defined for float values";
6035     UNREACHABLE();
6036   }
6037   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
6038     LOG(FATAL) << DebugName() << " is not defined for double values";
6039     UNREACHABLE();
6040   }
6041 
6042   DECLARE_INSTRUCTION(Not);
6043 
6044  protected:
6045   DEFAULT_COPY_CONSTRUCTOR(Not);
6046 };
6047 
6048 class HBooleanNot final : public HUnaryOperation {
6049  public:
6050   explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
6051       : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
6052   }
6053 
6054   bool CanBeMoved() const override { return true; }
6055   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6056     return true;
6057   }
6058 
6059   template <typename T> static bool Compute(T x) {
6060     DCHECK(IsUint<1>(x)) << x;
6061     return !x;
6062   }
6063 
6064   HConstant* Evaluate(HIntConstant* x) const override {
6065     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
6066   }
6067   HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
6068     LOG(FATAL) << DebugName() << " is not defined for long values";
6069     UNREACHABLE();
6070   }
6071   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
6072     LOG(FATAL) << DebugName() << " is not defined for float values";
6073     UNREACHABLE();
6074   }
6075   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
6076     LOG(FATAL) << DebugName() << " is not defined for double values";
6077     UNREACHABLE();
6078   }
6079 
6080   DECLARE_INSTRUCTION(BooleanNot);
6081 
6082  protected:
6083   DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
6084 };
6085 
6086 class HTypeConversion final : public HExpression<1> {
6087  public:
6088   // Instantiate a type conversion of `input` to `result_type`.
6089   HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
6090       : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
6091     SetRawInputAt(0, input);
6092     // Invariant: We should never generate a conversion to a Boolean value.
6093     DCHECK_NE(DataType::Type::kBool, result_type);
6094   }
6095 
6096   HInstruction* GetInput() const { return InputAt(0); }
6097   DataType::Type GetInputType() const { return GetInput()->GetType(); }
6098   DataType::Type GetResultType() const { return GetType(); }
6099 
6100   bool IsClonable() const override { return true; }
6101   bool CanBeMoved() const override { return true; }
6102   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6103     return true;
6104   }
6105   // Return whether the conversion is implicit. This includes conversion to the same type.
6106   bool IsImplicitConversion() const {
6107     return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
6108   }
6109 
6110   // Try to statically evaluate the conversion and return a HConstant
6111   // containing the result.  If the input cannot be converted, return nullptr.
6112   HConstant* TryStaticEvaluation() const;
6113 
6114   DECLARE_INSTRUCTION(TypeConversion);
6115 
6116  protected:
6117   DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
6118 };
6119 
6120 static constexpr uint32_t kNoRegNumber = -1;
6121 
6122 class HNullCheck final : public HExpression<1> {
6123  public:
6124   // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
6125   // constructor. However it can only do it on a fatal slow path so execution never returns to the
6126   // instruction following the current one; thus 'SideEffects::None()' is used.
6127   HNullCheck(HInstruction* value, uint32_t dex_pc)
6128       : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
6129     SetRawInputAt(0, value);
6130   }
6131 
6132   bool IsClonable() const override { return true; }
6133   bool CanBeMoved() const override { return true; }
6134   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6135     return true;
6136   }
6137 
6138   bool NeedsEnvironment() const override { return true; }
6139 
6140   bool CanThrow() const override { return true; }
6141 
6142   bool CanBeNull() const override { return false; }
6143 
6144   DECLARE_INSTRUCTION(NullCheck);
6145 
6146  protected:
6147   DEFAULT_COPY_CONSTRUCTOR(NullCheck);
6148 };
6149 
6150 // Embeds an ArtField and all the information required by the compiler. We cache
6151 // that information to avoid requiring the mutator lock every time we need it.
6152 class FieldInfo : public ValueObject {
6153  public:
6154   FieldInfo(ArtField* field,
6155             MemberOffset field_offset,
6156             DataType::Type field_type,
6157             bool is_volatile,
6158             uint32_t index,
6159             uint16_t declaring_class_def_index,
6160             const DexFile& dex_file)
6161       : field_(field),
6162         field_offset_(field_offset),
6163         field_type_(field_type),
6164         is_volatile_(is_volatile),
6165         index_(index),
6166         declaring_class_def_index_(declaring_class_def_index),
6167         dex_file_(dex_file) {}
6168 
6169   ArtField* GetField() const { return field_; }
6170   MemberOffset GetFieldOffset() const { return field_offset_; }
6171   DataType::Type GetFieldType() const { return field_type_; }
6172   uint32_t GetFieldIndex() const { return index_; }
6173   uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
6174   const DexFile& GetDexFile() const { return dex_file_; }
6175   bool IsVolatile() const { return is_volatile_; }
6176 
6177   bool Equals(const FieldInfo& other) const {
6178     return field_ == other.field_ &&
6179            field_offset_ == other.field_offset_ &&
6180            field_type_ == other.field_type_ &&
6181            is_volatile_ == other.is_volatile_ &&
6182            index_ == other.index_ &&
6183            declaring_class_def_index_ == other.declaring_class_def_index_ &&
6184            &dex_file_ == &other.dex_file_;
6185   }
6186 
6187   std::ostream& Dump(std::ostream& os) const {
6188     os << field_ << ", off: " << field_offset_ << ", type: " << field_type_
6189        << ", volatile: " << std::boolalpha << is_volatile_ << ", index_: " << std::dec << index_
6190        << ", declaring_class: " << declaring_class_def_index_ << ", dex: " << dex_file_;
6191     return os;
6192   }
6193 
6194  private:
6195   ArtField* const field_;
6196   const MemberOffset field_offset_;
6197   const DataType::Type field_type_;
6198   const bool is_volatile_;
6199   const uint32_t index_;
6200   const uint16_t declaring_class_def_index_;
6201   const DexFile& dex_file_;
6202 };
6203 
6204 inline bool operator==(const FieldInfo& a, const FieldInfo& b) {
6205   return a.Equals(b);
6206 }
6207 
6208 inline std::ostream& operator<<(std::ostream& os, const FieldInfo& a) {
6209   return a.Dump(os);
6210 }
6211 
6212 class HInstanceFieldGet final : public HExpression<1> {
6213  public:
6214   HInstanceFieldGet(HInstruction* value,
6215                     ArtField* field,
6216                     DataType::Type field_type,
6217                     MemberOffset field_offset,
6218                     bool is_volatile,
6219                     uint32_t field_idx,
6220                     uint16_t declaring_class_def_index,
6221                     const DexFile& dex_file,
6222                     uint32_t dex_pc)
6223       : HExpression(kInstanceFieldGet,
6224                     field_type,
6225                     SideEffects::FieldReadOfType(field_type, is_volatile),
6226                     dex_pc),
6227         field_info_(field,
6228                     field_offset,
6229                     field_type,
6230                     is_volatile,
6231                     field_idx,
6232                     declaring_class_def_index,
6233                     dex_file) {
6234     SetRawInputAt(0, value);
6235   }
6236 
6237   bool IsClonable() const override { return true; }
6238   bool CanBeMoved() const override { return !IsVolatile(); }
6239 
6240   bool InstructionDataEquals(const HInstruction* other) const override {
6241     const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
6242     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6243   }
6244 
6245   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6246     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6247   }
6248 
6249   size_t ComputeHashCode() const override {
6250     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6251   }
6252 
6253   bool IsFieldAccess() const override { return true; }
6254   const FieldInfo& GetFieldInfo() const override { return field_info_; }
6255   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6256   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6257   bool IsVolatile() const { return field_info_.IsVolatile(); }
6258 
6259   void SetType(DataType::Type new_type) {
6260     DCHECK(DataType::IsIntegralType(GetType()));
6261     DCHECK(DataType::IsIntegralType(new_type));
6262     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6263     SetPackedField<TypeField>(new_type);
6264   }
6265 
6266   DECLARE_INSTRUCTION(InstanceFieldGet);
6267 
6268  protected:
6269   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
6270 
6271  private:
6272   const FieldInfo field_info_;
6273 };
6274 
6275 class HPredicatedInstanceFieldGet final : public HExpression<2> {
6276  public:
6277   HPredicatedInstanceFieldGet(HInstanceFieldGet* orig,
6278                               HInstruction* target,
6279                               HInstruction* default_val)
6280       : HExpression(kPredicatedInstanceFieldGet,
6281                     orig->GetFieldType(),
6282                     orig->GetSideEffects(),
6283                     orig->GetDexPc()),
6284         field_info_(orig->GetFieldInfo()) {
6285     // NB Default-val is at 0 so we can avoid doing a move.
