1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/enums.h"
22 #include "base/file_utils.h"
23 #include "base/histogram-inl.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root-inl.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "image-inl.h"
40 #include "intern_table.h"
41 #include "mirror/class-inl.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_reference.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49
50 namespace art {
51 namespace gc {
52 namespace collector {
53
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Size (in the number of objects) of the sweep array free buffer.
66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
67 // Verify that there are no missing card marks.
68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
69
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
71 bool young_gen,
72 bool use_generational_cc,
73 const std::string& name_prefix,
74 bool measure_read_barrier_slow_path)
75 : GarbageCollector(heap,
76 name_prefix + (name_prefix.empty() ? "" : " ") +
77 "concurrent copying"),
78 region_space_(nullptr),
79 gc_barrier_(new Barrier(0)),
80 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
81 kDefaultGcMarkStackSize,
82 kDefaultGcMarkStackSize)),
83 use_generational_cc_(use_generational_cc),
84 young_gen_(young_gen),
85 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
86 kReadBarrierMarkStackSize,
87 kReadBarrierMarkStackSize)),
88 rb_mark_bit_stack_full_(false),
89 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
90 thread_running_gc_(nullptr),
91 is_marking_(false),
92 is_using_read_barrier_entrypoints_(false),
93 is_active_(false),
94 is_asserting_to_space_invariant_(false),
95 region_space_bitmap_(nullptr),
96 heap_mark_bitmap_(nullptr),
97 live_stack_freeze_size_(0),
98 from_space_num_objects_at_first_pause_(0),
99 from_space_num_bytes_at_first_pause_(0),
100 mark_stack_mode_(kMarkStackModeOff),
101 weak_ref_access_enabled_(true),
102 copied_live_bytes_ratio_sum_(0.f),
103 gc_count_(0),
104 reclaimed_bytes_ratio_sum_(0.f),
105 cumulative_bytes_moved_(0),
106 cumulative_objects_moved_(0),
107 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
108 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
109 mark_from_read_barrier_measurements_(false),
110 rb_slow_path_ns_(0),
111 rb_slow_path_count_(0),
112 rb_slow_path_count_gc_(0),
113 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
114 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
115 rb_slow_path_count_total_(0),
116 rb_slow_path_count_gc_total_(0),
117 rb_table_(heap_->GetReadBarrierTable()),
118 force_evacuate_all_(false),
119 gc_grays_immune_objects_(false),
120 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
121 kMarkSweepMarkStackLock),
122 num_bytes_allocated_before_gc_(0) {
123 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
124 "The region space size and the read barrier table region size must match");
125 CHECK(use_generational_cc_ || !young_gen_);
126 Thread* self = Thread::Current();
127 {
128 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
129 // Cache this so that we won't have to lock heap_bitmap_lock_ in
130 // Mark() which could cause a nested lock on heap_bitmap_lock_
131 // when GC causes a RB while doing GC or a lock order violation
132 // (class_linker_lock_ and heap_bitmap_lock_).
133 heap_mark_bitmap_ = heap->GetMarkBitmap();
134 }
135 {
136 MutexLock mu(self, mark_stack_lock_);
137 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
138 accounting::AtomicStack<mirror::Object>* mark_stack =
139 accounting::AtomicStack<mirror::Object>::Create(
140 "thread local mark stack", kMarkStackSize, kMarkStackSize);
141 pooled_mark_stacks_.push_back(mark_stack);
142 }
143 }
144 if (use_generational_cc_) {
145 // Allocate sweep array free buffer.
146 std::string error_msg;
147 sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
148 "concurrent copying sweep array free buffer",
149 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
150 PROT_READ | PROT_WRITE,
151 /*low_4gb=*/ false,
152 &error_msg);
153 CHECK(sweep_array_free_buffer_mem_map_.IsValid())
154 << "Couldn't allocate sweep array free buffer: " << error_msg;
155 }
156 // Return type of these functions are different. And even though the base class
157 // is same, using ternary operator complains.
158 metrics::ArtMetrics* metrics = GetMetrics();
159 are_metrics_initialized_ = true;
160 if (young_gen_) {
161 gc_time_histogram_ = metrics->YoungGcCollectionTime();
162 metrics_gc_count_ = metrics->YoungGcCount();
163 gc_throughput_histogram_ = metrics->YoungGcThroughput();
164 gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput();
165 gc_throughput_avg_ = metrics->YoungGcThroughputAvg();
166 gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg();
167 } else {
168 gc_time_histogram_ = metrics->FullGcCollectionTime();
169 metrics_gc_count_ = metrics->FullGcCount();
170 gc_throughput_histogram_ = metrics->FullGcThroughput();
171 gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput();
172 gc_throughput_avg_ = metrics->FullGcThroughputAvg();
173 gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg();
174 }
175 }
176
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)177 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
178 bool do_atomic_update) {
179 Thread* const self = Thread::Current();
180 if (UNLIKELY(do_atomic_update)) {
181 // Used to mark the referent in DelayReferenceReferent in transaction mode.
182 mirror::Object* from_ref = field->AsMirrorPtr();
183 if (from_ref == nullptr) {
184 return;
185 }
186 mirror::Object* to_ref = Mark(self, from_ref);
187 if (from_ref != to_ref) {
188 do {
189 if (field->AsMirrorPtr() != from_ref) {
190 // Concurrently overwritten by a mutator.
191 break;
192 }
193 } while (!field->CasWeakRelaxed(from_ref, to_ref));
194 }
195 } else {
196 // Used for preserving soft references, should be OK to not have a CAS here since there should be
197 // no other threads which can trigger read barriers on the same referent during reference
198 // processing.
199 field->Assign(Mark(self, field->AsMirrorPtr()));
200 }
201 }
202
~ConcurrentCopying()203 ConcurrentCopying::~ConcurrentCopying() {
204 STLDeleteElements(&pooled_mark_stacks_);
205 }
206
RunPhases()207 void ConcurrentCopying::RunPhases() {
208 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
209 CHECK(!is_active_);
210 is_active_ = true;
211 Thread* self = Thread::Current();
212 thread_running_gc_ = self;
213 Locks::mutator_lock_->AssertNotHeld(self);
214 {
215 ReaderMutexLock mu(self, *Locks::mutator_lock_);
216 InitializePhase();
217 // In case of forced evacuation, all regions are evacuated and hence no
218 // need to compute live_bytes.
219 if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
220 MarkingPhase();
221 }
222 }
223 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
224 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
225 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
226 ActivateReadBarrierEntrypoints();
227 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
228 // the pause.
229 ReaderMutexLock mu(self, *Locks::mutator_lock_);
230 GrayAllDirtyImmuneObjects();
231 }
232 FlipThreadRoots();
233 {
234 ReaderMutexLock mu(self, *Locks::mutator_lock_);
235 CopyingPhase();
236 }
237 // Verify no from space refs. This causes a pause.
238 if (kEnableNoFromSpaceRefsVerification) {
239 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
240 ScopedPause pause(this, false);
241 CheckEmptyMarkStack();
242 if (kVerboseMode) {
243 LOG(INFO) << "Verifying no from-space refs";
244 }
245 VerifyNoFromSpaceReferences();
246 if (kVerboseMode) {
247 LOG(INFO) << "Done verifying no from-space refs";
248 }
249 CheckEmptyMarkStack();
250 }
251 {
252 ReaderMutexLock mu(self, *Locks::mutator_lock_);
253 ReclaimPhase();
254 }
255 FinishPhase();
256 CHECK(is_active_);
257 is_active_ = false;
258 thread_running_gc_ = nullptr;
259 }
260
261 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
262 public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)263 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
264 : concurrent_copying_(concurrent_copying) {}
265
Run(Thread * thread)266 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
267 // Note: self is not necessarily equal to thread since thread may be suspended.
268 Thread* self = Thread::Current();
269 DCHECK(thread == self ||
270 thread->IsSuspended() ||
271 thread->GetState() == ThreadState::kWaitingPerformingGc)
272 << thread->GetState() << " thread " << thread << " self " << self;
273 // Switch to the read barrier entrypoints.
274 thread->SetReadBarrierEntrypoints();
275 // If thread is a running mutator, then act on behalf of the garbage collector.
276 // See the code in ThreadList::RunCheckpoint.
277 concurrent_copying_->GetBarrier().Pass(self);
278 }
279
280 private:
281 ConcurrentCopying* const concurrent_copying_;
282 };
283
284 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
285 public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)286 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
287 : concurrent_copying_(concurrent_copying) {}
288
Run(Thread * self ATTRIBUTE_UNUSED)289 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
290 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
291 // to avoid a race with ThreadList::Register().
292 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
293 concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
294 }
295
296 private:
297 ConcurrentCopying* const concurrent_copying_;
298 };
299
ActivateReadBarrierEntrypoints()300 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
301 Thread* const self = Thread::Current();
302 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
303 ThreadList* thread_list = Runtime::Current()->GetThreadList();
304 gc_barrier_->Init(self, 0);
305 ActivateReadBarrierEntrypointsCallback callback(this);
306 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
307 // If there are no threads to wait which implies that all the checkpoint functions are finished,
308 // then no need to release the mutator lock.
309 if (barrier_count == 0) {
310 return;
311 }
312 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
313 gc_barrier_->Increment(self, barrier_count);
314 }
315
CreateInterRegionRefBitmaps()316 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
317 DCHECK(use_generational_cc_);
318 DCHECK(!region_space_inter_region_bitmap_.IsValid());
319 DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
320 DCHECK(region_space_ != nullptr);
321 DCHECK(heap_->non_moving_space_ != nullptr);
322 // Region-space
323 region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
324 "region-space inter region ref bitmap",
325 reinterpret_cast<uint8_t*>(region_space_->Begin()),
326 region_space_->Limit() - region_space_->Begin());
327 CHECK(region_space_inter_region_bitmap_.IsValid())
328 << "Couldn't allocate region-space inter region ref bitmap";
329
330 // non-moving-space
331 non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
332 "non-moving-space inter region ref bitmap",
333 reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
334 heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
335 CHECK(non_moving_space_inter_region_bitmap_.IsValid())
336 << "Couldn't allocate non-moving-space inter region ref bitmap";
337 }
338
BindBitmaps()339 void ConcurrentCopying::BindBitmaps() {
340 Thread* self = Thread::Current();
341 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
342 // Mark all of the spaces we never collect as immune.
343 for (const auto& space : heap_->GetContinuousSpaces()) {
344 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
345 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
346 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
347 immune_spaces_.AddSpace(space);
348 } else {
349 CHECK(!space->IsZygoteSpace());
350 CHECK(!space->IsImageSpace());
351 CHECK(space == region_space_ || space == heap_->non_moving_space_);
352 if (use_generational_cc_) {
353 if (space == region_space_) {
354 region_space_bitmap_ = region_space_->GetMarkBitmap();
355 } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
356 DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
357 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
358 }
359 if (young_gen_) {
360 // Age all of the cards for the region space so that we know which evac regions to scan.
361 heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
362 space->End(),
363 AgeCardVisitor(),
364 VoidFunctor());
365 } else {
366 // In a full-heap GC cycle, the card-table corresponding to region-space and
367 // non-moving space can be cleared, because this cycle only needs to
368 // capture writes during the marking phase of this cycle to catch
369 // objects that skipped marking due to heap mutation. Furthermore,
370 // if the next GC is a young-gen cycle, then it only needs writes to
371 // be captured after the thread-flip of this GC cycle, as that is when
372 // the young-gen for the next GC cycle starts getting populated.
373 heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
374 }
375 } else {
376 if (space == region_space_) {
377 // It is OK to clear the bitmap with mutators running since the only place it is read is
378 // VisitObjects which has exclusion with CC.
379 region_space_bitmap_ = region_space_->GetMarkBitmap();
380 region_space_bitmap_->Clear();
381 }
382 }
383 }
384 }
385 if (use_generational_cc_ && young_gen_) {
386 for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
387 CHECK(space->IsLargeObjectSpace());
388 space->AsLargeObjectSpace()->CopyLiveToMarked();
389 }
390 }
391 }
392
InitializePhase()393 void ConcurrentCopying::InitializePhase() {
394 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
395 num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
396 if (kVerboseMode) {
397 LOG(INFO) << "GC InitializePhase";
398 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
399 << reinterpret_cast<void*>(region_space_->Limit());
400 }
401 CheckEmptyMarkStack();
402 rb_mark_bit_stack_full_ = false;
403 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
404 if (measure_read_barrier_slow_path_) {
405 rb_slow_path_ns_.store(0, std::memory_order_relaxed);
406 rb_slow_path_count_.store(0, std::memory_order_relaxed);
407 rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
408 }
409
410 immune_spaces_.Reset();
411 bytes_moved_.store(0, std::memory_order_relaxed);
412 objects_moved_.store(0, std::memory_order_relaxed);
413 bytes_moved_gc_thread_ = 0;
414 objects_moved_gc_thread_ = 0;
415 bytes_scanned_ = 0;
416 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
417
418 force_evacuate_all_ = false;
419 if (!use_generational_cc_ || !young_gen_) {
420 if (gc_cause == kGcCauseExplicit ||
421 gc_cause == kGcCauseCollectorTransition ||
422 GetCurrentIteration()->GetClearSoftReferences()) {
423 force_evacuate_all_ = true;
424 }
425 }
426 if (kUseBakerReadBarrier) {
427 updated_all_immune_objects_.store(false, std::memory_order_relaxed);
428 // GC may gray immune objects in the thread flip.
429 gc_grays_immune_objects_ = true;
430 if (kIsDebugBuild) {
431 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
432 DCHECK(immune_gray_stack_.empty());
433 }
434 }
435 if (use_generational_cc_) {
436 done_scanning_.store(false, std::memory_order_release);
437 }
438 BindBitmaps();
439 if (kVerboseMode) {
440 LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
441 LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
442 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
443 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
444 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
445 LOG(INFO) << "Immune space: " << *space;
446 }
447 LOG(INFO) << "GC end of InitializePhase";
448 }
449 if (use_generational_cc_ && !young_gen_) {
450 region_space_bitmap_->Clear();
451 }
452 mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
453 // Mark all of the zygote large objects without graying them.
454 MarkZygoteLargeObjects();
455 }
456
457 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
458 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
459 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)460 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
461 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
462 }
463
Run(Thread * thread)464 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
465 // Note: self is not necessarily equal to thread since thread may be suspended.
466 Thread* self = Thread::Current();
467 CHECK(thread == self ||
468 thread->IsSuspended() ||
469 thread->GetState() == ThreadState::kWaitingPerformingGc)
470 << thread->GetState() << " thread " << thread << " self " << self;
471 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
472 if (use_tlab_ && thread->HasTlab()) {
473 // We should not reuse the partially utilized TLABs revoked here as they
474 // are going to be part of from-space.
475 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
476 // This must come before the revoke.
477 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
478 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
479 reinterpret_cast<Atomic<size_t>*>(
480 &concurrent_copying_->from_space_num_objects_at_first_pause_)->
481 fetch_add(thread_local_objects, std::memory_order_relaxed);
482 } else {
483 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
484 }
485 }
486 if (kUseThreadLocalAllocationStack) {
487 thread->RevokeThreadLocalAllocationStack();
488 }
489 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
490 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
491 // only.
