1 // Copyright 2021 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
16 #define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
17
18 #include <atomic>
19 #include <cassert>
20 #include <cstddef>
21 #include <cstdint>
22 #include <type_traits>
23
24 #include "absl/base/attributes.h"
25 #include "absl/base/config.h"
26 #include "absl/base/internal/endian.h"
27 #include "absl/base/internal/invoke.h"
28 #include "absl/base/optimization.h"
29 #include "absl/container/internal/compressed_tuple.h"
30 #include "absl/meta/type_traits.h"
31 #include "absl/strings/string_view.h"
32
33 namespace absl {
34 ABSL_NAMESPACE_BEGIN
35 namespace cord_internal {
36
37 // The overhead of a vtable is too much for Cord, so we roll our own subclasses
38 // using only a single byte to differentiate classes from each other - the "tag"
39 // byte. Define the subclasses first so we can provide downcasting helper
40 // functions in the base class.
41 struct CordRep;
42 struct CordRepConcat;
43 struct CordRepExternal;
44 struct CordRepFlat;
45 struct CordRepSubstring;
46 struct CordRepCrc;
47 class CordRepRing;
48 class CordRepBtree;
49
50 class CordzInfo;
51
52 // Default feature enable states for cord ring buffers
53 enum CordFeatureDefaults {
54 kCordEnableRingBufferDefault = false,
55 kCordShallowSubcordsDefault = false
56 };
57
58 extern std::atomic<bool> cord_ring_buffer_enabled;
59 extern std::atomic<bool> shallow_subcords_enabled;
60
61 // `cord_btree_exhaustive_validation` can be set to force exhaustive validation
62 // in debug assertions, and code that calls `IsValid()` explicitly. By default,
63 // assertions should be relatively cheap and AssertValid() can easily lead to
64 // O(n^2) complexity as recursive / full tree validation is O(n).
65 extern std::atomic<bool> cord_btree_exhaustive_validation;
66
enable_cord_ring_buffer(bool enable)67 inline void enable_cord_ring_buffer(bool enable) {
68 cord_ring_buffer_enabled.store(enable, std::memory_order_relaxed);
69 }
70
enable_shallow_subcords(bool enable)71 inline void enable_shallow_subcords(bool enable) {
72 shallow_subcords_enabled.store(enable, std::memory_order_relaxed);
73 }
74
75 enum Constants {
76 // The inlined size to use with absl::InlinedVector.
77 //
78 // Note: The InlinedVectors in this file (and in cord.h) do not need to use
79 // the same value for their inlined size. The fact that they do is historical.
80 // It may be desirable for each to use a different inlined size optimized for
81 // that InlinedVector's usage.
82 //
83 // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
84 // the inlined vector size (47 exists for backward compatibility).
85 kInlinedVectorSize = 47,
86
87 // Prefer copying blocks of at most this size, otherwise reference count.
88 kMaxBytesToCopy = 511
89 };
90
91 // Emits a fatal error "Unexpected node type: xyz" and aborts the program.
92 ABSL_ATTRIBUTE_NORETURN void LogFatalNodeType(CordRep* rep);
93
94 // Compact class for tracking the reference count and state flags for CordRep
95 // instances. Data is stored in an atomic int32_t for compactness and speed.
96 class RefcountAndFlags {
97 public:
RefcountAndFlags()98 constexpr RefcountAndFlags() : count_{kRefIncrement} {}
99 struct Immortal {};
RefcountAndFlags(Immortal)100 explicit constexpr RefcountAndFlags(Immortal) : count_(kImmortalFlag) {}
101
102 // Increments the reference count. Imposes no memory ordering.
Increment()103 inline void Increment() {
104 count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
105 }
106
107 // Asserts that the current refcount is greater than 0. If the refcount is
108 // greater than 1, decrements the reference count.
109 //
110 // Returns false if there are no references outstanding; true otherwise.
111 // Inserts barriers to ensure that state written before this method returns
112 // false will be visible to a thread that just observed this method returning
113 // false. Always returns false when the immortal bit is set.