6286     SetRawInputAt(1, target);
6287     SetRawInputAt(0, default_val);
6288   }
6289 
6290   HPredicatedInstanceFieldGet(HInstruction* value,
6291                               ArtField* field,
6292                               HInstruction* default_value,
6293                               DataType::Type field_type,
6294                               MemberOffset field_offset,
6295                               bool is_volatile,
6296                               uint32_t field_idx,
6297                               uint16_t declaring_class_def_index,
6298                               const DexFile& dex_file,
6299                               uint32_t dex_pc)
6300       : HExpression(kPredicatedInstanceFieldGet,
6301                     field_type,
6302                     SideEffects::FieldReadOfType(field_type, is_volatile),
6303                     dex_pc),
6304         field_info_(field,
6305                     field_offset,
6306                     field_type,
6307                     is_volatile,
6308                     field_idx,
6309                     declaring_class_def_index,
6310                     dex_file) {
6311     SetRawInputAt(1, value);
6312     SetRawInputAt(0, default_value);
6313   }
6314 
6315   bool IsClonable() const override {
6316     return true;
6317   }
6318   bool CanBeMoved() const override {
6319     return !IsVolatile();
6320   }
6321 
6322   HInstruction* GetDefaultValue() const {
6323     return InputAt(0);
6324   }
6325   HInstruction* GetTarget() const {
6326     return InputAt(1);
6327   }
6328 
6329   bool InstructionDataEquals(const HInstruction* other) const override {
6330     const HPredicatedInstanceFieldGet* other_get = other->AsPredicatedInstanceFieldGet();
6331     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue() &&
6332            GetDefaultValue() == other_get->GetDefaultValue();
6333   }
6334 
6335   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6336     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6337   }
6338 
6339   size_t ComputeHashCode() const override {
6340     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6341   }
6342 
6343   bool IsFieldAccess() const override { return true; }
6344   const FieldInfo& GetFieldInfo() const override { return field_info_; }
6345   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6346   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6347   bool IsVolatile() const { return field_info_.IsVolatile(); }
6348 
6349   void SetType(DataType::Type new_type) {
6350     DCHECK(DataType::IsIntegralType(GetType()));
6351     DCHECK(DataType::IsIntegralType(new_type));
6352     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6353     SetPackedField<TypeField>(new_type);
6354   }
6355 
6356   DECLARE_INSTRUCTION(PredicatedInstanceFieldGet);
6357 
6358  protected:
6359   DEFAULT_COPY_CONSTRUCTOR(PredicatedInstanceFieldGet);
6360 
6361  private:
6362   const FieldInfo field_info_;
6363 };
6364 
6365 class HInstanceFieldSet final : public HExpression<2> {
6366  public:
6367   HInstanceFieldSet(HInstruction* object,
6368                     HInstruction* value,
6369                     ArtField* field,
6370                     DataType::Type field_type,
6371                     MemberOffset field_offset,
6372                     bool is_volatile,
6373                     uint32_t field_idx,
6374                     uint16_t declaring_class_def_index,
6375                     const DexFile& dex_file,
6376                     uint32_t dex_pc)
6377       : HExpression(kInstanceFieldSet,
6378                     SideEffects::FieldWriteOfType(field_type, is_volatile),
6379                     dex_pc),
6380         field_info_(field,
6381                     field_offset,
6382                     field_type,
6383                     is_volatile,
6384                     field_idx,
6385                     declaring_class_def_index,
6386                     dex_file) {
6387     SetPackedFlag<kFlagValueCanBeNull>(true);
6388     SetPackedFlag<kFlagIsPredicatedSet>(false);
6389     SetRawInputAt(0, object);
6390     SetRawInputAt(1, value);
6391   }
6392 
6393   bool IsClonable() const override { return true; }
6394 
6395   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6396     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
6397   }
6398 
6399   bool IsFieldAccess() const override { return true; }
6400   const FieldInfo& GetFieldInfo() const override { return field_info_; }
6401   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
6402   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
6403   bool IsVolatile() const { return field_info_.IsVolatile(); }
6404   HInstruction* GetValue() const { return InputAt(1); }
6405   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
6406   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
6407   bool GetIsPredicatedSet() const { return GetPackedFlag<kFlagIsPredicatedSet>(); }
6408   void SetIsPredicatedSet(bool value = true) { SetPackedFlag<kFlagIsPredicatedSet>(value); }
6409 
6410   DECLARE_INSTRUCTION(InstanceFieldSet);
6411 
6412  protected:
6413   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
6414 
6415  private:
6416   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
6417   static constexpr size_t kFlagIsPredicatedSet = kFlagValueCanBeNull + 1;
6418   static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagIsPredicatedSet + 1;
6419   static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
6420                 "Too many packed fields.");
6421 
6422   const FieldInfo field_info_;
6423 };
6424 
6425 class HArrayGet final : public HExpression<2> {
6426  public:
6427   HArrayGet(HInstruction* array,
6428             HInstruction* index,
6429             DataType::Type type,
6430             uint32_t dex_pc)
6431      : HArrayGet(array,
6432                  index,
6433                  type,
6434                  SideEffects::ArrayReadOfType(type),
6435                  dex_pc,
6436                  /* is_string_char_at= */ false) {
6437   }
6438 
6439   HArrayGet(HInstruction* array,
6440             HInstruction* index,
6441             DataType::Type type,
6442             SideEffects side_effects,
6443             uint32_t dex_pc,
6444             bool is_string_char_at)
6445       : HExpression(kArrayGet, type, side_effects, dex_pc) {
6446     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6447     SetRawInputAt(0, array);
6448     SetRawInputAt(1, index);
6449   }
6450 
6451   bool IsClonable() const override { return true; }
6452   bool CanBeMoved() const override { return true; }
6453   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6454     return true;
6455   }
6456   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6457     // TODO: We can be smarter here.
6458     // Currently, unless the array is the result of NewArray, the array access is always
6459     // preceded by some form of null NullCheck necessary for the bounds check, usually
6460     // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
6461     // dynamic BCE. There are cases when these could be removed to produce better code.
6462     // If we ever add optimizations to do so we should allow an implicit check here
6463     // (as long as the address falls in the first page).
6464     //
6465     // As an example of such fancy optimization, we could eliminate BoundsCheck for
6466     //     a = cond ? new int[1] : null;
6467     //     a[0];  // The Phi does not need bounds check for either input.
6468     return false;
6469   }
6470 
6471   bool IsEquivalentOf(HArrayGet* other) const {
6472     bool result = (GetDexPc() == other->GetDexPc());
6473     if (kIsDebugBuild && result) {
6474       DCHECK_EQ(GetBlock(), other->GetBlock());
6475       DCHECK_EQ(GetArray(), other->GetArray());
6476       DCHECK_EQ(GetIndex(), other->GetIndex());
6477       if (DataType::IsIntOrLongType(GetType())) {
6478         DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
6479       } else {
6480         DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
6481         DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
6482       }
6483     }
6484     return result;
6485   }
6486 
6487   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6488 
6489   HInstruction* GetArray() const { return InputAt(0); }
6490   HInstruction* GetIndex() const { return InputAt(1); }
6491 
6492   void SetType(DataType::Type new_type) {
6493     DCHECK(DataType::IsIntegralType(GetType()));
6494     DCHECK(DataType::IsIntegralType(new_type));
6495     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6496     SetPackedField<TypeField>(new_type);
6497   }
6498 
6499   DECLARE_INSTRUCTION(ArrayGet);
6500 
6501  protected:
6502   DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
6503 
6504  private:
6505   // We treat a String as an array, creating the HArrayGet from String.charAt()
6506   // intrinsic in the instruction simplifier. We can always determine whether
6507   // a particular HArrayGet is actually a String.charAt() by looking at the type
6508   // of the input but that requires holding the mutator lock, so we prefer to use
6509   // a flag, so that code generators don't need to do the locking.
6510   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6511   static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
6512   static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6513                 "Too many packed fields.");
6514 };
6515 
6516 class HArraySet final : public HExpression<3> {
6517  public:
6518   HArraySet(HInstruction* array,
6519             HInstruction* index,
6520             HInstruction* value,
6521             DataType::Type expected_component_type,
6522             uint32_t dex_pc)
6523       : HArraySet(array,
6524                   index,
6525                   value,
6526                   expected_component_type,
6527                   // Make a best guess for side effects now, may be refined during SSA building.
6528                   ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
6529                   dex_pc) {
6530   }
6531 
6532   HArraySet(HInstruction* array,
6533             HInstruction* index,
6534             HInstruction* value,
6535             DataType::Type expected_component_type,
6536             SideEffects side_effects,
6537             uint32_t dex_pc)
6538       : HExpression(kArraySet, side_effects, dex_pc) {
6539     SetPackedField<ExpectedComponentTypeField>(expected_component_type);
6540     SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
6541     SetPackedFlag<kFlagValueCanBeNull>(true);
6542     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
6543     SetRawInputAt(0, array);
6544     SetRawInputAt(1, index);
6545     SetRawInputAt(2, value);
6546   }
6547 
6548   bool IsClonable() const override { return true; }
6549 
6550   bool NeedsEnvironment() const override {
6551     // We call a runtime method to throw ArrayStoreException.
6552     return NeedsTypeCheck();
6553   }
6554 
6555   // Can throw ArrayStoreException.
6556   bool CanThrow() const override { return NeedsTypeCheck(); }
6557 
6558   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6559     // TODO: Same as for ArrayGet.
6560     return false;
6561   }
6562 
6563   void ClearNeedsTypeCheck() {
6564     SetPackedFlag<kFlagNeedsTypeCheck>(false);
6565   }
6566 
6567   void ClearValueCanBeNull() {
6568     SetPackedFlag<kFlagValueCanBeNull>(false);
6569   }
6570 
6571   void SetStaticTypeOfArrayIsObjectArray() {
6572     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
6573   }
6574 
6575   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
6576   bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
6577   bool StaticTypeOfArrayIsObjectArray() const {
6578     return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
6579   }
6580 
6581   HInstruction* GetArray() const { return InputAt(0); }
6582   HInstruction* GetIndex() const { return InputAt(1); }
6583   HInstruction* GetValue() const { return InputAt(2); }
6584 
6585   DataType::Type GetComponentType() const {
6586     return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
6587   }
6588 
6589   static DataType::Type GetComponentType(DataType::Type value_type,
6590                                          DataType::Type expected_component_type) {
6591     // The Dex format does not type floating point index operations. Since the
6592     // `expected_component_type` comes from SSA building and can therefore not
6593     // be correct, we also check what is the value type. If it is a floating
6594     // point type, we must use that type.
6595     return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
6596         ? value_type
6597         : expected_component_type;
6598   }
6599 
6600   DataType::Type GetRawExpectedComponentType() const {
6601     return GetPackedField<ExpectedComponentTypeField>();
6602   }
6603 
6604   static SideEffects ComputeSideEffects(DataType::Type type) {
6605     return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
6606   }
6607 
6608   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
6609     return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
6610                                                       : SideEffects::None();
6611   }
6612 
6613   DECLARE_INSTRUCTION(ArraySet);
6614 
6615  protected:
6616   DEFAULT_COPY_CONSTRUCTOR(ArraySet);
6617 
6618  private:
6619   static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
6620   static constexpr size_t kFieldExpectedComponentTypeSize =
6621       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
6622   static constexpr size_t kFlagNeedsTypeCheck =
6623       kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
6624   static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
6625   // Cached information for the reference_type_info_ so that codegen
6626   // does not need to inspect the static type.
6627   static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
6628   static constexpr size_t kNumberOfArraySetPackedBits =
6629       kFlagStaticTypeOfArrayIsObjectArray + 1;
6630   static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6631   using ExpectedComponentTypeField =
6632       BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
6633 };
6634 
6635 class HArrayLength final : public HExpression<1> {
6636  public:
6637   HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
6638       : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
6639     SetPackedFlag<kFlagIsStringLength>(is_string_length);
6640     // Note that arrays do not change length, so the instruction does not
6641     // depend on any write.
6642     SetRawInputAt(0, array);
6643   }
6644 
6645   bool IsClonable() const override { return true; }
6646   bool CanBeMoved() const override { return true; }
6647   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6648     return true;
6649   }
6650   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6651     return obj == InputAt(0);
6652   }
6653 
6654   bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
6655 
6656   DECLARE_INSTRUCTION(ArrayLength);
6657 
6658  protected:
6659   DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
6660 
6661  private:
6662   // We treat a String as an array, creating the HArrayLength from String.length()
6663   // or String.isEmpty() intrinsic in the instruction simplifier. We can always
6664   // determine whether a particular HArrayLength is actually a String.length() by
6665   // looking at the type of the input but that requires holding the mutator lock, so
6666   // we prefer to use a flag, so that code generators don't need to do the locking.
6667   static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
6668   static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
6669   static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6670                 "Too many packed fields.");
6671 };
6672 
6673 class HBoundsCheck final : public HExpression<2> {
6674  public:
6675   // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
6676   // constructor. However it can only do it on a fatal slow path so execution never returns to the
6677   // instruction following the current one; thus 'SideEffects::None()' is used.
6678   HBoundsCheck(HInstruction* index,
6679                HInstruction* length,
6680                uint32_t dex_pc,
6681                bool is_string_char_at = false)
6682       : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
6683     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
6684     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6685     SetRawInputAt(0, index);
6686     SetRawInputAt(1, length);
6687   }
6688 
6689   bool IsClonable() const override { return true; }
6690   bool CanBeMoved() const override { return true; }
6691   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6692     return true;
6693   }
6694 
6695   bool NeedsEnvironment() const override { return true; }
6696 
6697   bool CanThrow() const override { return true; }
6698 
6699   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6700 
6701   HInstruction* GetIndex() const { return InputAt(0); }
6702 
6703   DECLARE_INSTRUCTION(BoundsCheck);
6704 
6705  protected:
6706   DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
6707 
6708  private:
6709   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6710   static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
6711   static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6712                 "Too many packed fields.");
6713 };
6714 
6715 class HSuspendCheck final : public HExpression<0> {
6716  public:
6717   explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
6718       : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
6719         slow_path_(nullptr) {
6720   }
6721 
6722   bool IsClonable() const override { return true; }
6723 
6724   bool NeedsEnvironment() const override {
6725     return true;
6726   }
6727 
6728   void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
6729   SlowPathCode* GetSlowPath() const { return slow_path_; }
6730 
6731   DECLARE_INSTRUCTION(SuspendCheck);
6732 
6733  protected:
6734   DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
6735 
6736  private:
6737   // Only used for code generation, in order to share the same slow path between back edges
6738   // of a same loop.
