1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "EmulatedRequestProcessor"
18 #define ATRACE_TAG ATRACE_TAG_CAMERA
19
20 #include "EmulatedRequestProcessor.h"
21
22 #include <HandleImporter.h>
23 #include <hardware/gralloc.h>
24 #include <log/log.h>
25 #include <sync/sync.h>
26 #include <utils/Timers.h>
27 #include <utils/Trace.h>
28
29 #include <memory>
30
31 #include "GrallocSensorBuffer.h"
32
33 namespace android {
34
35 using ::android::frameworks::sensorservice::V1_0::ISensorManager;
36 using ::android::frameworks::sensorservice::V1_0::Result;
37 using android::hardware::camera::common::V1_0::helper::HandleImporter;
38 using ::android::hardware::sensors::V1_0::SensorInfo;
39 using ::android::hardware::sensors::V1_0::SensorType;
40 using google_camera_hal::ErrorCode;
41 using google_camera_hal::HwlPipelineResult;
42 using google_camera_hal::MessageType;
43 using google_camera_hal::NotifyMessage;
44
EmulatedRequestProcessor(uint32_t camera_id,sp<EmulatedSensor> sensor,const HwlSessionCallback & session_callback)45 EmulatedRequestProcessor::EmulatedRequestProcessor(
46 uint32_t camera_id, sp<EmulatedSensor> sensor,
47 const HwlSessionCallback& session_callback)
48 : camera_id_(camera_id),
49 sensor_(sensor),
50 session_callback_(session_callback),
51 request_state_(std::make_unique<EmulatedLogicalRequestState>(camera_id)) {
52 ATRACE_CALL();
53 request_thread_ = std::thread([this] { this->RequestProcessorLoop(); });
54 importer_ = std::make_shared<HandleImporter>();
55 }
56
~EmulatedRequestProcessor()57 EmulatedRequestProcessor::~EmulatedRequestProcessor() {
58 ATRACE_CALL();
59 processor_done_ = true;
60 request_thread_.join();
61
62 auto ret = sensor_->ShutDown();
63 if (ret != OK) {
64 ALOGE("%s: Failed during sensor shutdown %s (%d)", __FUNCTION__,
65 strerror(-ret), ret);
66 }
67
68 if (sensor_event_queue_.get() != nullptr) {
69 sensor_event_queue_->disableSensor(sensor_handle_);
70 sensor_event_queue_.clear();
71 sensor_event_queue_ = nullptr;
72 }
73 }
74
ProcessPipelineRequests(uint32_t frame_number,std::vector<HwlPipelineRequest> & requests,const std::vector<EmulatedPipeline> & pipelines,const DynamicStreamIdMapType & dynamic_stream_id_map,bool use_default_physical_camera)75 status_t EmulatedRequestProcessor::ProcessPipelineRequests(
76 uint32_t frame_number, std::vector<HwlPipelineRequest>& requests,
77 const std::vector<EmulatedPipeline>& pipelines,
78 const DynamicStreamIdMapType& dynamic_stream_id_map,
79 bool use_default_physical_camera) {
80 ATRACE_CALL();
81 status_t res = OK;
82
83 std::unique_lock<std::mutex> lock(process_mutex_);
84
85 for (auto& request : requests) {
86 if (request.pipeline_id >= pipelines.size()) {
87 ALOGE("%s: Pipeline request with invalid pipeline id: %u", __FUNCTION__,
88 request.pipeline_id);
89 return BAD_VALUE;
90 }
91
92 while (pending_requests_.size() > EmulatedSensor::kPipelineDepth) {
93 auto result = request_condition_.wait_for(
94 lock, std::chrono::nanoseconds(
95 EmulatedSensor::kSupportedFrameDurationRange[1]));
96 if (result == std::cv_status::timeout) {
97 ALOGE("%s: Timed out waiting for a pending request slot", __FUNCTION__);
98 return TIMED_OUT;
99 }
100 }
101
102 res = request_state_->UpdateRequestForDynamicStreams(
103 &request, pipelines, dynamic_stream_id_map, use_default_physical_camera);
104 if (res != OK) {
105 ALOGE("%s: Failed to update request for dynamic streams: %s(%d)",
106 __FUNCTION__, strerror(-res), res);