Decrement()114 inline bool Decrement() {
115 int32_t refcount = count_.load(std::memory_order_acquire) & kRefcountMask;
116 assert(refcount > 0 || refcount & kImmortalFlag);
117 return refcount != kRefIncrement &&
118 (count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) &
119 kRefcountMask) != kRefIncrement;
120 }
121
122 // Same as Decrement but expect that refcount is greater than 1.
DecrementExpectHighRefcount()123 inline bool DecrementExpectHighRefcount() {
124 int32_t refcount =
125 count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) &
126 kRefcountMask;
127 assert(refcount > 0 || refcount & kImmortalFlag);
128 return refcount != kRefIncrement;
129 }
130
131 // Returns the current reference count using acquire semantics.
Get()132 inline int32_t Get() const {
133 return count_.load(std::memory_order_acquire) >> kNumFlags;
134 }
135
136 // Returns whether the atomic integer is 1.
137 // If the reference count is used in the conventional way, a
138 // reference count of 1 implies that the current thread owns the
139 // reference and no other thread shares it.
140 // This call performs the test for a reference count of one, and
141 // performs the memory barrier needed for the owning thread
142 // to act on the object, knowing that it has exclusive access to the
143 // object. Always returns false when the immortal bit is set.
IsOne()144 inline bool IsOne() {
145 return (count_.load(std::memory_order_acquire) & kRefcountMask) ==
146 kRefIncrement;
147 }
148
IsImmortal()149 bool IsImmortal() const {
150 return (count_.load(std::memory_order_relaxed) & kImmortalFlag) != 0;
151 }
152
153 private:
154 // We reserve the bottom bits for flags.
155 // kImmortalBit indicates that this entity should never be collected; it is
156 // used for the StringConstant constructor to avoid collecting immutable
157 // constant cords.
158 // kReservedFlag is reserved for future use.
159 enum Flags {
160 kNumFlags = 2,
161
162 kImmortalFlag = 0x1,
163 kReservedFlag = 0x2,
164 kRefIncrement = (1 << kNumFlags),
165
166 // Bitmask to use when checking refcount by equality. This masks out
167 // all flags except kImmortalFlag, which is part of the refcount for
168 // purposes of equality. (A refcount of 0 or 1 does not count as 0 or 1
169 // if the immortal bit is set.)
170 kRefcountMask = ~kReservedFlag,
171 };
172
173 std::atomic<int32_t> count_;
174 };
175
176 // Various representations that we allow
177 enum CordRepKind {
178 UNUSED_0 = 0,
179 SUBSTRING = 1,
180 CRC = 2,
181 BTREE = 3,
182 RING = 4,
183 EXTERNAL = 5,
184
185 // We have different tags for different sized flat arrays,
186 // starting with FLAT, and limited to MAX_FLAT_TAG. The below values map to an
187 // allocated range of 32 bytes to 256 KB. The current granularity is:
188 // - 8 byte granularity for flat sizes in [32 - 512]
189 // - 64 byte granularity for flat sizes in (512 - 8KiB]
190 // - 4KiB byte granularity for flat sizes in (8KiB, 256 KiB]
191 // If a new tag is needed in the future, then 'FLAT' and 'MAX_FLAT_TAG' should
192 // be adjusted as well as the Tag <---> Size mapping logic so that FLAT still
193 // represents the minimum flat allocation size. (32 bytes as of now).
194 FLAT = 6,
195 MAX_FLAT_TAG = 248
196 };
197
198 // There are various locations where we want to check if some rep is a 'plain'
199 // data edge, i.e. an external or flat rep. By having FLAT == EXTERNAL + 1, we
200 // can perform this check in a single branch as 'tag >= EXTERNAL'
201 // Likewise, we have some locations where we check for 'ring or external/flat',
202 // so likewise align RING to EXTERNAL.
203 // Note that we can leave this optimization to the compiler. The compiler will
204 // DTRT when it sees a condition like `tag == EXTERNAL || tag >= FLAT`.
