1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "induction_var_range.h"
18
19 #include <limits>
20
21 namespace art {
22
23 /** Returns true if 64-bit constant fits in 32-bit constant. */
CanLongValueFitIntoInt(int64_t c)24 static bool CanLongValueFitIntoInt(int64_t c) {
25 return std::numeric_limits<int32_t>::min() <= c && c <= std::numeric_limits<int32_t>::max();
26 }
27
28 /** Returns true if 32-bit addition can be done safely. */
IsSafeAdd(int32_t c1,int32_t c2)29 static bool IsSafeAdd(int32_t c1, int32_t c2) {
30 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) + static_cast<int64_t>(c2));
31 }
32
33 /** Returns true if 32-bit subtraction can be done safely. */
IsSafeSub(int32_t c1,int32_t c2)34 static bool IsSafeSub(int32_t c1, int32_t c2) {
35 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) - static_cast<int64_t>(c2));
36 }
37
38 /** Returns true if 32-bit multiplication can be done safely. */
IsSafeMul(int32_t c1,int32_t c2)39 static bool IsSafeMul(int32_t c1, int32_t c2) {
40 return CanLongValueFitIntoInt(static_cast<int64_t>(c1) * static_cast<int64_t>(c2));
41 }
42
43 /** Returns true if 32-bit division can be done safely. */
IsSafeDiv(int32_t c1,int32_t c2)44 static bool IsSafeDiv(int32_t c1, int32_t c2) {
45 return c2 != 0 && CanLongValueFitIntoInt(static_cast<int64_t>(c1) / static_cast<int64_t>(c2));
46 }
47
48 /** Computes a * b for a,b > 0 (at least until first overflow happens). */
SafeMul(int64_t a,int64_t b,bool * overflow)49 static int64_t SafeMul(int64_t a, int64_t b, /*out*/ bool* overflow) {
50 if (a > 0 && b > 0 && a > (std::numeric_limits<int64_t>::max() / b)) {
51 *overflow = true;
52 }
53 return a * b;
54 }
55
56 /** Returns b^e for b,e > 0. Sets overflow if arithmetic wrap-around occurred. */
IntPow(int64_t b,int64_t e,bool * overflow)57 static int64_t IntPow(int64_t b, int64_t e, /*out*/ bool* overflow) {
58 DCHECK_LT(0, b);
59 DCHECK_LT(0, e);
60 int64_t pow = 1;
61 while (e) {
62 if (e & 1) {
63 pow = SafeMul(pow, b, overflow);
64 }
65 e >>= 1;
66 if (e) {
67 b = SafeMul(b, b, overflow);
68 }
69 }
70 return pow;
71 }
72
73 /** Hunts "under the hood" for a suitable instruction at the hint. */
IsMaxAtHint(HInstruction * instruction,HInstruction * hint,HInstruction ** suitable)74 static bool IsMaxAtHint(
75 HInstruction* instruction, HInstruction* hint, /*out*/HInstruction** suitable) {
76 if (instruction->IsMin()) {
77 // For MIN(x, y), return most suitable x or y as maximum.
78 return IsMaxAtHint(instruction->InputAt(0), hint, suitable) ||
79 IsMaxAtHint(instruction->InputAt(1), hint, suitable);
80 } else {
81 *suitable = instruction;
82 return HuntForDeclaration(instruction) == hint;
83 }
84 }
85
86 /** Post-analysis simplification of a minimum value that makes the bound more useful to clients. */
SimplifyMin(InductionVarRange::Value v)87 static InductionVarRange::Value SimplifyMin(InductionVarRange::Value v) {
88 if (v.is_known && v.a_constant == 1 && v.b_constant <= 0) {
89 // If a == 1, instruction >= 0 and b <= 0, just return the constant b.
90 // No arithmetic wrap-around can occur.
91 if (IsGEZero(v.instruction)) {
92 return InductionVarRange::Value(v.b_constant);
93 }
94 }
95 return v;
96 }
97
98 /** Post-analysis simplification of a maximum value that makes the bound more useful to clients. */
SimplifyMax(InductionVarRange::Value v,HInstruction * hint)99 static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v, HInstruction* hint) {
100 if (v.is_known && v.a_constant >= 1) {
101 // An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as
102 // length + b because length >= 0 is true.
103 int64_t value;
104 if (v.instruction->IsDiv() &&
105 v.instruction->InputAt(0)->IsArrayLength() &&
106 IsInt64AndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) {
107 return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant);
108 }
109 // If a == 1, the most suitable one suffices as maximum value.
110 HInstruction* suitable = nullptr;
111 if (v.a_constant == 1 && IsMaxAtHint(v.instruction, hint, &suitable)) {
112 return InductionVarRange::Value(suitable, 1, v.b_constant);
113 }
114 }
115 return v;
116 }
117
118 /** Tests for a constant value. */
IsConstantValue(InductionVarRange::Value v)119 static bool IsConstantValue(InductionVarRange::Value v) {
120 return v.is_known && v.a_constant == 0;
121 }
122
123 /** Corrects a value for type to account for arithmetic wrap-around in lower precision. */
CorrectForType(InductionVarRange::Value v,DataType::Type type)124 static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, DataType::Type type) {
125 switch (type) {
126 case DataType::Type::kUint8:
127 case DataType::Type::kInt8:
128 case DataType::Type::kUint16:
129 case DataType::Type::kInt16: {
130 // Constants within range only.
131 // TODO: maybe some room for improvement, like allowing widening conversions
132 int32_t min = DataType::MinValueOfIntegralType(type);
133 int32_t max = DataType::MaxValueOfIntegralType(type);
134 return (IsConstantValue(v) && min <= v.b_constant && v.b_constant <= max)
135 ? v
136 : InductionVarRange::Value();
137 }
138 default:
139 return v;
140 }
141 }
142
143 /** Inserts an instruction. */
Insert(HBasicBlock * block,HInstruction * instruction)144 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
145 DCHECK(block != nullptr);
146 DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId();
147 DCHECK(instruction != nullptr);
148 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
149 return instruction;
150 }
151
152 /** Obtains loop's control instruction. */
GetLoopControl(const HLoopInformation * loop)153 static HInstruction* GetLoopControl(const HLoopInformation* loop) {
154 DCHECK(loop != nullptr);
155 return loop->GetHeader()->GetLastInstruction();
156 }
157
158 /** Determines whether the `context` is in the body of the `loop`. */
IsContextInBody(const HBasicBlock * context,const HLoopInformation * loop)159 static bool IsContextInBody(const HBasicBlock* context, const HLoopInformation* loop) {
160 DCHECK(loop != nullptr);
161 // We're currently classifying trip count only for the exit condition from loop header.
162 // All other blocks in the loop are considered loop body.
163 return context != loop->GetHeader() && loop->Contains(*context);
164 }
165
166 /** Determines whether to use the full trip count for given `context`, `loop` and `is_min`. */
UseFullTripCount(const HBasicBlock * context,const HLoopInformation * loop,bool is_min)167 bool UseFullTripCount(const HBasicBlock* context, const HLoopInformation* loop, bool is_min) {
168 // We're currently classifying trip count only for the exit condition from loop header.
169 // So, we should call this helper function only if the loop control is an `HIf` with
170 // one edge leaving the loop. The loop header is the only block that's both inside
171 // the loop and not in the loop body.
172 DCHECK(GetLoopControl(loop)->IsIf());
173 DCHECK_NE(loop->Contains(*GetLoopControl(loop)->AsIf()->IfTrueSuccessor()),
174 loop->Contains(*GetLoopControl(loop)->AsIf()->IfFalseSuccessor()));
175 if (loop->Contains(*context)) {
176 // Use the full trip count if determining the maximum and context is not in the loop body.
177 DCHECK_NE(context == loop->GetHeader(), IsContextInBody(context, loop));
178 return !is_min && context == loop->GetHeader();
179 } else {
180 // Trip count after the loop is always the maximum (ignoring `is_min`),
181 // as long as the `context` is dominated by the loop control exit block.
182 // If there are additional exit edges, the value is unknown on those paths.
183 HInstruction* loop_control = GetLoopControl(loop);
184 HBasicBlock* then_block = loop_control->AsIf()->IfTrueSuccessor();
185 HBasicBlock* else_block = loop_control->AsIf()->IfFalseSuccessor();
186 HBasicBlock* loop_exit_block = loop->Contains(*then_block) ? else_block : then_block;
187 return loop_exit_block->Dominates(context);
188 }
189 }
190
191 //
192 // Public class methods.