492 thread->VisitRoots(this, kVisitRootFlagAllRoots);
493 concurrent_copying_->GetBarrier().Pass(self);
494 }
495
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)496 void VisitRoots(mirror::Object*** roots,
497 size_t count,
498 const RootInfo& info ATTRIBUTE_UNUSED) override
499 REQUIRES_SHARED(Locks::mutator_lock_) {
500 Thread* self = Thread::Current();
501 for (size_t i = 0; i < count; ++i) {
502 mirror::Object** root = roots[i];
503 mirror::Object* ref = *root;
504 if (ref != nullptr) {
505 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
506 if (to_ref != ref) {
507 *root = to_ref;
508 }
509 }
510 }
511 }
512
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)513 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
514 size_t count,
515 const RootInfo& info ATTRIBUTE_UNUSED) override
516 REQUIRES_SHARED(Locks::mutator_lock_) {
517 Thread* self = Thread::Current();
518 for (size_t i = 0; i < count; ++i) {
519 mirror::CompressedReference<mirror::Object>* const root = roots[i];
520 if (!root->IsNull()) {
521 mirror::Object* ref = root->AsMirrorPtr();
522 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
523 if (to_ref != ref) {
524 root->Assign(to_ref);
525 }
526 }
527 }
528 }
529
530 private:
531 ConcurrentCopying* const concurrent_copying_;
532 const bool use_tlab_;
533 };
534
535 // Called back from Runtime::FlipThreadRoots() during a pause.
536 class ConcurrentCopying::FlipCallback : public Closure {
537 public:
FlipCallback(ConcurrentCopying * concurrent_copying)538 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
539 : concurrent_copying_(concurrent_copying) {
540 }
541
Run(Thread * thread)542 void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
543 ConcurrentCopying* cc = concurrent_copying_;
544 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
545 // Note: self is not necessarily equal to thread since thread may be suspended.
546 Thread* self = Thread::Current();
547 if (kVerifyNoMissingCardMarks && cc->young_gen_) {
548 cc->VerifyNoMissingCardMarks();
549 }
550 CHECK_EQ(thread, self);
551 Locks::mutator_lock_->AssertExclusiveHeld(self);
552 space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
553 if (cc->young_gen_) {
554 CHECK(!cc->force_evacuate_all_);
555 evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
556 } else if (cc->force_evacuate_all_) {
557 evac_mode = space::RegionSpace::kEvacModeForceAll;
558 }
559 {
560 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
561 // Only change live bytes for 1-phase full heap CC, that is if we are either not running in
562 // generational-mode, or it's an 'evacuate-all' mode GC.
563 cc->region_space_->SetFromSpace(
564 cc->rb_table_,
565 evac_mode,
566 /*clear_live_bytes=*/ !cc->use_generational_cc_ || cc->force_evacuate_all_);
567 }
568 cc->SwapStacks();
569 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
570 cc->RecordLiveStackFreezeSize(self);
571 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
572 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
573 }
574 cc->is_marking_ = true;
575 if (kIsDebugBuild && !cc->use_generational_cc_) {
576 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
577 }
578 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
579 CHECK(Runtime::Current()->IsAotCompiler());
580 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
581 Runtime::Current()->VisitTransactionRoots(cc);
582 }
583 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
584 cc->GrayAllNewlyDirtyImmuneObjects();
585 if (kIsDebugBuild) {
586 // Check that all non-gray immune objects only reference immune objects.
587 cc->VerifyGrayImmuneObjects();
588 }
589 }
590 // May be null during runtime creation, in this case leave java_lang_Object null.
591 // This is safe since single threaded behavior should mean FillWithFakeObject does not
592 // happen when java_lang_Object_ is null.
593 if (WellKnownClasses::java_lang_Object != nullptr) {
594 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread,
595 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
596 } else {
597 cc->java_lang_Object_ = nullptr;
598 }
599 }
600
601 private:
602 ConcurrentCopying* const concurrent_copying_;
603 };
604
605 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
606 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)607 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
608 : collector_(collector) {}
609
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const610 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
611 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
612 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
613 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
614 obj, offset);
615 }
616
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const617 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
618 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
619 CHECK(klass->IsTypeOfReferenceClass());
620 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
621 ref,
622 mirror::Reference::ReferentOffset());
623 }
624
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const625 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
626 ALWAYS_INLINE
627 REQUIRES_SHARED(Locks::mutator_lock_) {
628 if (!root->IsNull()) {
629 VisitRoot(root);
630 }
631 }
632
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const633 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
634 ALWAYS_INLINE
635 REQUIRES_SHARED(Locks::mutator_lock_) {
636 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
637 }
638
639 private:
640 ConcurrentCopying* const collector_;
641
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const642 void CheckReference(ObjPtr<mirror::Object> ref,
643 ObjPtr<mirror::Object> holder,
644 MemberOffset offset) const
645 REQUIRES_SHARED(Locks::mutator_lock_) {
646 if (ref != nullptr) {
647 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
648 // Not immune, must be a zygote large object.
649 space::LargeObjectSpace* large_object_space =
650 Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
651 CHECK(large_object_space->Contains(ref.Ptr()) &&
652 large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
653 << "Non gray object references non immune, non zygote large object "<< ref << " "
654 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
655 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
656 } else {
657 // Make sure the large object class is immune since we will never scan the large object.
658 CHECK(collector_->immune_spaces_.ContainsObject(
659 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
660 }
661 }
662 }
663 };
664
VerifyGrayImmuneObjects()665 void ConcurrentCopying::VerifyGrayImmuneObjects() {
666 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
667 for (auto& space : immune_spaces_.GetSpaces()) {
668 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
669 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
670 VerifyGrayImmuneObjectsVisitor visitor(this);
671 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
672 reinterpret_cast<uintptr_t>(space->Limit()),
673 [&visitor](mirror::Object* obj)
674 REQUIRES_SHARED(Locks::mutator_lock_) {
675 // If an object is not gray, it should only have references to things in the immune spaces.
676 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
677 obj->VisitReferences</*kVisitNativeRoots=*/true,
678 kDefaultVerifyFlags,
679 kWithoutReadBarrier>(visitor, visitor);
680 }
681 });
682 }
683 }
684
685 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
686 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)687 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
688 : cc_(cc),
689 holder_(holder) {}
690
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const691 void operator()(ObjPtr<mirror::Object> obj,
692 MemberOffset offset,
693 bool is_static ATTRIBUTE_UNUSED) const
694 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
695 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
696 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
697 offset), offset.Uint32Value());
698 }
699 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const700 void operator()(ObjPtr<mirror::Class> klass,
701 ObjPtr<mirror::Reference> ref) const
702 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
703 CHECK(klass->IsTypeOfReferenceClass());
704 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
705 }
706
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const707 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
708 REQUIRES_SHARED(Locks::mutator_lock_) {
709 if (!root->IsNull()) {
710 VisitRoot(root);
711 }
712 }
713
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const714 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
715 REQUIRES_SHARED(Locks::mutator_lock_) {
716 CheckReference(root->AsMirrorPtr());
717 }
718
CheckReference(mirror::Object * ref,int32_t offset=-1) const719 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
720 REQUIRES_SHARED(Locks::mutator_lock_) {
721 if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
722 LOG(FATAL_WITHOUT_ABORT)
723 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
724 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
725 LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
726 constexpr const char* kIndent = " ";
727 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
728 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
729 LOG(FATAL) << "Unexpected reference to newly allocated region.";
730 }
731 }
732
733 private:
734 ConcurrentCopying* const cc_;
735 const ObjPtr<mirror::Object> holder_;
736 };
737
VerifyNoMissingCardMarks()738 void ConcurrentCopying::VerifyNoMissingCardMarks() {
739 auto visitor = [&](mirror::Object* obj)
740 REQUIRES(Locks::mutator_lock_)
741 REQUIRES(!mark_stack_lock_) {
742 // Objects on clean cards should never have references to newly allocated regions. Note
743 // that aged cards are also not clean.
744 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
745 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
746 obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
747 internal_visitor, internal_visitor);
748 }
749 };
750 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
751 region_space_->Walk(visitor);
752 {
753 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
754 heap_->GetLiveBitmap()->Visit(visitor);
755 }
756 }
757
758 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()759 void ConcurrentCopying::FlipThreadRoots() {
760 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
761 if (kVerboseMode || heap_->dump_region_info_before_gc_) {
762 LOG(INFO) << "time=" << region_space_->Time();
763 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
764 }
765 Thread* self = Thread::Current();
766 Locks::mutator_lock_->AssertNotHeld(self);
767 gc_barrier_->Init(self, 0);
768 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
769 FlipCallback flip_callback(this);
770
771 size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
772 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
773
774 {
775 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
776 gc_barrier_->Increment(self, barrier_count);
777 }
778 is_asserting_to_space_invariant_ = true;
779 QuasiAtomic::ThreadFenceForConstructor();
780 if (kVerboseMode) {
781 LOG(INFO) << "time=" << region_space_->Time();
782 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
783 LOG(INFO) << "GC end of FlipThreadRoots";
784 }
785 }
786
787 template <bool kConcurrent>
788 class ConcurrentCopying::GrayImmuneObjectVisitor {
789 public:
GrayImmuneObjectVisitor(Thread * self)790 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
791
operator ()(mirror::Object * obj) const792 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
793 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
794 if (kConcurrent) {
795 Locks::mutator_lock_->AssertSharedHeld(self_);
796 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
797 // Mod union table VisitObjects may visit the same object multiple times so we can't check
798 // the result of the atomic set.
799 } else {
800 Locks::mutator_lock_->AssertExclusiveHeld(self_);
801 obj->SetReadBarrierState(ReadBarrier::GrayState());
802 }
803 }
804 }
805
Callback(mirror::Object * obj,void * arg)806 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
807 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
808 }
809
810 private:
811 Thread* const self_;
812 };
813
GrayAllDirtyImmuneObjects()814 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
815 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
816 accounting::CardTable* const card_table = heap_->GetCardTable();
817 Thread* const self = Thread::Current();
818 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
819 VisitorType visitor(self);
820 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
821 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
822 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
823 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
824 // Mark all the objects on dirty cards since these may point to objects in other space.
825 // Once these are marked, the GC will eventually clear them later.
826 // Table is non null for boot image and zygote spaces. It is only null for application image
827 // spaces.
828 if (table != nullptr) {
829 table->ProcessCards();
830 table->VisitObjects(&VisitorType::Callback, &visitor);
831 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
832 // there would be races with the mutator marking new cards.
833 } else {
834 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
835 // GCs. This case is for app images.
836 card_table->ModifyCardsAtomic(
837 space->Begin(),
838 space->End(),
839 [](uint8_t card) {
840 return (card != gc::accounting::CardTable::kCardClean)
841 ? gc::accounting::CardTable::kCardAged
842 : card;
843 },
844 /* card modified visitor */ VoidFunctor());
845 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
846 space->Begin(),
847 space->End(),
848 visitor,
849 gc::accounting::CardTable::kCardAged);
850 }
851 }
852 }
853
GrayAllNewlyDirtyImmuneObjects()854 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
855 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
856 accounting::CardTable* const card_table = heap_->GetCardTable();
857 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
858 Thread* const self = Thread::Current();
859 VisitorType visitor(self);
860 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
861 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
862 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
863 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
864
865 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
866 // also handles the mod-union table cards.
867 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
868 space->Begin(),
869 space->End(),
870 visitor,
871 gc::accounting::CardTable::kCardDirty);
872 if (table != nullptr) {
873 // Add the cards to the mod-union table so that we can clear cards to save RAM.
874 table->ProcessCards();
875 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
876 card_table->ClearCardRange(space->Begin(),
877 AlignDown(space->End(), accounting::CardTable::kCardSize));
878 }
879 }
880 // Since all of the objects that may point to other spaces are gray, we can avoid all the read
881 // barriers in the immune spaces.
882 updated_all_immune_objects_.store(true, std::memory_order_relaxed);
883 }
884
SwapStacks()885 void ConcurrentCopying::SwapStacks() {
886 heap_->SwapStacks();
887 }
888
RecordLiveStackFreezeSize(Thread * self)889 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
890 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
891 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
892 }
893
894 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)895 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
896 DCHECK(obj != nullptr);
897 DCHECK(immune_spaces_.ContainsObject(obj));
898 // Update the fields without graying it or pushing it onto the mark stack.
899 if (use_generational_cc_ && young_gen_) {
900 // Young GC does not care about references to unevac space. It is safe to not gray these as
901 // long as scan immune objects happens after scanning the dirty cards.
902 Scan<true>(obj);
903 } else {
904 Scan<false>(obj);
905 }
906 }
907
908 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
909 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)910 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
911 : collector_(cc) {}
912
operator ()(mirror::Object * obj) const913 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
914 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
915 // Only need to scan gray objects.
916 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
917 collector_->ScanImmuneObject(obj);
918 // Done scanning the object, go back to black (non-gray).
919 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
920 ReadBarrier::NonGrayState());
921 CHECK(success)
922 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
923 }
924 } else {
925 collector_->ScanImmuneObject(obj);
926 }
927 }
928
Callback(mirror::Object * obj,void * arg)929 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
930 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
931 }
932
933 private:
934 ConcurrentCopying* const collector_;
935 };
936
937 template <bool kAtomicTestAndSet>
938 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
939 public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)940 explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
941 : collector_(cc), self_(self) {}
942
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)943 void VisitRoots(mirror::Object*** roots,
944 size_t count,
945 const RootInfo& info ATTRIBUTE_UNUSED) override
946 REQUIRES_SHARED(Locks::mutator_lock_) {
947 for (size_t i = 0; i < count; ++i) {
948 mirror::Object** root = roots[i];
949 mirror::Object* ref = *root;
950 if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
951 collector_->PushOntoMarkStack(self_, ref);
952 }
953 }
954 }
955
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)956 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
957 size_t count,
958 const RootInfo& info ATTRIBUTE_UNUSED) override
959 REQUIRES_SHARED(Locks::mutator_lock_) {
960 for (size_t i = 0; i < count; ++i) {
961 mirror::CompressedReference<mirror::Object>* const root = roots[i];
962 if (!root->IsNull()) {
963 mirror::Object* ref = root->AsMirrorPtr();
964 if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
965 collector_->PushOntoMarkStack(self_, ref);
966 }
967 }
968 }
969 }
970
971 private:
972 ConcurrentCopying* const collector_;
973 Thread* const self_;
974 };
975
976 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
977 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)978 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
979 bool disable_weak_ref_access)
980 : concurrent_copying_(concurrent_copying),
981 disable_weak_ref_access_(disable_weak_ref_access) {
982 }
983
Run(Thread * thread)984 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
985 // Note: self is not necessarily equal to thread since thread may be suspended.
986 Thread* const self = Thread::Current();
987 CHECK(thread == self ||
988 thread->IsSuspended() ||
989 thread->GetState() == ThreadState::kWaitingPerformingGc)
990 << thread->GetState() << " thread " << thread << " self " << self;
991 // Revoke thread local mark stacks.
992 {
993 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
994 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
995 if (tl_mark_stack != nullptr) {
996 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
997 thread->SetThreadLocalMarkStack(nullptr);
998 }
999 }
1000 // Disable weak ref access.
1001 if (disable_weak_ref_access_) {
1002 thread->SetWeakRefAccessEnabled(false);
1003 }
1004 // If thread is a running mutator, then act on behalf of the garbage collector.
1005 // See the code in ThreadList::RunCheckpoint.
1006 concurrent_copying_->GetBarrier().Pass(self);
1007 }
1008
1009 protected:
1010 ConcurrentCopying* const concurrent_copying_;
1011
1012 private:
1013 const bool disable_weak_ref_access_;
1014 };
1015
1016 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
1017 public RevokeThreadLocalMarkStackCheckpoint {
1018 public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)1019 explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
1020 RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
1021
Run(Thread * thread)1022 void Run(Thread* thread) override
1023 REQUIRES_SHARED(Locks::mutator_lock_) {
1024 Thread* const self = Thread::Current();
1025 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1026 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
1027 // only.