107 return res;
108 }
109
110 auto output_buffers = CreateSensorBuffers(
111 frame_number, request.output_buffers,
112 pipelines[request.pipeline_id].streams, request.pipeline_id,
113 pipelines[request.pipeline_id].cb, /*override_width*/ 0,
114 /*override_height*/ 0);
115 if (output_buffers == nullptr) {
116 return NO_MEMORY;
117 }
118
119 auto input_buffers = CreateSensorBuffers(
120 frame_number, request.input_buffers,
121 pipelines[request.pipeline_id].streams, request.pipeline_id,
122 pipelines[request.pipeline_id].cb, request.input_width,
123 request.input_height);
124
125 pending_requests_.push(
126 {.settings = HalCameraMetadata::Clone(request.settings.get()),
127 .input_buffers = std::move(input_buffers),
128 .output_buffers = std::move(output_buffers)});
129 }
130
131 return OK;
132 }
133
CreateSensorBuffers(uint32_t frame_number,const std::vector<StreamBuffer> & buffers,const std::unordered_map<uint32_t,EmulatedStream> & streams,uint32_t pipeline_id,HwlPipelineCallback cb,int32_t override_width,int32_t override_height)134 std::unique_ptr<Buffers> EmulatedRequestProcessor::CreateSensorBuffers(
135 uint32_t frame_number, const std::vector<StreamBuffer>& buffers,
136 const std::unordered_map<uint32_t, EmulatedStream>& streams,
137 uint32_t pipeline_id, HwlPipelineCallback cb, int32_t override_width,
138 int32_t override_height) {
139 if (buffers.empty()) {
140 return nullptr;
141 }
142
143 std::vector<StreamBuffer> requested_buffers;
144 for (auto& buffer : buffers) {
145 if (buffer.buffer != nullptr) {
146 requested_buffers.push_back(buffer);
147 continue;
148 }
149
150 if (session_callback_.request_stream_buffers != nullptr) {
151 std::vector<StreamBuffer> one_requested_buffer;
152 status_t res = session_callback_.request_stream_buffers(
153 buffer.stream_id, 1, &one_requested_buffer, frame_number);
154 if (res != OK) {
155 ALOGE("%s: request_stream_buffers failed: %s(%d)", __FUNCTION__,
156 strerror(-res), res);
157 continue;
158 }
159 if (one_requested_buffer.size() != 1 ||
160 one_requested_buffer[0].buffer == nullptr) {
161 ALOGE("%s: request_stream_buffers failed to return a valid buffer",
162 __FUNCTION__);
163 continue;
164 }
165 requested_buffers.push_back(one_requested_buffer[0]);
166 }
167 }
168
169 if (requested_buffers.size() < buffers.size()) {
170 ALOGE(
171 "%s: Failed to acquire all sensor buffers: %zu acquired, %zu requested",
172 __FUNCTION__, requested_buffers.size(), buffers.size());
173 // This only happens for HAL buffer manager use case.
174 if (session_callback_.return_stream_buffers != nullptr) {
175 session_callback_.return_stream_buffers(requested_buffers);
176 }
177 return nullptr;
178 }
179
180 auto sensor_buffers = std::make_unique<Buffers>();
181 sensor_buffers->reserve(requested_buffers.size());
182 for (auto& buffer : requested_buffers) {
183 auto sensor_buffer = CreateSensorBuffer(
184 frame_number, streams.at(buffer.stream_id), pipeline_id, cb, buffer,
185 override_width, override_height);
186 if (sensor_buffer.get() != nullptr) {
187 sensor_buffers->push_back(std::move(sensor_buffer));
188 }
189 }
190
191 return sensor_buffers;
192 }
193
NotifyFailedRequest(const PendingRequest & request)194 void EmulatedRequestProcessor::NotifyFailedRequest(const PendingRequest& request) {
195 if (request.output_buffers->at(0)->callback.notify != nullptr) {
196 // Mark all output buffers for this request in order not to send
197 // ERROR_BUFFER for them.