193 //
194
InductionVarRange(HInductionVarAnalysis * induction_analysis)195 InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis)
196 : induction_analysis_(induction_analysis),
197 chase_hint_(nullptr) {
198 DCHECK(induction_analysis != nullptr);
199 }
200
GetInductionRange(const HBasicBlock * context,HInstruction * instruction,HInstruction * chase_hint,Value * min_val,Value * max_val,bool * needs_finite_test)201 bool InductionVarRange::GetInductionRange(const HBasicBlock* context,
202 HInstruction* instruction,
203 HInstruction* chase_hint,
204 /*out*/Value* min_val,
205 /*out*/Value* max_val,
206 /*out*/bool* needs_finite_test) {
207 const HLoopInformation* loop = nullptr;
208 HInductionVarAnalysis::InductionInfo* info = nullptr;
209 HInductionVarAnalysis::InductionInfo* trip = nullptr;
210 if (!HasInductionInfo(context, instruction, &loop, &info, &trip)) {
211 return false;
212 }
213 // Type int or lower (this is not too restrictive since intended clients, like
214 // bounds check elimination, will have truncated higher precision induction
215 // at their use point already).
216 switch (info->type) {
217 case DataType::Type::kUint8:
218 case DataType::Type::kInt8:
219 case DataType::Type::kUint16:
220 case DataType::Type::kInt16:
221 case DataType::Type::kInt32:
222 break;
223 default:
224 return false;
225 }
226 // Find range.
227 chase_hint_ = chase_hint;
228 int64_t stride_value = 0;
229 *min_val = SimplifyMin(GetVal(context, loop, info, trip, /*is_min=*/ true));
230 *max_val = SimplifyMax(GetVal(context, loop, info, trip, /*is_min=*/ false), chase_hint);
231 *needs_finite_test =
232 NeedsTripCount(context, loop, info, &stride_value) && IsUnsafeTripCount(trip);
233 chase_hint_ = nullptr;
234 // Retry chasing constants for wrap-around (merge sensitive).
235 if (!min_val->is_known && info->induction_class == HInductionVarAnalysis::kWrapAround) {
236 *min_val = SimplifyMin(GetVal(context, loop, info, trip, /*is_min=*/ true));
237 }
238 return true;
239 }
240
CanGenerateRange(const HBasicBlock * context,HInstruction * instruction,bool * needs_finite_test,bool * needs_taken_test)241 bool InductionVarRange::CanGenerateRange(const HBasicBlock* context,
242 HInstruction* instruction,
243 /*out*/bool* needs_finite_test,
244 /*out*/bool* needs_taken_test) {
245 bool is_last_value = false;
246 int64_t stride_value = 0;
247 return GenerateRangeOrLastValue(context,
248 instruction,
249 is_last_value,
250 nullptr,
251 nullptr,
252 nullptr,
253 nullptr,
254 nullptr, // nothing generated yet
255 &stride_value,
256 needs_finite_test,
257 needs_taken_test)
258 && (stride_value == -1 ||
259 stride_value == 0 ||
260 stride_value == 1); // avoid arithmetic wrap-around anomalies.
261 }
262
GenerateRange(const HBasicBlock * context,HInstruction * instruction,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper)263 void InductionVarRange::GenerateRange(const HBasicBlock* context,
264 HInstruction* instruction,
265 HGraph* graph,
266 HBasicBlock* block,
267 /*out*/HInstruction** lower,
268 /*out*/HInstruction** upper) {
269 bool is_last_value = false;
270 int64_t stride_value = 0;
271 bool b1, b2; // unused
272 if (!GenerateRangeOrLastValue(context,
273 instruction,
274 is_last_value,
275 graph,
276 block,
277 lower,
278 upper,
279 nullptr,
280 &stride_value,
281 &b1,
282 &b2)) {
283 LOG(FATAL) << "Failed precondition: CanGenerateRange()";
284 }
285 }
286
GenerateTakenTest(HInstruction * loop_control,HGraph * graph,HBasicBlock * block)287 HInstruction* InductionVarRange::GenerateTakenTest(HInstruction* loop_control,
288 HGraph* graph,
289 HBasicBlock* block) {
290 const HBasicBlock* context = loop_control->GetBlock();
291 HInstruction* taken_test = nullptr;
292 bool is_last_value = false;
293 int64_t stride_value = 0;
294 bool b1, b2; // unused
295 if (!GenerateRangeOrLastValue(context,
296 loop_control,
297 is_last_value,
298 graph,
299 block,
300 nullptr,
301 nullptr,
302 &taken_test,
303 &stride_value,
304 &b1,
305 &b2)) {
306 LOG(FATAL) << "Failed precondition: CanGenerateRange()";
307 }
308 return taken_test;
309 }
310
CanGenerateLastValue(HInstruction * instruction)311 bool InductionVarRange::CanGenerateLastValue(HInstruction* instruction) {
312 const HBasicBlock* context = instruction->GetBlock();
313 bool is_last_value = true;
314 int64_t stride_value = 0;
315 bool needs_finite_test = false;
316 bool needs_taken_test = false;
317 return GenerateRangeOrLastValue(context,
318 instruction,
319 is_last_value,
320 nullptr,
321 nullptr,
322 nullptr,
323 nullptr,
324 nullptr, // nothing generated yet
325 &stride_value,
326 &needs_finite_test,
327 &needs_taken_test)
328 && !needs_finite_test && !needs_taken_test;
329 }
330
GenerateLastValue(HInstruction * instruction,HGraph * graph,HBasicBlock * block)331 HInstruction* InductionVarRange::GenerateLastValue(HInstruction* instruction,
332 HGraph* graph,
333 HBasicBlock* block) {
334 const HBasicBlock* context = instruction->GetBlock();
335 HInstruction* last_value = nullptr;
336 bool is_last_value = true;
337 int64_t stride_value = 0;
338 bool b1, b2; // unused
339 if (!GenerateRangeOrLastValue(context,
340 instruction,
341 is_last_value,
342 graph,
343 block,
344 &last_value,
345 &last_value,
346 nullptr,
347 &stride_value,
348 &b1,
349 &b2)) {
350 LOG(FATAL) << "Failed precondition: CanGenerateLastValue()";
351 }
352 return last_value;
353 }
354
Replace(HInstruction * instruction,HInstruction * fetch,HInstruction * replacement)355 void InductionVarRange::Replace(HInstruction* instruction,
356 HInstruction* fetch,
357 HInstruction* replacement) {
358 for (HLoopInformation* lp = instruction->GetBlock()->GetLoopInformation(); // closest enveloping loop
359 lp != nullptr;
360 lp = lp->GetPreHeader()->GetLoopInformation()) {
361 // Update instruction's information.
362 ReplaceInduction(induction_analysis_->LookupInfo(lp, instruction), fetch, replacement);
363 // Update loop's trip-count information.