1028 CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
1029 thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
1030 // If thread_running_gc_ performed the root visit then its thread-local
1031 // mark-stack should be null as we directly push to gc_mark_stack_.
1032 CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
1033 // Barrier handling is done in the base class' Run() below.
1034 RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1035 }
1036 };
1037
CaptureThreadRootsForMarking()1038 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1039 TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1040 if (kVerboseMode) {
1041 LOG(INFO) << "time=" << region_space_->Time();
1042 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1043 }
1044 Thread* const self = Thread::Current();
1045 CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1046 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1047 gc_barrier_->Init(self, 0);
1048 size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1049 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1050 // then no need to release the mutator lock.
1051 if (barrier_count == 0) {
1052 return;
1053 }
1054 Locks::mutator_lock_->SharedUnlock(self);
1055 {
1056 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1057 gc_barrier_->Increment(self, barrier_count);
1058 }
1059 Locks::mutator_lock_->SharedLock(self);
1060 if (kVerboseMode) {
1061 LOG(INFO) << "time=" << region_space_->Time();
1062 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1063 LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1064 }
1065 }
1066
1067 // Used to scan ref fields of an object.
1068 template <bool kHandleInterRegionRefs>
1069 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1070 public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1071 explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1072 size_t obj_region_idx)
1073 : collector_(collector),
1074 obj_region_idx_(obj_region_idx),
1075 contains_inter_region_idx_(false) {}
1076
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1077 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1078 ALWAYS_INLINE
1079 REQUIRES_SHARED(Locks::mutator_lock_)
1080 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1081 DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1082 DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1083 mirror::Object* ref =
1084 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1085 // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed.
1086 if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) {
1087 // It has been verified as a race condition (see b/173676071)! After a small
1088 // wait when we reload the class pointer, it turns out to be a valid class
1089 // object. So as a workaround, we can continue execution and log an error
1090 // that this happened.
1091 for (size_t i = 0; i < 1000; i++) {
1092 // Wait for 1ms at a time. Don't wait for more than 1 second in total.
1093 usleep(1000);
1094 ref = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
1095 if (ref != nullptr) {
1096 LOG(ERROR) << "klass pointer for obj: "
1097 << obj << " (" << mirror::Object::PrettyTypeOf(obj)
1098 << ") found to be null first. Reloading after a small wait fetched klass: "
1099 << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")";
1100 break;
1101 }
1102 }
1103
1104 if (UNLIKELY(ref == nullptr)) {
1105 // It must be heap corruption. Remove memory protection and dump data.
1106 collector_->region_space_->Unprotect();
1107 LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null.";
1108 collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true);
1109 }
1110 }
1111 CheckReference(ref);
1112 }
1113
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1114 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1115 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1116 DCHECK(klass->IsTypeOfReferenceClass());
1117 // If the referent is not null, then we must re-visit the object during
1118 // copying phase to enqueue it for delayed processing and setting
1119 // read-barrier state to gray to ensure that call to GetReferent() triggers
1120 // the read-barrier. We use same data structure that is used to remember
1121 // objects with inter-region refs for this purpose too.
1122 if (kHandleInterRegionRefs
1123 && !contains_inter_region_idx_
1124 && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1125 contains_inter_region_idx_ = true;
1126 }
1127 }
1128
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1129 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1130 ALWAYS_INLINE
1131 REQUIRES_SHARED(Locks::mutator_lock_) {
1132 if (!root->IsNull()) {
1133 VisitRoot(root);
1134 }
1135 }
1136
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1137 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1138 ALWAYS_INLINE
1139 REQUIRES_SHARED(Locks::mutator_lock_) {
1140 CheckReference(root->AsMirrorPtr());
1141 }
1142
ContainsInterRegionRefs() const1143 bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1144 return contains_inter_region_idx_;
1145 }
1146
1147 private:
CheckReference(mirror::Object * ref) const1148 void CheckReference(mirror::Object* ref) const
1149 REQUIRES_SHARED(Locks::mutator_lock_) {
1150 if (ref == nullptr) {
1151 // Nothing to do.
1152 return;
1153 }
1154 if (!collector_->TestAndSetMarkBitForRef(ref)) {
1155 collector_->PushOntoLocalMarkStack(ref);
1156 }
1157 if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1158 size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1159 // If a region-space object refers to an outside object, we will have a
1160 // mismatch of region idx, but the object need not be re-visited in
1161 // copying phase.
1162 if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1163 contains_inter_region_idx_ = true;
1164 }
1165 }
1166 }
1167
1168 ConcurrentCopying* const collector_;
1169 const size_t obj_region_idx_;
1170 mutable bool contains_inter_region_idx_;
1171 };
1172
AddLiveBytesAndScanRef(mirror::Object * ref)1173 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1174 DCHECK(ref != nullptr);
1175 DCHECK(!immune_spaces_.ContainsObject(ref));
1176 DCHECK(TestMarkBitmapForRef(ref));
1177 size_t obj_region_idx = static_cast<size_t>(-1);
1178 if (LIKELY(region_space_->HasAddress(ref))) {
1179 obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1180 // Add live bytes to the corresponding region
1181 if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1182 // Newly Allocated regions are always chosen for evacuation. So no need
1183 // to update live_bytes_.
1184 size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1185 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1186 region_space_->AddLiveBytes(ref, alloc_size);
1187 }
1188 }
1189 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1190 visitor(this, obj_region_idx);
1191 ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1192 visitor, visitor);
1193 // Mark the corresponding card dirty if the object contains any
1194 // inter-region reference.
1195 if (visitor.ContainsInterRegionRefs()) {
1196 if (obj_region_idx == static_cast<size_t>(-1)) {
1197 // If an inter-region ref has been found in a non-region-space, then it
1198 // must be non-moving-space. This is because this function cannot be
1199 // called on a immune-space object, and a large-object-space object has
1200 // only class object reference, which is either in some immune-space, or
1201 // in non-moving-space.
1202 DCHECK(heap_->non_moving_space_->HasAddress(ref));
1203 non_moving_space_inter_region_bitmap_.Set(ref);
1204 } else {
1205 region_space_inter_region_bitmap_.Set(ref);
1206 }
1207 }
1208 }
1209
1210 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1211 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1212 accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1213 accounting::LargeObjectBitmap* los_bitmap = nullptr;
1214 if (LIKELY(region_space_->HasAddress(ref))) {
1215 bitmap = region_space_bitmap_;
1216 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1217 bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1218 } else if (immune_spaces_.ContainsObject(ref)) {
1219 // References to immune space objects are always live.
1220 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1221 return true;
1222 } else {
1223 // Should be a large object. Must be page aligned and the LOS must exist.
1224 if (kIsDebugBuild
1225 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1226 // It must be heap corruption. Remove memory protection and dump data.
1227 region_space_->Unprotect();
1228 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1229 MemberOffset(0),
1230 ref,
1231 /* fatal */ true);
1232 }
1233 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1234 }
1235 if (kAtomic) {
1236 return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1237 } else {
1238 return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1239 }
1240 }
1241
TestMarkBitmapForRef(mirror::Object * ref)1242 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1243 if (LIKELY(region_space_->HasAddress(ref))) {
1244 return region_space_bitmap_->Test(ref);
1245 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1246 return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1247 } else if (immune_spaces_.ContainsObject(ref)) {
1248 // References to immune space objects are always live.
1249 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1250 return true;
1251 } else {
1252 // Should be a large object. Must be page aligned and the LOS must exist.
1253 if (kIsDebugBuild
1254 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1255 // It must be heap corruption. Remove memory protection and dump data.
1256 region_space_->Unprotect();
1257 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1258 MemberOffset(0),
1259 ref,
1260 /* fatal */ true);
1261 }
1262 return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1263 }
1264 }
1265
PushOntoLocalMarkStack(mirror::Object * ref)1266 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1267 if (kIsDebugBuild) {
1268 Thread *self = Thread::Current();
1269 DCHECK_EQ(thread_running_gc_, self);
1270 DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1271 }
1272 DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1273 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1274 ExpandGcMarkStack();
1275 }
1276 gc_mark_stack_->PushBack(ref);
1277 }
1278
ProcessMarkStackForMarkingAndComputeLiveBytes()1279 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1280 // Process thread-local mark stack containing thread roots
1281 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1282 /* checkpoint_callback */ nullptr,
1283 [this] (mirror::Object* ref)
1284 REQUIRES_SHARED(Locks::mutator_lock_) {
1285 AddLiveBytesAndScanRef(ref);
1286 });
1287 {
1288 MutexLock mu(thread_running_gc_, mark_stack_lock_);
1289 CHECK(revoked_mark_stacks_.empty());
1290 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
1291 }
1292
1293 while (!gc_mark_stack_->IsEmpty()) {
1294 mirror::Object* ref = gc_mark_stack_->PopBack();
1295 AddLiveBytesAndScanRef(ref);
1296 }
1297 }
1298
1299 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1300 public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1301 explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1302
operator ()(mirror::Object * obj) const1303 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1304 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1305 visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1306 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1307 visitor, visitor);
1308 }
1309
Callback(mirror::Object * obj,void * arg)1310 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1311 reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
1312 }
1313
1314 private:
1315 ConcurrentCopying* const collector_;
1316 };
1317
1318 /* Invariants for two-phase CC
1319 * ===========================
1320 * A) Definitions
1321 * ---------------
1322 * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1323 * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1324 * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1325 * 4) Gray: marked in bitmap, and exists in mark stack
1326 * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1327 * dirty, and exists in mark stack
1328 * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1329 *
1330 * B) Before marking phase
1331 * -----------------------
1332 * 1) All objects are white
1333 * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1334 * 3) Mark bitmap is cleared
1335 * 4) Mark stack is empty
1336 *
1337 * C) During marking phase
1338 * ------------------------
1339 * 1) If a black object holds an inter-region or white reference, then its
1340 * corresponding card is dirty. In other words, it changes from being
1341 * black-clean to black-dirty
1342 * 2) No black-clean object points to a white object
1343 *
1344 * D) After marking phase
1345 * -----------------------
1346 * 1) There are no gray objects
1347 * 2) All newly allocated objects are in from space
1348 * 3) No white object can be reachable, directly or otherwise, from a
1349 * black-clean object
1350 *
1351 * E) During copying phase
1352 * ------------------------
1353 * 1) Mutators cannot observe white and black-dirty objects
1354 * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1355 * 3) An object in mark stack must have its rb_state = Gray
1356 *
1357 * F) During card table scan
1358 * --------------------------
1359 * 1) Referents corresponding to root references are gray or in to-space
1360 * 2) Every path from an object that is read or written by a mutator during
1361 * this period to a dirty black object goes through some gray object.
1362 * Mutators preserve this by graying black objects as needed during this
1363 * period. Ensures that a mutator never encounters a black dirty object.
1364 *
1365 * G) After card table scan
1366 * ------------------------
1367 * 1) There are no black-dirty objects
1368 * 2) Referents corresponding to root references are gray, black-clean or in
1369 * to-space
1370 *
1371 * H) After copying phase
1372 * -----------------------
1373 * 1) Mark stack is empty
1374 * 2) No references into evacuated from-space
1375 * 3) No reference to an object which is unmarked and is also not in newly
1376 * allocated region. In other words, no reference to white objects.
1377 */
1378
MarkingPhase()1379 void ConcurrentCopying::MarkingPhase() {
1380 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1381 if (kVerboseMode) {
1382 LOG(INFO) << "GC MarkingPhase";
1383 }
1384 accounting::CardTable* const card_table = heap_->GetCardTable();
1385 Thread* const self = Thread::Current();
1386 CHECK_EQ(self, thread_running_gc_);
1387 // Clear live_bytes_ of every non-free region, except the ones that are newly
1388 // allocated.
1389 region_space_->SetAllRegionLiveBytesZero();
1390 if (kIsDebugBuild) {
1391 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1392 }
1393 // Scan immune spaces
1394 {
1395 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1396 for (auto& space : immune_spaces_.GetSpaces()) {
1397 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1398 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1399 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1400 ImmuneSpaceCaptureRefsVisitor visitor(this);
1401 if (table != nullptr) {
1402 table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1403 } else {
1404 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1405 card_table->Scan<false>(
1406 live_bitmap,
1407 space->Begin(),
1408 space->Limit(),
1409 visitor,
1410 accounting::CardTable::kCardDirty - 1);
1411 }
1412 }
1413 }
1414 // Scan runtime roots
1415 {
1416 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1417 CaptureRootsForMarkingVisitor visitor(this, self);
1418 Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1419 }
1420 {
1421 // TODO: don't visit the transaction roots if it's not active.
1422 TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1423 CaptureRootsForMarkingVisitor visitor(this, self);
1424 Runtime::Current()->VisitNonThreadRoots(&visitor);
1425 }
1426 // Capture thread roots
1427 CaptureThreadRootsForMarking();
1428 // Process mark stack
1429 ProcessMarkStackForMarkingAndComputeLiveBytes();
1430
1431 if (kVerboseMode) {
1432 LOG(INFO) << "GC end of MarkingPhase";
1433 }
1434 }
1435
1436 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1437 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1438 Scan<kNoUnEvac>(obj);
1439 // Set the read-barrier state of a reference-type object to gray if its
1440 // referent is not marked yet. This is to ensure that if GetReferent() is
1441 // called, it triggers the read-barrier to process the referent before use.
1442 if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1443 mirror::Object* referent =
1444 obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1445 if (referent != nullptr && !IsInToSpace(referent)) {
1446 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1447 }
1448 }
1449 }
1450
1451 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1452 void ConcurrentCopying::CopyingPhase() {
1453 TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1454 if (kVerboseMode) {
1455 LOG(INFO) << "GC CopyingPhase";
1456 }
1457 Thread* self = Thread::Current();
1458 accounting::CardTable* const card_table = heap_->GetCardTable();
1459 if (kIsDebugBuild) {
1460 MutexLock mu(self, *Locks::thread_list_lock_);
1461 CHECK(weak_ref_access_enabled_);
1462 }
1463
1464 // Scan immune spaces.
1465 // Update all the fields in the immune spaces first without graying the objects so that we
1466 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1467 // of the objects.
1468 if (kUseBakerReadBarrier) {
1469 gc_grays_immune_objects_ = false;
1470 }
1471 if (use_generational_cc_) {
1472 if (kVerboseMode) {
1473 LOG(INFO) << "GC ScanCardsForSpace";
1474 }
1475 TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1476 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1477 CHECK(!done_scanning_.load(std::memory_order_relaxed));
1478 if (kIsDebugBuild) {
1479 // Leave some time for mutators to race ahead to try and find races between the GC card
1480 // scanning and mutators reading references.
1481 usleep(10 * 1000);
1482 }
1483 for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1484 if (space->IsImageSpace() || space->IsZygoteSpace()) {
1485 // Image and zygote spaces are already handled since we gray the objects in the pause.
1486 continue;
1487 }
1488 // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1489 // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1490 // in the from space.
1491 //
1492 // Note that we do not need to process the large-object space (the only discontinuous space)
1493 // as it contains only large string objects and large primitive array objects, that have no
1494 // reference to other objects, except their class. There is no need to scan these large
1495 // objects, as the String class and the primitive array classes are expected to never move
1496 // during a collection:
1497 // - In the case where we run with a boot image, these classes are part of the image space,
1498 // which is an immune space.