198 for (auto& output_buffer : *(request.output_buffers)) {
199 output_buffer->is_failed_request = true;
200 }
201
202 auto output_buffer = std::move(request.output_buffers->at(0));
203 NotifyMessage msg = {
204 .type = MessageType::kError,
205 .message.error = {.frame_number = output_buffer->frame_number,
206 .error_stream_id = -1,
207 .error_code = ErrorCode::kErrorRequest}};
208 output_buffer->callback.notify(output_buffer->pipeline_id, msg);
209 }
210 }
211
Flush()212 status_t EmulatedRequestProcessor::Flush() {
213 std::lock_guard<std::mutex> lock(process_mutex_);
214 // First flush in-flight requests
215 auto ret = sensor_->Flush();
216
217 // Then the rest of the pending requests
218 while (!pending_requests_.empty()) {
219 const auto& request = pending_requests_.front();
220 NotifyFailedRequest(request);
221 pending_requests_.pop();
222 }
223
224 return ret;
225 }
226
GetBufferSizeAndStride(const EmulatedStream & stream,buffer_handle_t buffer,uint32_t * size,uint32_t * stride)227 status_t EmulatedRequestProcessor::GetBufferSizeAndStride(
228 const EmulatedStream& stream, buffer_handle_t buffer,
229 uint32_t* size /*out*/, uint32_t* stride /*out*/) {
230 if (size == nullptr) {
231 return BAD_VALUE;
232 }
233
234 switch (stream.override_format) {
235 case HAL_PIXEL_FORMAT_RGB_888:
236 *stride = stream.width * 3;
237 *size = (*stride) * stream.height;
238 break;
239 case HAL_PIXEL_FORMAT_RGBA_8888:
240 *stride = stream.width * 4;
241 *size = (*stride) * stream.height;
242 break;
243 case HAL_PIXEL_FORMAT_Y16:
244 if (stream.override_data_space == HAL_DATASPACE_DEPTH) {
245 *stride = AlignTo(AlignTo(stream.width, 2) * 2, 16);
246 *size = (*stride) * AlignTo(stream.height, 2);
247 } else {
248 return BAD_VALUE;
249 }
250 break;
251 case HAL_PIXEL_FORMAT_BLOB:
252 if (stream.override_data_space == HAL_DATASPACE_V0_JFIF) {
253 *size = stream.buffer_size;
254 *stride = *size;
255 } else {
256 return BAD_VALUE;
257 }
258 break;
259 case HAL_PIXEL_FORMAT_RAW16:
260 if (importer_->getMonoPlanarStrideBytes(buffer, stride) != NO_ERROR) {
261 *stride = stream.width * 2;
262 }
263 *size = (*stride) * stream.height;
264 break;
265 default:
266 return BAD_VALUE;
267 }
268
269 return OK;
270 }
271
LockSensorBuffer(const EmulatedStream & stream,buffer_handle_t buffer,int32_t width,int32_t height,SensorBuffer * sensor_buffer)272 status_t EmulatedRequestProcessor::LockSensorBuffer(
273 const EmulatedStream& stream, buffer_handle_t buffer, int32_t width,
274 int32_t height, SensorBuffer* sensor_buffer /*out*/) {
275 if (sensor_buffer == nullptr) {
276 return BAD_VALUE;
277 }
278
279 auto usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN;
280 bool isYUV_420_888 = stream.override_format == HAL_PIXEL_FORMAT_YCBCR_420_888;
281 bool isP010 = static_cast<android_pixel_format_v1_1_t>(
282 stream.override_format) == HAL_PIXEL_FORMAT_YCBCR_P010;
283 if ((isYUV_420_888) || (isP010)) {
284 IMapper::Rect map_rect = {0, 0, width, height};
285 auto yuv_layout = importer_->lockYCbCr(buffer, usage, map_rect);
286 if ((yuv_layout.y != nullptr) && (yuv_layout.cb != nullptr) &&
287 (yuv_layout.cr != nullptr)) {
288 sensor_buffer->plane.img_y_crcb.img_y =
289 static_cast<uint8_t*>(yuv_layout.y);
290 sensor_buffer->plane.img_y_crcb.img_cb =
291 static_cast<uint8_t*>(yuv_layout.cb);
292 sensor_buffer->plane.img_y_crcb.img_cr =
293 static_cast<uint8_t*>(yuv_layout.cr);
294 sensor_buffer->plane.img_y_crcb.y_stride = yuv_layout.yStride;
295 sensor_buffer->plane.img_y_crcb.cbcr_stride = yuv_layout.cStride;
296 sensor_buffer->plane.img_y_crcb.cbcr_step = yuv_layout.chromaStep;
297 if (isYUV_420_888 && (yuv_layout.chromaStep == 2) &&
298 std::abs(sensor_buffer->plane.img_y_crcb.img_cb -