205 static_assert(RING == BTREE + 1, "BTREE and RING not consecutive");
206 static_assert(EXTERNAL == RING + 1, "BTREE and EXTERNAL not consecutive");
207 static_assert(FLAT == EXTERNAL + 1, "EXTERNAL and FLAT not consecutive");
208
209 struct CordRep {
210 // Result from an `extract edge` operation. Contains the (possibly changed)
211 // tree node as well as the extracted edge, or {tree, nullptr} if no edge
212 // could be extracted.
213 // On success, the returned `tree` value is null if `extracted` was the only
214 // data edge inside the tree, a data edge if there were only two data edges in
215 // the tree, or the (possibly new / smaller) remaining tree with the extracted
216 // data edge removed.
217 struct ExtractResult {
218 CordRep* tree;
219 CordRep* extracted;
220 };
221
222 CordRep() = default;
CordRepCordRep223 constexpr CordRep(RefcountAndFlags::Immortal immortal, size_t l)
224 : length(l), refcount(immortal), tag(EXTERNAL), storage{} {}
225
226 // The following three fields have to be less than 32 bytes since
227 // that is the smallest supported flat node size.
228 size_t length;
229 RefcountAndFlags refcount;
230 // If tag < FLAT, it represents CordRepKind and indicates the type of node.
231 // Otherwise, the node type is CordRepFlat and the tag is the encoded size.
232 uint8_t tag;
233
234 // `storage` provides two main purposes:
235 // - the starting point for FlatCordRep.Data() [flexible-array-member]
236 // - 3 bytes of additional storage for use by derived classes.
237 // The latter is used by CordrepConcat and CordRepBtree. CordRepConcat stores
238 // a 'depth' value in storage[0], and the (future) CordRepBtree class stores
239 // `height`, `begin` and `end` in the 3 entries. Otherwise we would need to
240 // allocate room for these in the derived class, as not all compilers reuse
241 // padding space from the base class (clang and gcc do, MSVC does not, etc)
242 uint8_t storage[3];
243
244 // Returns true if this instance's tag matches the requested type.
IsRingCordRep245 constexpr bool IsRing() const { return tag == RING; }
IsSubstringCordRep246 constexpr bool IsSubstring() const { return tag == SUBSTRING; }
IsCrcCordRep247 constexpr bool IsCrc() const { return tag == CRC; }
IsExternalCordRep248 constexpr bool IsExternal() const { return tag == EXTERNAL; }
IsFlatCordRep249 constexpr bool IsFlat() const { return tag >= FLAT; }
IsBtreeCordRep250 constexpr bool IsBtree() const { return tag == BTREE; }
251
252 inline CordRepRing* ring();
253 inline const CordRepRing* ring() const;
254 inline CordRepSubstring* substring();
255 inline const CordRepSubstring* substring() const;
256 inline CordRepCrc* crc();
257 inline const CordRepCrc* crc() const;
258 inline CordRepExternal* external();
259 inline const CordRepExternal* external() const;
260 inline CordRepFlat* flat();
261 inline const CordRepFlat* flat() const;
262 inline CordRepBtree* btree();
263 inline const CordRepBtree* btree() const;
264
265 // --------------------------------------------------------------------
266 // Memory management
267
268 // Destroys the provided `rep`.
269 static void Destroy(CordRep* rep);
270
271 // Increments the reference count of `rep`.
272 // Requires `rep` to be a non-null pointer value.
273 static inline CordRep* Ref(CordRep* rep);
274
275 // Decrements the reference count of `rep`. Destroys rep if count reaches
276 // zero. Requires `rep` to be a non-null pointer value.
277 static inline void Unref(CordRep* rep);
278 };
279
280 struct CordRepSubstring : public CordRep {
281 size_t start; // Starting offset of substring in child
282 CordRep* child;
283
284 // Creates a substring on `child`, adopting a reference on `child`.