1499 // - In the case where we run without a boot image, these classes are allocated in the
1500 // non-moving space (see art::ClassLinker::InitWithoutImage).
1501 card_table->Scan<false>(
1502 space->GetMarkBitmap(),
1503 space->Begin(),
1504 space->End(),
1505 [this, space](mirror::Object* obj)
1506 REQUIRES(Locks::heap_bitmap_lock_)
1507 REQUIRES_SHARED(Locks::mutator_lock_) {
1508 // TODO: This code may be refactored to avoid scanning object while
1509 // done_scanning_ is false by setting rb_state to gray, and pushing the
1510 // object on mark stack. However, it will also require clearing the
1511 // corresponding mark-bit and, for region space objects,
1512 // decrementing the object's size from the corresponding region's
1513 // live_bytes.
1514 if (young_gen_) {
1515 // Don't push or gray unevac refs.
1516 if (kIsDebugBuild && space == region_space_) {
1517 // We may get unevac large objects.
1518 if (!region_space_->IsInUnevacFromSpace(obj)) {
1519 CHECK(region_space_bitmap_->Test(obj));
1520 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1521 LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1522 }
1523 }
1524 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1525 } else if (space != region_space_) {
1526 DCHECK(space == heap_->non_moving_space_);
1527 // We need to process un-evac references as they may be unprocessed,
1528 // if they skipped the marking phase due to heap mutation.
1529 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1530 non_moving_space_inter_region_bitmap_.Clear(obj);
1531 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1532 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1533 region_space_inter_region_bitmap_.Clear(obj);
1534 }
1535 },
1536 accounting::CardTable::kCardAged);
1537
1538 if (!young_gen_) {
1539 auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1540 // We don't need to process un-evac references as any unprocessed
1541 // ones will be taken care of in the card-table scan above.
1542 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1543 };
1544 if (space == region_space_) {
1545 region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
1546 } else {
1547 DCHECK(space == heap_->non_moving_space_);
1548 non_moving_space_inter_region_bitmap_.VisitMarkedRange(
1549 reinterpret_cast<uintptr_t>(space->Begin()),
1550 reinterpret_cast<uintptr_t>(space->End()),
1551 visitor);
1552 }
1553 }
1554 }
1555 // Done scanning unevac space.
1556 done_scanning_.store(true, std::memory_order_release);
1557 // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1558 // Currently we do it in ReclaimPhase().
1559 if (kVerboseMode) {
1560 LOG(INFO) << "GC end of ScanCardsForSpace";
1561 }
1562 }
1563 {
1564 // For a sticky-bit collection, this phase needs to be after the card scanning since the
1565 // mutator may read an unevac space object out of an image object. If the image object is no
1566 // longer gray it will trigger a read barrier for the unevac space object.
1567 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1568 for (auto& space : immune_spaces_.GetSpaces()) {
1569 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1570 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1571 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1572 ImmuneSpaceScanObjVisitor visitor(this);
1573 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1574 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1575 } else {
1576 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1577 card_table->Scan<false>(
1578 live_bitmap,
1579 space->Begin(),
1580 space->Limit(),
1581 visitor,
1582 accounting::CardTable::kCardDirty - 1);
1583 }
1584 }
1585 }
1586 if (kUseBakerReadBarrier) {
1587 // This release fence makes the field updates in the above loop visible before allowing mutator
1588 // getting access to immune objects without graying it first.
1589 updated_all_immune_objects_.store(true, std::memory_order_release);
1590 // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1591 // mutators. We can't do this in the above loop because we would incorrectly disable the read
1592 // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1593 // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1594 // (white) object).
1595 //
1596 // Make sure no mutators are in the middle of marking an immune object before un-graying
1597 // (blackening) immune objects.
1598 IssueEmptyCheckpoint();
1599 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1600 if (kVerboseMode) {
1601 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1602 }
1603 for (mirror::Object* obj : immune_gray_stack_) {
1604 DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1605 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1606 ReadBarrier::NonGrayState());
1607 DCHECK(success);
1608 }
1609 immune_gray_stack_.clear();
1610 }
1611
1612 {
1613 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1614 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1615 }
1616 {
1617 // TODO: don't visit the transaction roots if it's not active.
1618 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1619 Runtime::Current()->VisitNonThreadRoots(this);
1620 }
1621
1622 {
1623 TimingLogger::ScopedTiming split7("Process mark stacks and References", GetTimings());
1624
1625 // Process the mark stack once in the thread local stack mode. This marks most of the live
1626 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and
1627 // system weaks) that may happen concurrently while we are processing the mark stack and newly
1628 // mark/gray objects and push refs on the mark stack.
1629 ProcessMarkStack();
1630
1631 ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor();
1632 bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences();
1633 rp->Setup(self, this, /*concurrent=*/ true, clear_soft_references);
1634 if (!clear_soft_references) {
1635 // Forward as many SoftReferences as possible before inhibiting reference access.
1636 rp->ForwardSoftReferences(GetTimings());
1637 }
1638
1639 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1640 // primary reasons are that we need to use a checkpoint to process thread-local mark
1641 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1642 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1643 // reach the point where we process weak references, we can avoid using a lock when accessing
1644 // the GC mark stack, which makes mark stack processing more efficient.
1645
1646 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1647 // for the last time before transitioning to the shared mark stack mode, which would process new
1648 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1649 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1650 // important to do these together so that we can ensure that mutators won't
1651 // newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1652 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1653 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1654 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1655 // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a
1656 // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing
1657 // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits
1658 // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks
1659 // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md).
1660 SwitchToSharedMarkStackMode();
1661 CHECK(!self->GetWeakRefAccessEnabled());
1662
1663 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1664 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1665 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1666 // (via read barriers) have no way to produce any more refs to process. Marking converges once
1667 // before we process weak refs below.
1668 ProcessMarkStack();
1669 CheckEmptyMarkStack();
1670
1671 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1672 // lock from this point on.
1673 SwitchToGcExclusiveMarkStackMode();
1674 CheckEmptyMarkStack();
1675 if (kVerboseMode) {
1676 LOG(INFO) << "ProcessReferences";
1677 }
1678 // Process weak references. This also marks through finalizers. Although
1679 // reference processing is "disabled", some accesses will proceed once we've ensured that
1680 // objects directly reachable by the mutator are marked, i.e. before we mark through
1681 // finalizers.
1682 ProcessReferences(self);
1683 CheckEmptyMarkStack();
1684 // JNI WeakGlobalRefs and most other system weaks cannot be processed until we're done marking
1685 // through finalizers, since such references to finalizer-reachable objects must be preserved.
1686 if (kVerboseMode) {
1687 LOG(INFO) << "SweepSystemWeaks";
1688 }
1689 SweepSystemWeaks(self);
1690 CheckEmptyMarkStack();
1691 ReenableWeakRefAccess(self);
1692 if (kVerboseMode) {
1693 LOG(INFO) << "SweepSystemWeaks done";
1694 }
1695 // Free data for class loaders that we unloaded.
1696 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
1697 // Marking is done. Disable marking.
1698 DisableMarking();
1699 CheckEmptyMarkStack();
1700 }
1701
1702 if (kIsDebugBuild) {
1703 MutexLock mu(self, *Locks::thread_list_lock_);
1704 CHECK(weak_ref_access_enabled_);
1705 }
1706 if (kVerboseMode) {
1707 LOG(INFO) << "GC end of CopyingPhase";
1708 }
1709 }
1710
ReenableWeakRefAccess(Thread * self)1711 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1712 if (kVerboseMode) {
1713 LOG(INFO) << "ReenableWeakRefAccess";
1714 }
1715 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1716 {
1717 MutexLock mu(self, *Locks::thread_list_lock_);
1718 weak_ref_access_enabled_ = true; // This is for new threads.
1719 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1720 for (Thread* thread : thread_list) {
1721 thread->SetWeakRefAccessEnabled(true);
1722 }
1723 }
1724 // Unblock blocking threads.
1725 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1726 Runtime::Current()->BroadcastForNewSystemWeaks();
1727 }
1728
1729 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1730 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1731 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1732 : concurrent_copying_(concurrent_copying) {
1733 }
1734
Run(Thread * thread)1735 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1736 // Note: self is not necessarily equal to thread since thread may be suspended.
1737 Thread* self = Thread::Current();
1738 DCHECK(thread == self ||
1739 thread->IsSuspended() ||
1740 thread->GetState() == ThreadState::kWaitingPerformingGc)
1741 << thread->GetState() << " thread " << thread << " self " << self;
1742 // Disable the thread-local is_gc_marking flag.
1743 // Note a thread that has just started right before this checkpoint may have already this flag
1744 // set to false, which is ok.
1745 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1746 // If thread is a running mutator, then act on behalf of the garbage collector.
1747 // See the code in ThreadList::RunCheckpoint.
1748 concurrent_copying_->GetBarrier().Pass(self);
1749 }
1750
1751 private:
1752 ConcurrentCopying* const concurrent_copying_;
1753 };
1754
1755 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1756 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1757 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1758 : concurrent_copying_(concurrent_copying) {
1759 }
1760
Run(Thread * self ATTRIBUTE_UNUSED)1761 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
1762 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1763 // to avoid a race with ThreadList::Register().
1764 CHECK(concurrent_copying_->is_marking_);
1765 concurrent_copying_->is_marking_ = false;
1766 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1767 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1768 concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1769 } else {
1770 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1771 }
1772 }
1773
1774 private:
1775 ConcurrentCopying* const concurrent_copying_;
1776 };
1777
IssueDisableMarkingCheckpoint()1778 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1779 Thread* self = Thread::Current();
1780 DisableMarkingCheckpoint check_point(this);
1781 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1782 gc_barrier_->Init(self, 0);
1783 DisableMarkingCallback dmc(this);
1784 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1785 // If there are no threads to wait which implies that all the checkpoint functions are finished,
1786 // then no need to release the mutator lock.
1787 if (barrier_count == 0) {
1788 return;
1789 }
1790 // Release locks then wait for all mutator threads to pass the barrier.
1791 Locks::mutator_lock_->SharedUnlock(self);
1792 {
1793 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1794 gc_barrier_->Increment(self, barrier_count);
1795 }
1796 Locks::mutator_lock_->SharedLock(self);
1797 }
1798
DisableMarking()1799 void ConcurrentCopying::DisableMarking() {
1800 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1801 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1802 // cached in a local variable.
1803 IssueDisableMarkingCheckpoint();
1804 if (kUseTableLookupReadBarrier) {
1805 heap_->rb_table_->ClearAll();
1806 DCHECK(heap_->rb_table_->IsAllCleared());
1807 }
1808 is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
1809 mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
1810 }
1811
IssueEmptyCheckpoint()1812 void ConcurrentCopying::IssueEmptyCheckpoint() {
1813 Thread* self = Thread::Current();
1814 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1815 // Release locks then wait for all mutator threads to pass the barrier.
1816 Locks::mutator_lock_->SharedUnlock(self);
1817 thread_list->RunEmptyCheckpoint();
1818 Locks::mutator_lock_->SharedLock(self);
1819 }
1820
ExpandGcMarkStack()1821 void ConcurrentCopying::ExpandGcMarkStack() {
1822 DCHECK(gc_mark_stack_->IsFull());
1823 const size_t new_size = gc_mark_stack_->Capacity() * 2;
1824 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1825 gc_mark_stack_->End());
1826 gc_mark_stack_->Resize(new_size);
1827 for (auto& ref : temp) {
1828 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1829 }
1830 DCHECK(!gc_mark_stack_->IsFull());
1831 }
1832
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1833 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1834 CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1835 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1836 CHECK(thread_running_gc_ != nullptr);
1837 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
1838 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1839 if (LIKELY(self == thread_running_gc_)) {
1840 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1841 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1842 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1843 ExpandGcMarkStack();
1844 }
1845 gc_mark_stack_->PushBack(to_ref);
1846 } else {
1847 // Otherwise, use a thread-local mark stack.
1848 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1849 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1850 MutexLock mu(self, mark_stack_lock_);
1851 // Get a new thread local mark stack.
1852 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1853 if (!pooled_mark_stacks_.empty()) {
1854 // Use a pooled mark stack.
1855 new_tl_mark_stack = pooled_mark_stacks_.back();
1856 pooled_mark_stacks_.pop_back();
1857 } else {
1858 // None pooled. Create a new one.
1859 new_tl_mark_stack =
1860 accounting::AtomicStack<mirror::Object>::Create(
1861 "thread local mark stack", 4 * KB, 4 * KB);
1862 }
1863 DCHECK(new_tl_mark_stack != nullptr);
1864 DCHECK(new_tl_mark_stack->IsEmpty());
1865 new_tl_mark_stack->PushBack(to_ref);
1866 self->SetThreadLocalMarkStack(new_tl_mark_stack);
1867 if (tl_mark_stack != nullptr) {
1868 // Store the old full stack into a vector.
1869 revoked_mark_stacks_.push_back(tl_mark_stack);
1870 }
1871 } else {
1872 tl_mark_stack->PushBack(to_ref);
1873 }
1874 }
1875 } else if (mark_stack_mode == kMarkStackModeShared) {
1876 // Access the shared GC mark stack with a lock.
1877 MutexLock mu(self, mark_stack_lock_);
1878 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1879 ExpandGcMarkStack();
1880 }
1881 gc_mark_stack_->PushBack(to_ref);
1882 } else {
1883 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1884 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1885 << "ref=" << to_ref
1886 << " self->gc_marking=" << self->GetIsGcMarking()
1887 << " cc->is_marking=" << is_marking_;
1888 CHECK(self == thread_running_gc_)
1889 << "Only GC-running thread should access the mark stack "
1890 << "in the GC exclusive mark stack mode";
1891 // Access the GC mark stack without a lock.
1892 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1893 ExpandGcMarkStack();
1894 }
1895 gc_mark_stack_->PushBack(to_ref);
1896 }
1897 }
1898
GetAllocationStack()1899 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1900 return heap_->allocation_stack_.get();
1901 }
1902
GetLiveStack()1903 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1904 return heap_->live_stack_.get();
1905 }
1906
1907 // The following visitors are used to verify that there's no references to the from-space left after
1908 // marking.
1909 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1910 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1911 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1912 : collector_(collector) {}
1913
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1914 void operator()(mirror::Object* ref,
1915 MemberOffset offset = MemberOffset(0),
1916 mirror::Object* holder = nullptr) const
1917 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1918 if (ref == nullptr) {
1919 // OK.
1920 return;
1921 }
1922 collector_->AssertToSpaceInvariant(holder, offset, ref);
1923 if (kUseBakerReadBarrier) {
1924 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1925 << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1926 }
1927 }
1928
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1929 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1930 override REQUIRES_SHARED(Locks::mutator_lock_) {
1931 DCHECK(root != nullptr);
1932 operator()(root);
1933 }
1934
1935 private:
1936 ConcurrentCopying* const collector_;
1937 };
1938
1939 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1940 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1941 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1942 : collector_(collector) {}
1943
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1944 void operator()(ObjPtr<mirror::Object> obj,
1945 MemberOffset offset,
1946 bool is_static ATTRIBUTE_UNUSED) const
1947 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1948 mirror::Object* ref =
1949 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1950 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1951 visitor(ref, offset, obj.Ptr());
1952 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1953 void operator()(ObjPtr<mirror::Class> klass,
1954 ObjPtr<mirror::Reference> ref) const
1955 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1956 CHECK(klass->IsTypeOfReferenceClass());
1957 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1958 }
1959
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1960 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1961 REQUIRES_SHARED(Locks::mutator_lock_) {
1962 if (!root->IsNull()) {
1963 VisitRoot(root);
1964 }
1965 }
1966
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1967 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1968 REQUIRES_SHARED(Locks::mutator_lock_) {
1969 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1970 visitor(root->AsMirrorPtr());
1971 }
1972
1973 private:
1974 ConcurrentCopying* const collector_;
1975 };
1976
1977 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1978 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1979 Thread* self = Thread::Current();
1980 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1981 // Verify all threads have is_gc_marking to be false
1982 {
1983 MutexLock mu(self, *Locks::thread_list_lock_);
1984 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1985 for (Thread* thread : thread_list) {
1986 CHECK(!thread->GetIsGcMarking());
1987 }
1988 }
1989
1990 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
1991 REQUIRES_SHARED(Locks::mutator_lock_) {
1992 CHECK(obj != nullptr);
1993 space::RegionSpace* region_space = RegionSpace();
1994 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1995 VerifyNoFromSpaceRefsFieldVisitor visitor(this);
1996 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1997 visitor,
1998 visitor);
1999 if (kUseBakerReadBarrier) {
2000 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
2001 << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
2002 }
2003 };
2004 // Roots.