299 sensor_buffer->plane.img_y_crcb.img_cr) != 1) {
300 ALOGE("%s: Unsupported YUV layout, chroma step: %u U/V plane delta: %u",
301 __FUNCTION__, yuv_layout.chromaStep,
302 static_cast<unsigned>(
303 std::abs(sensor_buffer->plane.img_y_crcb.img_cb -
304 sensor_buffer->plane.img_y_crcb.img_cr)));
305 return BAD_VALUE;
306 }
307 sensor_buffer->plane.img_y_crcb.bytesPerPixel = isP010 ? 2 : 1;
308 } else {
309 ALOGE("%s: Failed to lock output buffer!", __FUNCTION__);
310 return BAD_VALUE;
311 }
312 } else {
313 uint32_t buffer_size = 0, stride = 0;
314 auto ret = GetBufferSizeAndStride(stream, buffer, &buffer_size, &stride);
315 if (ret != OK) {
316 ALOGE("%s: Unsupported pixel format: 0x%x", __FUNCTION__,
317 stream.override_format);
318 return BAD_VALUE;
319 }
320 if (stream.override_format == HAL_PIXEL_FORMAT_BLOB) {
321 sensor_buffer->plane.img.img =
322 static_cast<uint8_t*>(importer_->lock(buffer, usage, buffer_size));
323 } else {
324 IMapper::Rect region{0, 0, width, height};
325 sensor_buffer->plane.img.img =
326 static_cast<uint8_t*>(importer_->lock(buffer, usage, region));
327 }
328 if (sensor_buffer->plane.img.img == nullptr) {
329 ALOGE("%s: Failed to lock output buffer!", __FUNCTION__);
330 return BAD_VALUE;
331 }
332 sensor_buffer->plane.img.stride_in_bytes = stride;
333 sensor_buffer->plane.img.buffer_size = buffer_size;
334 }
335
336 return OK;
337 }
338
CreateSensorBuffer(uint32_t frame_number,const EmulatedStream & emulated_stream,uint32_t pipeline_id,HwlPipelineCallback callback,StreamBuffer stream_buffer,int32_t override_width,int32_t override_height)339 std::unique_ptr<SensorBuffer> EmulatedRequestProcessor::CreateSensorBuffer(
340 uint32_t frame_number, const EmulatedStream& emulated_stream,
341 uint32_t pipeline_id, HwlPipelineCallback callback,
342 StreamBuffer stream_buffer, int32_t override_width,
343 int32_t override_height) {
344 auto buffer = std::make_unique<GrallocSensorBuffer>(importer_);
345
346 auto stream = emulated_stream;
347 // Make sure input stream formats are correctly mapped here
348 if (stream.is_input) {
349 stream.override_format = EmulatedSensor::OverrideFormat(
350 stream.override_format,
351 ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD);
352 }
353 if (override_width > 0 && override_height > 0) {
354 buffer->width = override_width;
355 buffer->height = override_height;
356 } else {
357 buffer->width = stream.width;
358 buffer->height = stream.height;
359 }
360 buffer->format = static_cast<PixelFormat>(stream.override_format);
361 buffer->dataSpace = stream.override_data_space;
362 buffer->stream_buffer = stream_buffer;
363 buffer->pipeline_id = pipeline_id;
364 buffer->callback = callback;
365 buffer->frame_number = frame_number;
366 buffer->camera_id = emulated_stream.is_physical_camera_stream
367 ? emulated_stream.physical_camera_id
368 : camera_id_;
369 buffer->is_input = stream.is_input;
370 // In case buffer processing is successful, flip this flag accordingly
371 buffer->stream_buffer.status = BufferStatus::kError;
372
373 if (buffer->stream_buffer.buffer != nullptr) {
374 auto ret = LockSensorBuffer(stream, buffer->stream_buffer.buffer,
375 buffer->width, buffer->height, buffer.get());
376 if (ret != OK) {
377 buffer.release();
378 buffer = nullptr;
379 }
380 }
381
382 if ((buffer.get() != nullptr) && (stream_buffer.acquire_fence != nullptr)) {
383 auto fence_status = importer_->importFence(stream_buffer.acquire_fence,
384 buffer->acquire_fence_fd);
385 if (!fence_status) {
386 ALOGE("%s: Failed importing acquire fence!", __FUNCTION__);
387 buffer.release();
388 buffer = nullptr;
389 }
390 }
391
392 return buffer;
393 }
394
