1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19
20 #define DEBUG_TYPE "ppctti"
21
22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
24
25 // This is currently only used for the data prefetch pass which is only enabled
26 // for BG/Q by default.
27 static cl::opt<unsigned>
28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
29 cl::desc("The loop prefetch cache line size"));
30
31 static cl::opt<bool>
32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
33 cl::desc("Enable using coldcc calling conv for cold "
34 "internal functions"));
35
36 // The latency of mtctr is only justified if there are more than 4
37 // comparisons that will be removed as a result.
38 static cl::opt<unsigned>
39 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
40 cl::desc("Loops with a constant trip count smaller than "
41 "this value will not use the count register."));
42
43 //===----------------------------------------------------------------------===//
44 //
45 // PPC cost model.
46 //
47 //===----------------------------------------------------------------------===//
48
49 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)50 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
51 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
52 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
53 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
54 TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
55 return TTI::PSK_Software;
56 }
57
getIntImmCost(const APInt & Imm,Type * Ty)58 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
59 if (DisablePPCConstHoist)
60 return BaseT::getIntImmCost(Imm, Ty);
61
62 assert(Ty->isIntegerTy());
63
64 unsigned BitSize = Ty->getPrimitiveSizeInBits();
65 if (BitSize == 0)
66 return ~0U;
67
68 if (Imm == 0)
69 return TTI::TCC_Free;
70
71 if (Imm.getBitWidth() <= 64) {
72 if (isInt<16>(Imm.getSExtValue()))
73 return TTI::TCC_Basic;
74
75 if (isInt<32>(Imm.getSExtValue())) {
76 // A constant that can be materialized using lis.
77 if ((Imm.getZExtValue() & 0xFFFF) == 0)
78 return TTI::TCC_Basic;
79
80 return 2 * TTI::TCC_Basic;
81 }
82 }
83
84 return 4 * TTI::TCC_Basic;
85 }
86
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)87 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
88 const APInt &Imm, Type *Ty) {
89 if (DisablePPCConstHoist)
90 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty);
91
92 assert(Ty->isIntegerTy());
93
94 unsigned BitSize = Ty->getPrimitiveSizeInBits();
95 if (BitSize == 0)
96 return ~0U;
97
98 switch (IID) {
99 default:
100 return TTI::TCC_Free;
101 case Intrinsic::sadd_with_overflow:
102 case Intrinsic::uadd_with_overflow:
103 case Intrinsic::ssub_with_overflow:
104 case Intrinsic::usub_with_overflow:
105 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
106 return TTI::TCC_Free;
107 break;
108 case Intrinsic::experimental_stackmap:
109 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
110 return TTI::TCC_Free;
111 break;
112 case Intrinsic::experimental_patchpoint_void:
113 case Intrinsic::experimental_patchpoint_i64:
114 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
115 return TTI::TCC_Free;
116 break;
117 }
118 return PPCTTIImpl::getIntImmCost(Imm, Ty);
119 }
120
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)121 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
122 const APInt &Imm, Type *Ty) {
123 if (DisablePPCConstHoist)
124 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty);
125
126 assert(Ty->isIntegerTy());
127
128 unsigned BitSize = Ty->getPrimitiveSizeInBits();
129 if (BitSize == 0)
130 return ~0U;
131
132 unsigned ImmIdx = ~0U;
133 bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
134 ZeroFree = false;
135 switch (Opcode) {
136 default:
137 return TTI::TCC_Free;
138 case Instruction::GetElementPtr:
139 // Always hoist the base address of a GetElementPtr. This prevents the
140 // creation of new constants for every base constant that gets constant
141 // folded with the offset.
142 if (Idx == 0)
143 return 2 * TTI::TCC_Basic;
144 return TTI::TCC_Free;
145 case Instruction::And:
146 RunFree = true; // (for the rotate-and-mask instructions)
147 LLVM_FALLTHROUGH;
148 case Instruction::Add:
149 case Instruction::Or:
150 case Instruction::Xor:
151 ShiftedFree = true;
152 LLVM_FALLTHROUGH;
153 case Instruction::Sub:
154 case Instruction::Mul:
155 case Instruction::Shl:
156 case Instruction::LShr:
157 case Instruction::AShr:
158 ImmIdx = 1;
159 break;
160 case Instruction::ICmp:
161 UnsignedFree = true;
162 ImmIdx = 1;
163 // Zero comparisons can use record-form instructions.