2005 {
2006 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2007 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2008 Runtime::Current()->VisitRoots(&ref_visitor);
2009 }
2010 // The to-space.
2011 region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
2012 // Non-moving spaces.
2013 {
2014 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2015 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
2016 }
2017 // The alloc stack.
2018 {
2019 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2020 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
2021 it < end; ++it) {
2022 mirror::Object* const obj = it->AsMirrorPtr();
2023 if (obj != nullptr && obj->GetClass() != nullptr) {
2024 // TODO: need to call this only if obj is alive?
2025 ref_visitor(obj);
2026 verify_no_from_space_refs_visitor(obj);
2027 }
2028 }
2029 }
2030 // TODO: LOS. But only refs in LOS are classes.
2031 }
2032
2033 // The following visitors are used to assert the to-space invariant.
2034 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
2035 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)2036 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
2037 : collector_(collector) {}
2038
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2039 void operator()(ObjPtr<mirror::Object> obj,
2040 MemberOffset offset,
2041 bool is_static ATTRIBUTE_UNUSED) const
2042 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2043 mirror::Object* ref =
2044 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
2045 collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
2046 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const2047 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
2048 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2049 CHECK(klass->IsTypeOfReferenceClass());
2050 }
2051
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2052 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2053 REQUIRES_SHARED(Locks::mutator_lock_) {
2054 if (!root->IsNull()) {
2055 VisitRoot(root);
2056 }
2057 }
2058
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2059 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2060 REQUIRES_SHARED(Locks::mutator_lock_) {
2061 mirror::Object* ref = root->AsMirrorPtr();
2062 collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
2063 }
2064
2065 private:
2066 ConcurrentCopying* const collector_;
2067 };
2068
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)2069 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
2070 Closure* checkpoint_callback) {
2071 Thread* self = Thread::Current();
2072 Locks::mutator_lock_->AssertSharedHeld(self);
2073 ThreadList* thread_list = Runtime::Current()->GetThreadList();
2074 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
2075 if (disable_weak_ref_access) {
2076 // We're the only thread that could possibly ask for exclusive access here.
2077 Locks::mutator_lock_->SharedUnlock(self);
2078 {
2079 ScopedPause pause(this);
2080 MutexLock mu(self, *Locks::thread_list_lock_);
2081 checkpoint_callback->Run(self);
2082 for (Thread* thread : thread_list->GetList()) {
2083 check_point.Run(thread);
2084 }
2085 }
2086 Locks::mutator_lock_->SharedLock(self);
2087 } else {
2088 gc_barrier_->Init(self, 0);
2089 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
2090 // If there are no threads to wait which implys that all the checkpoint functions are finished,
2091 // then no need to release the mutator lock.
2092 if (barrier_count == 0) {
2093 return;
2094 }
2095 Locks::mutator_lock_->SharedUnlock(self);
2096 {
2097 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
2098 gc_barrier_->Increment(self, barrier_count);
2099 }
2100 Locks::mutator_lock_->SharedLock(self);
2101 }
2102 }
2103
RevokeThreadLocalMarkStack(Thread * thread)2104 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2105 Thread* self = Thread::Current();
2106 CHECK_EQ(self, thread);
2107 MutexLock mu(self, mark_stack_lock_);
2108 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2109 if (tl_mark_stack != nullptr) {
2110 CHECK(is_marking_);
2111 revoked_mark_stacks_.push_back(tl_mark_stack);
2112 thread->SetThreadLocalMarkStack(nullptr);
2113 }
2114 }
2115
ProcessMarkStack()2116 void ConcurrentCopying::ProcessMarkStack() {
2117 if (kVerboseMode) {
2118 LOG(INFO) << "ProcessMarkStack. ";
2119 }
2120 bool empty_prev = false;
2121 while (true) {
2122 bool empty = ProcessMarkStackOnce();
2123 if (empty_prev && empty) {
2124 // Saw empty mark stack for a second time, done.
2125 break;
2126 }
2127 empty_prev = empty;
2128 }
2129 }
2130
ProcessMarkStackOnce()2131 bool ConcurrentCopying::ProcessMarkStackOnce() {
2132 DCHECK(thread_running_gc_ != nullptr);
2133 Thread* const self = Thread::Current();
2134 DCHECK(self == thread_running_gc_);
2135 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2136 size_t count = 0;
2137 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2138 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2139 // Process the thread-local mark stacks and the GC mark stack.
2140 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2141 /* checkpoint_callback= */ nullptr,
2142 [this] (mirror::Object* ref)
2143 REQUIRES_SHARED(Locks::mutator_lock_) {
2144 ProcessMarkStackRef(ref);
2145 });
2146 while (!gc_mark_stack_->IsEmpty()) {
2147 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2148 ProcessMarkStackRef(to_ref);
2149 ++count;
2150 }
2151 gc_mark_stack_->Reset();
2152 } else if (mark_stack_mode == kMarkStackModeShared) {
2153 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2154 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2155 // disabled at this point.
2156 IssueEmptyCheckpoint();
2157 // Process the shared GC mark stack with a lock.
2158 {
2159 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2160 CHECK(revoked_mark_stacks_.empty());
2161 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2162 }
2163 while (true) {
2164 std::vector<mirror::Object*> refs;
2165 {
2166 // Copy refs with lock. Note the number of refs should be small.
2167 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2168 if (gc_mark_stack_->IsEmpty()) {
2169 break;
2170 }
2171 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2172 p != gc_mark_stack_->End(); ++p) {
2173 refs.push_back(p->AsMirrorPtr());
2174 }
2175 gc_mark_stack_->Reset();
2176 }
2177 for (mirror::Object* ref : refs) {
2178 ProcessMarkStackRef(ref);
2179 ++count;
2180 }
2181 }
2182 } else {
2183 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2184 static_cast<uint32_t>(kMarkStackModeGcExclusive));
2185 {
2186 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2187 CHECK(revoked_mark_stacks_.empty());
2188 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2189 }
2190 // Process the GC mark stack in the exclusive mode. No need to take the lock.
2191 while (!gc_mark_stack_->IsEmpty()) {
2192 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2193 ProcessMarkStackRef(to_ref);
2194 ++count;
2195 }
2196 gc_mark_stack_->Reset();
2197 }
2198
2199 // Return true if the stack was empty.
2200 return count == 0;
2201 }
2202
2203 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2204 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2205 Closure* checkpoint_callback,
2206 const Processor& processor) {
2207 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2208 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2209 if (disable_weak_ref_access) {
2210 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2211 static_cast<uint32_t>(kMarkStackModeShared));
2212 }
2213 size_t count = 0;
2214 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2215 {
2216 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2217 // Make a copy of the mark stack vector.
2218 mark_stacks = revoked_mark_stacks_;
2219 revoked_mark_stacks_.clear();
2220 }
2221 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2222 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2223 mirror::Object* to_ref = p->AsMirrorPtr();
2224 processor(to_ref);
2225 ++count;
2226 }
2227 {
2228 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2229 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2230 // The pool has enough. Delete it.
2231 delete mark_stack;
2232 } else {
2233 // Otherwise, put it into the pool for later reuse.
2234 mark_stack->Reset();
2235 pooled_mark_stacks_.push_back(mark_stack);
2236 }
2237 }
2238 }
2239 if (disable_weak_ref_access) {
2240 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2241 CHECK(revoked_mark_stacks_.empty());
2242 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2243 }
2244 return count;
2245 }
2246
ProcessMarkStackRef(mirror::Object * to_ref)2247 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2248 DCHECK(!region_space_->IsInFromSpace(to_ref));
2249 size_t obj_size = 0;
2250 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2251 if (kUseBakerReadBarrier) {
2252 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2253 << " to_ref=" << to_ref
2254 << " rb_state=" << to_ref->GetReadBarrierState()
2255 << " is_marked=" << IsMarked(to_ref)
2256 << " type=" << to_ref->PrettyTypeOf()
2257 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2258 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2259 << " region_type=" << rtype;
2260 }
2261 bool add_to_live_bytes = false;
2262 // Invariant: There should be no object from a newly-allocated
2263 // region (either large or non-large) on the mark stack.
2264 DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2265 bool perform_scan = false;
2266 switch (rtype) {
2267 case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2268 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2269 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2270 // It may be already marked if we accidentally pushed the same object twice due to the racy
2271 // bitmap read in MarkUnevacFromSpaceRegion.
2272 if (use_generational_cc_ && young_gen_) {
2273 CHECK(region_space_->IsLargeObject(to_ref));
2274 region_space_->ZeroLiveBytesForLargeObject(to_ref);
2275 }
2276 perform_scan = true;
2277 // Only add to the live bytes if the object was not already marked and we are not the young
2278 // GC.
2279 // Why add live bytes even after 2-phase GC?
2280 // We need to ensure that if there is a unevac region with any live
2281 // objects, then its live_bytes must be non-zero. Otherwise,
2282 // ClearFromSpace() will clear the region. Considering, that we may skip
2283 // live objects during marking phase of 2-phase GC, we have to take care
2284 // of such objects here.
2285 add_to_live_bytes = true;
2286 }
2287 break;
2288 case space::RegionSpace::RegionType::kRegionTypeToSpace:
2289 if (use_generational_cc_) {
2290 // Copied to to-space, set the bit so that the next GC can scan objects.
2291 region_space_bitmap_->Set(to_ref);
2292 }
2293 perform_scan = true;
2294 break;
2295 default:
2296 DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2297 DCHECK(!immune_spaces_.ContainsObject(to_ref));
2298 // Non-moving or large-object space.
2299 if (kUseBakerReadBarrier) {
2300 accounting::ContinuousSpaceBitmap* mark_bitmap =
2301 heap_->GetNonMovingSpace()->GetMarkBitmap();
2302 const bool is_los = !mark_bitmap->HasAddress(to_ref);
2303 if (is_los) {
2304 if (!IsAligned<kPageSize>(to_ref)) {
2305 // Ref is a large object that is not aligned, it must be heap
2306 // corruption. Remove memory protection and dump data before
2307 // AtomicSetReadBarrierState since it will fault if the address is not
2308 // valid.
2309 region_space_->Unprotect();
2310 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2311 MemberOffset(0),
2312 to_ref,
2313 /* fatal */ true);
2314 }
2315 DCHECK(heap_->GetLargeObjectsSpace())
2316 << "ref=" << to_ref
2317 << " doesn't belong to non-moving space and large object space doesn't exist";
2318 accounting::LargeObjectBitmap* los_bitmap =
2319 heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2320 DCHECK(los_bitmap->HasAddress(to_ref));
2321 // Only the GC thread could be setting the LOS bit map hence doesn't
2322 // need to be atomically done.
2323 perform_scan = !los_bitmap->Set(to_ref);
2324 } else {
2325 // Only the GC thread could be setting the non-moving space bit map
2326 // hence doesn't need to be atomically done.
2327 perform_scan = !mark_bitmap->Set(to_ref);
2328 }
2329 } else {
2330 perform_scan = true;
2331 }
2332 }
2333 if (perform_scan) {
2334 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2335 if (use_generational_cc_ && young_gen_) {
2336 Scan<true>(to_ref, obj_size);
2337 } else {
2338 Scan<false>(to_ref, obj_size);
2339 }
2340 }
2341 if (kUseBakerReadBarrier) {
2342 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2343 << " to_ref=" << to_ref
2344 << " rb_state=" << to_ref->GetReadBarrierState()
2345 << " is_marked=" << IsMarked(to_ref)
2346 << " type=" << to_ref->PrettyTypeOf()
2347 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2348 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2349 << " region_type=" << rtype
2350 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2351 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2352 }
2353 #ifdef USE_BAKER_READ_BARRIER
2354 mirror::Object* referent = nullptr;
2355 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2356 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2357 !IsInToSpace(referent)))) {
2358 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2359 // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2360 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2361 << "Left unenqueued ref gray " << to_ref;
2362 } else {
2363 // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2364 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2365 // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2366 // this else block.
2367 if (kUseBakerReadBarrier) {
2368 bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
2369 ReadBarrier::GrayState(),
2370 ReadBarrier::NonGrayState());
2371 DCHECK(success) << "Must succeed as we won the race.";
2372 }
2373 }
2374 #else
2375 DCHECK(!kUseBakerReadBarrier);
2376 #endif
2377
2378 if (add_to_live_bytes) {
2379 // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2380 // GC-running thread (no synchronization required).
2381 DCHECK(region_space_bitmap_->Test(to_ref));
2382 if (obj_size == 0) {
2383 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2384 }
2385 region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment));
2386 }
2387 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2388 CHECK(to_ref != nullptr);
2389 space::RegionSpace* region_space = RegionSpace();
2390 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2391 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2392 AssertToSpaceInvariantFieldVisitor visitor(this);
2393 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2394 visitor,
2395 visitor);
2396 }
2397 }
2398
2399 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2400 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2401 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2402 : concurrent_copying_(concurrent_copying) {
2403 }
2404
Run(Thread * self ATTRIBUTE_UNUSED)2405 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
2406 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2407 // to avoid a deadlock b/31500969.
2408 CHECK(concurrent_copying_->weak_ref_access_enabled_);
2409 concurrent_copying_->weak_ref_access_enabled_ = false;
2410 }
2411
2412 private:
2413 ConcurrentCopying* const concurrent_copying_;
2414 };
2415
SwitchToSharedMarkStackMode()2416 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2417 Thread* self = Thread::Current();
2418 DCHECK(thread_running_gc_ != nullptr);
2419 DCHECK(self == thread_running_gc_);
2420 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2421 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2422 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2423 static_cast<uint32_t>(kMarkStackModeThreadLocal));
2424 mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
2425 DisableWeakRefAccessCallback dwrac(this);
2426 // Process the thread local mark stacks one last time after switching to the shared mark stack
2427 // mode and disable weak ref accesses.
2428 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2429 &dwrac,
2430 [this] (mirror::Object* ref)
2431 REQUIRES_SHARED(Locks::mutator_lock_) {
2432 ProcessMarkStackRef(ref);
2433 });
2434 if (kVerboseMode) {
2435 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2436 }
2437 }
2438
SwitchToGcExclusiveMarkStackMode()2439 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2440 Thread* self = Thread::Current();
2441 DCHECK(thread_running_gc_ != nullptr);
2442 DCHECK(self == thread_running_gc_);
2443 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2444 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2445 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2446 static_cast<uint32_t>(kMarkStackModeShared));
2447 mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
2448 QuasiAtomic::ThreadFenceForConstructor();
2449 if (kVerboseMode) {
2450 LOG(INFO) << "Switched to GC exclusive mark stack mode";
2451 }
2452 }
2453
CheckEmptyMarkStack()2454 void ConcurrentCopying::CheckEmptyMarkStack() {
2455 Thread* self = Thread::Current();
2456 DCHECK(thread_running_gc_ != nullptr);
2457 DCHECK(self == thread_running_gc_);
2458 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2459 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2460 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2461 // Thread-local mark stack mode.