AcquireBuffers(Buffers * buffers)395 std::unique_ptr<Buffers> EmulatedRequestProcessor::AcquireBuffers(
396 Buffers* buffers) {
397 if ((buffers == nullptr) || (buffers->empty())) {
398 return nullptr;
399 }
400
401 auto acquired_buffers = std::make_unique<Buffers>();
402 acquired_buffers->reserve(buffers->size());
403 auto output_buffer = buffers->begin();
404 while (output_buffer != buffers->end()) {
405 status_t ret = OK;
406 if ((*output_buffer)->acquire_fence_fd >= 0) {
407 ret = sync_wait((*output_buffer)->acquire_fence_fd,
408 ns2ms(EmulatedSensor::kSupportedFrameDurationRange[1]));
409 if (ret != OK) {
410 ALOGE("%s: Fence sync failed: %s, (%d)", __FUNCTION__, strerror(-ret),
411 ret);
412 }
413 }
414
415 if (ret == OK) {
416 acquired_buffers->push_back(std::move(*output_buffer));
417 }
418
419 output_buffer = buffers->erase(output_buffer);
420 }
421
422 return acquired_buffers;
423 }
424
RequestProcessorLoop()425 void EmulatedRequestProcessor::RequestProcessorLoop() {
426 ATRACE_CALL();
427
428 bool vsync_status_ = true;
429 while (!processor_done_ && vsync_status_) {
430 {
431 std::lock_guard<std::mutex> lock(process_mutex_);
432 if (!pending_requests_.empty()) {
433 status_t ret;
434 const auto& request = pending_requests_.front();
435 auto frame_number = request.output_buffers->at(0)->frame_number;
436 auto notify_callback = request.output_buffers->at(0)->callback;
437 auto pipeline_id = request.output_buffers->at(0)->pipeline_id;
438
439 auto output_buffers = AcquireBuffers(request.output_buffers.get());
440 auto input_buffers = AcquireBuffers(request.input_buffers.get());
441 if (!output_buffers->empty()) {
442 std::unique_ptr<EmulatedSensor::LogicalCameraSettings> logical_settings =
443 std::make_unique<EmulatedSensor::LogicalCameraSettings>();
444
445 std::unique_ptr<std::set<uint32_t>> physical_camera_output_ids =
446 std::make_unique<std::set<uint32_t>>();
447 for (const auto& it : *output_buffers) {
448 if (it->camera_id != camera_id_) {
449 physical_camera_output_ids->emplace(it->camera_id);
450 }
451 }
452
453 // Repeating requests usually include valid settings only during the
454 // initial call. Afterwards an invalid settings pointer means that
455 // there are no changes in the parameters and Hal should re-use the
456 // last valid values.
457 // TODO: Add support for individual physical camera requests.
458 if (request.settings.get() != nullptr) {
459 ret = request_state_->InitializeLogicalSettings(
460 HalCameraMetadata::Clone(request.settings.get()),
461 std::move(physical_camera_output_ids), logical_settings.get());
462 last_settings_ = HalCameraMetadata::Clone(request.settings.get());
463 } else {
464 ret = request_state_->InitializeLogicalSettings(
465 HalCameraMetadata::Clone(last_settings_.get()),
466 std::move(physical_camera_output_ids), logical_settings.get());
467 }
468
469 if (ret == OK) {
470 auto result = request_state_->InitializeLogicalResult(pipeline_id,
471 frame_number);
472 // The screen rotation will be the same for all logical and physical devices
473 uint32_t screen_rotation = screen_rotation_;
474 for (auto it = logical_settings->begin();
475 it != logical_settings->end(); it++) {
476 it->second.screen_rotation = screen_rotation;
477 }
478
479 sensor_->SetCurrentRequest(
480 std::move(logical_settings), std::move(result),
481 std::move(input_buffers), std::move(output_buffers));
482 } else {
483 NotifyMessage msg{.type = MessageType::kError,
484 .message.error = {
485 .frame_number = frame_number,
486 .error_stream_id = -1,
487 .error_code = ErrorCode::kErrorResult,
488 }};
489
490 notify_callback.notify(pipeline_id, msg);
491 }
492 } else {
493 // No further processing is needed, just fail the result which will
494 // complete this request.