164 LLVM_FALLTHROUGH;
165 case Instruction::Select:
166 ZeroFree = true;
167 break;
168 case Instruction::PHI:
169 case Instruction::Call:
170 case Instruction::Ret:
171 case Instruction::Load:
172 case Instruction::Store:
173 break;
174 }
175
176 if (ZeroFree && Imm == 0)
177 return TTI::TCC_Free;
178
179 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
180 if (isInt<16>(Imm.getSExtValue()))
181 return TTI::TCC_Free;
182
183 if (RunFree) {
184 if (Imm.getBitWidth() <= 32 &&
185 (isShiftedMask_32(Imm.getZExtValue()) ||
186 isShiftedMask_32(~Imm.getZExtValue())))
187 return TTI::TCC_Free;
188
189 if (ST->isPPC64() &&
190 (isShiftedMask_64(Imm.getZExtValue()) ||
191 isShiftedMask_64(~Imm.getZExtValue())))
192 return TTI::TCC_Free;
193 }
194
195 if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
196 return TTI::TCC_Free;
197
198 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
199 return TTI::TCC_Free;
200 }
201
202 return PPCTTIImpl::getIntImmCost(Imm, Ty);
203 }
204
getUserCost(const User * U,ArrayRef<const Value * > Operands)205 unsigned PPCTTIImpl::getUserCost(const User *U,
206 ArrayRef<const Value *> Operands) {
207 if (U->getType()->isVectorTy()) {
208 // Instructions that need to be split should cost more.
209 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
210 return LT.first * BaseT::getUserCost(U, Operands);
211 }
212
213 return BaseT::getUserCost(U, Operands);
214 }
215
mightUseCTR(BasicBlock * BB,TargetLibraryInfo * LibInfo)216 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB,
217 TargetLibraryInfo *LibInfo) {
218 const PPCTargetMachine &TM = ST->getTargetMachine();
219
220 // Loop through the inline asm constraints and look for something that
221 // clobbers ctr.
222 auto asmClobbersCTR = [](InlineAsm *IA) {
223 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
224 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
225 InlineAsm::ConstraintInfo &C = CIV[i];
226 if (C.Type != InlineAsm::isInput)
227 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
228 if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
229 return true;
230 }
231 return false;
232 };
233
234 // Determining the address of a TLS variable results in a function call in
235 // certain TLS models.
236 std::function<bool(const Value*)> memAddrUsesCTR =
237 [&memAddrUsesCTR, &TM](const Value *MemAddr) -> bool {
238 const auto *GV = dyn_cast<GlobalValue>(MemAddr);
239 if (!GV) {
240 // Recurse to check for constants that refer to TLS global variables.
241 if (const auto *CV = dyn_cast<Constant>(MemAddr))
242 for (const auto &CO : CV->operands())
243 if (memAddrUsesCTR(CO))
244 return true;
245
246 return false;
247 }
248
249 if (!GV->isThreadLocal())
250 return false;
251 TLSModel::Model Model = TM.getTLSModel(GV);
252 return Model == TLSModel::GeneralDynamic ||
253 Model == TLSModel::LocalDynamic;
254 };
255
256 auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
257 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
258 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
259
260 return false;
261 };
262
263 for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
264 J != JE; ++J) {
265 if (CallInst *CI = dyn_cast<CallInst>(J)) {
266 // Inline ASM is okay, unless it clobbers the ctr register.
267 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
268 if (asmClobbersCTR(IA))
269 return true;
270 continue;
271 }
272
273 if (Function *F = CI->getCalledFunction()) {
274 // Most intrinsics don't become function calls, but some might.
275 // sin, cos, exp and log are always calls.
276 unsigned Opcode = 0;
277 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
278 switch (F->getIntrinsicID()) {
279 default: continue;
280 // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
281 // we're definitely using CTR.
282 case Intrinsic::set_loop_iterations:
283 case Intrinsic::loop_decrement:
284 return true;
285
286 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
287 // because, although it does clobber the counter register, the
288 // control can't then return to inside the loop unless there is also
289 // an eh_sjlj_setjmp.