2462 RevokeThreadLocalMarkStacks(false, nullptr);
2463 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2464 if (!revoked_mark_stacks_.empty()) {
2465 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2466 while (!mark_stack->IsEmpty()) {
2467 mirror::Object* obj = mark_stack->PopBack();
2468 if (kUseBakerReadBarrier) {
2469 uint32_t rb_state = obj->GetReadBarrierState();
2470 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2471 << rb_state << " is_marked=" << IsMarked(obj);
2472 } else {
2473 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2474 << " is_marked=" << IsMarked(obj);
2475 }
2476 }
2477 }
2478 LOG(FATAL) << "mark stack is not empty";
2479 }
2480 } else {
2481 // Shared, GC-exclusive, or off.
2482 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2483 CHECK(gc_mark_stack_->IsEmpty());
2484 CHECK(revoked_mark_stacks_.empty());
2485 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2486 }
2487 }
2488
SweepSystemWeaks(Thread * self)2489 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2490 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2491 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2492 Runtime::Current()->SweepSystemWeaks(this);
2493 }
2494
Sweep(bool swap_bitmaps)2495 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2496 if (use_generational_cc_ && young_gen_) {
2497 // Only sweep objects on the live stack.
2498 SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2499 } else {
2500 {
2501 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2502 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2503 if (kEnableFromSpaceAccountingCheck) {
2504 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2505 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2506 }
2507 heap_->MarkAllocStackAsLive(live_stack);
2508 live_stack->Reset();
2509 }
2510 CheckEmptyMarkStack();
2511 TimingLogger::ScopedTiming split("Sweep", GetTimings());
2512 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2513 if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2514 && !immune_spaces_.ContainsSpace(space)) {
2515 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2516 TimingLogger::ScopedTiming split2(
2517 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2518 RecordFree(alloc_space->Sweep(swap_bitmaps));
2519 }
2520 }
2521 SweepLargeObjects(swap_bitmaps);
2522 }
2523 }
2524
2525 // Copied and adapted from MarkSweep::SweepArray.
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)2526 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
2527 // This method is only used when Generational CC collection is enabled.
2528 DCHECK(use_generational_cc_);
2529 CheckEmptyMarkStack();
2530 TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2531 Thread* self = Thread::Current();
2532 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
2533 sweep_array_free_buffer_mem_map_.BaseBegin());
2534 size_t chunk_free_pos = 0;
2535 ObjectBytePair freed;
2536 ObjectBytePair freed_los;
2537 // How many objects are left in the array, modified after each space is swept.
2538 StackReference<mirror::Object>* objects = allocations->Begin();
2539 size_t count = allocations->Size();
2540 // Start by sweeping the continuous spaces.
2541 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2542 if (!space->IsAllocSpace() ||
2543 space == region_space_ ||
2544 immune_spaces_.ContainsSpace(space) ||
2545 space->GetLiveBitmap() == nullptr) {
2546 continue;
2547 }
2548 space::AllocSpace* alloc_space = space->AsAllocSpace();
2549 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2550 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2551 if (swap_bitmaps) {
2552 std::swap(live_bitmap, mark_bitmap);
2553 }
2554 StackReference<mirror::Object>* out = objects;
2555 for (size_t i = 0; i < count; ++i) {
2556 mirror::Object* const obj = objects[i].AsMirrorPtr();
2557 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2558 continue;
2559 }
2560 if (space->HasAddress(obj)) {
2561 // This object is in the space, remove it from the array and add it to the sweep buffer
2562 // if needed.
2563 if (!mark_bitmap->Test(obj)) {
2564 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
2565 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2566 freed.objects += chunk_free_pos;
2567 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2568 chunk_free_pos = 0;
2569 }
2570 chunk_free_buffer[chunk_free_pos++] = obj;
2571 }
2572 } else {
2573 (out++)->Assign(obj);
2574 }
2575 }
2576 if (chunk_free_pos > 0) {
2577 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2578 freed.objects += chunk_free_pos;
2579 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2580 chunk_free_pos = 0;
2581 }
2582 // All of the references which space contained are no longer in the allocation stack, update
2583 // the count.
2584 count = out - objects;
2585 }
2586 // Handle the large object space.
2587 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
2588 if (large_object_space != nullptr) {
2589 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
2590 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
2591 if (swap_bitmaps) {
2592 std::swap(large_live_objects, large_mark_objects);
2593 }
2594 for (size_t i = 0; i < count; ++i) {
2595 mirror::Object* const obj = objects[i].AsMirrorPtr();
2596 // Handle large objects.
2597 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2598 continue;
2599 }
2600 if (!large_mark_objects->Test(obj)) {
2601 ++freed_los.objects;
2602 freed_los.bytes += large_object_space->Free(self, obj);
2603 }
2604 }
2605 }
2606 {
2607 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
2608 RecordFree(freed);
2609 RecordFreeLOS(freed_los);
2610 t2.NewTiming("ResetStack");
2611 allocations->Reset();
2612 }
2613 sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
2614 }
2615
MarkZygoteLargeObjects()2616 void ConcurrentCopying::MarkZygoteLargeObjects() {
2617 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2618 Thread* const self = Thread::Current();
2619 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2620 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2621 if (los != nullptr) {
2622 // Pick the current live bitmap (mark bitmap if swapped).
2623 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2624 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2625 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2626 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2627 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2628 reinterpret_cast<uintptr_t>(range.second),
2629 [mark_bitmap, los, self](mirror::Object* obj)
2630 REQUIRES(Locks::heap_bitmap_lock_)
2631 REQUIRES_SHARED(Locks::mutator_lock_) {
2632 if (los->IsZygoteLargeObject(self, obj)) {
2633 mark_bitmap->Set(obj);
2634 }
2635 });
2636 }
2637 }
2638
SweepLargeObjects(bool swap_bitmaps)2639 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2640 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2641 if (heap_->GetLargeObjectsSpace() != nullptr) {
2642 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2643 }
2644 }
2645
CaptureRssAtPeak()2646 void ConcurrentCopying::CaptureRssAtPeak() {
2647 using range_t = std::pair<void*, void*>;
2648 // This operation is expensive as several calls to mincore() are performed.
2649 // Also, this must be called before clearing regions in ReclaimPhase().
2650 // Therefore, we make it conditional on the flag that enables dumping GC
2651 // performance info on shutdown.
2652 if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2653 std::list<range_t> gc_ranges;
2654 auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2655 void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
2656 gc_ranges.emplace_back(range_t(start, end));
2657 };
2658
2659 // region space
2660 DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
2661 gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2662 // mark bitmap
2663 add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2664
2665 // non-moving space
2666 {
2667 DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
2668 gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2669 heap_->non_moving_space_->Limit()));
2670 // mark bitmap
2671 accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2672 add_gc_range(bitmap->Begin(), bitmap->Size());
2673 // live bitmap. Deal with bound bitmaps.
2674 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2675 if (heap_->non_moving_space_->HasBoundBitmaps()) {
2676 DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
2677 bitmap = heap_->non_moving_space_->GetTempBitmap();
2678 } else {
2679 bitmap = heap_->non_moving_space_->GetLiveBitmap();
2680 }
2681 add_gc_range(bitmap->Begin(), bitmap->Size());
2682 }
2683 // large-object space
2684 if (heap_->GetLargeObjectsSpace()) {
2685 heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2686 DCHECK(IsAligned<kPageSize>(map.BaseSize()));
2687 add_gc_range(map.BaseBegin(), map.BaseSize());
2688 });
2689 // mark bitmap
2690 accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2691 add_gc_range(bitmap->Begin(), bitmap->Size());
2692 // live bitmap
2693 bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2694 add_gc_range(bitmap->Begin(), bitmap->Size());
2695 }
2696 // card table
2697 add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2698 // inter-region refs
2699 if (use_generational_cc_ && !young_gen_) {
2700 // region space
2701 add_gc_range(region_space_inter_region_bitmap_.Begin(),
2702 region_space_inter_region_bitmap_.Size());
2703 // non-moving space
2704 add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
2705 non_moving_space_inter_region_bitmap_.Size());
2706 }
2707 // Extract RSS using mincore(). Updates the cummulative RSS counter.
2708 ExtractRssFromMincore(&gc_ranges);
2709 }
2710 }
2711
ReclaimPhase()2712 void ConcurrentCopying::ReclaimPhase() {
2713 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2714 if (kVerboseMode) {
2715 LOG(INFO) << "GC ReclaimPhase";
2716 }
2717 Thread* self = Thread::Current();
2718
2719 {
2720 // Double-check that the mark stack is empty.
2721 // Note: need to set this after VerifyNoFromSpaceRef().
2722 is_asserting_to_space_invariant_ = false;
2723 QuasiAtomic::ThreadFenceForConstructor();
2724 if (kVerboseMode) {
2725 LOG(INFO) << "Issue an empty check point. ";
2726 }
2727 IssueEmptyCheckpoint();
2728 // Disable the check.
2729 is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
2730 if (kUseBakerReadBarrier) {
2731 updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2732 }
2733 CheckEmptyMarkStack();
2734 }
2735
2736 // Capture RSS at the time when memory usage is at its peak. All GC related
2737 // memory ranges like java heap, card table, bitmap etc. are taken into
2738 // account.
2739 // TODO: We can fetch resident memory for region space directly by going
2740 // through list of allocated regions. This way we can avoid calling mincore on
2741 // the biggest memory range, thereby reducing the cost of this function.
2742 CaptureRssAtPeak();
2743
2744 // Sweep the malloc spaces before clearing the from space since the memory tool mode might
2745 // access the object classes in the from space for dead objects.
2746 {
2747 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2748 Sweep(/* swap_bitmaps= */ false);
2749 SwapBitmaps();
2750 heap_->UnBindBitmaps();
2751
2752 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2753 DCHECK(region_space_bitmap_ != nullptr);
2754 region_space_bitmap_ = nullptr;
2755 }
2756
2757
2758 {
2759 // Record freed objects.
2760 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2761 // Don't include thread-locals that are in the to-space.
2762 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2763 const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
2764 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2765 const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
2766 uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2767 cumulative_bytes_moved_ += to_bytes;
2768 uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2769 cumulative_objects_moved_ += to_objects;
2770 if (kEnableFromSpaceAccountingCheck) {
2771 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
2772 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2773 }
2774 CHECK_LE(to_objects, from_objects);
2775 // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2776 // copying to non-moving space in near-OOM situations.
2777 if (from_bytes > 0) {
2778 copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2779 gc_count_++;
2780 }
2781
2782 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2783 uint64_t cleared_bytes;
2784 uint64_t cleared_objects;
2785 {
2786 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2787 region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
2788 // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
2789 // RegionSpace::ClearFromSpace may clear empty unevac regions.
2790 CHECK_GE(cleared_bytes, from_bytes);
2791 CHECK_GE(cleared_objects, from_objects);
2792 }
2793 // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2794 // pad to a larger size.
2795 int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2796 uint64_t freed_objects = cleared_objects - to_objects;
2797 if (kVerboseMode) {
2798 LOG(INFO) << "RecordFree:"
2799 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
2800 << " unevac_from_bytes=" << unevac_from_bytes
2801 << " unevac_from_objects=" << unevac_from_objects
2802 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
2803 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
2804 << " from_space size=" << region_space_->FromSpaceSize()
2805 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2806 << " to_space size=" << region_space_->ToSpaceSize();
2807 LOG(INFO) << "(before) num_bytes_allocated="
2808 << heap_->num_bytes_allocated_.load();
2809 }
2810 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2811 GetCurrentIteration()->SetScannedBytes(bytes_scanned_);
2812 if (kVerboseMode) {
2813 LOG(INFO) << "(after) num_bytes_allocated="
2814 << heap_->num_bytes_allocated_.load();
2815 }
2816
2817 float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2818 reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2819 }
2820
2821 CheckEmptyMarkStack();
2822
2823 if (heap_->dump_region_info_after_gc_) {
2824 LOG(INFO) << "time=" << region_space_->Time();
2825 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2826 }
2827
2828 if (kVerboseMode) {
2829 LOG(INFO) << "GC end of ReclaimPhase";
2830 }
2831 }
2832
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2833 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2834 const char* ref_name,
2835 const char* indent) {
2836 std::ostringstream oss;
2837 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2838 if (ref != nullptr) {
2839 if (kUseBakerReadBarrier) {
2840 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2841 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2842 }
2843 }
2844 if (region_space_->HasAddress(ref)) {
2845 oss << indent << "Region containing " << ref_name << ":" << '\n';
2846 region_space_->DumpRegionForObject(oss, ref);
2847 if (region_space_bitmap_ != nullptr) {
2848 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2849 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2850 }
2851 }
2852 return oss.str();
2853 }
2854
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2855 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2856 MemberOffset offset,
2857 mirror::Object* ref) {
2858 std::ostringstream oss;
2859 constexpr const char* kIndent = " ";
2860 oss << kIndent << "Invalid reference: ref=" << ref
2861 << " referenced from: object=" << obj << " offset= " << offset << '\n';
2862 // Information about `obj`.
2863 oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2864 // Information about `ref`.
2865 oss << DumpReferenceInfo(ref, "ref", kIndent);
2866 return oss.str();
2867 }
2868
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2869 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2870 MemberOffset offset,
2871 mirror::Object* ref) {
2872 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2873 if (is_asserting_to_space_invariant_) {
2874 if (ref == nullptr) {
2875 // OK.
2876 return;
2877 } else if (region_space_->HasAddress(ref)) {
2878 // Check to-space invariant in region space (moving space).
2879 using RegionType = space::RegionSpace::RegionType;
2880 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2881 if (type == RegionType::kRegionTypeToSpace) {
2882 // OK.
2883 return;
2884 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2885 if (!IsMarkedInUnevacFromSpace(ref)) {
2886 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2887 // Remove memory protection from the region space and log debugging information.
2888 region_space_->Unprotect();
2889 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2890 Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2891 }
2892 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2893 } else {
2894 // Not OK: either a from-space ref or a reference in an unused region.
2895 if (type == RegionType::kRegionTypeFromSpace) {
2896 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2897 } else {
2898 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2899 }
2900 // Remove memory protection from the region space and log debugging information.
2901 region_space_->Unprotect();
2902 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2903 if (obj != nullptr) {
2904 LogFromSpaceRefHolder(obj, offset);
2905 LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2906 << obj << " " << obj->GetMarkBit();
2907 if (region_space_->HasAddress(obj)) {
2908 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2909 }
2910 LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2911 *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2912 reinterpret_cast<uint8_t*>(obj)));
2913 if (region_space_->HasAddress(obj)) {
2914 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2915 } else {
2916 accounting::ContinuousSpaceBitmap* mark_bitmap =
2917 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2918 if (mark_bitmap != nullptr) {
2919 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2920 } else {
2921 accounting::LargeObjectBitmap* los_bitmap =
2922 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2923 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2924 }
2925 }
2926 }
2927 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2928 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2929 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2930 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2931 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2932 LOG(FATAL) << "Invalid reference " << ref
2933 << " referenced from object " << obj << " at offset " << offset;
2934 }
2935 } else {
2936 // Check to-space invariant in non-moving space.