364 ReplaceInduction(induction_analysis_->LookupInfo(lp, GetLoopControl(lp)), fetch, replacement);
365 }
366 }
367
IsFinite(const HLoopInformation * loop,int64_t * trip_count) const368 bool InductionVarRange::IsFinite(const HLoopInformation* loop, /*out*/ int64_t* trip_count) const {
369 bool is_constant_unused = false;
370 return CheckForFiniteAndConstantProps(loop, &is_constant_unused, trip_count);
371 }
372
HasKnownTripCount(const HLoopInformation * loop,int64_t * trip_count) const373 bool InductionVarRange::HasKnownTripCount(const HLoopInformation* loop,
374 /*out*/ int64_t* trip_count) const {
375 bool is_constant = false;
376 CheckForFiniteAndConstantProps(loop, &is_constant, trip_count);
377 return is_constant;
378 }
379
IsUnitStride(const HBasicBlock * context,HInstruction * instruction,HGraph * graph,HInstruction ** offset) const380 bool InductionVarRange::IsUnitStride(const HBasicBlock* context,
381 HInstruction* instruction,
382 HGraph* graph,
383 /*out*/ HInstruction** offset) const {
384 const HLoopInformation* loop = nullptr;
385 HInductionVarAnalysis::InductionInfo* info = nullptr;
386 HInductionVarAnalysis::InductionInfo* trip = nullptr;
387 if (HasInductionInfo(context, instruction, &loop, &info, &trip)) {
388 if (info->induction_class == HInductionVarAnalysis::kLinear &&
389 !HInductionVarAnalysis::IsNarrowingLinear(info)) {
390 int64_t stride_value = 0;
391 if (IsConstant(context, loop, info->op_a, kExact, &stride_value) && stride_value == 1) {
392 int64_t off_value = 0;
393 if (IsConstant(context, loop, info->op_b, kExact, &off_value)) {
394 *offset = graph->GetConstant(info->op_b->type, off_value);
395 } else if (info->op_b->operation == HInductionVarAnalysis::kFetch) {
396 *offset = info->op_b->fetch;
397 } else {
398 return false;
399 }
400 return true;
401 }
402 }
403 }
404 return false;
405 }
406
GenerateTripCount(const HLoopInformation * loop,HGraph * graph,HBasicBlock * block)407 HInstruction* InductionVarRange::GenerateTripCount(const HLoopInformation* loop,
408 HGraph* graph,
409 HBasicBlock* block) {
410 HInstruction* loop_control = GetLoopControl(loop);
411 HInductionVarAnalysis::InductionInfo *trip = induction_analysis_->LookupInfo(loop, loop_control);
412 if (trip != nullptr && !IsUnsafeTripCount(trip)) {
413 const HBasicBlock* context = loop_control->GetBlock();
414 HInstruction* taken_test = nullptr;
415 HInstruction* trip_expr = nullptr;
416 if (IsBodyTripCount(trip)) {
417 if (!GenerateCode(context,
418 loop,
419 trip->op_b,
420 /*trip=*/ nullptr,
421 graph,
422 block,
423 /*is_min=*/ false,
424 &taken_test)) {
425 return nullptr;
426 }
427 }
428 if (GenerateCode(context,
429 loop,
430 trip->op_a,
431 /*trip=*/ nullptr,
432 graph,
433 block,
434 /*is_min=*/ false,
435 &trip_expr)) {
436 if (taken_test != nullptr) {
437 HInstruction* zero = graph->GetConstant(trip->type, 0);
438 ArenaAllocator* allocator = graph->GetAllocator();
439 trip_expr = Insert(block, new (allocator) HSelect(taken_test, trip_expr, zero, kNoDexPc));
440 }
441 return trip_expr;
442 }
443 }
444 return nullptr;
445 }
446
447 //
448 // Private class methods.
449 //
450
CheckForFiniteAndConstantProps(const HLoopInformation * loop,bool * is_constant,int64_t * trip_count) const451 bool InductionVarRange::CheckForFiniteAndConstantProps(const HLoopInformation* loop,
452 /*out*/ bool* is_constant,
453 /*out*/ int64_t* trip_count) const {
454 HInstruction* loop_control = GetLoopControl(loop);
455 HInductionVarAnalysis::InductionInfo *trip = induction_analysis_->LookupInfo(loop, loop_control);
456 if (trip != nullptr && !IsUnsafeTripCount(trip)) {
457 const HBasicBlock* context = loop_control->GetBlock();
458 *is_constant = IsConstant(context, loop, trip->op_a, kExact, trip_count);
459 return true;
460 }
461 return false;
462 }
463
IsConstant(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,ConstantRequest request,int64_t * value) const464 bool InductionVarRange::IsConstant(const HBasicBlock* context,
465 const HLoopInformation* loop,
466 HInductionVarAnalysis::InductionInfo* info,
467 ConstantRequest request,
468 /*out*/ int64_t* value) const {
469 if (info != nullptr) {
470 // A direct 32-bit or 64-bit constant fetch. This immediately satisfies
471 // any of the three requests (kExact, kAtMost, and KAtLeast).
472 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
473 info->operation == HInductionVarAnalysis::kFetch) {
474 if (IsInt64AndGet(info->fetch, value)) {
475 return true;
476 }
477 }
478 // Try range analysis on the invariant, only accept a proper range
479 // to avoid arithmetic wrap-around anomalies.
480 Value min_val = GetVal(context, loop, info, /*trip=*/ nullptr, /*is_min=*/ true);
481 Value max_val = GetVal(context, loop, info, /*trip=*/ nullptr, /*is_min=*/ false);
482 if (IsConstantValue(min_val) &&
483 IsConstantValue(max_val) && min_val.b_constant <= max_val.b_constant) {
484 if ((request == kExact && min_val.b_constant == max_val.b_constant) || request == kAtMost) {
485 *value = max_val.b_constant;
486 return true;
487 } else if (request == kAtLeast) {
488 *value = min_val.b_constant;
489 return true;
490 }
491 }
492 }
493 return false;
494 }
495
HasInductionInfo(const HBasicBlock * context,HInstruction * instruction,const HLoopInformation ** loop,HInductionVarAnalysis::InductionInfo ** info,HInductionVarAnalysis::InductionInfo ** trip) const496 bool InductionVarRange::HasInductionInfo(
497 const HBasicBlock* context,
498 HInstruction* instruction,
499 /*out*/ const HLoopInformation** loop,
500 /*out*/ HInductionVarAnalysis::InductionInfo** info,
501 /*out*/ HInductionVarAnalysis::InductionInfo** trip) const {
502 DCHECK(context != nullptr);
503 HLoopInformation* lp = context->GetLoopInformation(); // closest enveloping loop
504 if (lp != nullptr) {
505 HInductionVarAnalysis::InductionInfo* i = induction_analysis_->LookupInfo(lp, instruction);
506 if (i != nullptr) {
507 *loop = lp;
508 *info = i;
509 *trip = induction_analysis_->LookupInfo(lp, GetLoopControl(lp));
510 return true;
511 }
512 }
513 return false;
514 }
515
IsWellBehavedTripCount(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * trip) const516 bool InductionVarRange::IsWellBehavedTripCount(const HBasicBlock* context,
517 const HLoopInformation* loop,
518 HInductionVarAnalysis::InductionInfo* trip) const {
519 if (trip != nullptr) {
520 // Both bounds that define a trip-count are well-behaved if they either are not defined
521 // in any loop, or are contained in a proper interval. This allows finding the min/max
522 // of an expression by chasing outward.
523 InductionVarRange range(induction_analysis_);
524 HInductionVarAnalysis::InductionInfo* lower = trip->op_b->op_a;
525 HInductionVarAnalysis::InductionInfo* upper = trip->op_b->op_b;
526 int64_t not_used = 0;
527 return
528 (!HasFetchInLoop(lower) || range.IsConstant(context, loop, lower, kAtLeast, ¬_used)) &&
529 (!HasFetchInLoop(upper) || range.IsConstant(context, loop, upper, kAtLeast, ¬_used));
530 }
531 return true;
532 }
533
HasFetchInLoop(HInductionVarAnalysis::InductionInfo * info) const534 bool InductionVarRange::HasFetchInLoop(HInductionVarAnalysis::InductionInfo* info) const {
535 if (info != nullptr) {
536 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
537 info->operation == HInductionVarAnalysis::kFetch) {
538 return info->fetch->GetBlock()->GetLoopInformation() != nullptr;
539 }
540 return HasFetchInLoop(info->op_a) || HasFetchInLoop(info->op_b);
541 }
542 return false;
543 }
544
NeedsTripCount(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,int64_t * stride_value) const545 bool InductionVarRange::NeedsTripCount(const HBasicBlock* context,
546 const HLoopInformation* loop,
547 HInductionVarAnalysis::InductionInfo* info,
548 int64_t* stride_value) const {
549 if (info != nullptr) {
550 if (info->induction_class == HInductionVarAnalysis::kLinear) {
551 return IsConstant(context, loop, info->op_a, kExact, stride_value);
552 } else if (info->induction_class == HInductionVarAnalysis::kPolynomial) {
553 return NeedsTripCount(context, loop, info->op_a, stride_value);
554 } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) {
555 return NeedsTripCount(context, loop, info->op_b, stride_value);
556 }
557 }
558 return false;
559 }
560
IsBodyTripCount(HInductionVarAnalysis::InductionInfo * trip) const561 bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
562 if (trip != nullptr) {
563 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
564 return trip->operation == HInductionVarAnalysis::kTripCountInBody ||
565 trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe;
566 }
567 }
568 return false;
569 }
570
IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo * trip) const571 bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const {
572 if (trip != nullptr) {
573 if (trip->induction_class == HInductionVarAnalysis::kInvariant) {
574 return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe ||
575 trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe;
576 }
577 }
578 return false;
579 }
580
GetLinear(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const581 InductionVarRange::Value InductionVarRange::GetLinear(const HBasicBlock* context,
582 const HLoopInformation* loop,
583 HInductionVarAnalysis::InductionInfo* info,
584 HInductionVarAnalysis::InductionInfo* trip,
585 bool is_min) const {
586 DCHECK(info != nullptr);
587 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kLinear);
588 // Detect common situation where an offset inside the trip-count cancels out during range
589 // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding
590 // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information
591 // with intermediate results that only incorporate single instructions.