290 case Intrinsic::eh_sjlj_setjmp:
291
292 case Intrinsic::memcpy:
293 case Intrinsic::memmove:
294 case Intrinsic::memset:
295 case Intrinsic::powi:
296 case Intrinsic::log:
297 case Intrinsic::log2:
298 case Intrinsic::log10:
299 case Intrinsic::exp:
300 case Intrinsic::exp2:
301 case Intrinsic::pow:
302 case Intrinsic::sin:
303 case Intrinsic::cos:
304 return true;
305 case Intrinsic::copysign:
306 if (CI->getArgOperand(0)->getType()->getScalarType()->
307 isPPC_FP128Ty())
308 return true;
309 else
310 continue; // ISD::FCOPYSIGN is never a library call.
311 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
312 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
313 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
314 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
315 case Intrinsic::rint: Opcode = ISD::FRINT; break;
316 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
317 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
318 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
319 case Intrinsic::round: Opcode = ISD::FROUND; break;
320 case Intrinsic::lround: Opcode = ISD::LROUND; break;
321 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
322 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break;
323 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break;
324 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break;
325 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break;
326 }
327 }
328
329 // PowerPC does not use [US]DIVREM or other library calls for
330 // operations on regular types which are not otherwise library calls
331 // (i.e. soft float or atomics). If adapting for targets that do,
332 // additional care is required here.
333
334 LibFunc Func;
335 if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
336 LibInfo->getLibFunc(F->getName(), Func) &&
337 LibInfo->hasOptimizedCodeGen(Func)) {
338 // Non-read-only functions are never treated as intrinsics.
339 if (!CI->onlyReadsMemory())
340 return true;
341
342 // Conversion happens only for FP calls.
343 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
344 return true;
345
346 switch (Func) {
347 default: return true;
348 case LibFunc_copysign:
349 case LibFunc_copysignf:
350 continue; // ISD::FCOPYSIGN is never a library call.
351 case LibFunc_copysignl:
352 return true;
353 case LibFunc_fabs:
354 case LibFunc_fabsf:
355 case LibFunc_fabsl:
356 continue; // ISD::FABS is never a library call.
357 case LibFunc_sqrt:
358 case LibFunc_sqrtf:
359 case LibFunc_sqrtl:
360 Opcode = ISD::FSQRT; break;
361 case LibFunc_floor:
362 case LibFunc_floorf:
363 case LibFunc_floorl:
364 Opcode = ISD::FFLOOR; break;
365 case LibFunc_nearbyint:
366 case LibFunc_nearbyintf:
367 case LibFunc_nearbyintl:
368 Opcode = ISD::FNEARBYINT; break;
369 case LibFunc_ceil:
370 case LibFunc_ceilf:
371 case LibFunc_ceill:
372 Opcode = ISD::FCEIL; break;
373 case LibFunc_rint:
374 case LibFunc_rintf:
375 case LibFunc_rintl:
376 Opcode = ISD::FRINT; break;
377 case LibFunc_round:
378 case LibFunc_roundf:
379 case LibFunc_roundl:
380 Opcode = ISD::FROUND; break;
381 case LibFunc_trunc:
382 case LibFunc_truncf:
383 case LibFunc_truncl:
384 Opcode = ISD::FTRUNC; break;
385 case LibFunc_fmin:
386 case LibFunc_fminf:
387 case LibFunc_fminl:
388 Opcode = ISD::FMINNUM; break;
389 case LibFunc_fmax:
390 case LibFunc_fmaxf:
391 case LibFunc_fmaxl:
392 Opcode = ISD::FMAXNUM; break;
393 }
394 }
395
396 if (Opcode) {
397 EVT EVTy =
398 TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
399
400 if (EVTy == MVT::Other)
401 return true;
402
403 if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
404 continue;
405 else if (EVTy.isVector() &&
406 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
407 continue;
408
409 return true;
410 }
411 }
412
413 return true;
414 } else if (isa<BinaryOperator>(J) &&
415 J->getType()->getScalarType()->isPPC_FP128Ty()) {
416 // Most operations on ppc_f128 values become calls.
417 return true;
418 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
419 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
420 CastInst *CI = cast<CastInst>(J);
421 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
422 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
423 isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
424 isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
425 return true;
426 } else if (isLargeIntegerTy(!TM.isPPC64(),
427 J->getType()->getScalarType()) &&
428 (J->getOpcode() == Instruction::UDiv ||
429 J->getOpcode() == Instruction::SDiv ||
430 J->getOpcode() == Instruction::URem ||
431 J->getOpcode() == Instruction::SRem)) {
432 return true;
433 } else if (!TM.isPPC64() &&
434 isLargeIntegerTy(false, J->getType()->getScalarType()) &&
435 (J->getOpcode() == Instruction::Shl ||
436 J->getOpcode() == Instruction::AShr ||
437 J->getOpcode() == Instruction::LShr)) {
438 // Only on PPC32, for 128-bit integers (specifically not 64-bit
439 // integers), these might be runtime calls.