285 // Requires `child` to be either a flat or external node, and `pos` and `n` to
286 // form a non-empty partial sub range of `'child`, i.e.:
287 // `n > 0 && n < length && n + pos <= length`
288 static inline CordRepSubstring* Create(CordRep* child, size_t pos, size_t n);
289
290 // Creates a substring of `rep`. Does not adopt a reference on `rep`.
291 // Requires `IsDataEdge(rep) && n > 0 && pos + n <= rep->length`.
292 // If `n == rep->length` then this method returns `CordRep::Ref(rep)`
293 // If `rep` is a substring of a flat or external node, then this method will
294 // return a new substring of that flat or external node with `pos` adjusted
295 // with the original `start` position.
296 static inline CordRep* Substring(CordRep* rep, size_t pos, size_t n);
297 };
298
299 // Type for function pointer that will invoke the releaser function and also
300 // delete the `CordRepExternalImpl` corresponding to the passed in
301 // `CordRepExternal`.
302 using ExternalReleaserInvoker = void (*)(CordRepExternal*);
303
304 // External CordReps are allocated together with a type erased releaser. The
305 // releaser is stored in the memory directly following the CordRepExternal.
306 struct CordRepExternal : public CordRep {
307 CordRepExternal() = default;
CordRepExternalCordRepExternal308 explicit constexpr CordRepExternal(absl::string_view str)
309 : CordRep(RefcountAndFlags::Immortal{}, str.size()),
310 base(str.data()),
311 releaser_invoker(nullptr) {}
312
313 const char* base;
314 // Pointer to function that knows how to call and destroy the releaser.
315 ExternalReleaserInvoker releaser_invoker;
316
317 // Deletes (releases) the external rep.
318 // Requires rep != nullptr and rep->IsExternal()
319 static void Delete(CordRep* rep);
320 };
321
322 struct Rank1 {};
323 struct Rank0 : Rank1 {};
324
325 template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
326 Releaser, absl::string_view>>
InvokeReleaser(Rank0,Releaser && releaser,absl::string_view data)327 void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
328 ::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
329 }
330
331 template <typename Releaser,
332 typename = ::absl::base_internal::invoke_result_t<Releaser>>
InvokeReleaser(Rank1,Releaser && releaser,absl::string_view)333 void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
334 ::absl::base_internal::invoke(std::forward<Releaser>(releaser));
335 }
336
337 // We use CompressedTuple so that we can benefit from EBCO.
338 template <typename Releaser>
339 struct CordRepExternalImpl
340 : public CordRepExternal,
341 public ::absl::container_internal::CompressedTuple<Releaser> {
342 // The extra int arg is so that we can avoid interfering with copy/move
343 // constructors while still benefitting from perfect forwarding.
344 template <typename T>
CordRepExternalImplCordRepExternalImpl345 CordRepExternalImpl(T&& releaser, int)
346 : CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
347 this->releaser_invoker = &Release;
348 }
349
~CordRepExternalImplCordRepExternalImpl350 ~CordRepExternalImpl() {
351 InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
352 absl::string_view(base, length));
353 }
354
ReleaseCordRepExternalImpl355 static void Release(CordRepExternal* rep) {
356 delete static_cast<CordRepExternalImpl*>(rep);
357 }
358 };
359
Create(CordRep * child,size_t pos,size_t n)360 inline CordRepSubstring* CordRepSubstring::Create(CordRep* child, size_t pos,
361 size_t n) {
362 assert(child != nullptr);
363 assert(n > 0);
364 assert(n < child->length);
365 assert(pos < child->length);
366 assert(n <= child->length - pos);
367
368 // TODO(b/217376272): Harden internal logic.
369 // Move to strategical places inside the Cord logic and make this an assert.