592 if (trip != nullptr) {
593 HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a;
594 if (trip_expr->type == info->type && trip_expr->operation == HInductionVarAnalysis::kSub) {
595 int64_t stride_value = 0;
596 if (IsConstant(context, loop, info->op_a, kExact, &stride_value)) {
597 if (!is_min && stride_value == 1) {
598 // Test original trip's negative operand (trip_expr->op_b) against offset of induction.
599 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) {
600 // Analyze cancelled trip with just the positive operand (trip_expr->op_a).
601 HInductionVarAnalysis::InductionInfo cancelled_trip(
602 trip->induction_class,
603 trip->operation,
604 trip_expr->op_a,
605 trip->op_b,
606 nullptr,
607 trip->type);
608 return GetVal(context, loop, &cancelled_trip, trip, is_min);
609 }
610 } else if (is_min && stride_value == -1) {
611 // Test original trip's positive operand (trip_expr->op_a) against offset of induction.
612 if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) {
613 // Analyze cancelled trip with just the negative operand (trip_expr->op_b).
614 HInductionVarAnalysis::InductionInfo neg(
615 HInductionVarAnalysis::kInvariant,
616 HInductionVarAnalysis::kNeg,
617 nullptr,
618 trip_expr->op_b,
619 nullptr,
620 trip->type);
621 HInductionVarAnalysis::InductionInfo cancelled_trip(
622 trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type);
623 return SubValue(Value(0), GetVal(context, loop, &cancelled_trip, trip, !is_min));
624 }
625 }
626 }
627 }
628 }
629 // General rule of linear induction a * i + b, for normalized 0 <= i < TC.
630 return AddValue(GetMul(context, loop, info->op_a, trip, trip, is_min),
631 GetVal(context, loop, info->op_b, trip, is_min));
632 }
633
GetPolynomial(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const634 InductionVarRange::Value InductionVarRange::GetPolynomial(
635 const HBasicBlock* context,
636 const HLoopInformation* loop,
637 HInductionVarAnalysis::InductionInfo* info,
638 HInductionVarAnalysis::InductionInfo* trip,
639 bool is_min) const {
640 DCHECK(info != nullptr);
641 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
642 int64_t a = 0;
643 int64_t b = 0;
644 if (IsConstant(context, loop, info->op_a->op_a, kExact, &a) &&
645 CanLongValueFitIntoInt(a) &&
646 a >= 0 &&
647 IsConstant(context, loop, info->op_a->op_b, kExact, &b) &&
648 CanLongValueFitIntoInt(b) &&
649 b >= 0) {
650 // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for
651 // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
652 // Do not simply return `c` as minimum because the trip count may be non-zero
653 // if the `context` is after the `loop` (and therefore ignoring `is_min`).
654 Value c = GetVal(context, loop, info->op_b, trip, is_min);
655 Value m = GetVal(context, loop, trip, trip, is_min);
656 Value t = DivValue(MulValue(m, SubValue(m, Value(1))), Value(2));
657 Value x = MulValue(Value(a), t);
658 Value y = MulValue(Value(b), m);
659 return AddValue(AddValue(x, y), c);
660 }
661 return Value();
662 }
663
GetGeometric(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const664 InductionVarRange::Value InductionVarRange::GetGeometric(const HBasicBlock* context,
665 const HLoopInformation* loop,
666 HInductionVarAnalysis::InductionInfo* info,
667 HInductionVarAnalysis::InductionInfo* trip,
668 bool is_min) const {
669 DCHECK(info != nullptr);
670 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
671 int64_t a = 0;
672 int64_t f = 0;
673 if (IsConstant(context, loop, info->op_a, kExact, &a) &&
674 CanLongValueFitIntoInt(a) &&
675 IsInt64AndGet(info->fetch, &f) && f >= 1) {
676 // Conservative bounds on a * f^-i + b with f >= 1 can be computed without
677 // trip count. Other forms would require a much more elaborate evaluation.
678 const bool is_min_a = a >= 0 ? is_min : !is_min;
679 if (info->operation == HInductionVarAnalysis::kDiv) {
680 Value b = GetVal(context, loop, info->op_b, trip, is_min);
681 return is_min_a ? b : AddValue(Value(a), b);
682 }
683 }
684 return Value();
685 }
686
GetFetch(const HBasicBlock * context,const HLoopInformation * loop,HInstruction * instruction,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const687 InductionVarRange::Value InductionVarRange::GetFetch(const HBasicBlock* context,
688 const HLoopInformation* loop,
689 HInstruction* instruction,
690 HInductionVarAnalysis::InductionInfo* trip,
691 bool is_min) const {
692 // Special case when chasing constants: single instruction that denotes trip count in the
693 // loop-body is minimal 1 and maximal, with safe trip-count, max int,
694 if (chase_hint_ == nullptr &&
695 IsContextInBody(context, loop) &&
696 trip != nullptr &&
697 instruction == trip->op_a->fetch) {
698 if (is_min) {
699 return Value(1);
700 } else if (!instruction->IsConstant() && !IsUnsafeTripCount(trip)) {
701 return Value(std::numeric_limits<int32_t>::max());
702 }
703 }
704 // Unless at a constant or hint, chase the instruction a bit deeper into the HIR tree, so that
705 // it becomes more likely range analysis will compare the same instructions as terminal nodes.
706 int64_t value;
707 if (IsInt64AndGet(instruction, &value) && CanLongValueFitIntoInt(value)) {
708 // Proper constant reveals best information.
709 return Value(static_cast<int32_t>(value));
710 } else if (instruction == chase_hint_) {
711 // At hint, fetch is represented by itself.
712 return Value(instruction, 1, 0);
713 } else if (instruction->IsAdd()) {
714 // Incorporate suitable constants in the chased value.
715 if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
716 return AddValue(Value(static_cast<int32_t>(value)),
717 GetFetch(context, loop, instruction->InputAt(1), trip, is_min));
718 } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
719 return AddValue(GetFetch(context, loop, instruction->InputAt(0), trip, is_min),
720 Value(static_cast<int32_t>(value)));
721 }
722 } else if (instruction->IsSub()) {
723 // Incorporate suitable constants in the chased value.
724 if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) {
725 return SubValue(Value(static_cast<int32_t>(value)),
726 GetFetch(context, loop, instruction->InputAt(1), trip, !is_min));
727 } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) {
728 return SubValue(GetFetch(context, loop, instruction->InputAt(0), trip, is_min),
729 Value(static_cast<int32_t>(value)));
730 }
731 } else if (instruction->IsArrayLength()) {
732 // Exploit length properties when chasing constants or chase into a new array declaration.
733 if (chase_hint_ == nullptr) {
734 return is_min ? Value(0) : Value(std::numeric_limits<int32_t>::max());
735 } else if (instruction->InputAt(0)->IsNewArray()) {
736 return GetFetch(
737 context, loop, instruction->InputAt(0)->AsNewArray()->GetLength(), trip, is_min);
738 }
739 } else if (instruction->IsTypeConversion()) {
740 // Since analysis is 32-bit (or narrower), chase beyond widening along the path.
741 // For example, this discovers the length in: for (long i = 0; i < a.length; i++);
742 if (instruction->AsTypeConversion()->GetInputType() == DataType::Type::kInt32 &&
743 instruction->AsTypeConversion()->GetResultType() == DataType::Type::kInt64) {
744 return GetFetch(context, loop, instruction->InputAt(0), trip, is_min);
745 }
746 }
747 // Chase an invariant fetch that is defined by another loop if the trip-count used
748 // so far is well-behaved in both bounds and the next trip-count is safe.
749 // Example:
750 // for (int i = 0; i <= 100; i++) // safe
751 // for (int j = 0; j <= i; j++) // well-behaved
752 // j is in range [0, i ] (if i is chase hint)
753 // or in range [0, 100] (otherwise)
754 // Example:
755 // for (i = 0; i < 100; ++i)
756 // <some-code>
757 // for (j = 0; j < 10; ++j)
758 // sum += i; // The `i` is a "fetch" of a loop Phi from the previous loop.
759 const HLoopInformation* next_loop = nullptr;
760 HInductionVarAnalysis::InductionInfo* next_info = nullptr;
761 HInductionVarAnalysis::InductionInfo* next_trip = nullptr;
762 if (HasInductionInfo(instruction->GetBlock(), instruction, &next_loop, &next_info, &next_trip) &&
763 IsWellBehavedTripCount(context, next_loop, trip) &&
764 !IsUnsafeTripCount(next_trip)) {
765 return GetVal(context, next_loop, next_info, next_trip, is_min);
766 }
767 // Fetch is represented by itself.