440 return true;
441 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
442 // On PowerPC, indirect jumps use the counter register.
443 return true;
444 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
445 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
446 return true;
447 }
448
449 // FREM is always a call.
450 if (J->getOpcode() == Instruction::FRem)
451 return true;
452
453 if (ST->useSoftFloat()) {
454 switch(J->getOpcode()) {
455 case Instruction::FAdd:
456 case Instruction::FSub:
457 case Instruction::FMul:
458 case Instruction::FDiv:
459 case Instruction::FPTrunc:
460 case Instruction::FPExt:
461 case Instruction::FPToUI:
462 case Instruction::FPToSI:
463 case Instruction::UIToFP:
464 case Instruction::SIToFP:
465 case Instruction::FCmp:
466 return true;
467 }
468 }
469
470 for (Value *Operand : J->operands())
471 if (memAddrUsesCTR(Operand))
472 return true;
473 }
474
475 return false;
476 }
477
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)478 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
479 AssumptionCache &AC,
480 TargetLibraryInfo *LibInfo,
481 HardwareLoopInfo &HWLoopInfo) {
482 const PPCTargetMachine &TM = ST->getTargetMachine();
483 TargetSchedModel SchedModel;
484 SchedModel.init(ST);
485
486 // Do not convert small short loops to CTR loop.
487 unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
488 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
489 SmallPtrSet<const Value *, 32> EphValues;
490 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
491 CodeMetrics Metrics;
492 for (BasicBlock *BB : L->blocks())
493 Metrics.analyzeBasicBlock(BB, *this, EphValues);
494 // 6 is an approximate latency for the mtctr instruction.
495 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
496 return false;
497 }
498
499 // We don't want to spill/restore the counter register, and so we don't
500 // want to use the counter register if the loop contains calls.
501 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
502 I != IE; ++I)
503 if (mightUseCTR(*I, LibInfo))
504 return false;
505
506 SmallVector<BasicBlock*, 4> ExitingBlocks;
507 L->getExitingBlocks(ExitingBlocks);
508
509 // If there is an exit edge known to be frequently taken,
510 // we should not transform this loop.
511 for (auto &BB : ExitingBlocks) {
512 Instruction *TI = BB->getTerminator();
513 if (!TI) continue;
514
515 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
516 uint64_t TrueWeight = 0, FalseWeight = 0;
517 if (!BI->isConditional() ||
518 !BI->extractProfMetadata(TrueWeight, FalseWeight))
519 continue;
520
521 // If the exit path is more frequent than the loop path,
522 // we return here without further analysis for this loop.
523 bool TrueIsExit = !L->contains(BI->getSuccessor(0));
524 if (( TrueIsExit && FalseWeight < TrueWeight) ||
525 (!TrueIsExit && FalseWeight > TrueWeight))
526 return false;
527 }
528 }
529
530 LLVMContext &C = L->getHeader()->getContext();
531 HWLoopInfo.CountType = TM.isPPC64() ?
532 Type::getInt64Ty(C) : Type::getInt32Ty(C);
533 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
534 return true;
535 }
536
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)537 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
538 TTI::UnrollingPreferences &UP) {
539 if (ST->getCPUDirective() == PPC::DIR_A2) {
540 // The A2 is in-order with a deep pipeline, and concatenation unrolling
541 // helps expose latency-hiding opportunities to the instruction scheduler.
542 UP.Partial = UP.Runtime = true;
543
544 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
545 // often outweigh the cost of a division to compute the trip count.
546 UP.AllowExpensiveTripCount = true;
547 }
548
549 BaseT::getUnrollingPreferences(L, SE, UP);
550 }
551
552 // This function returns true to allow using coldcc calling convention.
553 // Returning true results in coldcc being used for functions which are cold at
554 // all call sites when the callers of the functions are not calling any other
555 // non coldcc functions.
useColdCCForColdCall(Function & F)556 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
557 return EnablePPCColdCC;
558 }
559
enableAggressiveInterleaving(bool LoopHasReductions)560 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
561 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
562 // on combining the loads generated for consecutive accesses, and failure to
563 // do so is particularly expensive. This makes it much more likely (compared
564 // to only using concatenation unrolling).