495 NotifyMessage msg{.type = MessageType::kError,
496 .message.error = {
497 .frame_number = frame_number,
498 .error_stream_id = -1,
499 .error_code = ErrorCode::kErrorResult,
500 }};
501
502 notify_callback.notify(pipeline_id, msg);
503 }
504
505 pending_requests_.pop();
506 request_condition_.notify_one();
507 }
508 }
509
510 vsync_status_ =
511 sensor_->WaitForVSync(EmulatedSensor::kSupportedFrameDurationRange[1]);
512 }
513 }
514
Initialize(std::unique_ptr<HalCameraMetadata> static_meta,PhysicalDeviceMapPtr physical_devices)515 status_t EmulatedRequestProcessor::Initialize(
516 std::unique_ptr<HalCameraMetadata> static_meta,
517 PhysicalDeviceMapPtr physical_devices) {
518 std::lock_guard<std::mutex> lock(process_mutex_);
519 return request_state_->Initialize(std::move(static_meta),
520 std::move(physical_devices));
521 }
522
SetSessionCallback(const HwlSessionCallback & hwl_session_callback)523 void EmulatedRequestProcessor::SetSessionCallback(
524 const HwlSessionCallback& hwl_session_callback) {
525 std::lock_guard<std::mutex> lock(process_mutex_);
526 session_callback_ = hwl_session_callback;
527 }
528
GetDefaultRequest(RequestTemplate type,std::unique_ptr<HalCameraMetadata> * default_settings)529 status_t EmulatedRequestProcessor::GetDefaultRequest(
530 RequestTemplate type, std::unique_ptr<HalCameraMetadata>* default_settings) {
531 std::lock_guard<std::mutex> lock(process_mutex_);
532 return request_state_->GetDefaultRequest(type, default_settings);
533 }
534
onEvent(const Event & e)535 Return<void> EmulatedRequestProcessor::SensorHandler::onEvent(const Event& e) {
536 auto processor = processor_.lock();
537 if (processor.get() == nullptr) {
538 return Void();
539 }
540
541 if (e.sensorType == SensorType::ACCELEROMETER) {
542 // Heuristic approach for deducing the screen
543 // rotation depending on the reported
544 // accelerometer readings. We switch
545 // the screen rotation when one of the
546 // x/y axis gets close enough to the earth
547 // acceleration.
548 const uint32_t earth_accel = 9; // Switch threshold [m/s^2]
549 uint32_t x_accel = e.u.vec3.x;
550 uint32_t y_accel = e.u.vec3.y;
551 if (x_accel == earth_accel) {
552 processor->screen_rotation_ = 270;
553 } else if (x_accel == -earth_accel) {
554 processor->screen_rotation_ = 90;
555 } else if (y_accel == -earth_accel) {
556 processor->screen_rotation_ = 180;
557 } else {
558 processor->screen_rotation_ = 0;
559 }
560 } else {
561 ALOGE("%s: unexpected event received type: %d", __func__, e.sensorType);
562 }
563 return Void();
564 }
565
InitializeSensorQueue(std::weak_ptr<EmulatedRequestProcessor> processor)566 void EmulatedRequestProcessor::InitializeSensorQueue(
567 std::weak_ptr<EmulatedRequestProcessor> processor) {
568 if (sensor_event_queue_.get() != nullptr) {
569 return;
570 }
571
572 sp<ISensorManager> manager = ISensorManager::getService();
573 if (manager == nullptr) {
574 ALOGE("%s: Cannot get ISensorManager", __func__);
575 } else {
576 bool sensor_found = false;
577 manager->getSensorList([&](const auto& list, auto result) {
578 if (result != Result::OK) {
579 ALOGE("%s: Failed to retrieve sensor list!", __func__);
580 } else {
581 for (const SensorInfo& it : list) {
582 if (it.type == SensorType::ACCELEROMETER) {
583 sensor_found = true;
584 sensor_handle_ = it.sensorHandle;
585 }
586 }
587 }
588 });
589 if (sensor_found) {
590 manager->createEventQueue(
591 new SensorHandler(processor), [&](const auto& q, auto result) {
592 if (result != Result::OK) {
593 ALOGE("%s: Cannot create event queue", __func__);
594 return;
595 }
596 sensor_event_queue_ = q;
597 });
598
599 if (sensor_event_queue_.get() != nullptr) {
600 auto res = sensor_event_queue_->enableSensor(
601 sensor_handle_,
602 ns2us(EmulatedSensor::kSupportedFrameDurationRange[0]),
603 0 /*maxBatchReportLatencyUs*/);
604 if (res.isOk()) {
605 } else {
606 ALOGE("%s: Failed to enable sensor", __func__);
607 }
608 } else {
609 ALOGE("%s: Failed to create event queue", __func__);
610 }
611 }
612 }
613 }
614
615 } // namespace android
616