768 return Value(instruction, 1, 0);
769 }
770
GetVal(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const771 InductionVarRange::Value InductionVarRange::GetVal(const HBasicBlock* context,
772 const HLoopInformation* loop,
773 HInductionVarAnalysis::InductionInfo* info,
774 HInductionVarAnalysis::InductionInfo* trip,
775 bool is_min) const {
776 if (info != nullptr) {
777 switch (info->induction_class) {
778 case HInductionVarAnalysis::kInvariant:
779 // Invariants.
780 switch (info->operation) {
781 case HInductionVarAnalysis::kAdd:
782 return AddValue(GetVal(context, loop, info->op_a, trip, is_min),
783 GetVal(context, loop, info->op_b, trip, is_min));
784 case HInductionVarAnalysis::kSub: // second reversed!
785 return SubValue(GetVal(context, loop, info->op_a, trip, is_min),
786 GetVal(context, loop, info->op_b, trip, !is_min));
787 case HInductionVarAnalysis::kNeg: // second reversed!
788 return SubValue(Value(0),
789 GetVal(context, loop, info->op_b, trip, !is_min));
790 case HInductionVarAnalysis::kMul:
791 return GetMul(context, loop, info->op_a, info->op_b, trip, is_min);
792 case HInductionVarAnalysis::kDiv:
793 return GetDiv(context, loop, info->op_a, info->op_b, trip, is_min);
794 case HInductionVarAnalysis::kRem:
795 return GetRem(context, loop, info->op_a, info->op_b);
796 case HInductionVarAnalysis::kXor:
797 return GetXor(context, loop, info->op_a, info->op_b);
798 case HInductionVarAnalysis::kFetch:
799 return GetFetch(context, loop, info->fetch, trip, is_min);
800 case HInductionVarAnalysis::kTripCountInLoop:
801 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
802 if (UseFullTripCount(context, loop, is_min)) {
803 // Return the full trip count (do not subtract 1 as we do in loop body).
804 return GetVal(context, loop, info->op_a, trip, /*is_min=*/ false);
805 }
806 FALLTHROUGH_INTENDED;
807 case HInductionVarAnalysis::kTripCountInBody:
808 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
809 if (is_min) {
810 return Value(0);
811 } else if (IsContextInBody(context, loop)) {
812 return SubValue(GetVal(context, loop, info->op_a, trip, is_min), Value(1));
813 }
814 break;
815 default:
816 break;
817 }
818 break;
819 case HInductionVarAnalysis::kLinear:
820 return CorrectForType(GetLinear(context, loop, info, trip, is_min), info->type);
821 case HInductionVarAnalysis::kPolynomial:
822 return GetPolynomial(context, loop, info, trip, is_min);
823 case HInductionVarAnalysis::kGeometric:
824 return GetGeometric(context, loop, info, trip, is_min);
825 case HInductionVarAnalysis::kWrapAround:
826 case HInductionVarAnalysis::kPeriodic:
827 return MergeVal(GetVal(context, loop, info->op_a, trip, is_min),
828 GetVal(context, loop, info->op_b, trip, is_min),
829 is_min);
830 }
831 }
832 return Value();
833 }
834
GetMul(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const835 InductionVarRange::Value InductionVarRange::GetMul(const HBasicBlock* context,
836 const HLoopInformation* loop,
837 HInductionVarAnalysis::InductionInfo* info1,
838 HInductionVarAnalysis::InductionInfo* info2,
839 HInductionVarAnalysis::InductionInfo* trip,
840 bool is_min) const {
841 // Constant times range.
842 int64_t value = 0;
843 if (IsConstant(context, loop, info1, kExact, &value)) {
844 return MulRangeAndConstant(context, loop, value, info2, trip, is_min);
845 } else if (IsConstant(context, loop, info2, kExact, &value)) {
846 return MulRangeAndConstant(context, loop, value, info1, trip, is_min);
847 }
848 // Interval ranges.
849 Value v1_min = GetVal(context, loop, info1, trip, /*is_min=*/ true);
850 Value v1_max = GetVal(context, loop, info1, trip, /*is_min=*/ false);
851 Value v2_min = GetVal(context, loop, info2, trip, /*is_min=*/ true);
852 Value v2_max = GetVal(context, loop, info2, trip, /*is_min=*/ false);
853 // Positive range vs. positive or negative range.
854 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
855 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
856 return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max);
857 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
858 return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max);
859 }
860 }
861 // Negative range vs. positive or negative range.
862 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
863 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
864 return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min);
865 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
866 return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min);
867 }
868 }
869 return Value();
870 }
871
GetDiv(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const872 InductionVarRange::Value InductionVarRange::GetDiv(const HBasicBlock* context,
873 const HLoopInformation* loop,
874 HInductionVarAnalysis::InductionInfo* info1,
875 HInductionVarAnalysis::InductionInfo* info2,
876 HInductionVarAnalysis::InductionInfo* trip,
877 bool is_min) const {
878 // Range divided by constant.
879 int64_t value = 0;
880 if (IsConstant(context, loop, info2, kExact, &value)) {
881 return DivRangeAndConstant(context, loop, value, info1, trip, is_min);
882 }
883 // Interval ranges.
884 Value v1_min = GetVal(context, loop, info1, trip, /*is_min=*/ true);
885 Value v1_max = GetVal(context, loop, info1, trip, /*is_min=*/ false);
886 Value v2_min = GetVal(context, loop, info2, trip, /*is_min=*/ true);
887 Value v2_max = GetVal(context, loop, info2, trip, /*is_min=*/ false);
888 // Positive range vs. positive or negative range.
889 if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) {
890 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
891 return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min);
892 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
893 return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min);
894 }
895 }
896 // Negative range vs. positive or negative range.
897 if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) {
898 if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) {
899 return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max);
900 } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) {
901 return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max);
902 }
903 }
904 return Value();
905 }
906
GetRem(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2) const907 InductionVarRange::Value InductionVarRange::GetRem(
908 const HBasicBlock* context,
909 const HLoopInformation* loop,
910 HInductionVarAnalysis::InductionInfo* info1,
911 HInductionVarAnalysis::InductionInfo* info2) const {
912 int64_t v1 = 0;
913 int64_t v2 = 0;
914 // Only accept exact values.
915 if (IsConstant(context, loop, info1, kExact, &v1) &&
916 IsConstant(context, loop, info2, kExact, &v2) &&
917 v2 != 0) {
918 int64_t value = v1 % v2;
919 if (CanLongValueFitIntoInt(value)) {
920 return Value(static_cast<int32_t>(value));
921 }
922 }
923 return Value();
924 }
925
GetXor(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info1,HInductionVarAnalysis::InductionInfo * info2) const926 InductionVarRange::Value InductionVarRange::GetXor(
927 const HBasicBlock* context,
928 const HLoopInformation* loop,
929 HInductionVarAnalysis::InductionInfo* info1,
930 HInductionVarAnalysis::InductionInfo* info2) const {
931 int64_t v1 = 0;
932 int64_t v2 = 0;
933 // Only accept exact values.