565 if (ST->getCPUDirective() == PPC::DIR_A2)
566 return true;
567
568 return LoopHasReductions;
569 }
570
571 PPCTTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const572 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
573 TTI::MemCmpExpansionOptions Options;
574 Options.LoadSizes = {8, 4, 2, 1};
575 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
576 return Options;
577 }
578
enableInterleavedAccessVectorization()579 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
580 return true;
581 }
582
getNumberOfRegisters(unsigned ClassID) const583 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
584 assert(ClassID == GPRRC || ClassID == FPRRC ||
585 ClassID == VRRC || ClassID == VSXRC);
586 if (ST->hasVSX()) {
587 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
588 return ClassID == VSXRC ? 64 : 32;
589 }
590 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
591 return 32;
592 }
593
getRegisterClassForType(bool Vector,Type * Ty) const594 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
595 if (Vector)
596 return ST->hasVSX() ? VSXRC : VRRC;
597 else if (Ty && (Ty->getScalarType()->isFloatTy() ||
598 Ty->getScalarType()->isDoubleTy()))
599 return ST->hasVSX() ? VSXRC : FPRRC;
600 else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
601 Ty->getScalarType()->isPPC_FP128Ty()))
602 return VRRC;
603 else if (Ty && Ty->getScalarType()->isHalfTy())
604 return VSXRC;
605 else
606 return GPRRC;
607 }
608
getRegisterClassName(unsigned ClassID) const609 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
610
611 switch (ClassID) {
612 default:
613 llvm_unreachable("unknown register class");
614 return "PPC::unknown register class";
615 case GPRRC: return "PPC::GPRRC";
616 case FPRRC: return "PPC::FPRRC";
617 case VRRC: return "PPC::VRRC";
618 case VSXRC: return "PPC::VSXRC";
619 }
620 }
621
getRegisterBitWidth(bool Vector) const622 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
623 if (Vector) {
624 if (ST->hasQPX()) return 256;
625 if (ST->hasAltivec()) return 128;
626 return 0;
627 }
628
629 if (ST->isPPC64())
630 return 64;
631 return 32;
632
633 }
634
getCacheLineSize() const635 unsigned PPCTTIImpl::getCacheLineSize() const {
636 // Check first if the user specified a custom line size.
637 if (CacheLineSize.getNumOccurrences() > 0)
638 return CacheLineSize;
639
640 // On P7, P8 or P9 we have a cache line size of 128.
641 unsigned Directive = ST->getCPUDirective();
642 // Assume that Future CPU has the same cache line size as the others.
643 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
644 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
645 return 128;
646
647 // On other processors return a default of 64 bytes.
648 return 64;
649 }
650
getPrefetchDistance() const651 unsigned PPCTTIImpl::getPrefetchDistance() const {
652 // This seems like a reasonable default for the BG/Q (this pass is enabled, by
653 // default, only on the BG/Q).
654 return 300;
655 }
656
getMaxInterleaveFactor(unsigned VF)657 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
658 unsigned Directive = ST->getCPUDirective();
659 // The 440 has no SIMD support, but floating-point instructions
660 // have a 5-cycle latency, so unroll by 5x for latency hiding.
661 if (Directive == PPC::DIR_440)
662 return 5;
663
664 // The A2 has no SIMD support, but floating-point instructions
665 // have a 6-cycle latency, so unroll by 6x for latency hiding.
666 if (Directive == PPC::DIR_A2)
667 return 6;
668
669 // FIXME: For lack of any better information, do no harm...
670 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
671 return 1;
672
673 // For P7 and P8, floating-point instructions have a 6-cycle latency and
674 // there are two execution units, so unroll by 12x for latency hiding.
675 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
676 // Assume that future is the same as the others.
677 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
678 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
679 return 12;
680
681 // For most things, modern systems have two execution units (and
682 // out-of-order execution).
683 return 2;
684 }
685
686 // Adjust the cost of vector instructions on targets which there is overlap
687 // between the vector and scalar units, thereby reducing the overall throughput
688 // of vector code wrt. scalar code.
vectorCostAdjustment(int Cost,unsigned Opcode,Type * Ty1,Type * Ty2)689 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
690 Type *Ty2) {
691 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
692 return Cost;
693
694 std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
695 // If type legalization involves splitting the vector, we don't want to
696 // double the cost at every step - only the last step.