370 if (ABSL_PREDICT_FALSE(!(child->IsExternal() || child->IsFlat()))) {
371 LogFatalNodeType(child);
372 }
373
374 CordRepSubstring* rep = new CordRepSubstring();
375 rep->length = n;
376 rep->tag = SUBSTRING;
377 rep->start = pos;
378 rep->child = child;
379 return rep;
380 }
381
Substring(CordRep * rep,size_t pos,size_t n)382 inline CordRep* CordRepSubstring::Substring(CordRep* rep, size_t pos,
383 size_t n) {
384 assert(rep != nullptr);
385 assert(n != 0);
386 assert(pos < rep->length);
387 assert(n <= rep->length - pos);
388 if (n == rep->length) return CordRep::Ref(rep);
389 if (rep->IsSubstring()) {
390 pos += rep->substring()->start;
391 rep = rep->substring()->child;
392 }
393 CordRepSubstring* substr = new CordRepSubstring();
394 substr->length = n;
395 substr->tag = SUBSTRING;
396 substr->start = pos;
397 substr->child = CordRep::Ref(rep);
398 return substr;
399 }
400
Delete(CordRep * rep)401 inline void CordRepExternal::Delete(CordRep* rep) {
402 assert(rep != nullptr && rep->IsExternal());
403 auto* rep_external = static_cast<CordRepExternal*>(rep);
404 assert(rep_external->releaser_invoker != nullptr);
405 rep_external->releaser_invoker(rep_external);
406 }
407
408 template <typename Str>
409 struct ConstInitExternalStorage {
410 ABSL_CONST_INIT static CordRepExternal value;
411 };
412
413 template <typename Str>
414 CordRepExternal ConstInitExternalStorage<Str>::value(Str::value);
415
416 enum {
417 kMaxInline = 15,
418 };
419
GetOrNull(absl::string_view data,size_t pos)420 constexpr char GetOrNull(absl::string_view data, size_t pos) {
421 return pos < data.size() ? data[pos] : '\0';
422 }
423
424 // We store cordz_info as 64 bit pointer value in big endian format. This
425 // guarantees that the least significant byte of cordz_info matches the last
426 // byte of the inline data representation in as_chars_, which holds the inlined
427 // size or the 'is_tree' bit.
428 using cordz_info_t = int64_t;
429
430 // Assert that the `cordz_info` pointer value perfectly overlaps the last half
431 // of `as_chars_` and can hold a pointer value.
432 static_assert(sizeof(cordz_info_t) * 2 == kMaxInline + 1, "");
433 static_assert(sizeof(cordz_info_t) >= sizeof(intptr_t), "");
434
435 // BigEndianByte() creates a big endian representation of 'value', i.e.: a big
436 // endian value where the last byte in the host's representation holds 'value`,
437 // with all other bytes being 0.
BigEndianByte(unsigned char value)438 static constexpr cordz_info_t BigEndianByte(unsigned char value) {
439 #if defined(ABSL_IS_BIG_ENDIAN)
440 return value;
441 #else
442 return static_cast<cordz_info_t>(value) << ((sizeof(cordz_info_t) - 1) * 8);
443 #endif
444 }
445
446 class InlineData {
447 public:
448 // DefaultInitType forces the use of the default initialization constructor.
449 enum DefaultInitType { kDefaultInit };
450
451 // kNullCordzInfo holds the big endian representation of intptr_t(1)
452 // This is the 'null' / initial value of 'cordz_info'. The null value
453 // is specifically big endian 1 as with 64-bit pointers, the last
454 // byte of cordz_info overlaps with the last byte holding the tag.
455 static constexpr cordz_info_t kNullCordzInfo = BigEndianByte(1);
456
InlineData()457 constexpr InlineData() : as_chars_{0} {}
InlineData(DefaultInitType)458 explicit InlineData(DefaultInitType) {}
InlineData(CordRep * rep)459 explicit constexpr InlineData(CordRep* rep) : as_tree_(rep) {}
InlineData(absl::string_view chars)460 explicit constexpr InlineData(absl::string_view chars)
461 : as_chars_{
462 GetOrNull(chars, 0), GetOrNull(chars, 1),
463 GetOrNull(chars, 2), GetOrNull(chars, 3),
464 GetOrNull(chars, 4), GetOrNull(chars, 5),
465 GetOrNull(chars, 6), GetOrNull(chars, 7),
466 GetOrNull(chars, 8), GetOrNull(chars, 9),
467 GetOrNull(chars, 10), GetOrNull(chars, 11),
468 GetOrNull(chars, 12), GetOrNull(chars, 13),
469 GetOrNull(chars, 14), static_cast<char>((chars.size() << 1))} {}
470
471 // Returns true if the current instance is empty.