934 if (IsConstant(context, loop, info1, kExact, &v1) &&
935 IsConstant(context, loop, info2, kExact, &v2)) {
936 int64_t value = v1 ^ v2;
937 if (CanLongValueFitIntoInt(value)) {
938 return Value(static_cast<int32_t>(value));
939 }
940 }
941 return Value();
942 }
943
MulRangeAndConstant(const HBasicBlock * context,const HLoopInformation * loop,int64_t value,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const944 InductionVarRange::Value InductionVarRange::MulRangeAndConstant(
945 const HBasicBlock* context,
946 const HLoopInformation* loop,
947 int64_t value,
948 HInductionVarAnalysis::InductionInfo* info,
949 HInductionVarAnalysis::InductionInfo* trip,
950 bool is_min) const {
951 if (CanLongValueFitIntoInt(value)) {
952 Value c(static_cast<int32_t>(value));
953 return MulValue(GetVal(context, loop, info, trip, is_min == value >= 0), c);
954 }
955 return Value();
956 }
957
DivRangeAndConstant(const HBasicBlock * context,const HLoopInformation * loop,int64_t value,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,bool is_min) const958 InductionVarRange::Value InductionVarRange::DivRangeAndConstant(
959 const HBasicBlock* context,
960 const HLoopInformation* loop,
961 int64_t value,
962 HInductionVarAnalysis::InductionInfo* info,
963 HInductionVarAnalysis::InductionInfo* trip,
964 bool is_min) const {
965 if (CanLongValueFitIntoInt(value)) {
966 Value c(static_cast<int32_t>(value));
967 return DivValue(GetVal(context, loop, info, trip, is_min == value >= 0), c);
968 }
969 return Value();
970 }
971
AddValue(Value v1,Value v2) const972 InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const {
973 if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) {
974 int32_t b = v1.b_constant + v2.b_constant;
975 if (v1.a_constant == 0) {
976 return Value(v2.instruction, v2.a_constant, b);
977 } else if (v2.a_constant == 0) {
978 return Value(v1.instruction, v1.a_constant, b);
979 } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) {
980 return Value(v1.instruction, v1.a_constant + v2.a_constant, b);
981 }
982 }
983 return Value();
984 }
985
SubValue(Value v1,Value v2) const986 InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const {
987 if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) {
988 int32_t b = v1.b_constant - v2.b_constant;
989 if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) {
990 return Value(v2.instruction, -v2.a_constant, b);
991 } else if (v2.a_constant == 0) {
992 return Value(v1.instruction, v1.a_constant, b);
993 } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) {
994 return Value(v1.instruction, v1.a_constant - v2.a_constant, b);
995 }
996 }
997 return Value();
998 }
999
MulValue(Value v1,Value v2) const1000 InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const {
1001 if (v1.is_known && v2.is_known) {
1002 if (v1.a_constant == 0) {
1003 if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
1004 return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant);
1005 }
1006 } else if (v2.a_constant == 0) {
1007 if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) {
1008 return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant);
1009 }
1010 }
1011 }
1012 return Value();
1013 }
1014
DivValue(Value v1,Value v2) const1015 InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const {
1016 if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) {
1017 if (IsSafeDiv(v1.b_constant, v2.b_constant)) {
1018 return Value(v1.b_constant / v2.b_constant);
1019 }
1020 }
1021 return Value();
1022 }
1023
MergeVal(Value v1,Value v2,bool is_min) const1024 InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const {
1025 if (v1.is_known && v2.is_known) {
1026 if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) {
1027 return Value(v1.instruction, v1.a_constant,
1028 is_min ? std::min(v1.b_constant, v2.b_constant)
1029 : std::max(v1.b_constant, v2.b_constant));
1030 }
1031 }
1032 return Value();
1033 }
1034
GenerateRangeOrLastValue(const HBasicBlock * context,HInstruction * instruction,bool is_last_value,HGraph * graph,HBasicBlock * block,HInstruction ** lower,HInstruction ** upper,HInstruction ** taken_test,int64_t * stride_value,bool * needs_finite_test,bool * needs_taken_test) const1035 bool InductionVarRange::GenerateRangeOrLastValue(const HBasicBlock* context,
1036 HInstruction* instruction,
1037 bool is_last_value,
1038 HGraph* graph,
1039 HBasicBlock* block,
1040 /*out*/HInstruction** lower,
1041 /*out*/HInstruction** upper,
1042 /*out*/HInstruction** taken_test,
1043 /*out*/int64_t* stride_value,
1044 /*out*/bool* needs_finite_test,
1045 /*out*/bool* needs_taken_test) const {
1046 const HLoopInformation* loop = nullptr;
1047 HInductionVarAnalysis::InductionInfo* info = nullptr;
1048 HInductionVarAnalysis::InductionInfo* trip = nullptr;
1049 if (!HasInductionInfo(context, instruction, &loop, &info, &trip) || trip == nullptr) {
1050 return false; // codegen needs all information, including tripcount
1051 }
1052 // Determine what tests are needed. A finite test is needed if the evaluation code uses the
1053 // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot"
1054 // the computed range). A taken test is needed for any unknown trip-count, even if evaluation
1055 // code does not use the trip-count explicitly (since there could be an implicit relation
1056 // between e.g. an invariant subscript and a not-taken condition).
1057 *stride_value = 0;
1058 *needs_finite_test = NeedsTripCount(context, loop, info, stride_value) && IsUnsafeTripCount(trip);
1059 *needs_taken_test = IsBodyTripCount(trip);
1060 // Handle last value request.
1061 if (is_last_value) {
1062 DCHECK(!IsContextInBody(context, loop));
1063 switch (info->induction_class) {
1064 case HInductionVarAnalysis::kLinear:
1065 if (*stride_value > 0) {
1066 lower = nullptr;
1067 } else {
1068 upper = nullptr;
1069 }
1070 break;
1071 case HInductionVarAnalysis::kPolynomial:
1072 return GenerateLastValuePolynomial(context, loop, info, trip, graph, block, lower);
1073 case HInductionVarAnalysis::kGeometric:
1074 return GenerateLastValueGeometric(context, loop, info, trip, graph, block, lower);
1075 case HInductionVarAnalysis::kWrapAround:
1076 return GenerateLastValueWrapAround(context, loop, info, trip, graph, block, lower);
1077 case HInductionVarAnalysis::kPeriodic:
1078 return GenerateLastValuePeriodic(
1079 context, loop, info, trip, graph, block, lower, needs_taken_test);
1080 default:
1081 return false;
1082 }
1083 }
1084 // Code generation for taken test: generate the code when requested or otherwise analyze
1085 // if code generation is feasible when taken test is needed.
1086 if (taken_test != nullptr) {
1087 return GenerateCode(context,
1088 loop,
1089 trip->op_b,
1090 /*trip=*/ nullptr,
1091 graph,
1092 block,
1093 /*is_min=*/ false,
1094 taken_test);
1095 } else if (*needs_taken_test) {
1096 if (!GenerateCode(context,
1097 loop,
1098 trip->op_b,
1099 /*trip=*/ nullptr,
1100 /*graph=*/ nullptr,
1101 /*block=*/ nullptr,
1102 /*is_min=*/ false,
1103 /*result=*/ nullptr)) {
1104 return false;
1105 }
1106 }
1107 // Code generation for lower and upper.
1108 return
1109 // Success on lower if invariant (not set), or code can be generated.
1110 ((info->induction_class == HInductionVarAnalysis::kInvariant) ||
1111 GenerateCode(context, loop, info, trip, graph, block, /*is_min=*/ true, lower)) &&
1112 // And success on upper.
1113 GenerateCode(context, loop, info, trip, graph, block, /*is_min=*/ false, upper);
1114 }
1115
GenerateLastValuePolynomial(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1116 bool InductionVarRange::GenerateLastValuePolynomial(const HBasicBlock* context,
1117 const HLoopInformation* loop,
1118 HInductionVarAnalysis::InductionInfo* info,
1119 HInductionVarAnalysis::InductionInfo* trip,
1120 HGraph* graph,
1121 HBasicBlock* block,
1122 /*out*/HInstruction** result) const {
1123 DCHECK(info != nullptr);
1124 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial);
1125 // Detect known coefficients and trip count (always taken).
1126 int64_t a = 0;
1127 int64_t b = 0;
1128 int64_t m = 0;
1129 if (IsConstant(context, loop, info->op_a->op_a, kExact, &a) &&
1130 IsConstant(context, loop, info->op_a->op_b, kExact, &b) &&
1131 IsConstant(context, loop, trip->op_a, kExact, &m) &&
1132 m >= 1) {
1133 // Evaluate bounds on sum_i=0^m-1(a * i + b) + c for known
1134 // maximum index value m as a * (m * (m-1)) / 2 + b * m + c.
1135 HInstruction* c = nullptr;
1136 if (GenerateCode(context,
1137 loop,
1138 info->op_b,
1139 /*trip=*/ nullptr,
1140 graph,
1141 block,
1142 /*is_min=*/ false,
1143 graph ? &c : nullptr)) {
1144 if (graph != nullptr) {
1145 DataType::Type type = info->type;
1146 int64_t sum = a * ((m * (m - 1)) / 2) + b * m;
1147 if (type != DataType::Type::kInt64) {
1148 sum = static_cast<int32_t>(sum); // okay to truncate
1149 }
1150 *result =
1151 Insert(block, new (graph->GetAllocator()) HAdd(type, graph->GetConstant(type, sum), c));
1152 }
1153 return true;
1154 }
1155 }
1156 return false;
1157 }
1158
GenerateLastValueGeometric(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1159 bool InductionVarRange::GenerateLastValueGeometric(const HBasicBlock* context,
1160 const HLoopInformation* loop,
1161 HInductionVarAnalysis::InductionInfo* info,
1162 HInductionVarAnalysis::InductionInfo* trip,
1163 HGraph* graph,
1164 HBasicBlock* block,
1165 /*out*/HInstruction** result) const {
1166 DCHECK(info != nullptr);
1167 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric);
1168 // Detect known base and trip count (always taken).