6739   SlowPathCode* slow_path_;
6740 };
6741 
6742 // Pseudo-instruction which provides the native debugger with mapping information.
6743 // It ensures that we can generate line number and local variables at this point.
6744 class HNativeDebugInfo : public HExpression<0> {
6745  public:
6746   explicit HNativeDebugInfo(uint32_t dex_pc)
6747       : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) {
6748   }
6749 
6750   bool NeedsEnvironment() const override {
6751     return true;
6752   }
6753 
6754   DECLARE_INSTRUCTION(NativeDebugInfo);
6755 
6756  protected:
6757   DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo);
6758 };
6759 
6760 /**
6761  * Instruction to load a Class object.
6762  */
6763 class HLoadClass final : public HInstruction {
6764  public:
6765   // Determines how to load the Class.
6766   enum class LoadKind {
6767     // We cannot load this class. See HSharpening::SharpenLoadClass.
6768     kInvalid = -1,
6769 
6770     // Use the Class* from the method's own ArtMethod*.
6771     kReferrersClass,
6772 
6773     // Use PC-relative boot image Class* address that will be known at link time.
6774     // Used for boot image classes referenced by boot image code.
6775     kBootImageLinkTimePcRelative,
6776 
6777     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6778     // Used for boot image classes referenced by apps in AOT-compiled code.
6779     kBootImageRelRo,
6780 
6781     // Load from an entry in the .bss section using a PC-relative load.
6782     // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
6783     kBssEntry,
6784 
6785     // Load from an entry for public class in the .bss section using a PC-relative load.
6786     // Used for classes that were unresolved during AOT-compilation outside the literal
6787     // package of the compiling class. Such classes are accessible only if they are public
6788     // and the .bss entry shall therefore be filled only if the resolved class is public.
6789     kBssEntryPublic,
6790 
6791     // Load from an entry for package class in the .bss section using a PC-relative load.
6792     // Used for classes that were unresolved during AOT-compilation but within the literal
6793     // package of the compiling class. Such classes are accessible if they are public or
6794     // in the same package which, given the literal package match, requires only matching
6795     // defining class loader and the .bss entry shall therefore be filled only if at least
6796     // one of those conditions holds. Note that all code in an oat file belongs to classes
6797     // with the same defining class loader.
6798     kBssEntryPackage,
6799 
6800     // Use a known boot image Class* address, embedded in the code by the codegen.
6801     // Used for boot image classes referenced by apps in JIT-compiled code.
6802     kJitBootImageAddress,
6803 
6804     // Load from the root table associated with the JIT compiled method.
6805     kJitTableAddress,
6806 
6807     // Load using a simple runtime call. This is the fall-back load kind when
6808     // the codegen is unable to use another appropriate kind.
6809     kRuntimeCall,
6810 
6811     kLast = kRuntimeCall
6812   };
6813 
6814   HLoadClass(HCurrentMethod* current_method,
6815              dex::TypeIndex type_index,
6816              const DexFile& dex_file,
6817              Handle<mirror::Class> klass,
6818              bool is_referrers_class,
6819              uint32_t dex_pc,
6820              bool needs_access_check)
6821       : HInstruction(kLoadClass,
6822                      DataType::Type::kReference,
6823                      SideEffectsForArchRuntimeCalls(),
6824                      dex_pc),
6825         special_input_(HUserRecord<HInstruction*>(current_method)),
6826         type_index_(type_index),
6827         dex_file_(dex_file),
6828         klass_(klass) {
6829     // Referrers class should not need access check. We never inline unverified
6830     // methods so we can't possibly end up in this situation.
6831     DCHECK_IMPLIES(is_referrers_class, !needs_access_check);
6832 
6833     SetPackedField<LoadKindField>(
6834         is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
6835     SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
6836     SetPackedFlag<kFlagIsInBootImage>(false);
6837     SetPackedFlag<kFlagGenerateClInitCheck>(false);
6838     SetPackedFlag<kFlagValidLoadedClassRTI>(false);
6839   }
6840 
6841   bool IsClonable() const override { return true; }
6842 
6843   void SetLoadKind(LoadKind load_kind);
6844 
6845   LoadKind GetLoadKind() const {
6846     return GetPackedField<LoadKindField>();
6847   }
6848 
6849   bool HasPcRelativeLoadKind() const {
6850     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6851            GetLoadKind() == LoadKind::kBootImageRelRo ||
6852            GetLoadKind() == LoadKind::kBssEntry ||
6853            GetLoadKind() == LoadKind::kBssEntryPublic ||
6854            GetLoadKind() == LoadKind::kBssEntryPackage;
6855   }
6856 
6857   bool CanBeMoved() const override { return true; }
6858 
6859   bool InstructionDataEquals(const HInstruction* other) const override;
6860 
6861   size_t ComputeHashCode() const override { return type_index_.index_; }
6862 
6863   bool CanBeNull() const override { return false; }
6864 
6865   bool NeedsEnvironment() const override {
6866     return CanCallRuntime();
6867   }
6868   bool NeedsBss() const override {
6869     LoadKind load_kind = GetLoadKind();
6870     return load_kind == LoadKind::kBssEntry ||
6871            load_kind == LoadKind::kBssEntryPublic ||
6872            load_kind == LoadKind::kBssEntryPackage;
6873   }
6874 
6875   void SetMustGenerateClinitCheck(bool generate_clinit_check) {
6876     SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
6877   }
6878 
6879   bool CanCallRuntime() const {
6880     return NeedsAccessCheck() ||
6881            MustGenerateClinitCheck() ||
6882            GetLoadKind() == LoadKind::kRuntimeCall ||
6883            GetLoadKind() == LoadKind::kBssEntry;
6884   }
6885 
6886   bool CanThrow() const override {
6887     return NeedsAccessCheck() ||
6888            MustGenerateClinitCheck() ||
6889            // If the class is in the boot image, the lookup in the runtime call cannot throw.
6890            ((GetLoadKind() == LoadKind::kRuntimeCall ||
6891              GetLoadKind() == LoadKind::kBssEntry) &&
6892             !IsInBootImage());
6893   }
6894 
6895   ReferenceTypeInfo GetLoadedClassRTI() {
6896     if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
6897       // Note: The is_exact flag from the return value should not be used.
6898       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
6899     } else {
6900       return ReferenceTypeInfo::CreateInvalid();
6901     }
6902   }
6903 
6904   // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
6905   void SetValidLoadedClassRTI() {
6906     DCHECK(klass_ != nullptr);
6907     SetPackedFlag<kFlagValidLoadedClassRTI>(true);
6908   }
6909 
6910   dex::TypeIndex GetTypeIndex() const { return type_index_; }
6911   const DexFile& GetDexFile() const { return dex_file_; }
6912 
6913   static SideEffects SideEffectsForArchRuntimeCalls() {
6914     return SideEffects::CanTriggerGC();
6915   }
6916 
6917   bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
6918   bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
6919   bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
6920   bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
6921 
6922   bool MustResolveTypeOnSlowPath() const {
6923     // Check that this instruction has a slow path.
6924     LoadKind load_kind = GetLoadKind();
6925     DCHECK(load_kind != LoadKind::kRuntimeCall);  // kRuntimeCall calls on main path.
6926     bool must_resolve_type_on_slow_path =
6927        load_kind == LoadKind::kBssEntry ||
6928        load_kind == LoadKind::kBssEntryPublic ||
6929        load_kind == LoadKind::kBssEntryPackage;
6930     DCHECK(must_resolve_type_on_slow_path || MustGenerateClinitCheck());
6931     return must_resolve_type_on_slow_path;
6932   }
6933 
6934   void MarkInBootImage() {
6935     SetPackedFlag<kFlagIsInBootImage>(true);
6936   }
6937 
6938   void AddSpecialInput(HInstruction* special_input);
6939 
6940   using HInstruction::GetInputRecords;  // Keep the const version visible.
6941   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6942     return ArrayRef<HUserRecord<HInstruction*>>(
6943         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6944   }
6945 
6946   Handle<mirror::Class> GetClass() const {
6947     return klass_;
6948   }
6949 
6950   DECLARE_INSTRUCTION(LoadClass);
6951 
6952  protected:
6953   DEFAULT_COPY_CONSTRUCTOR(LoadClass);
6954 
6955  private:
6956   static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits;
6957   static constexpr size_t kFlagIsInBootImage       = kFlagNeedsAccessCheck + 1;
6958   // Whether this instruction must generate the initialization check.
6959   // Used for code generation.
6960   static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
6961   static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1;
6962   static constexpr size_t kFieldLoadKindSize =
6963       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6964   static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
6965   static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
6966   static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
6967   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6968 
6969   static bool HasTypeReference(LoadKind load_kind) {
6970     return load_kind == LoadKind::kReferrersClass ||
6971         load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6972         load_kind == LoadKind::kBssEntry ||
6973         load_kind == LoadKind::kBssEntryPublic ||
6974         load_kind == LoadKind::kBssEntryPackage ||
6975         load_kind == LoadKind::kRuntimeCall;
6976   }
6977 
6978   void SetLoadKindInternal(LoadKind load_kind);
6979 
6980   // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
6981   // For other load kinds it's empty or possibly some architecture-specific instruction
6982   // for PC-relative loads, i.e. kBssEntry* or kBootImageLinkTimePcRelative.
6983   HUserRecord<HInstruction*> special_input_;
6984 
6985   // A type index and dex file where the class can be accessed. The dex file can be:
6986   // - The compiling method's dex file if the class is defined there too.
6987   // - The compiling method's dex file if the class is referenced there.
6988   // - The dex file where the class is defined. When the load kind can only be
6989   //   kBssEntry* or kRuntimeCall, we cannot emit code for this `HLoadClass`.
6990   const dex::TypeIndex type_index_;
6991   const DexFile& dex_file_;
6992 
6993   Handle<mirror::Class> klass_;
6994 };
6995 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
6996 
6997 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
6998 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
6999   // The load kind should be determined before inserting the instruction to the graph.
7000   DCHECK(GetBlock() == nullptr);
7001   DCHECK(GetEnvironment() == nullptr);
7002   SetPackedField<LoadKindField>(load_kind);
7003   if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
7004     special_input_ = HUserRecord<HInstruction*>(nullptr);
7005   }
7006   if (!NeedsEnvironment()) {
7007     SetSideEffects(SideEffects::None());
7008   }
7009 }
7010 
7011 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
7012 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
7013   // The special input is used for PC-relative loads on some architectures,
7014   // including literal pool loads, which are PC-relative too.