472 // The 'empty value' is an inlined data value of zero length.
is_empty()473 bool is_empty() const { return tag() == 0; }
474
475 // Returns true if the current instance holds a tree value.
is_tree()476 bool is_tree() const { return (tag() & 1) != 0; }
477
478 // Returns true if the current instance holds a cordz_info value.
479 // Requires the current instance to hold a tree value.
is_profiled()480 bool is_profiled() const {
481 assert(is_tree());
482 return as_tree_.cordz_info != kNullCordzInfo;
483 }
484
485 // Returns true if either of the provided instances hold a cordz_info value.
486 // This method is more efficient than the equivalent `data1.is_profiled() ||
487 // data2.is_profiled()`. Requires both arguments to hold a tree.
is_either_profiled(const InlineData & data1,const InlineData & data2)488 static bool is_either_profiled(const InlineData& data1,
489 const InlineData& data2) {
490 assert(data1.is_tree() && data2.is_tree());
491 return (data1.as_tree_.cordz_info | data2.as_tree_.cordz_info) !=
492 kNullCordzInfo;
493 }
494
495 // Returns the cordz_info sampling instance for this instance, or nullptr
496 // if the current instance is not sampled and does not have CordzInfo data.
497 // Requires the current instance to hold a tree value.
cordz_info()498 CordzInfo* cordz_info() const {
499 assert(is_tree());
500 intptr_t info = static_cast<intptr_t>(
501 absl::big_endian::ToHost64(static_cast<uint64_t>(as_tree_.cordz_info)));
502 assert(info & 1);
503 return reinterpret_cast<CordzInfo*>(info - 1);
504 }
505
506 // Sets the current cordz_info sampling instance for this instance, or nullptr
507 // if the current instance is not sampled and does not have CordzInfo data.
508 // Requires the current instance to hold a tree value.
set_cordz_info(CordzInfo * cordz_info)509 void set_cordz_info(CordzInfo* cordz_info) {
510 assert(is_tree());
511 uintptr_t info = reinterpret_cast<uintptr_t>(cordz_info) | 1;
512 as_tree_.cordz_info =
513 static_cast<cordz_info_t>(absl::big_endian::FromHost64(info));
514 }
515
516 // Resets the current cordz_info to null / empty.
clear_cordz_info()517 void clear_cordz_info() {
518 assert(is_tree());
519 as_tree_.cordz_info = kNullCordzInfo;
520 }
521
522 // Returns a read only pointer to the character data inside this instance.
523 // Requires the current instance to hold inline data.
as_chars()524 const char* as_chars() const {
525 assert(!is_tree());
526 return as_chars_;
527 }
528
529 // Returns a mutable pointer to the character data inside this instance.
530 // Should be used for 'write only' operations setting an inlined value.
531 // Applications can set the value of inlined data either before or after
532 // setting the inlined size, i.e., both of the below are valid:
533 //
534 // // Set inlined data and inline size
535 // memcpy(data_.as_chars(), data, size);
536 // data_.set_inline_size(size);
537 //
538 // // Set inlined size and inline data
539 // data_.set_inline_size(size);
540 // memcpy(data_.as_chars(), data, size);
541 //
542 // It's an error to read from the returned pointer without a preceding write
543 // if the current instance does not hold inline data, i.e.: is_tree() == true.
as_chars()544 char* as_chars() { return as_chars_; }
545
546 // Returns the tree value of this value.