2937 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2938 }
2939 }
2940 }
2941
2942 class RootPrinter {
2943 public:
RootPrinter()2944 RootPrinter() { }
2945
2946 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2947 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2948 REQUIRES_SHARED(Locks::mutator_lock_) {
2949 if (!root->IsNull()) {
2950 VisitRoot(root);
2951 }
2952 }
2953
2954 template <class MirrorType>
VisitRoot(mirror::Object ** root)2955 void VisitRoot(mirror::Object** root)
2956 REQUIRES_SHARED(Locks::mutator_lock_) {
2957 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2958 }
2959
2960 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2961 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2962 REQUIRES_SHARED(Locks::mutator_lock_) {
2963 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2964 }
2965 };
2966
DumpGcRoot(mirror::Object * ref)2967 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2968 std::ostringstream oss;
2969 constexpr const char* kIndent = " ";
2970 oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2971 // Information about `ref`.
2972 oss << DumpReferenceInfo(ref, "ref", kIndent);
2973 return oss.str();
2974 }
2975
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2976 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2977 mirror::Object* ref) {
2978 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2979 if (is_asserting_to_space_invariant_) {
2980 if (ref == nullptr) {
2981 // OK.
2982 return;
2983 } else if (region_space_->HasAddress(ref)) {
2984 // Check to-space invariant in region space (moving space).
2985 using RegionType = space::RegionSpace::RegionType;
2986 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2987 if (type == RegionType::kRegionTypeToSpace) {
2988 // OK.
2989 return;
2990 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2991 if (!IsMarkedInUnevacFromSpace(ref)) {
2992 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2993 // Remove memory protection from the region space and log debugging information.
2994 region_space_->Unprotect();
2995 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2996 }
2997 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2998 } else {
2999 // Not OK: either a from-space ref or a reference in an unused region.
3000 if (type == RegionType::kRegionTypeFromSpace) {
3001 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
3002 } else {
3003 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
3004 }
3005 // Remove memory protection from the region space and log debugging information.
3006 region_space_->Unprotect();
3007 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
3008 if (gc_root_source == nullptr) {
3009 // No info.
3010 } else if (gc_root_source->HasArtField()) {
3011 ArtField* field = gc_root_source->GetArtField();
3012 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
3013 << ArtField::PrettyField(field);
3014 RootPrinter root_printer;
3015 field->VisitRoots(root_printer);
3016 } else if (gc_root_source->HasArtMethod()) {
3017 ArtMethod* method = gc_root_source->GetArtMethod();
3018 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
3019 << ArtMethod::PrettyMethod(method);
3020 RootPrinter root_printer;
3021 method->VisitRoots(root_printer, kRuntimePointerSize);
3022 }
3023 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3024 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
3025 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
3026 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
3027 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
3028 LOG(FATAL) << "Invalid reference " << ref;
3029 }
3030 } else {
3031 // Check to-space invariant in non-moving space.
3032 AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
3033 }
3034 }
3035 }
3036
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)3037 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
3038 if (kUseBakerReadBarrier) {
3039 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
3040 << " holder rb_state=" << obj->GetReadBarrierState();
3041 } else {
3042 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
3043 }
3044 if (region_space_->IsInFromSpace(obj)) {
3045 LOG(INFO) << "holder is in the from-space.";
3046 } else if (region_space_->IsInToSpace(obj)) {
3047 LOG(INFO) << "holder is in the to-space.";
3048 } else if (region_space_->IsInUnevacFromSpace(obj)) {
3049 LOG(INFO) << "holder is in the unevac from-space.";
3050 if (IsMarkedInUnevacFromSpace(obj)) {
3051 LOG(INFO) << "holder is marked in the region space bitmap.";
3052 } else {
3053 LOG(INFO) << "holder is not marked in the region space bitmap.";
3054 }
3055 } else {
3056 // In a non-moving space.
3057 if (immune_spaces_.ContainsObject(obj)) {
3058 LOG(INFO) << "holder is in an immune image or the zygote space.";
3059 } else {
3060 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
3061 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3062 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3063 const bool is_los = !mark_bitmap->HasAddress(obj);
3064 if (is_los) {
3065 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
3066 << "obj=" << obj
3067 << " LOS bit map covers the entire lower 4GB address range";
3068 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3069 }
3070 if (!is_los && mark_bitmap->Test(obj)) {
3071 LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
3072 } else if (is_los && los_bitmap->Test(obj)) {
3073 LOG(INFO) << "holder is marked in the los bit map.";
3074 } else {
3075 // If ref is on the allocation stack, then it is considered
3076 // mark/alive (but not necessarily on the live stack.)
3077 if (IsOnAllocStack(obj)) {
3078 LOG(INFO) << "holder is on the alloc stack.";
3079 } else {
3080 LOG(INFO) << "holder is not marked or on the alloc stack.";
3081 }
3082 }
3083 }
3084 }
3085 LOG(INFO) << "offset=" << offset.SizeValue();
3086 }
3087
IsMarkedInNonMovingSpace(mirror::Object * from_ref)3088 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
3089 DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
3090 DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
3091 if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
3092 return true;
3093 } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
3094 // Read the comment in IsMarkedInUnevacFromSpace()
3095 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3096 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3097 const bool is_los = !mark_bitmap->HasAddress(from_ref);
3098 if (is_los) {
3099 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
3100 << "ref=" << from_ref
3101 << " doesn't belong to non-moving space and large object space doesn't exist";
3102 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3103 }
3104 if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
3105 return true;
3106 }
3107 }
3108 return IsOnAllocStack(from_ref);
3109 }
3110
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)3111 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
3112 mirror::Object* ref) {
3113 CHECK(ref != nullptr);
3114 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
3115 // In a non-moving space. Check that the ref is marked.
3116 if (immune_spaces_.ContainsObject(ref)) {
3117 // Immune space case.
3118 if (kUseBakerReadBarrier) {
3119 // Immune object may not be gray if called from the GC.
3120 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3121 return;
3122 }
3123 bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3124 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3125 << "Unmarked immune space ref. obj=" << obj << " rb_state="
3126 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3127 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3128 << " updated_all_immune_objects=" << updated_all_immune_objects;
3129 }
3130 } else {
3131 // Non-moving space and large-object space (LOS) cases.
3132 // If `ref` is on the allocation stack, then it may not be
3133 // marked live, but considered marked/alive (but not
3134 // necessarily on the live stack).
3135 CHECK(IsMarkedInNonMovingSpace(ref))
3136 << "Unmarked ref that's not on the allocation stack."
3137 << " obj=" << obj
3138 << " ref=" << ref
3139 << " rb_state=" << ref->GetReadBarrierState()
3140 << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3141 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3142 << " done_scanning="
3143 << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3144 << " self=" << Thread::Current();
3145 }
3146 }
3147
3148 // Used to scan ref fields of an object.
3149 template <bool kNoUnEvac>
3150 class ConcurrentCopying::RefFieldsVisitor {
3151 public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3152 explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3153 : collector_(collector), thread_(thread) {
3154 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3155 DCHECK_IMPLIES(kNoUnEvac, collector_->use_generational_cc_);
3156 }
3157
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3158 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3159 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3160 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3161 collector_->Process<kNoUnEvac>(obj, offset);
3162 }
3163
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3164 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3165 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3166 CHECK(klass->IsTypeOfReferenceClass());
3167 collector_->DelayReferenceReferent(klass, ref);
3168 }
3169
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3170 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3171 ALWAYS_INLINE
3172 REQUIRES_SHARED(Locks::mutator_lock_) {
3173 if (!root->IsNull()) {
3174 VisitRoot(root);
3175 }
3176 }
3177
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3178 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3179 ALWAYS_INLINE
3180 REQUIRES_SHARED(Locks::mutator_lock_) {
3181 collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3182 }
3183
3184 private:
3185 ConcurrentCopying* const collector_;
3186 Thread* const thread_;
3187 };
3188
3189 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref,size_t obj_size)3190 inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) {
3191 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3192 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3193 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3194 // Avoid all read barriers during visit references to help performance.
3195 // Don't do this in transaction mode because we may read the old value of an field which may
3196 // trigger read barriers.
3197 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3198 }
3199 if (obj_size == 0) {
3200 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
3201 }
3202 bytes_scanned_ += obj_size;
3203
3204 DCHECK(!region_space_->IsInFromSpace(to_ref));
3205 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3206 RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3207 // Disable the read barrier for a performance reason.
3208 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3209 visitor, visitor);
3210 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3211 thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3212 }
3213 }
3214
3215 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3216 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3217 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3218 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3219 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3220 mirror::Object* ref = obj->GetFieldObject<
3221 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3222 mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3223 thread_running_gc_,
3224 ref,
3225 /*holder=*/ obj,
3226 offset);
3227 if (to_ref == ref) {
3228 return;
3229 }
3230 // This may fail if the mutator writes to the field at the same time. But it's ok.
3231 mirror::Object* expected_ref = ref;
3232 mirror::Object* new_ref = to_ref;
3233 do {
3234 if (expected_ref !=
3235 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3236 // It was updated by the mutator.
3237 break;
3238 }
3239 // Use release CAS to make sure threads reading the reference see contents of copied objects.
3240 } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3241 offset,
3242 expected_ref,
3243 new_ref,
3244 CASMode::kWeak,
3245 std::memory_order_release));
3246 }
3247
3248 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3249 inline void ConcurrentCopying::VisitRoots(
3250 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
3251 Thread* const self = Thread::Current();
3252 for (size_t i = 0; i < count; ++i) {
3253 mirror::Object** root = roots[i];
3254 mirror::Object* ref = *root;
3255 mirror::Object* to_ref = Mark(self, ref);
3256 if (to_ref == ref) {
3257 continue;
3258 }
3259 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3260 mirror::Object* expected_ref = ref;
3261 mirror::Object* new_ref = to_ref;
3262 do {
3263 if (expected_ref != addr->load(std::memory_order_relaxed)) {
3264 // It was updated by the mutator.
3265 break;
3266 }
3267 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3268 }
3269 }
3270
3271 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3272 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3273 mirror::CompressedReference<mirror::Object>* root) {
3274 DCHECK(!root->IsNull());
3275 mirror::Object* const ref = root->AsMirrorPtr();
3276 mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3277 if (to_ref != ref) {
3278 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3279 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3280 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3281 // If the cas fails, then it was updated by the mutator.
3282 do {
3283 if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3284 // It was updated by the mutator.
3285 break;
3286 }
3287 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3288 }
3289 }
3290
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3291 inline void ConcurrentCopying::VisitRoots(
3292 mirror::CompressedReference<mirror::Object>** roots, size_t count,
3293 const RootInfo& info ATTRIBUTE_UNUSED) {
3294 Thread* const self = Thread::Current();
3295 for (size_t i = 0; i < count; ++i) {
3296 mirror::CompressedReference<mirror::Object>* const root = roots[i];
3297 if (!root->IsNull()) {
3298 // kGrayImmuneObject is true because this is used for the thread flip.
3299 MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3300 }
3301 }
3302 }
3303
3304 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3305 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3306 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3307 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3308 : collector_(collector), enabled_(false) {
3309 if (kUseBakerReadBarrier &&
3310 collector_->thread_running_gc_ == Thread::Current() &&
3311 !collector_->gc_grays_immune_objects_) {
3312 collector_->gc_grays_immune_objects_ = true;
3313 enabled_ = true;
3314 }
3315 }
3316
~ScopedGcGraysImmuneObjects()3317 ~ScopedGcGraysImmuneObjects() {
3318 if (kUseBakerReadBarrier &&
3319 collector_->thread_running_gc_ == Thread::Current() &&
3320 enabled_) {
3321 DCHECK(collector_->gc_grays_immune_objects_);
3322 collector_->gc_grays_immune_objects_ = false;
3323 }
3324 }
3325
3326 private:
3327 ConcurrentCopying* const collector_;
3328 bool enabled_;
3329 };
3330
3331 // Fill the given memory block with a fake object. Used to fill in a
3332 // copy of objects that was lost in race.
FillWithFakeObject(Thread * const self,mirror::Object * fake_obj,size_t byte_size)3333 void ConcurrentCopying::FillWithFakeObject(Thread* const self,
3334 mirror::Object* fake_obj,
3335 size_t byte_size) {
3336 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3337 // barriers here because we need the updated reference to the int array class, etc. Temporary set
3338 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3339 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3340 CHECK_ALIGNED(byte_size, kObjectAlignment);
3341 memset(fake_obj, 0, byte_size);
3342 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3343 // Explicitly mark to make sure to get an object in the to-space.
3344 mirror::Class* int_array_class = down_cast<mirror::Class*>(
3345 Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3346 CHECK(int_array_class != nullptr);
3347 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3348 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3349 }
3350 size_t component_size = int_array_class->GetComponentSize();
3351 CHECK_EQ(component_size, sizeof(int32_t));
3352 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3353 if (data_offset > byte_size) {
3354 // An int array is too big. Use java.lang.Object.
3355 CHECK(java_lang_Object_ != nullptr);
3356 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3357 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3358 }
3359 CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3360 fake_obj->SetClass(java_lang_Object_);
3361 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()));
3362 } else {
3363 // Use an int array.
3364 fake_obj->SetClass(int_array_class);
3365 CHECK(fake_obj->IsArrayInstance<kVerifyNone>());
3366 int32_t length = (byte_size - data_offset) / component_size;
3367 ObjPtr<mirror::Array> fake_arr = fake_obj->AsArray<kVerifyNone>();
3368 fake_arr->SetLength(length);
3369 CHECK_EQ(fake_arr->GetLength(), length)
3370 << "byte_size=" << byte_size << " length=" << length
3371 << " component_size=" << component_size << " data_offset=" << data_offset;
3372 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()))
3373 << "byte_size=" << byte_size << " length=" << length
3374 << " component_size=" << component_size << " data_offset=" << data_offset;
3375 }
3376 }
3377
3378 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3379 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3380 // Try to reuse the blocks that were unused due to CAS failures.
3381 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3382 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3383 size_t byte_size;
3384 uint8_t* addr;
3385 {
3386 MutexLock mu(self, skipped_blocks_lock_);
3387 auto it = skipped_blocks_map_.lower_bound(alloc_size);
3388 if (it == skipped_blocks_map_.end()) {
3389 // Not found.
3390 return nullptr;
3391 }
3392 byte_size = it->first;
3393 CHECK_GE(byte_size, alloc_size);
3394 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3395 // If remainder would be too small for a fake object, retry with a larger request size.
3396 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3397 if (it == skipped_blocks_map_.end()) {
3398 // Not found.
3399 return nullptr;
3400 }
3401 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3402 CHECK_GE(it->first - alloc_size, min_object_size)
3403 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3404 }
3405 // Found a block.
3406 CHECK(it != skipped_blocks_map_.end());
3407 byte_size = it->first;
3408 addr = it->second;
3409 CHECK_GE(byte_size, alloc_size);
3410 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3411 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3412 if (kVerboseMode) {
3413 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3414 }
3415 skipped_blocks_map_.erase(it);
3416 }
3417 memset(addr, 0, byte_size);
3418 if (byte_size > alloc_size) {
3419 // Return the remainder to the map.