7015   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
7016          GetLoadKind() == LoadKind::kBootImageRelRo ||
7017          GetLoadKind() == LoadKind::kBssEntry ||
7018          GetLoadKind() == LoadKind::kBssEntryPublic ||
7019          GetLoadKind() == LoadKind::kBssEntryPackage ||
7020          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
7021   DCHECK(special_input_.GetInstruction() == nullptr);
7022   special_input_ = HUserRecord<HInstruction*>(special_input);
7023   special_input->AddUseAt(this, 0);
7024 }
7025 
7026 class HLoadString final : public HInstruction {
7027  public:
7028   // Determines how to load the String.
7029   enum class LoadKind {
7030     // Use PC-relative boot image String* address that will be known at link time.
7031     // Used for boot image strings referenced by boot image code.
7032     kBootImageLinkTimePcRelative,
7033 
7034     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
7035     // Used for boot image strings referenced by apps in AOT-compiled code.
7036     kBootImageRelRo,
7037 
7038     // Load from an entry in the .bss section using a PC-relative load.
7039     // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
7040     kBssEntry,
7041 
7042     // Use a known boot image String* address, embedded in the code by the codegen.
7043     // Used for boot image strings referenced by apps in JIT-compiled code.
7044     kJitBootImageAddress,
7045 
7046     // Load from the root table associated with the JIT compiled method.
7047     kJitTableAddress,
7048 
7049     // Load using a simple runtime call. This is the fall-back load kind when
7050     // the codegen is unable to use another appropriate kind.
7051     kRuntimeCall,
7052 
7053     kLast = kRuntimeCall,
7054   };
7055 
7056   HLoadString(HCurrentMethod* current_method,
7057               dex::StringIndex string_index,
7058               const DexFile& dex_file,
7059               uint32_t dex_pc)
7060       : HInstruction(kLoadString,
7061                      DataType::Type::kReference,
7062                      SideEffectsForArchRuntimeCalls(),
7063                      dex_pc),
7064         special_input_(HUserRecord<HInstruction*>(current_method)),
7065         string_index_(string_index),
7066         dex_file_(dex_file) {
7067     SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
7068   }
7069 
7070   bool IsClonable() const override { return true; }
7071   bool NeedsBss() const override {
7072     return GetLoadKind() == LoadKind::kBssEntry;
7073   }
7074 
7075   void SetLoadKind(LoadKind load_kind);
7076 
7077   LoadKind GetLoadKind() const {
7078     return GetPackedField<LoadKindField>();
7079   }
7080 
7081   bool HasPcRelativeLoadKind() const {
7082     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
7083            GetLoadKind() == LoadKind::kBootImageRelRo ||
7084            GetLoadKind() == LoadKind::kBssEntry;
7085   }
7086 
7087   const DexFile& GetDexFile() const {
7088     return dex_file_;
7089   }
7090 
7091   dex::StringIndex GetStringIndex() const {
7092     return string_index_;
7093   }
7094 
7095   Handle<mirror::String> GetString() const {
7096     return string_;
7097   }
7098 
7099   void SetString(Handle<mirror::String> str) {
7100     string_ = str;
7101   }
7102 
7103   bool CanBeMoved() const override { return true; }
7104 
7105   bool InstructionDataEquals(const HInstruction* other) const override;
7106 
7107   size_t ComputeHashCode() const override { return string_index_.index_; }
7108 
7109   // Will call the runtime if we need to load the string through
7110   // the dex cache and the string is not guaranteed to be there yet.
7111   bool NeedsEnvironment() const override {
7112     LoadKind load_kind = GetLoadKind();
7113     if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
7114         load_kind == LoadKind::kBootImageRelRo ||
7115         load_kind == LoadKind::kJitBootImageAddress ||
7116         load_kind == LoadKind::kJitTableAddress) {
7117       return false;
7118     }
7119     return true;
7120   }
7121 
7122   bool CanBeNull() const override { return false; }
7123   bool CanThrow() const override { return NeedsEnvironment(); }
7124 
7125   static SideEffects SideEffectsForArchRuntimeCalls() {
7126     return SideEffects::CanTriggerGC();
7127   }
7128 
7129   void AddSpecialInput(HInstruction* special_input);
7130 
7131   using HInstruction::GetInputRecords;  // Keep the const version visible.
7132   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7133     return ArrayRef<HUserRecord<HInstruction*>>(
7134         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7135   }
7136 
7137   DECLARE_INSTRUCTION(LoadString);
7138 
7139  protected:
7140   DEFAULT_COPY_CONSTRUCTOR(LoadString);
7141 
7142  private:
7143   static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
7144   static constexpr size_t kFieldLoadKindSize =
7145       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
7146   static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
7147   static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7148   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
7149 
7150   void SetLoadKindInternal(LoadKind load_kind);
7151 
7152   // The special input is the HCurrentMethod for kRuntimeCall.
7153   // For other load kinds it's empty or possibly some architecture-specific instruction
7154   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
7155   HUserRecord<HInstruction*> special_input_;
7156 
7157   dex::StringIndex string_index_;
7158   const DexFile& dex_file_;
7159 
7160   Handle<mirror::String> string_;
7161 };
7162 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
7163 
7164 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
7165 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
7166   // The load kind should be determined before inserting the instruction to the graph.
7167   DCHECK(GetBlock() == nullptr);
7168   DCHECK(GetEnvironment() == nullptr);
7169   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
7170   SetPackedField<LoadKindField>(load_kind);
7171   if (load_kind != LoadKind::kRuntimeCall) {
7172     special_input_ = HUserRecord<HInstruction*>(nullptr);
7173   }
7174   if (!NeedsEnvironment()) {
7175     SetSideEffects(SideEffects::None());
7176   }
7177 }
7178 
7179 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
7180 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
7181   // The special input is used for PC-relative loads on some architectures,
7182   // including literal pool loads, which are PC-relative too.
7183   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
7184          GetLoadKind() == LoadKind::kBootImageRelRo ||
7185          GetLoadKind() == LoadKind::kBssEntry ||
7186          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
7187   // HLoadString::GetInputRecords() returns an empty array at this point,
7188   // so use the GetInputRecords() from the base class to set the input record.
7189   DCHECK(special_input_.GetInstruction() == nullptr);
7190   special_input_ = HUserRecord<HInstruction*>(special_input);
7191   special_input->AddUseAt(this, 0);
7192 }
7193 
7194 class HLoadMethodHandle final : public HInstruction {
7195  public:
7196   HLoadMethodHandle(HCurrentMethod* current_method,
7197                     uint16_t method_handle_idx,
7198                     const DexFile& dex_file,
7199                     uint32_t dex_pc)
7200       : HInstruction(kLoadMethodHandle,
7201                      DataType::Type::kReference,
7202                      SideEffectsForArchRuntimeCalls(),
7203                      dex_pc),
7204         special_input_(HUserRecord<HInstruction*>(current_method)),
7205         method_handle_idx_(method_handle_idx),
7206         dex_file_(dex_file) {
7207   }
7208 
7209   using HInstruction::GetInputRecords;  // Keep the const version visible.
7210   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7211     return ArrayRef<HUserRecord<HInstruction*>>(
7212         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7213   }
7214 
7215   bool IsClonable() const override { return true; }
7216 
7217   uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
7218 
7219   const DexFile& GetDexFile() const { return dex_file_; }
7220 
7221   static SideEffects SideEffectsForArchRuntimeCalls() {
7222     return SideEffects::CanTriggerGC();
7223   }
7224 
7225   DECLARE_INSTRUCTION(LoadMethodHandle);
7226 
7227  protected:
7228   DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
7229 
7230  private:
7231   // The special input is the HCurrentMethod for kRuntimeCall.
7232   HUserRecord<HInstruction*> special_input_;
7233 
7234   const uint16_t method_handle_idx_;
7235   const DexFile& dex_file_;
7236 };
7237 
7238 class HLoadMethodType final : public HInstruction {
7239  public:
7240   HLoadMethodType(HCurrentMethod* current_method,
7241                   dex::ProtoIndex proto_index,
7242                   const DexFile& dex_file,
7243                   uint32_t dex_pc)
7244       : HInstruction(kLoadMethodType,
7245                      DataType::Type::kReference,
7246                      SideEffectsForArchRuntimeCalls(),
7247                      dex_pc),
7248         special_input_(HUserRecord<HInstruction*>(current_method)),
7249         proto_index_(proto_index),
7250         dex_file_(dex_file) {
7251   }
7252 
7253   using HInstruction::GetInputRecords;  // Keep the const version visible.
7254   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
7255     return ArrayRef<HUserRecord<HInstruction*>>(
7256         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
7257   }
7258 
7259   bool IsClonable() const override { return true; }
7260 
7261   dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
7262 
7263   const DexFile& GetDexFile() const { return dex_file_; }
7264 
7265   static SideEffects SideEffectsForArchRuntimeCalls() {
7266     return SideEffects::CanTriggerGC();
7267   }
7268 
7269   DECLARE_INSTRUCTION(LoadMethodType);
7270 
7271  protected:
7272   DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
7273 
7274  private:
7275   // The special input is the HCurrentMethod for kRuntimeCall.
7276   HUserRecord<HInstruction*> special_input_;
7277 
7278   const dex::ProtoIndex proto_index_;
7279   const DexFile& dex_file_;
7280 };
7281 
7282 /**
7283  * Performs an initialization check on its Class object input.
7284  */
7285 class HClinitCheck final : public HExpression<1> {
7286  public:
7287   HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
7288       : HExpression(
7289             kClinitCheck,
7290             DataType::Type::kReference,
7291             SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
7292             dex_pc) {
7293     SetRawInputAt(0, constant);
7294   }
7295   // TODO: Make ClinitCheck clonable.
7296   bool CanBeMoved() const override { return true; }
7297   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
7298     return true;
7299   }
7300 
7301   bool NeedsEnvironment() const override {
7302     // May call runtime to initialize the class.