697 if (LT1.first != 1 || !LT1.second.isVector())
698 return Cost;
699
700 int ISD = TLI->InstructionOpcodeToISD(Opcode);
701 if (TLI->isOperationExpand(ISD, LT1.second))
702 return Cost;
703
704 if (Ty2) {
705 std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
706 if (LT2.first != 1 || !LT2.second.isVector())
707 return Cost;
708 }
709
710 return Cost * 2;
711 }
712
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)713 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
714 TTI::OperandValueKind Op1Info,
715 TTI::OperandValueKind Op2Info,
716 TTI::OperandValueProperties Opd1PropInfo,
717 TTI::OperandValueProperties Opd2PropInfo,
718 ArrayRef<const Value *> Args,
719 const Instruction *CxtI) {
720 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
721
722 // Fallback to the default implementation.
723 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
724 Opd1PropInfo, Opd2PropInfo);
725 return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
726 }
727
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)728 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
729 Type *SubTp) {
730 // Legalize the type.
731 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
732
733 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
734 // (at least in the sense that there need only be one non-loop-invariant
735 // instruction). We need one such shuffle instruction for each actual
736 // register (this is not true for arbitrary shuffles, but is true for the
737 // structured types of shuffles covered by TTI::ShuffleKind).
738 return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
739 nullptr);
740 }
741
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I)742 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
743 const Instruction *I) {
744 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
745
746 int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src);
747 return vectorCostAdjustment(Cost, Opcode, Dst, Src);
748 }
749
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)750 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
751 const Instruction *I) {
752 int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
753 return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
754 }
755
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)756 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
757 assert(Val->isVectorTy() && "This must be a vector type");
758
759 int ISD = TLI->InstructionOpcodeToISD(Opcode);
760 assert(ISD && "Invalid opcode");
761
762 int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
763 Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
764
765 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
766 // Double-precision scalars are already located in index #0 (or #1 if LE).
767 if (ISD == ISD::EXTRACT_VECTOR_ELT &&
768 Index == (ST->isLittleEndian() ? 1 : 0))
769 return 0;
770
771 return Cost;
772
773 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
774 // Floating point scalars are already located in index #0.
775 if (Index == 0)
776 return 0;
777
778 return Cost;
779
780 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
781 if (ST->hasP9Altivec()) {
782 if (ISD == ISD::INSERT_VECTOR_ELT)
783 // A move-to VSR and a permute/insert. Assume vector operation cost
784 // for both (cost will be 2x on P9).
785 return vectorCostAdjustment(2, Opcode, Val, nullptr);
786
787 // It's an extract. Maybe we can do a cheap move-from VSR.
788 unsigned EltSize = Val->getScalarSizeInBits();
789 if (EltSize == 64) {
790 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
791 if (Index == MfvsrdIndex)
792 return 1;
793 } else if (EltSize == 32) {
794 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
795 if (Index == MfvsrwzIndex)
796 return 1;
797 }
798
799 // We need a vector extract (or mfvsrld). Assume vector operation cost.
800 // The cost of the load constant for a vector extract is disregarded
801 // (invariant, easily schedulable).
802 return vectorCostAdjustment(1, Opcode, Val, nullptr);
803
804 } else if (ST->hasDirectMove())
805 // Assume permute has standard cost.
806 // Assume move-to/move-from VSR have 2x standard cost.
807 return 3;
808 }
809
810 // Estimated cost of a load-hit-store delay. This was obtained
811 // experimentally as a minimum needed to prevent unprofitable
812 // vectorization for the paq8p benchmark. It may need to be
813 // raised further if other unprofitable cases remain.
814 unsigned LHSPenalty = 2;
815 if (ISD == ISD::INSERT_VECTOR_ELT)
816 LHSPenalty += 7;
817
818 // Vector element insert/extract with Altivec is very expensive,
819 // because they require store and reload with the attendant
820 // processor stall for load-hit-store. Until VSX is available,
821 // these need to be estimated as very costly.
822 if (ISD == ISD::EXTRACT_VECTOR_ELT ||
823 ISD == ISD::INSERT_VECTOR_ELT)
824 return LHSPenalty + Cost;
825
826 return Cost;
827 }
828
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,const Instruction * I)829 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
830 MaybeAlign Alignment, unsigned AddressSpace,
831 const Instruction *I) {
832 // Legalize the type.