547 // Requires the current instance to hold a tree value.
as_tree()548 CordRep* as_tree() const {
549 assert(is_tree());
550 return as_tree_.rep;
551 }
552
553 // Initialize this instance to holding the tree value `rep`,
554 // initializing the cordz_info to null, i.e.: 'not profiled'.
make_tree(CordRep * rep)555 void make_tree(CordRep* rep) {
556 as_tree_.rep = rep;
557 as_tree_.cordz_info = kNullCordzInfo;
558 }
559
560 // Set the tree value of this instance to 'rep`.
561 // Requires the current instance to already hold a tree value.
562 // Does not affect the value of cordz_info.
set_tree(CordRep * rep)563 void set_tree(CordRep* rep) {
564 assert(is_tree());
565 as_tree_.rep = rep;
566 }
567
568 // Returns the size of the inlined character data inside this instance.
569 // Requires the current instance to hold inline data.
inline_size()570 size_t inline_size() const {
571 assert(!is_tree());
572 return tag() >> 1;
573 }
574
575 // Sets the size of the inlined character data inside this instance.
576 // Requires `size` to be <= kMaxInline.
577 // See the documentation on 'as_chars()' for more information and examples.
set_inline_size(size_t size)578 void set_inline_size(size_t size) {
579 ABSL_ASSERT(size <= kMaxInline);
580 tag() = static_cast<char>(size << 1);
581 }
582
583 private:
584 // See cordz_info_t for forced alignment and size of `cordz_info` details.
585 struct AsTree {
AsTreeAsTree586 explicit constexpr AsTree(absl::cord_internal::CordRep* tree)
587 : rep(tree), cordz_info(kNullCordzInfo) {}
588 // This union uses up extra space so that whether rep is 32 or 64 bits,
589 // cordz_info will still start at the eighth byte, and the last
590 // byte of cordz_info will still be the last byte of InlineData.
591 union {
592 absl::cord_internal::CordRep* rep;
593 cordz_info_t unused_aligner;
594 };
595 cordz_info_t cordz_info;
596 };
597
tag()598 char& tag() { return reinterpret_cast<char*>(this)[kMaxInline]; }
tag()599 char tag() const { return reinterpret_cast<const char*>(this)[kMaxInline]; }
600
601 // If the data has length <= kMaxInline, we store it in `as_chars_`, and
602 // store the size in the last char of `as_chars_` shifted left + 1.
603 // Else we store it in a tree and store a pointer to that tree in
604 // `as_tree_.rep` and store a tag in `tagged_size`.
605 union {
606 char as_chars_[kMaxInline + 1];
607 AsTree as_tree_;
608 };
609 };
610
611 static_assert(sizeof(InlineData) == kMaxInline + 1, "");
612
substring()613 inline CordRepSubstring* CordRep::substring() {
614 assert(IsSubstring());
615 return static_cast<CordRepSubstring*>(this);
616 }
617
substring()618 inline const CordRepSubstring* CordRep::substring() const {
619 assert(IsSubstring());
620 return static_cast<const CordRepSubstring*>(this);
621 }
622
external()623 inline CordRepExternal* CordRep::external() {
624 assert(IsExternal());
625 return static_cast<CordRepExternal*>(this);
626 }
627
external()628 inline const CordRepExternal* CordRep::external() const {
629 assert(IsExternal());
630 return static_cast<const CordRepExternal*>(this);
631 }
632
Ref(CordRep * rep)633 inline CordRep* CordRep::Ref(CordRep* rep) {
634 assert(rep != nullptr);
635 rep->refcount.Increment();
636 return rep;
637 }
638
Unref(CordRep * rep)639 inline void CordRep::Unref(CordRep* rep) {
640 assert(rep != nullptr);
641 // Expect refcount to be 0. Avoiding the cost of an atomic decrement should
642 // typically outweigh the cost of an extra branch checking for ref == 1.
643 if (ABSL_PREDICT_FALSE(!rep->refcount.DecrementExpectHighRefcount())) {
644 Destroy(rep);
645 }
646 }
647
648 } // namespace cord_internal
649
650 ABSL_NAMESPACE_END
651 } // namespace absl
652 #endif // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
653