7303     return true;
7304   }
7305 
7306   bool CanThrow() const override { return true; }
7307 
7308   HLoadClass* GetLoadClass() const {
7309     DCHECK(InputAt(0)->IsLoadClass());
7310     return InputAt(0)->AsLoadClass();
7311   }
7312 
7313   DECLARE_INSTRUCTION(ClinitCheck);
7314 
7315 
7316  protected:
7317   DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
7318 };
7319 
7320 class HStaticFieldGet final : public HExpression<1> {
7321  public:
7322   HStaticFieldGet(HInstruction* cls,
7323                   ArtField* field,
7324                   DataType::Type field_type,
7325                   MemberOffset field_offset,
7326                   bool is_volatile,
7327                   uint32_t field_idx,
7328                   uint16_t declaring_class_def_index,
7329                   const DexFile& dex_file,
7330                   uint32_t dex_pc)
7331       : HExpression(kStaticFieldGet,
7332                     field_type,
7333                     SideEffects::FieldReadOfType(field_type, is_volatile),
7334                     dex_pc),
7335         field_info_(field,
7336                     field_offset,
7337                     field_type,
7338                     is_volatile,
7339                     field_idx,
7340                     declaring_class_def_index,
7341                     dex_file) {
7342     SetRawInputAt(0, cls);
7343   }
7344 
7345 
7346   bool IsClonable() const override { return true; }
7347   bool CanBeMoved() const override { return !IsVolatile(); }
7348 
7349   bool InstructionDataEquals(const HInstruction* other) const override {
7350     const HStaticFieldGet* other_get = other->AsStaticFieldGet();
7351     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
7352   }
7353 
7354   size_t ComputeHashCode() const override {
7355     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
7356   }
7357 
7358   bool IsFieldAccess() const override { return true; }
7359   const FieldInfo& GetFieldInfo() const override { return field_info_; }
7360   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
7361   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
7362   bool IsVolatile() const { return field_info_.IsVolatile(); }
7363 
7364   void SetType(DataType::Type new_type) {
7365     DCHECK(DataType::IsIntegralType(GetType()));
7366     DCHECK(DataType::IsIntegralType(new_type));
7367     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
7368     SetPackedField<TypeField>(new_type);
7369   }
7370 
7371   DECLARE_INSTRUCTION(StaticFieldGet);
7372 
7373  protected:
7374   DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet);
7375 
7376  private:
7377   const FieldInfo field_info_;
7378 };
7379 
7380 class HStaticFieldSet final : public HExpression<2> {
7381  public:
7382   HStaticFieldSet(HInstruction* cls,
7383                   HInstruction* value,
7384                   ArtField* field,
7385                   DataType::Type field_type,
7386                   MemberOffset field_offset,
7387                   bool is_volatile,
7388                   uint32_t field_idx,
7389                   uint16_t declaring_class_def_index,
7390                   const DexFile& dex_file,
7391                   uint32_t dex_pc)
7392       : HExpression(kStaticFieldSet,
7393                     SideEffects::FieldWriteOfType(field_type, is_volatile),
7394                     dex_pc),
7395         field_info_(field,
7396                     field_offset,
7397                     field_type,
7398                     is_volatile,
7399                     field_idx,
7400                     declaring_class_def_index,
7401                     dex_file) {
7402     SetPackedFlag<kFlagValueCanBeNull>(true);
7403     SetRawInputAt(0, cls);
7404     SetRawInputAt(1, value);
7405   }
7406 
7407   bool IsClonable() const override { return true; }
7408   bool IsFieldAccess() const override { return true; }
7409   const FieldInfo& GetFieldInfo() const override { return field_info_; }
7410   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
7411   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
7412   bool IsVolatile() const { return field_info_.IsVolatile(); }
7413 
7414   HInstruction* GetValue() const { return InputAt(1); }
7415   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
7416   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
7417 
7418   DECLARE_INSTRUCTION(StaticFieldSet);
7419 
7420  protected:
7421   DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet);
7422 
7423  private:
7424   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
7425   static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
7426   static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
7427                 "Too many packed fields.");
7428 
7429   const FieldInfo field_info_;
7430 };
7431 
7432 class HStringBuilderAppend final : public HVariableInputSizeInstruction {
7433  public:
7434   HStringBuilderAppend(HIntConstant* format,
7435                        uint32_t number_of_arguments,
7436                        ArenaAllocator* allocator,
7437                        uint32_t dex_pc)
7438       : HVariableInputSizeInstruction(
7439             kStringBuilderAppend,
7440             DataType::Type::kReference,
7441             // The runtime call may read memory from inputs. It never writes outside
7442             // of the newly allocated result object (or newly allocated helper objects).
7443             SideEffects::AllReads().Union(SideEffects::CanTriggerGC()),
7444             dex_pc,
7445             allocator,
7446             number_of_arguments + /* format */ 1u,
7447             kArenaAllocInvokeInputs) {
7448     DCHECK_GE(number_of_arguments, 1u);  // There must be something to append.
7449     SetRawInputAt(FormatIndex(), format);
7450   }
7451 
7452   void SetArgumentAt(size_t index, HInstruction* argument) {
7453     DCHECK_LE(index, GetNumberOfArguments());
7454     SetRawInputAt(index, argument);
7455   }
7456 
7457   // Return the number of arguments, excluding the format.
7458   size_t GetNumberOfArguments() const {
7459     DCHECK_GE(InputCount(), 1u);
7460     return InputCount() - 1u;
7461   }
7462 
7463   size_t FormatIndex() const {
7464     return GetNumberOfArguments();
7465   }
7466 
7467   HIntConstant* GetFormat() {
7468     return InputAt(FormatIndex())->AsIntConstant();
7469   }
7470 
7471   bool NeedsEnvironment() const override { return true; }
7472 
7473   bool CanThrow() const override { return true; }
7474 
7475   bool CanBeNull() const override { return false; }
7476 
7477   DECLARE_INSTRUCTION(StringBuilderAppend);
7478 
7479  protected:
7480   DEFAULT_COPY_CONSTRUCTOR(StringBuilderAppend);
7481 };
7482 
7483 class HUnresolvedInstanceFieldGet final : public HExpression<1> {
7484  public:
7485   HUnresolvedInstanceFieldGet(HInstruction* obj,
7486                               DataType::Type field_type,
7487                               uint32_t field_index,
7488                               uint32_t dex_pc)
7489       : HExpression(kUnresolvedInstanceFieldGet,
7490                     field_type,
7491                     SideEffects::AllExceptGCDependency(),
7492                     dex_pc),
7493         field_index_(field_index) {
7494     SetRawInputAt(0, obj);
7495   }
7496 
7497   bool IsClonable() const override { return true; }
7498   bool NeedsEnvironment() const override { return true; }
7499   bool CanThrow() const override { return true; }
7500 
7501   DataType::Type GetFieldType() const { return GetType(); }
7502   uint32_t GetFieldIndex() const { return field_index_; }
7503 
7504   DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
7505 
7506  protected:
7507   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet);
7508 
7509  private:
7510   const uint32_t field_index_;
7511 };
7512 
7513 class HUnresolvedInstanceFieldSet final : public HExpression<2> {
7514  public:
7515   HUnresolvedInstanceFieldSet(HInstruction* obj,
7516                               HInstruction* value,
7517                               DataType::Type field_type,
7518                               uint32_t field_index,
7519                               uint32_t dex_pc)
7520       : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7521         field_index_(field_index) {
7522     SetPackedField<FieldTypeField>(field_type);
7523     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7524     SetRawInputAt(0, obj);
7525     SetRawInputAt(1, value);
7526   }
7527 
7528   bool IsClonable() const override { return true; }
7529   bool NeedsEnvironment() const override { return true; }
7530   bool CanThrow() const override { return true; }
7531 
7532   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
7533   uint32_t GetFieldIndex() const { return field_index_; }
7534 
7535   DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
7536 
7537  protected:
7538   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet);
7539 
7540  private:
7541   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7542   static constexpr size_t kFieldFieldTypeSize =
7543       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7544   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7545       kFieldFieldType + kFieldFieldTypeSize;
7546   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7547                 "Too many packed fields.");
7548   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7549 
7550   const uint32_t field_index_;
7551 };
7552 
7553 class HUnresolvedStaticFieldGet final : public HExpression<0> {
7554  public:
7555   HUnresolvedStaticFieldGet(DataType::Type field_type,
7556                             uint32_t field_index,
7557                             uint32_t dex_pc)
7558       : HExpression(kUnresolvedStaticFieldGet,
7559                     field_type,
7560                     SideEffects::AllExceptGCDependency(),
7561                     dex_pc),
7562         field_index_(field_index) {
7563   }
7564 
7565   bool IsClonable() const override { return true; }
7566   bool NeedsEnvironment() const override { return true; }
7567   bool CanThrow() const override { return true; }
7568 
7569   DataType::Type GetFieldType() const { return GetType(); }
7570   uint32_t GetFieldIndex() const { return field_index_; }
7571 
7572   DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
7573 
7574  protected:
7575   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet);
7576 
7577  private:
7578   const uint32_t field_index_;
7579 };
7580 
7581 class HUnresolvedStaticFieldSet final : public HExpression<1> {
7582  public:
7583   HUnresolvedStaticFieldSet(HInstruction* value,
7584                             DataType::Type field_type,
7585                             uint32_t field_index,
7586                             uint32_t dex_pc)
7587       : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7588         field_index_(field_index) {
7589     SetPackedField<FieldTypeField>(field_type);
7590     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7591     SetRawInputAt(0, value);
7592   }
7593 
7594   bool IsClonable() const override { return true; }
7595   bool NeedsEnvironment() const override { return true; }
7596   bool CanThrow() const override { return true; }
7597 
7598   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
7599   uint32_t GetFieldIndex() const { return field_index_; }
7600 
7601   DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
7602 
7603  protected:
7604   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet);
7605 
7606  private:
7607   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7608   static constexpr size_t kFieldFieldTypeSize =
7609       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7610   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7611       kFieldFieldType + kFieldFieldTypeSize;
7612   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7613                 "Too many packed fields.");
7614   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7615 
7616   const uint32_t field_index_;
7617 };
7618 
7619 // Implement the move-exception DEX instruction.
7620 class HLoadException final : public HExpression<0> {
7621  public:
7622   explicit HLoadException(uint32_t dex_pc = kNoDexPc)
7623       : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) {
7624   }
7625 
7626   bool CanBeNull() const override { return false; }
7627 
7628   DECLARE_INSTRUCTION(LoadException);
7629 
7630  protected:
7631   DEFAULT_COPY_CONSTRUCTOR(LoadException);
7632 };
7633 
7634 // Implicit part of move-exception which clears thread-local exception storage.
7635 // Must not be removed because the runtime expects the TLS to get cleared.
7636 class HClearException final : public HExpression<0> {
7637  public:
7638   explicit HClearException(uint32_t dex_pc = kNoDexPc)
7639       : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) {
7640   }
7641 
7642   DECLARE_INSTRUCTION(ClearException);
7643 
7644  protected:
7645   DEFAULT_COPY_CONSTRUCTOR(ClearException);
7646 };
7647 
7648 class HThrow final : public HExpression<1> {
7649  public:
7650   HThrow(HInstruction* exception, uint32_t dex_pc)
7651       : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) {
7652     SetRawInputAt(0, exception);
7653   }
7654 
7655   bool IsControlFlow() const override { return true; }
7656 
7657   bool NeedsEnvironment() const override { return true; }
7658 
7659   bool CanThrow() const override { return true; }
7660 
7661   bool AlwaysThrows() const override { return true; }
7662 
7663   DECLARE_INSTRUCTION(Throw);
7664 
7665  protected:
7666   DEFAULT_COPY_CONSTRUCTOR(Throw);
7667 };
7668 
7669 /**
7670  * Implementation strategies for the code generator of a HInstanceOf
7671  * or `HCheckCast`.
7672  */
7673 enum class TypeCheckKind {  // private marker to avoid generate-operator-out.py from processing.
7674   kUnresolvedCheck,       // Check against an unresolved type.
7675   kExactCheck,            // Can do a single class compare.
7676   kClassHierarchyCheck,   // Can just walk the super class chain.
7677   kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
7678   kInterfaceCheck,        // No optimization yet when checking against an interface.
7679   kArrayObjectCheck,      // Can just check if the array is not primitive.
7680   kArrayCheck,            // No optimization yet when checking against a generic array.
7681   kBitstringCheck,        // Compare the type check bitstring.
7682   kLast = kArrayCheck
7683 };
7684 
7685 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
7686 
7687 // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an
7688 // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.)