3420 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3421 CHECK_GE(byte_size - alloc_size, min_object_size);
3422 // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3423 // violation and possible deadlock. The deadlock case is a recursive case:
3424 // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3425 FillWithFakeObject(self,
3426 reinterpret_cast<mirror::Object*>(addr + alloc_size),
3427 byte_size - alloc_size);
3428 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3429 {
3430 MutexLock mu(self, skipped_blocks_lock_);
3431 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3432 }
3433 }
3434 return reinterpret_cast<mirror::Object*>(addr);
3435 }
3436
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3437 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3438 mirror::Object* from_ref,
3439 mirror::Object* holder,
3440 MemberOffset offset) {
3441 DCHECK(region_space_->IsInFromSpace(from_ref));
3442 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3443 // from a previous GC that is either inside or outside the allocated region.
3444 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3445 if (UNLIKELY(klass == nullptr)) {
3446 // Remove memory protection from the region space and log debugging information.
3447 region_space_->Unprotect();
3448 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3449 }
3450 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3451 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3452 // objects, but it's ok and necessary.
3453 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3454 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
3455 // Large objects are never evacuated.
3456 CHECK_LE(region_space_alloc_size, space::RegionSpace::kRegionSize);
3457 size_t region_space_bytes_allocated = 0U;
3458 size_t non_moving_space_bytes_allocated = 0U;
3459 size_t bytes_allocated = 0U;
3460 size_t unused_size;
3461 bool fall_back_to_non_moving = false;
3462 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3463 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size);
3464 bytes_allocated = region_space_bytes_allocated;
3465 if (LIKELY(to_ref != nullptr)) {
3466 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3467 } else {
3468 // Failed to allocate in the region space. Try the skipped blocks.
3469 to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3470 if (to_ref != nullptr) {
3471 // Succeeded to allocate in a skipped block.
3472 if (heap_->use_tlab_) {
3473 // This is necessary for the tlab case as it's not accounted in the space.
3474 region_space_->RecordAlloc(to_ref);
3475 }
3476 bytes_allocated = region_space_alloc_size;
3477 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3478 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3479 to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3480 } else {
3481 // Fall back to the non-moving space.
3482 fall_back_to_non_moving = true;
3483 if (kVerboseMode) {
3484 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3485 << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3486 << " skipped_objects="
3487 << to_space_objects_skipped_.load(std::memory_order_relaxed);
3488 }
3489 to_ref = heap_->non_moving_space_->Alloc(
3490 self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size);
3491 if (UNLIKELY(to_ref == nullptr)) {
3492 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3493 << obj_size << " byte object in region type "
3494 << region_space_->GetRegionType(from_ref);
3495 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3496 }
3497 bytes_allocated = non_moving_space_bytes_allocated;
3498 }
3499 }
3500 DCHECK(to_ref != nullptr);
3501
3502 // Copy the object excluding the lock word since that is handled in the loop.
3503 to_ref->SetClass(klass);
3504 const size_t kObjectHeaderSize = sizeof(mirror::Object);
3505 DCHECK_GE(obj_size, kObjectHeaderSize);
3506 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3507 sizeof(LockWord),
3508 "Object header size does not match");
3509 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3510 // object in the from space is immutable other than the lock word. b/31423258
3511 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3512 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3513 obj_size - kObjectHeaderSize);
3514
3515 // Attempt to install the forward pointer. This is in a loop as the
3516 // lock word atomic write can fail.
3517 while (true) {
3518 LockWord old_lock_word = from_ref->GetLockWord(false);
3519
3520 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3521 // Lost the race. Another thread (either GC or mutator) stored
3522 // the forwarding pointer first. Make the lost copy (to_ref)
3523 // look like a valid but dead (fake) object and keep it for
3524 // future reuse.
3525 FillWithFakeObject(self, to_ref, bytes_allocated);
3526 if (!fall_back_to_non_moving) {
3527 DCHECK(region_space_->IsInToSpace(to_ref));
3528 // Record the lost copy for later reuse.
3529 heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3530 to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3531 to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3532 MutexLock mu(self, skipped_blocks_lock_);
3533 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3534 reinterpret_cast<uint8_t*>(to_ref)));
3535 } else {
3536 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3537 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3538 // Free the non-moving-space chunk.
3539 heap_->non_moving_space_->Free(self, to_ref);
3540 }
3541
3542 // Get the winner's forward ptr.
3543 mirror::Object* lost_fwd_ptr = to_ref;
3544 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3545 CHECK(to_ref != nullptr);
3546 CHECK_NE(to_ref, lost_fwd_ptr);
3547 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3548 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3549 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3550 return to_ref;
3551 }
3552
3553 // Copy the old lock word over since we did not copy it yet.
3554 to_ref->SetLockWord(old_lock_word, false);
3555 // Set the gray ptr.
3556 if (kUseBakerReadBarrier) {
3557 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3558 }
3559
3560 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3561
3562 // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any
3563 // readers of the fwd pointer.
3564 bool success = from_ref->CasLockWord(old_lock_word,
3565 new_lock_word,
3566 CASMode::kWeak,
3567 std::memory_order_release);
3568 if (LIKELY(success)) {
3569 // The CAS succeeded.
3570 DCHECK(thread_running_gc_ != nullptr);
3571 if (LIKELY(self == thread_running_gc_)) {
3572 objects_moved_gc_thread_ += 1;
3573 bytes_moved_gc_thread_ += bytes_allocated;
3574 } else {
3575 objects_moved_.fetch_add(1, std::memory_order_relaxed);
3576 bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3577 }
3578
3579 if (LIKELY(!fall_back_to_non_moving)) {
3580 DCHECK(region_space_->IsInToSpace(to_ref));
3581 } else {
3582 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3583 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3584 if (!use_generational_cc_ || !young_gen_) {
3585 // Mark it in the live bitmap.
3586 CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3587 }
3588 if (!kUseBakerReadBarrier) {
3589 // Mark it in the mark bitmap.
3590 CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3591 }
3592 }
3593 if (kUseBakerReadBarrier) {
3594 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3595 }
3596 DCHECK(GetFwdPtr(from_ref) == to_ref);
3597 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3598 // Make sure that anyone who sees to_ref also sees both the object contents and the
3599 // fwd pointer.
3600 QuasiAtomic::ThreadFenceForConstructor();
3601 PushOntoMarkStack(self, to_ref);
3602 return to_ref;
3603 } else {
3604 // The CAS failed. It may have lost the race or may have failed
3605 // due to monitor/hashcode ops. Either way, retry.
3606 }
3607 }
3608 }
3609
IsMarked(mirror::Object * from_ref)3610 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3611 DCHECK(from_ref != nullptr);
3612 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3613 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3614 // It's already marked.
3615 return from_ref;
3616 }
3617 mirror::Object* to_ref;
3618 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3619 to_ref = GetFwdPtr(from_ref);
3620 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3621 heap_->non_moving_space_->HasAddress(to_ref))
3622 << "from_ref=" << from_ref << " to_ref=" << to_ref;
3623 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3624 if (IsMarkedInUnevacFromSpace(from_ref)) {
3625 to_ref = from_ref;
3626 } else {
3627 to_ref = nullptr;
3628 }
3629 } else {
3630 // At this point, `from_ref` should not be in the region space
3631 // (i.e. within an "unused" region).
3632 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3633 // from_ref is in a non-moving space.
3634 if (immune_spaces_.ContainsObject(from_ref)) {
3635 // An immune object is alive.
3636 to_ref = from_ref;
3637 } else {
3638 // Non-immune non-moving space. Use the mark bitmap.
3639 if (IsMarkedInNonMovingSpace(from_ref)) {
3640 // Already marked.
3641 to_ref = from_ref;
3642 } else {
3643 to_ref = nullptr;
3644 }
3645 }
3646 }
3647 return to_ref;
3648 }
3649
IsOnAllocStack(mirror::Object * ref)3650 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3651 // TODO: Explain why this is here. What release operation does it pair with?
3652 std::atomic_thread_fence(std::memory_order_acquire);
3653 accounting::ObjectStack* alloc_stack = GetAllocationStack();
3654 return alloc_stack->Contains(ref);
3655 }
3656
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3657 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3658 mirror::Object* ref,
3659 mirror::Object* holder,
3660 MemberOffset offset) {
3661 // ref is in a non-moving space (from_ref == to_ref).
3662 DCHECK(!region_space_->HasAddress(ref)) << ref;
3663 DCHECK(!immune_spaces_.ContainsObject(ref));
3664 // Use the mark bitmap.
3665 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3666 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3667 const bool is_los = !mark_bitmap->HasAddress(ref);
3668 if (is_los) {
3669 if (!IsAligned<kPageSize>(ref)) {
3670 // Ref is a large object that is not aligned, it must be heap
3671 // corruption. Remove memory protection and dump data before
3672 // AtomicSetReadBarrierState since it will fault if the address is not
3673 // valid.
3674 region_space_->Unprotect();
3675 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3676 }
3677 DCHECK(heap_->GetLargeObjectsSpace())
3678 << "ref=" << ref
3679 << " doesn't belong to non-moving space and large object space doesn't exist";
3680 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3681 DCHECK(los_bitmap->HasAddress(ref));
3682 }
3683 if (use_generational_cc_) {
3684 // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3685 DCHECK(kUseBakerReadBarrier);
3686 // Not done scanning, use AtomicSetReadBarrierPointer.
3687 if (!done_scanning_.load(std::memory_order_acquire)) {
3688 // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3689 // mutator may see references to the from space. Instead, use the Baker pointer itself as
3690 // the mark bit.
3691 //
3692 // We need to avoid marking objects that are on allocation stack as that will lead to a
3693 // situation (after this GC cycle is finished) where some object(s) are on both allocation
3694 // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3695 // (b/117426281).
3696 if (!IsOnAllocStack(ref) &&
3697 ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3698 // TODO: We don't actually need to scan this object later, we just need to clear the gray
3699 // bit.
3700 // We don't need to mark newly allocated objects (those in allocation stack) as they can
3701 // only point to to-space objects. Also, they are considered live till the next GC cycle.
3702 PushOntoMarkStack(self, ref);
3703 }
3704 return ref;
3705 }
3706 }
3707 if (!is_los && mark_bitmap->Test(ref)) {
3708 // Already marked.
3709 } else if (is_los && los_bitmap->Test(ref)) {
3710 // Already marked in LOS.
3711 } else if (IsOnAllocStack(ref)) {
3712 // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3713 // Objects on the allocation stack need not be marked.
3714 if (!is_los) {
3715 DCHECK(!mark_bitmap->Test(ref));
3716 } else {
3717 DCHECK(!los_bitmap->Test(ref));
3718 }
3719 if (kUseBakerReadBarrier) {
3720 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3721 }
3722 } else {
3723 // Not marked nor on the allocation stack. Try to mark it.
3724 // This may or may not succeed, which is ok.
3725 bool success = false;
3726 if (kUseBakerReadBarrier) {
3727 success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3728 ReadBarrier::GrayState());
3729 } else {
3730 success = is_los ?
3731 !los_bitmap->AtomicTestAndSet(ref) :
3732 !mark_bitmap->AtomicTestAndSet(ref);
3733 }
3734 if (success) {
3735 if (kUseBakerReadBarrier) {
3736 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3737 }
3738 PushOntoMarkStack(self, ref);
3739 }
3740 }
3741 return ref;
3742 }
3743
FinishPhase()3744 void ConcurrentCopying::FinishPhase() {
3745 Thread* const self = Thread::Current();
3746 {
3747 MutexLock mu(self, mark_stack_lock_);
3748 CHECK(revoked_mark_stacks_.empty());
3749 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3750 }
3751 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3752 // positives.
3753 if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3754 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3755 // We do not currently use the region space cards at all, madvise them away to save ram.
3756 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3757 } else if (use_generational_cc_ && !young_gen_) {
3758 region_space_inter_region_bitmap_.Clear();
3759 non_moving_space_inter_region_bitmap_.Clear();
3760 }
3761 {
3762 MutexLock mu(self, skipped_blocks_lock_);
3763 skipped_blocks_map_.clear();
3764 }
3765 {
3766 ReaderMutexLock mu(self, *Locks::mutator_lock_);
3767 {
3768 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3769 heap_->ClearMarkedObjects();
3770 }
3771 if (kUseBakerReadBarrier && kFilterModUnionCards) {
3772 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3773 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3774 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3775 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3776 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3777 // Filter out cards that don't need to be set.
3778 if (table != nullptr) {
3779 table->FilterCards();
3780 }
3781 }
3782 }
3783 if (kUseBakerReadBarrier) {
3784 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3785 DCHECK(rb_mark_bit_stack_ != nullptr);
3786 const auto* limit = rb_mark_bit_stack_->End();
3787 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3788 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3789 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3790 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3791 << "rb_mark_bit_stack_->IsFull()"
3792 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3793 << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3794 }
3795 rb_mark_bit_stack_->Reset();
3796 }
3797 }
3798 if (measure_read_barrier_slow_path_) {
3799 MutexLock mu(self, rb_slow_path_histogram_lock_);
3800 rb_slow_path_time_histogram_.AdjustAndAddValue(
3801 rb_slow_path_ns_.load(std::memory_order_relaxed));
3802 rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3803 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3804 }
3805 }
3806
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3807 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3808 bool do_atomic_update) {
3809 mirror::Object* from_ref = field->AsMirrorPtr();
3810 if (from_ref == nullptr) {
3811 return true;
3812 }
3813 mirror::Object* to_ref = IsMarked(from_ref);
3814 if (to_ref == nullptr) {
3815 return false;
3816 }
3817 if (from_ref != to_ref) {
3818 if (do_atomic_update) {
3819 do {
3820 if (field->AsMirrorPtr() != from_ref) {
3821 // Concurrently overwritten by a mutator.
3822 break;
3823 }
3824 } while (!field->CasWeakRelaxed(from_ref, to_ref));
3825 } else {
3826 field->Assign(to_ref);
3827 }
3828 }
3829 return true;
3830 }
3831
MarkObject(mirror::Object * from_ref)3832 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3833 return Mark(Thread::Current(), from_ref);
3834 }
3835
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3836 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3837 ObjPtr<mirror::Reference> reference) {
3838 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3839 }
3840
ProcessReferences(Thread * self)3841 void ConcurrentCopying::ProcessReferences(Thread* self) {
3842 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3843 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3844 GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings());
3845 }
3846
RevokeAllThreadLocalBuffers()3847 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3848 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3849 region_space_->RevokeAllThreadLocalBuffers();
3850 }
3851
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3852 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3853 mirror::Object* from_ref) {
3854 if (self != thread_running_gc_) {
3855 rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3856 } else {
3857 rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3858 }
3859 ScopedTrace tr(__FUNCTION__);
3860 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3861 mirror::Object* ret =
3862 Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3863 from_ref);
3864 if (measure_read_barrier_slow_path_) {
3865 rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3866 }
3867 return ret;
3868 }
3869
DumpPerformanceInfo(std::ostream & os)3870 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3871 GarbageCollector::DumpPerformanceInfo(os);
3872 size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3873 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3874 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3875 Histogram<uint64_t>::CumulativeData cumulative_data;
3876 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3877 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3878 }
3879 if (rb_slow_path_count_total_ > 0) {
3880 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3881 }
3882 if (rb_slow_path_count_gc_total_ > 0) {
3883 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3884 }
3885
3886 os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3887 << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3888 << " GC cycles\n";
3889
3890 os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3891 << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3892 << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3893
3894 os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n";
3895 os << "Cumulative objects moved " << cumulative_objects_moved_ << "\n";
3896
3897 os << "Peak regions allocated "
3898 << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3899 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3900 << ") / " << region_space_->GetNumRegions() / 2 << " ("
3901 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3902 << ")\n";
3903 if (!young_gen_) {
3904 os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n";
3905 }
3906 }
3907
3908 } // namespace collector
3909 } // namespace gc
3910 } // namespace art
3911