833 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
834 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
835 "Invalid Opcode");
836
837 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
838 Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
839
840 bool IsAltivecType = ST->hasAltivec() &&
841 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
842 LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
843 bool IsVSXType = ST->hasVSX() &&
844 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
845 bool IsQPXType = ST->hasQPX() &&
846 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
847
848 // VSX has 32b/64b load instructions. Legalization can handle loading of
849 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
850 // PPCTargetLowering can't compute the cost appropriately. So here we
851 // explicitly check this case.
852 unsigned MemBytes = Src->getPrimitiveSizeInBits();
853 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
854 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
855 return 1;
856
857 // Aligned loads and stores are easy.
858 unsigned SrcBytes = LT.second.getStoreSize();
859 if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
860 return Cost;
861
862 // If we can use the permutation-based load sequence, then this is also
863 // relatively cheap (not counting loop-invariant instructions): one load plus
864 // one permute (the last load in a series has extra cost, but we're
865 // neglecting that here). Note that on the P7, we could do unaligned loads
866 // for Altivec types using the VSX instructions, but that's more expensive
867 // than using the permutation-based load sequence. On the P8, that's no
868 // longer true.
869 if (Opcode == Instruction::Load &&
870 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
871 Alignment >= LT.second.getScalarType().getStoreSize())
872 return Cost + LT.first; // Add the cost of the permutations.
873
874 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
875 // P7, unaligned vector loads are more expensive than the permutation-based
876 // load sequence, so that might be used instead, but regardless, the net cost
877 // is about the same (not counting loop-invariant instructions).
878 if (IsVSXType || (ST->hasVSX() && IsAltivecType))
879 return Cost;
880
881 // Newer PPC supports unaligned memory access.
882 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
883 return Cost;
884
885 // PPC in general does not support unaligned loads and stores. They'll need
886 // to be decomposed based on the alignment factor.
887
888 // Add the cost of each scalar load or store.
889 assert(Alignment);
890 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
891
892 // For a vector type, there is also scalarization overhead (only for
893 // stores, loads are expanded using the vector-load + permutation sequence,
894 // which is much less expensive).
895 if (Src->isVectorTy() && Opcode == Instruction::Store)
896 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
897 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
898
899 return Cost;
900 }
901
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace,bool UseMaskForCond,bool UseMaskForGaps)902 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
903 unsigned Factor,
904 ArrayRef<unsigned> Indices,
905 unsigned Alignment,
906 unsigned AddressSpace,
907 bool UseMaskForCond,
908 bool UseMaskForGaps) {
909 if (UseMaskForCond || UseMaskForGaps)
910 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
911 Alignment, AddressSpace,
912 UseMaskForCond, UseMaskForGaps);
913
914 assert(isa<VectorType>(VecTy) &&
915 "Expect a vector type for interleaved memory op");
916
917 // Legalize the type.
918 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
919
920 // Firstly, the cost of load/store operation.
921 int Cost =
922 getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace);
923
924 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
925 // (at least in the sense that there need only be one non-loop-invariant
926 // instruction). For each result vector, we need one shuffle per incoming
927 // vector (except that the first shuffle can take two incoming vectors
928 // because it does not need to take itself).
929 Cost += Factor*(LT.first-1);
930
931 return Cost;
932 }
933
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF,unsigned VF)934 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
935 ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
936 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
937 }
938
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF,unsigned ScalarizationCostPassed)939 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
940 ArrayRef<Type*> Tys, FastMathFlags FMF,
941 unsigned ScalarizationCostPassed) {
942 if (ID == Intrinsic::bswap && ST->hasP9Vector())
943 return TLI->getTypeLegalizationCost(DL, RetTy).first;
944 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
945 ScalarizationCostPassed);
946 }
947
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)948 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
949 LoopInfo *LI, DominatorTree *DT,
950 AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
951 // Process nested loops first.
952 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
953 if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
954 return false; // Stop search.
955
956 HardwareLoopInfo HWLoopInfo(L);
957
958 if (!HWLoopInfo.canAnalyze(*LI))
959 return false;
960
961 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
962 return false;
963
964 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
965 return false;
966
967 *BI = HWLoopInfo.ExitBranch;
968 return true;
969 }
970