7689 class HTypeCheckInstruction : public HVariableInputSizeInstruction {
7690  public:
7691   HTypeCheckInstruction(InstructionKind kind,
7692                         DataType::Type type,
7693                         HInstruction* object,
7694                         HInstruction* target_class_or_null,
7695                         TypeCheckKind check_kind,
7696                         Handle<mirror::Class> klass,
7697                         uint32_t dex_pc,
7698                         ArenaAllocator* allocator,
7699                         HIntConstant* bitstring_path_to_root,
7700                         HIntConstant* bitstring_mask,
7701                         SideEffects side_effects)
7702       : HVariableInputSizeInstruction(
7703           kind,
7704           type,
7705           side_effects,
7706           dex_pc,
7707           allocator,
7708           /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u,
7709           kArenaAllocTypeCheckInputs),
7710         klass_(klass) {
7711     SetPackedField<TypeCheckKindField>(check_kind);
7712     SetPackedFlag<kFlagMustDoNullCheck>(true);
7713     SetPackedFlag<kFlagValidTargetClassRTI>(false);
7714     SetRawInputAt(0, object);
7715     SetRawInputAt(1, target_class_or_null);
7716     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr);
7717     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr);
7718     if (check_kind == TypeCheckKind::kBitstringCheck) {
7719       DCHECK(target_class_or_null->IsNullConstant());
7720       SetRawInputAt(2, bitstring_path_to_root);
7721       SetRawInputAt(3, bitstring_mask);
7722     } else {
7723       DCHECK(target_class_or_null->IsLoadClass());
7724     }
7725   }
7726 
7727   HLoadClass* GetTargetClass() const {
7728     DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7729     HInstruction* load_class = InputAt(1);
7730     DCHECK(load_class->IsLoadClass());
7731     return load_class->AsLoadClass();
7732   }
7733 
7734   uint32_t GetBitstringPathToRoot() const {
7735     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7736     HInstruction* path_to_root = InputAt(2);
7737     DCHECK(path_to_root->IsIntConstant());
7738     return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue());
7739   }
7740 
7741   uint32_t GetBitstringMask() const {
7742     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7743     HInstruction* mask = InputAt(3);
7744     DCHECK(mask->IsIntConstant());
7745     return static_cast<uint32_t>(mask->AsIntConstant()->GetValue());
7746   }
7747 
7748   bool IsClonable() const override { return true; }
7749   bool CanBeMoved() const override { return true; }
7750 
7751   bool InstructionDataEquals(const HInstruction* other) const override {
7752     DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName();
7753     return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields();
7754   }
7755 
7756   bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
7757   void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
7758   TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
7759   bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
7760 
7761   ReferenceTypeInfo GetTargetClassRTI() {
7762     if (GetPackedFlag<kFlagValidTargetClassRTI>()) {
7763       // Note: The is_exact flag from the return value should not be used.
7764       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
7765     } else {
7766       return ReferenceTypeInfo::CreateInvalid();
7767     }
7768   }
7769 
7770   // Target class RTI is marked as valid by RTP if the klass_ is admissible.
7771   void SetValidTargetClassRTI() {
7772     DCHECK(klass_ != nullptr);
7773     SetPackedFlag<kFlagValidTargetClassRTI>(true);
7774   }
7775 
7776   Handle<mirror::Class> GetClass() const {
7777     return klass_;
7778   }
7779 
7780  protected:
7781   DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction);
7782 
7783  private:
7784   static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
7785   static constexpr size_t kFieldTypeCheckKindSize =
7786       MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
7787   static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
7788   static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1;
7789   static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1;
7790   static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7791   using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
7792 
7793   Handle<mirror::Class> klass_;
7794 };
7795 
7796 class HInstanceOf final : public HTypeCheckInstruction {
7797  public:
7798   HInstanceOf(HInstruction* object,
7799               HInstruction* target_class_or_null,
7800               TypeCheckKind check_kind,
7801               Handle<mirror::Class> klass,
7802               uint32_t dex_pc,
7803               ArenaAllocator* allocator,
7804               HIntConstant* bitstring_path_to_root,
7805               HIntConstant* bitstring_mask)
7806       : HTypeCheckInstruction(kInstanceOf,
7807                               DataType::Type::kBool,
7808                               object,
7809                               target_class_or_null,
7810                               check_kind,
7811                               klass,
7812                               dex_pc,
7813                               allocator,
7814                               bitstring_path_to_root,
7815                               bitstring_mask,
7816                               SideEffectsForArchRuntimeCalls(check_kind)) {}
7817 
7818   bool IsClonable() const override { return true; }
7819 
7820   bool NeedsEnvironment() const override {
7821     return CanCallRuntime(GetTypeCheckKind());
7822   }
7823 
7824   static bool CanCallRuntime(TypeCheckKind check_kind) {
7825     // TODO: Re-evaluate now that mips codegen has been removed.
7826     return check_kind != TypeCheckKind::kExactCheck;
7827   }
7828 
7829   static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
7830     return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
7831   }
7832 
7833   DECLARE_INSTRUCTION(InstanceOf);
7834 
7835  protected:
7836   DEFAULT_COPY_CONSTRUCTOR(InstanceOf);
7837 };
7838 
7839 class HBoundType final : public HExpression<1> {
7840  public:
7841   explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
7842       : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc),
7843         upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
7844     SetPackedFlag<kFlagUpperCanBeNull>(true);
7845     SetPackedFlag<kFlagCanBeNull>(true);
7846     DCHECK_EQ(input->GetType(), DataType::Type::kReference);
7847     SetRawInputAt(0, input);
7848   }
7849 
7850   bool InstructionDataEquals(const HInstruction* other) const override;
7851   bool IsClonable() const override { return true; }
7852 
7853   // {Get,Set}Upper* should only be used in reference type propagation.
7854   const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
7855   bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
7856   void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
7857 
7858   void SetCanBeNull(bool can_be_null) {
7859     DCHECK(GetUpperCanBeNull() || !can_be_null);
7860     SetPackedFlag<kFlagCanBeNull>(can_be_null);
7861   }
7862 
7863   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
7864 
7865   DECLARE_INSTRUCTION(BoundType);
7866 
7867  protected:
7868   DEFAULT_COPY_CONSTRUCTOR(BoundType);
7869 
7870  private:
7871   // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
7872   // is false then CanBeNull() cannot be true).
7873   static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits;
7874   static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
7875   static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
7876   static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7877 
7878   // Encodes the most upper class that this instruction can have. In other words
7879   // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
7880   // It is used to bound the type in cases like:
7881   //   if (x instanceof ClassX) {
7882   //     // uper_bound_ will be ClassX
7883   //   }
7884   ReferenceTypeInfo upper_bound_;
7885 };
7886 
7887 class HCheckCast final : public HTypeCheckInstruction {
7888  public:
7889   HCheckCast(HInstruction* object,
7890              HInstruction* target_class_or_null,
7891              TypeCheckKind check_kind,
7892              Handle<mirror::Class> klass,
7893              uint32_t dex_pc,
7894              ArenaAllocator* allocator,
7895              HIntConstant* bitstring_path_to_root,
7896              HIntConstant* bitstring_mask)
7897       : HTypeCheckInstruction(kCheckCast,
7898                               DataType::Type::kVoid,
7899                               object,
7900                               target_class_or_null,
7901                               check_kind,
7902                               klass,
7903                               dex_pc,
7904                               allocator,
7905                               bitstring_path_to_root,
7906                               bitstring_mask,
7907                               SideEffects::CanTriggerGC()) {}
7908 
7909   bool IsClonable() const override { return true; }
7910   bool NeedsEnvironment() const override {
7911     // Instruction may throw a CheckCastError.
7912     return true;
7913   }
7914 
7915   bool CanThrow() const override { return true; }
7916 
7917   DECLARE_INSTRUCTION(CheckCast);
7918 
7919  protected:
7920   DEFAULT_COPY_CONSTRUCTOR(CheckCast);
7921 };
7922 
7923 /**
7924  * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
7925  * @details We define the combined barrier types that are actually required
7926  * by the Java Memory Model, rather than using exactly the terminology from
7927  * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release
7928  * primitives.  Note that the JSR-133 cookbook generally does not deal with
7929  * store atomicity issues, and the recipes there are not always entirely sufficient.
7930  * The current recipe is as follows:
7931  * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
7932  * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.)
7933  * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
7934  * -# Use StoreStore barrier after all stores but before return from any constructor whose
7935  *    class has final fields.
7936  * -# Use NTStoreStore to order non-temporal stores with respect to all later
7937  *    store-to-memory instructions.  Only generated together with non-temporal stores.
7938  */
7939 enum MemBarrierKind {
7940   kAnyStore,
7941   kLoadAny,
7942   kStoreStore,
7943   kAnyAny,
7944   kNTStoreStore,
7945   kLastBarrierKind = kNTStoreStore
7946 };
7947 std::ostream& operator<<(std::ostream& os, MemBarrierKind kind);
7948 
7949 class HMemoryBarrier final : public HExpression<0> {
7950  public:
7951   explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
7952       : HExpression(kMemoryBarrier,
7953                     SideEffects::AllWritesAndReads(),  // Assume write/read on all fields/arrays.
7954                     dex_pc) {
7955     SetPackedField<BarrierKindField>(barrier_kind);
7956   }
7957 
7958   bool IsClonable() const override { return true; }
7959 
7960   MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
7961 
7962   DECLARE_INSTRUCTION(MemoryBarrier);
7963 
7964  protected:
7965   DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier);
7966 
7967  private:
7968   static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
7969   static constexpr size_t kFieldBarrierKindSize =
7970       MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
7971   static constexpr size_t kNumberOfMemoryBarrierPackedBits =
7972       kFieldBarrierKind + kFieldBarrierKindSize;
7973   static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
7974                 "Too many packed fields.");
7975   using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
7976 };
7977 
7978 // A constructor fence orders all prior stores to fields that could be accessed via a final field of
7979 // the specified object(s), with respect to any subsequent store that might "publish"
7980 // (i.e. make visible) the specified object to another thread.
7981 //
7982 // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
7983 // for all final fields (that were set) at the end of the invoked constructor.
7984 //
7985 // The constructor fence models the freeze actions for the final fields of an object
7986 // being constructed (semantically at the end of the constructor). Constructor fences
7987 // have a per-object affinity; two separate objects being constructed get two separate
7988 // constructor fences.
7989 //
7990 // (Note: that if calling a super-constructor or forwarding to another constructor,
7991 // the freezes would happen at the end of *that* constructor being invoked).
7992 //
7993 // The memory model guarantees that when the object being constructed is "published" after
7994 // constructor completion (i.e. escapes the current thread via a store), then any final field
7995 // writes must be observable on other threads (once they observe that publication).
7996 //
7997 // Further, anything written before the freeze, and read by dereferencing through the final field,
7998 // must also be visible (so final object field could itself have an object with non-final fields;
7999 // yet the freeze must also extend to them).
8000 //
8001 // Constructor example:
8002 //
8003 //     class HasFinal {
8004 //        final int field;                              Optimizing IR for <init>()V:
8005 //        HasFinal() {
8006 //          field = 123;                                HInstanceFieldSet(this, HasFinal.field, 123)
8007 //          // freeze(this.field);                      HConstructorFence(this)
8008 //        }                                             HReturn
8009 //     }
8010 //
8011 // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
8012 // already-initialized classes; in that case the allocation must act as a "default-initializer"
8013 // of the object which effectively writes the class pointer "final field".