1169 int64_t f = 0;
1170 int64_t m = 0;
1171 if (IsInt64AndGet(info->fetch, &f) &&
1172 f >= 1 &&
1173 IsConstant(context, loop, trip->op_a, kExact, &m) &&
1174 m >= 1) {
1175 HInstruction* opa = nullptr;
1176 HInstruction* opb = nullptr;
1177 if (GenerateCode(
1178 context, loop, info->op_a, /*trip=*/ nullptr, graph, block, /*is_min=*/ false, &opa) &&
1179 GenerateCode(
1180 context, loop, info->op_b, /*trip=*/ nullptr, graph, block, /*is_min=*/ false, &opb)) {
1181 if (graph != nullptr) {
1182 DataType::Type type = info->type;
1183 // Compute f ^ m for known maximum index value m.
1184 bool overflow = false;
1185 int64_t fpow = IntPow(f, m, &overflow);
1186 if (info->operation == HInductionVarAnalysis::kDiv) {
1187 // For division, any overflow truncates to zero.
1188 if (overflow || (type != DataType::Type::kInt64 && !CanLongValueFitIntoInt(fpow))) {
1189 fpow = 0;
1190 }
1191 } else if (type != DataType::Type::kInt64) {
1192 // For multiplication, okay to truncate to required precision.
1193 DCHECK(info->operation == HInductionVarAnalysis::kMul);
1194 fpow = static_cast<int32_t>(fpow);
1195 }
1196 // Generate code.
1197 if (fpow == 0) {
1198 // Special case: repeated mul/div always yields zero.
1199 *result = graph->GetConstant(type, 0);
1200 } else {
1201 // Last value: a * f ^ m + b or a * f ^ -m + b.
1202 HInstruction* e = nullptr;
1203 ArenaAllocator* allocator = graph->GetAllocator();
1204 if (info->operation == HInductionVarAnalysis::kMul) {
1205 e = new (allocator) HMul(type, opa, graph->GetConstant(type, fpow));
1206 } else {
1207 e = new (allocator) HDiv(type, opa, graph->GetConstant(type, fpow), kNoDexPc);
1208 }
1209 *result = Insert(block, new (allocator) HAdd(type, Insert(block, e), opb));
1210 }
1211 }
1212 return true;
1213 }
1214 }
1215 return false;
1216 }
1217
GenerateLastValueWrapAround(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result) const1218 bool InductionVarRange::GenerateLastValueWrapAround(const HBasicBlock* context,
1219 const HLoopInformation* loop,
1220 HInductionVarAnalysis::InductionInfo* info,
1221 HInductionVarAnalysis::InductionInfo* trip,
1222 HGraph* graph,
1223 HBasicBlock* block,
1224 /*out*/HInstruction** result) const {
1225 DCHECK(info != nullptr);
1226 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kWrapAround);
1227 // Count depth.
1228 int32_t depth = 0;
1229 for (; info->induction_class == HInductionVarAnalysis::kWrapAround;
1230 info = info->op_b, ++depth) {}
1231 // Handle wrap(x, wrap(.., y)) if trip count reaches an invariant at end.
1232 // TODO: generalize, but be careful to adjust the terminal.
1233 int64_t m = 0;
1234 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
1235 IsConstant(context, loop, trip->op_a, kExact, &m) &&
1236 m >= depth) {
1237 return GenerateCode(
1238 context, loop, info, /*trip=*/ nullptr, graph, block, /*is_min=*/ false, result);
1239 }
1240 return false;
1241 }
1242
GenerateLastValuePeriodic(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,HInstruction ** result,bool * needs_taken_test) const1243 bool InductionVarRange::GenerateLastValuePeriodic(const HBasicBlock* context,
1244 const HLoopInformation* loop,
1245 HInductionVarAnalysis::InductionInfo* info,
1246 HInductionVarAnalysis::InductionInfo* trip,
1247 HGraph* graph,
1248 HBasicBlock* block,
1249 /*out*/HInstruction** result,
1250 /*out*/bool* needs_taken_test) const {
1251 DCHECK(info != nullptr);
1252 DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPeriodic);
1253 // Count period and detect all-invariants.
1254 int64_t period = 1;
1255 bool all_invariants = true;
1256 HInductionVarAnalysis::InductionInfo* p = info;
1257 for (; p->induction_class == HInductionVarAnalysis::kPeriodic; p = p->op_b, ++period) {
1258 DCHECK_EQ(p->op_a->induction_class, HInductionVarAnalysis::kInvariant);
1259 if (p->op_a->operation != HInductionVarAnalysis::kFetch) {
1260 all_invariants = false;
1261 }
1262 }
1263 DCHECK_EQ(p->induction_class, HInductionVarAnalysis::kInvariant);
1264 if (p->operation != HInductionVarAnalysis::kFetch) {
1265 all_invariants = false;
1266 }
1267 // Don't rely on FP arithmetic to be precise, unless the full period
1268 // consist of pre-computed expressions only.
1269 if (info->type == DataType::Type::kFloat32 || info->type == DataType::Type::kFloat64) {
1270 if (!all_invariants) {
1271 return false;
1272 }
1273 }
1274 // Handle any periodic(x, periodic(.., y)) for known maximum index value m.
1275 int64_t m = 0;
1276 if (IsConstant(context, loop, trip->op_a, kExact, &m) && m >= 1) {
1277 int64_t li = m % period;
1278 for (int64_t i = 0; i < li; info = info->op_b, i++) {}
1279 if (info->induction_class == HInductionVarAnalysis::kPeriodic) {
1280 info = info->op_a;
1281 }
1282 return GenerateCode(
1283 context, loop, info, /*trip=*/ nullptr, graph, block, /*is_min=*/ false, result);
1284 }
1285 // Handle periodic(x, y) using even/odd-select on trip count. Enter trip count expression
1286 // directly to obtain the maximum index value t even if taken test is needed.
1287 HInstruction* x = nullptr;
1288 HInstruction* y = nullptr;
1289 HInstruction* t = nullptr;
1290 if (period == 2 &&
1291 GenerateCode(context,
1292 loop,
1293 info->op_a,
1294 /*trip=*/ nullptr,
1295 graph,
1296 block,
1297 /*is_min=*/ false,
1298 graph ? &x : nullptr) &&
1299 GenerateCode(context,
1300 loop,
1301 info->op_b,
1302 /*trip=*/ nullptr,
1303 graph,
1304 block,
1305 /*is_min=*/ false,
1306 graph ? &y : nullptr) &&
1307 GenerateCode(context,
1308 loop,
1309 trip->op_a,
1310 /*trip=*/ nullptr,
1311 graph,
1312 block,
1313 /*is_min=*/ false,
1314 graph ? &t : nullptr)) {
1315 // During actual code generation (graph != nullptr), generate is_even ? x : y.
1316 if (graph != nullptr) {
1317 DataType::Type type = trip->type;
1318 ArenaAllocator* allocator = graph->GetAllocator();
1319 HInstruction* msk =
1320 Insert(block, new (allocator) HAnd(type, t, graph->GetConstant(type, 1)));
1321 HInstruction* is_even =
1322 Insert(block, new (allocator) HEqual(msk, graph->GetConstant(type, 0), kNoDexPc));
1323 *result = Insert(block, new (graph->GetAllocator()) HSelect(is_even, x, y, kNoDexPc));
1324 }
1325 // Guard select with taken test if needed.
1326 if (*needs_taken_test) {
1327 HInstruction* is_taken = nullptr;
1328 if (GenerateCode(context,
1329 loop,
1330 trip->op_b,
1331 /*trip=*/ nullptr,
1332 graph,
1333 block,
1334 /*is_min=*/ false,
1335 graph ? &is_taken : nullptr)) {
1336 if (graph != nullptr) {
1337 ArenaAllocator* allocator = graph->GetAllocator();
1338 *result = Insert(block, new (allocator) HSelect(is_taken, *result, x, kNoDexPc));
1339 }
1340 *needs_taken_test = false; // taken care of
1341 } else {
1342 return false;
1343 }
1344 }
1345 return true;
1346 }
1347 return false;
1348 }
1349
GenerateCode(const HBasicBlock * context,const HLoopInformation * loop,HInductionVarAnalysis::InductionInfo * info,HInductionVarAnalysis::InductionInfo * trip,HGraph * graph,HBasicBlock * block,bool is_min,HInstruction ** result) const1350 bool InductionVarRange::GenerateCode(const HBasicBlock* context,
1351 const HLoopInformation* loop,
1352 HInductionVarAnalysis::InductionInfo* info,
1353 HInductionVarAnalysis::InductionInfo* trip,
1354 HGraph* graph, // when set, code is generated
1355 HBasicBlock* block,
1356 bool is_min,
1357 /*out*/HInstruction** result) const {
1358 if (info != nullptr) {
1359 // If during codegen, the result is not needed (nullptr), simply return success.