8014 //
8015 // For example, we can model default-initialiation as roughly the equivalent of the following:
8016 //
8017 //     class Object {
8018 //       private final Class header;
8019 //     }
8020 //
8021 //  Java code:                                           Optimizing IR:
8022 //
8023 //     T new_instance<T>() {
8024 //       Object obj = allocate_memory(T.class.size);     obj = HInvoke(art_quick_alloc_object, T)
8025 //       obj.header = T.class;                           // header write is done by above call.
8026 //       // freeze(obj.header)                           HConstructorFence(obj)
8027 //       return (T)obj;
8028 //     }
8029 //
8030 // See also:
8031 // * DexCompilationUnit::RequiresConstructorBarrier
8032 // * QuasiAtomic::ThreadFenceForConstructor
8033 //
8034 class HConstructorFence final : public HVariableInputSizeInstruction {
8035                                   // A fence has variable inputs because the inputs can be removed
8036                                   // after prepare_for_register_allocation phase.
8037                                   // (TODO: In the future a fence could freeze multiple objects
8038                                   //        after merging two fences together.)
8039  public:
8040   // `fence_object` is the reference that needs to be protected for correct publication.
8041   //
8042   // It makes sense in the following situations:
8043   // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
8044   // * new-instance-like instructions, it's the return value (i.e. HNewInstance).
8045   //
8046   // After construction the `fence_object` becomes the 0th input.
8047   // This is not an input in a real sense, but just a convenient place to stash the information
8048   // about the associated object.
8049   HConstructorFence(HInstruction* fence_object,
8050                     uint32_t dex_pc,
8051                     ArenaAllocator* allocator)
8052     // We strongly suspect there is not a more accurate way to describe the fine-grained reordering
8053     // constraints described in the class header. We claim that these SideEffects constraints
8054     // enforce a superset of the real constraints.
8055     //
8056     // The ordering described above is conservatively modeled with SideEffects as follows:
8057     //
8058     // * To prevent reordering of the publication stores:
8059     // ----> "Reads of objects" is the initial SideEffect.
8060     // * For every primitive final field store in the constructor:
8061     // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
8062     // * If there are any stores to reference final fields in the constructor:
8063     // ----> Use a more conservative "AllReads" SideEffect because any stores to any references
8064     //       that are reachable from `fence_object` also need to be prevented for reordering
8065     //       (and we do not want to do alias analysis to figure out what those stores are).
8066     //
8067     // In the implementation, this initially starts out as an "all reads" side effect; this is an
8068     // even more conservative approach than the one described above, and prevents all of the
8069     // above reordering without analyzing any of the instructions in the constructor.
8070     //
8071     // If in a later phase we discover that there are no writes to reference final fields,
8072     // we can refine the side effect to a smaller set of type reads (see above constraints).
8073       : HVariableInputSizeInstruction(kConstructorFence,
8074                                       SideEffects::AllReads(),
8075                                       dex_pc,
8076                                       allocator,
8077                                       /* number_of_inputs= */ 1,
8078                                       kArenaAllocConstructorFenceInputs) {
8079     DCHECK(fence_object != nullptr);
8080     SetRawInputAt(0, fence_object);
8081   }
8082 
8083   // The object associated with this constructor fence.
8084   //
8085   // (Note: This will be null after the prepare_for_register_allocation phase,
8086   // as all constructor fence inputs are removed there).
8087   HInstruction* GetFenceObject() const {
8088     return InputAt(0);
8089   }
8090 
8091   // Find all the HConstructorFence uses (`fence_use`) for `this` and:
8092   // - Delete `fence_use` from `this`'s use list.
8093   // - Delete `this` from `fence_use`'s inputs list.
8094   // - If the `fence_use` is dead, remove it from the graph.
8095   //
8096   // A fence is considered dead once it no longer has any uses
8097   // and all of the inputs are dead.
8098   //
8099   // This must *not* be called during/after prepare_for_register_allocation,
8100   // because that removes all the inputs to the fences but the fence is actually
8101   // still considered live.
8102   //
8103   // Returns how many HConstructorFence instructions were removed from graph.
8104   static size_t RemoveConstructorFences(HInstruction* instruction);
8105 
8106   // Combine all inputs of `this` and `other` instruction and remove
8107   // `other` from the graph.
8108   //
8109   // Inputs are unique after the merge.
8110   //
8111   // Requirement: `this` must not be the same as `other.
8112   void Merge(HConstructorFence* other);
8113 
8114   // Check if this constructor fence is protecting
8115   // an HNewInstance or HNewArray that is also the immediate
8116   // predecessor of `this`.
8117   //
8118   // If `ignore_inputs` is true, then the immediate predecessor doesn't need
8119   // to be one of the inputs of `this`.
8120   //
8121   // Returns the associated HNewArray or HNewInstance,
8122   // or null otherwise.
8123   HInstruction* GetAssociatedAllocation(bool ignore_inputs = false);
8124 
8125   DECLARE_INSTRUCTION(ConstructorFence);
8126 
8127  protected:
8128   DEFAULT_COPY_CONSTRUCTOR(ConstructorFence);
8129 };
8130 
8131 class HMonitorOperation final : public HExpression<1> {
8132  public:
8133   enum class OperationKind {
8134     kEnter,
8135     kExit,
8136     kLast = kExit
8137   };
8138 
8139   HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
8140     : HExpression(kMonitorOperation,
8141                   SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
8142                   dex_pc) {
8143     SetPackedField<OperationKindField>(kind);
8144     SetRawInputAt(0, object);
8145   }
8146 
8147   // Instruction may go into runtime, so we need an environment.
8148   bool NeedsEnvironment() const override { return true; }
8149 
8150   bool CanThrow() const override {
8151     // Verifier guarantees that monitor-exit cannot throw.
8152     // This is important because it allows the HGraphBuilder to remove
8153     // a dead throw-catch loop generated for `synchronized` blocks/methods.
8154     return IsEnter();
8155   }
8156 
8157   OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
8158   bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
8159 
8160   DECLARE_INSTRUCTION(MonitorOperation);
8161 
8162  protected:
8163   DEFAULT_COPY_CONSTRUCTOR(MonitorOperation);
8164 
8165  private:
8166   static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
8167   static constexpr size_t kFieldOperationKindSize =
8168       MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
8169   static constexpr size_t kNumberOfMonitorOperationPackedBits =
8170       kFieldOperationKind + kFieldOperationKindSize;
8171   static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
8172                 "Too many packed fields.");
8173   using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
8174 };
8175 
8176 class HSelect final : public HExpression<3> {
8177  public:
8178   HSelect(HInstruction* condition,
8179           HInstruction* true_value,
8180           HInstruction* false_value,
8181           uint32_t dex_pc)
8182       : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
8183     DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
8184 
8185     // First input must be `true_value` or `false_value` to allow codegens to
8186     // use the SameAsFirstInput allocation policy. We make it `false_value`, so
8187     // that architectures which implement HSelect as a conditional move also
8188     // will not need to invert the condition.
8189     SetRawInputAt(0, false_value);
8190     SetRawInputAt(1, true_value);
8191     SetRawInputAt(2, condition);
8192   }
8193 
8194   bool IsClonable() const override { return true; }
8195   HInstruction* GetFalseValue() const { return InputAt(0); }
8196   HInstruction* GetTrueValue() const { return InputAt(1); }
8197   HInstruction* GetCondition() const { return InputAt(2); }
8198 
8199   bool CanBeMoved() const override { return true; }
8200   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
8201     return true;
8202   }
8203 
8204   bool CanBeNull() const override {
8205     return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
8206   }
8207 
8208   DECLARE_INSTRUCTION(Select);
8209 
8210  protected:
8211   DEFAULT_COPY_CONSTRUCTOR(Select);
8212 };
8213 
8214 class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
8215  public:
8216   MoveOperands(Location source,
8217                Location destination,
8218                DataType::Type type,
8219                HInstruction* instruction)
8220       : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
8221 
8222   Location GetSource() const { return source_; }
8223   Location GetDestination() const { return destination_; }
8224 
8225   void SetSource(Location value) { source_ = value; }
8226   void SetDestination(Location value) { destination_ = value; }
8227 
8228   // The parallel move resolver marks moves as "in-progress" by clearing the
8229   // destination (but not the source).
8230   Location MarkPending() {
8231     DCHECK(!IsPending());
8232     Location dest = destination_;
8233     destination_ = Location::NoLocation();
8234     return dest;
8235   }
8236 
8237   void ClearPending(Location dest) {
8238     DCHECK(IsPending());
8239     destination_ = dest;
8240   }
8241 
8242   bool IsPending() const {
8243     DCHECK(source_.IsValid() || destination_.IsInvalid());
8244     return destination_.IsInvalid() && source_.IsValid();
8245   }
8246 
8247   // True if this blocks a move from the given location.
8248   bool Blocks(Location loc) const {
8249     return !IsEliminated() && source_.OverlapsWith(loc);
8250   }
8251 
8252   // A move is redundant if it's been eliminated, if its source and
8253   // destination are the same, or if its destination is unneeded.
8254   bool IsRedundant() const {
8255     return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
8256   }
8257 
8258   // We clear both operands to indicate move that's been eliminated.
8259   void Eliminate() {
8260     source_ = destination_ = Location::NoLocation();
8261   }
8262 
8263   bool IsEliminated() const {
8264     DCHECK_IMPLIES(source_.IsInvalid(), destination_.IsInvalid());
8265     return source_.IsInvalid();
8266   }
8267 
8268   DataType::Type GetType() const { return type_; }
8269 
8270   bool Is64BitMove() const {
8271     return DataType::Is64BitType(type_);
8272   }
8273 
8274   HInstruction* GetInstruction() const { return instruction_; }
8275 
8276  private:
8277   Location source_;
8278   Location destination_;
8279   // The type this move is for.
8280   DataType::Type type_;
8281   // The instruction this move is assocatied with. Null when this move is
8282   // for moving an input in the expected locations of user (including a phi user).
8283   // This is only used in debug mode, to ensure we do not connect interval siblings
8284   // in the same parallel move.
8285   HInstruction* instruction_;
8286 };
8287 
8288 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
8289 
8290 static constexpr size_t kDefaultNumberOfMoves = 4;
8291 
8292 class HParallelMove final : public HExpression<0> {
8293  public:
8294   explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc)
8295       : HExpression(kParallelMove, SideEffects::None(), dex_pc),
8296         moves_(allocator->Adapter(kArenaAllocMoveOperands)) {
8297     moves_.reserve(kDefaultNumberOfMoves);
8298   }
8299 
8300   void AddMove(Location source,
8301                Location destination,
8302                DataType::Type type,
8303                HInstruction* instruction) {
8304     DCHECK(source.IsValid());
8305     DCHECK(destination.IsValid());
8306     if (kIsDebugBuild) {
8307       if (instruction != nullptr) {
8308         for (const MoveOperands& move : moves_) {
8309           if (move.GetInstruction() == instruction) {
8310             // Special case the situation where the move is for the spill slot
8311             // of the instruction.
8312             if ((GetPrevious() == instruction)
8313                 || ((GetPrevious() == nullptr)
8314                     && instruction->IsPhi()
8315                     && instruction->GetBlock() == GetBlock())) {
8316               DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
8317                   << "Doing parallel moves for the same instruction.";
8318             } else {
8319               DCHECK(false) << "Doing parallel moves for the same instruction.";
8320             }
8321           }
8322         }
8323       }
8324       for (const MoveOperands& move : moves_) {
8325         DCHECK(!destination.OverlapsWith(move.GetDestination()))
8326             << "Overlapped destination for two moves in a parallel move: "
8327             << move.GetSource() << " ==> " << move.GetDestination() << " and "
8328             << source << " ==> " << destination << " for " << SafePrint(instruction);
8329       }
8330     }
8331     moves_.emplace_back(source, destination, type, instruction);
8332   }
8333 
8334   MoveOperands* MoveOperandsAt(size_t index) {
8335     return &moves_[index];
8336   }
8337 
8338   size_t NumMoves() const { return moves_.size(); }
8339 
8340   DECLARE_INSTRUCTION(ParallelMove);
8341 
8342  protected:
8343   DEFAULT_COPY_CONSTRUCTOR(ParallelMove);
8344 
8345  private:
8346   ArenaVector<MoveOperands> moves_;
8347 };
8348 
8349 // This instruction computes an intermediate address pointing in the 'middle' of an object. The
8350 // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
8351 // never used across anything that can trigger GC.
8352 // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
8353 // So we represent it by the type `DataType::Type::kInt`.
8354 class HIntermediateAddress final : public HExpression<2> {
8355  public:
8356   HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
8357       : HExpression(kIntermediateAddress,
8358                     DataType::Type::kInt32,
8359                     SideEffects::DependsOnGC(),
8360                     dex_pc) {
8361         DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
8362                   DataType::Size(DataType::Type::kReference))
8363             << "kPrimInt and kPrimNot have different sizes.";
8364     SetRawInputAt(0, base_address);
8365     SetRawInputAt(1, offset);
8366   }
8367 
8368   bool IsClonable() const override { return true; }
8369   bool CanBeMoved() const override { return true; }
8370   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
8371     return true;
8372   }
8373   bool IsActualObject() const override { return false; }
8374 
8375   HInstruction* GetBaseAddress() const { return InputAt(0); }
8376   HInstruction* GetOffset() const { return InputAt(1); }
8377 
8378   DECLARE_INSTRUCTION(IntermediateAddress);
8379 
8380  protected:
8381   DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress);
8382 };
8383 
8384 
8385 }  // namespace art
8386 
8387 #include "nodes_vector.h"
8388 
8389 #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
8390 #include "nodes_shared.h"
8391 #endif
8392 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
8393 #include "nodes_x86.h"
8394 #endif
8395 
8396 namespace art {
8397 
8398 class OptimizingCompilerStats;
8399 
8400 class HGraphVisitor : public ValueObject {
8401  public:
8402   explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
8403       : stats_(stats),
8404         graph_(graph) {}
8405   virtual ~HGraphVisitor() {}
8406 
8407   virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
8408   virtual void VisitBasicBlock(HBasicBlock* block);
8409 
8410   // Visit the graph following basic block insertion order.
8411   void VisitInsertionOrder();
8412 
8413   // Visit the graph following dominator tree reverse post-order.
8414   void VisitReversePostOrder();
8415 
8416   HGraph* GetGraph() const { return graph_; }
8417 
8418   // Visit functions for instruction classes.
8419 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
8420   virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
8421 
8422   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
8423 
8424 #undef DECLARE_VISIT_INSTRUCTION
8425 
8426  protected:
8427   OptimizingCompilerStats* stats_;
8428 
8429  private:
8430   HGraph* const graph_;
8431 
8432   DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
8433 };
8434 
8435 class HGraphDelegateVisitor : public HGraphVisitor {
8436  public:
8437   explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
8438       : HGraphVisitor(graph, stats) {}
8439   virtual ~HGraphDelegateVisitor() {}
8440 
8441   // Visit functions that delegate to to super class.
8442 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
8443   void Visit##name(H##name* instr) override { Visit##super(instr); }
8444 
8445   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
8446 
8447 #undef DECLARE_VISIT_INSTRUCTION
8448 
8449  private:
8450   DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
8451 };
8452 
8453 // Create a clone of the instruction, insert it into the graph; replace the old one with a new
8454 // and remove the old instruction.
8455 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr);
8456 
8457 // Create a clone for each clonable instructions/phis and replace the original with the clone.
8458 //
8459 // Used for testing individual instruction cloner.
8460 class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor {
8461  public:
8462   explicit CloneAndReplaceInstructionVisitor(HGraph* graph)
8463       : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {}
8464 
8465   void VisitInstruction(HInstruction* instruction) override {
8466     if (instruction->IsClonable()) {
8467       ReplaceInstrOrPhiByClone(instruction);
8468       instr_replaced_by_clones_count_++;
8469     }
8470   }
8471 
8472   size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; }
8473 
8474  private:
8475   size_t instr_replaced_by_clones_count_;
8476 
8477   DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor);
8478 };
8479 
8480 // Iterator over the blocks that art part of the loop. Includes blocks part
8481 // of an inner loop. The order in which the blocks are iterated is on their
8482 // block id.
8483 class HBlocksInLoopIterator : public ValueObject {
8484  public:
8485   explicit HBlocksInLoopIterator(const HLoopInformation& info)
8486       : blocks_in_loop_(info.GetBlocks()),
8487         blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
8488         index_(0) {
8489     if (!blocks_in_loop_.IsBitSet(index_)) {
8490       Advance();
8491     }
8492   }
8493 
8494   bool Done() const { return index_ == blocks_.size(); }
8495   HBasicBlock* Current() const { return blocks_[index_]; }
8496   void Advance() {
8497     ++index_;
8498     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8499       if (blocks_in_loop_.IsBitSet(index_)) {
8500         break;
8501       }
8502     }
8503   }
8504 
8505  private:
8506   const BitVector& blocks_in_loop_;
8507   const ArenaVector<HBasicBlock*>& blocks_;
8508   size_t index_;
8509 
8510   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
8511 };
8512 
8513 // Iterator over the blocks that art part of the loop. Includes blocks part
8514 // of an inner loop. The order in which the blocks are iterated is reverse
8515 // post order.
8516 class HBlocksInLoopReversePostOrderIterator : public ValueObject {
8517  public:
8518   explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
8519       : blocks_in_loop_(info.GetBlocks()),
8520         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
8521         index_(0) {
8522     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8523       Advance();
8524     }
8525   }
8526 
8527   bool Done() const { return index_ == blocks_.size(); }
8528   HBasicBlock* Current() const { return blocks_[index_]; }
8529   void Advance() {
8530     ++index_;
8531     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8532       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8533         break;
8534       }
8535     }
8536   }
8537 
8538  private:
8539   const BitVector& blocks_in_loop_;
8540   const ArenaVector<HBasicBlock*>& blocks_;
8541   size_t index_;
8542 
8543   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
8544 };
8545 
8546 // Returns int64_t value of a properly typed constant.
8547 inline int64_t Int64FromConstant(HConstant* constant) {
8548   if (constant->IsIntConstant()) {
8549     return constant->AsIntConstant()->GetValue();
8550   } else if (constant->IsLongConstant()) {
8551     return constant->AsLongConstant()->GetValue();
8552   } else {
8553     DCHECK(constant->IsNullConstant()) << constant->DebugName();
8554     return 0;
8555   }
8556 }
8557 
8558 // Returns true iff instruction is an integral constant (and sets value on success).
8559 inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
8560   if (instruction->IsIntConstant()) {
8561     *value = instruction->AsIntConstant()->GetValue();
8562     return true;
8563   } else if (instruction->IsLongConstant()) {
8564     *value = instruction->AsLongConstant()->GetValue();
8565     return true;
8566   } else if (instruction->IsNullConstant()) {
8567     *value = 0;
8568     return true;
8569   }
8570   return false;
8571 }
8572 
8573 // Returns true iff instruction is the given integral constant.
8574 inline bool IsInt64Value(HInstruction* instruction, int64_t value) {
8575   int64_t val = 0;
8576   return IsInt64AndGet(instruction, &val) && val == value;
8577 }
8578 
8579 // Returns true iff instruction is a zero bit pattern.
8580 inline bool IsZeroBitPattern(HInstruction* instruction) {
8581   return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
8582 }
8583 
8584 // Implement HInstruction::Is##type() for concrete instructions.
8585 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8586   inline bool HInstruction::Is##type() const { return GetKind() == k##type; }
8587   FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8588 #undef INSTRUCTION_TYPE_CHECK
8589 
8590 // Implement HInstruction::Is##type() for abstract instructions.
8591 #define INSTRUCTION_TYPE_CHECK_RESULT(type, super)                             \
8592   std::is_base_of<BaseType, H##type>::value,
8593 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8594   inline bool HInstruction::Is##type() const {                                 \
8595     DCHECK_LT(GetKind(), kLastInstructionKind);                                \
8596     using BaseType = H##type;                                                  \
8597     static constexpr bool results[] = {                                        \
8598         FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT)           \
8599     };                                                                         \
8600     return results[static_cast<size_t>(GetKind())];                            \
8601   }
8602 
8603   FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8604 #undef INSTRUCTION_TYPE_CHECK
8605 #undef INSTRUCTION_TYPE_CHECK_RESULT
8606 
8607 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
8608   inline const H##type* HInstruction::As##type() const {                       \
8609     return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
8610   }                                                                            \
8611   inline H##type* HInstruction::As##type() {                                   \
8612     return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
8613   }
8614 
8615   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
8616 #undef INSTRUCTION_TYPE_CAST
8617 
8618 
8619 // Create space in `blocks` for adding `number_of_new_blocks` entries
8620 // starting at location `at`. Blocks after `at` are moved accordingly.
8621 inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
8622                         size_t number_of_new_blocks,
8623                         size_t after) {
8624   DCHECK_LT(after, blocks->size());
8625   size_t old_size = blocks->size();
8626   size_t new_size = old_size + number_of_new_blocks;
8627   blocks->resize(new_size);
8628   std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
8629 }
8630 
8631 /*
8632  * Hunt "under the hood" of array lengths (leading to array references),
8633  * null checks (also leading to array references), and new arrays
8634  * (leading to the actual length). This makes it more likely related
8635  * instructions become actually comparable.
8636  */
8637 inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
8638   while (instruction->IsArrayLength() ||
8639          instruction->IsNullCheck() ||
8640          instruction->IsNewArray()) {
8641     instruction = instruction->IsNewArray()
8642         ? instruction->AsNewArray()->GetLength()
8643         : instruction->InputAt(0);
8644   }
8645   return instruction;
8646 }
8647 
8648 inline bool IsAddOrSub(const HInstruction* instruction) {
8649   return instruction->IsAdd() || instruction->IsSub();
8650 }
8651 
8652 void RemoveEnvironmentUses(HInstruction* instruction);
8653 bool HasEnvironmentUsedByOthers(HInstruction* instruction);
8654 void ResetEnvironmentInputRecords(HInstruction* instruction);
8655 
8656 // Detects an instruction that is >= 0. As long as the value is carried by
8657 // a single instruction, arithmetic wrap-around cannot occur.
8658 bool IsGEZero(HInstruction* instruction);
8659 
8660 }  // namespace art
8661 
8662 #endif  // ART_COMPILER_OPTIMIZING_NODES_H_
8663