1360 if (graph != nullptr && result == nullptr) {
1361 return true;
1362 }
1363 // Handle current operation.
1364 DataType::Type type = info->type;
1365 HInstruction* opa = nullptr;
1366 HInstruction* opb = nullptr;
1367 switch (info->induction_class) {
1368 case HInductionVarAnalysis::kInvariant:
1369 // Invariants (note that since invariants only have other invariants as
1370 // sub expressions, viz. no induction, there is no need to adjust is_min).
1371 switch (info->operation) {
1372 case HInductionVarAnalysis::kAdd:
1373 case HInductionVarAnalysis::kSub:
1374 case HInductionVarAnalysis::kMul:
1375 case HInductionVarAnalysis::kDiv:
1376 case HInductionVarAnalysis::kRem:
1377 case HInductionVarAnalysis::kXor:
1378 case HInductionVarAnalysis::kLT:
1379 case HInductionVarAnalysis::kLE:
1380 case HInductionVarAnalysis::kGT:
1381 case HInductionVarAnalysis::kGE:
1382 if (GenerateCode(context, loop, info->op_a, trip, graph, block, is_min, &opa) &&
1383 GenerateCode(context, loop, info->op_b, trip, graph, block, is_min, &opb)) {
1384 if (graph != nullptr) {
1385 HInstruction* operation = nullptr;
1386 switch (info->operation) {
1387 case HInductionVarAnalysis::kAdd:
1388 operation = new (graph->GetAllocator()) HAdd(type, opa, opb); break;
1389 case HInductionVarAnalysis::kSub:
1390 operation = new (graph->GetAllocator()) HSub(type, opa, opb); break;
1391 case HInductionVarAnalysis::kMul:
1392 operation = new (graph->GetAllocator()) HMul(type, opa, opb, kNoDexPc); break;
1393 case HInductionVarAnalysis::kDiv:
1394 operation = new (graph->GetAllocator()) HDiv(type, opa, opb, kNoDexPc); break;
1395 case HInductionVarAnalysis::kRem:
1396 operation = new (graph->GetAllocator()) HRem(type, opa, opb, kNoDexPc); break;
1397 case HInductionVarAnalysis::kXor:
1398 operation = new (graph->GetAllocator()) HXor(type, opa, opb); break;
1399 case HInductionVarAnalysis::kLT:
1400 operation = new (graph->GetAllocator()) HLessThan(opa, opb); break;
1401 case HInductionVarAnalysis::kLE:
1402 operation = new (graph->GetAllocator()) HLessThanOrEqual(opa, opb); break;
1403 case HInductionVarAnalysis::kGT:
1404 operation = new (graph->GetAllocator()) HGreaterThan(opa, opb); break;
1405 case HInductionVarAnalysis::kGE:
1406 operation = new (graph->GetAllocator()) HGreaterThanOrEqual(opa, opb); break;
1407 default:
1408 LOG(FATAL) << "unknown operation";
1409 }
1410 *result = Insert(block, operation);
1411 }
1412 return true;
1413 }
1414 break;
1415 case HInductionVarAnalysis::kNeg:
1416 if (GenerateCode(context, loop, info->op_b, trip, graph, block, !is_min, &opb)) {
1417 if (graph != nullptr) {
1418 *result = Insert(block, new (graph->GetAllocator()) HNeg(type, opb));
1419 }
1420 return true;
1421 }
1422 break;
1423 case HInductionVarAnalysis::kFetch:
1424 if (graph != nullptr) {
1425 *result = info->fetch; // already in HIR
1426 }
1427 return true;
1428 case HInductionVarAnalysis::kTripCountInLoop:
1429 case HInductionVarAnalysis::kTripCountInLoopUnsafe:
1430 if (UseFullTripCount(context, loop, is_min)) {
1431 // Generate the full trip count (do not subtract 1 as we do in loop body).
1432 return GenerateCode(
1433 context, loop, info->op_a, trip, graph, block, /*is_min=*/ false, result);
1434 }
1435 FALLTHROUGH_INTENDED;
1436 case HInductionVarAnalysis::kTripCountInBody:
1437 case HInductionVarAnalysis::kTripCountInBodyUnsafe:
1438 if (is_min) {
1439 if (graph != nullptr) {
1440 *result = graph->GetConstant(type, 0);
1441 }
1442 return true;
1443 } else if (IsContextInBody(context, loop)) {
1444 if (GenerateCode(context, loop, info->op_a, trip, graph, block, is_min, &opb)) {
1445 if (graph != nullptr) {
1446 ArenaAllocator* allocator = graph->GetAllocator();
1447 *result =
1448 Insert(block, new (allocator) HSub(type, opb, graph->GetConstant(type, 1)));
1449 }
1450 return true;
1451 }
1452 }
1453 break;
1454 case HInductionVarAnalysis::kNop:
1455 LOG(FATAL) << "unexpected invariant nop";
1456 } // switch invariant operation
1457 break;
1458 case HInductionVarAnalysis::kLinear: {
1459 // Linear induction a * i + b, for normalized 0 <= i < TC. For ranges, this should
1460 // be restricted to a unit stride to avoid arithmetic wrap-around situations that
1461 // are harder to guard against. For a last value, requesting min/max based on any
1462 // known stride yields right value. Always avoid any narrowing linear induction or
1463 // any type mismatch between the linear induction and the trip count expression.
1464 // TODO: careful runtime type conversions could generalize this latter restriction.
1465 if (!HInductionVarAnalysis::IsNarrowingLinear(info) && trip->type == type) {
1466 int64_t stride_value = 0;
1467 if (IsConstant(context, loop, info->op_a, kExact, &stride_value) &&
1468 CanLongValueFitIntoInt(stride_value)) {
1469 const bool is_min_a = stride_value >= 0 ? is_min : !is_min;
1470 if (GenerateCode(context, loop, trip, trip, graph, block, is_min_a, &opa) &&
1471 GenerateCode(context, loop, info->op_b, trip, graph, block, is_min, &opb)) {
1472 if (graph != nullptr) {
1473 ArenaAllocator* allocator = graph->GetAllocator();
1474 HInstruction* oper;
1475 if (stride_value == 1) {
1476 oper = new (allocator) HAdd(type, opa, opb);
1477 } else if (stride_value == -1) {
1478 oper = new (graph->GetAllocator()) HSub(type, opb, opa);
1479 } else {
1480 HInstruction* mul =
1481 new (allocator) HMul(type, graph->GetConstant(type, stride_value), opa);
1482 oper = new (allocator) HAdd(type, Insert(block, mul), opb);
1483 }
1484 *result = Insert(block, oper);
1485 }
1486 return true;
1487 }
1488 }
1489 }
1490 break;
1491 }
1492 case HInductionVarAnalysis::kPolynomial:
1493 case HInductionVarAnalysis::kGeometric:
1494 break;
1495 case HInductionVarAnalysis::kWrapAround:
1496 case HInductionVarAnalysis::kPeriodic: {
1497 // Wrap-around and periodic inductions are restricted to constants only, so that extreme
1498 // values are easy to test at runtime without complications of arithmetic wrap-around.
1499 Value extreme = GetVal(context, loop, info, trip, is_min);
1500 if (IsConstantValue(extreme)) {
1501 if (graph != nullptr) {
1502 *result = graph->GetConstant(type, extreme.b_constant);
1503 }
1504 return true;
1505 }
1506 break;
1507 }
1508 } // switch induction class
1509 }
1510 return false;
1511 }
1512
ReplaceInduction(HInductionVarAnalysis::InductionInfo * info,HInstruction * fetch,HInstruction * replacement)1513 void InductionVarRange::ReplaceInduction(HInductionVarAnalysis::InductionInfo* info,
1514 HInstruction* fetch,
1515 HInstruction* replacement) {
1516 if (info != nullptr) {
1517 if (info->induction_class == HInductionVarAnalysis::kInvariant &&
1518 info->operation == HInductionVarAnalysis::kFetch &&
1519 info->fetch == fetch) {
1520 info->fetch = replacement;
1521 }
1522 ReplaceInduction(info->op_a, fetch, replacement);
1523 ReplaceInduction(info->op_b, fetch, replacement);
1524 }
1525 }
1526
1527 } // namespace art
1528