1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #include "tensorflow/compiler/xla/service/hlo_memory_scheduler.h"
17
18 #include <algorithm>
19 #include <limits>
20 #include <map>
21 #include <queue>
22 #include <utility>
23 #include <vector>
24
25 #include "absl/container/flat_hash_map.h"
26 #include "absl/container/flat_hash_set.h"
27 #include "tensorflow/compiler/xla/service/dfs_hlo_visitor_with_default.h"
28 #include "tensorflow/compiler/xla/service/heap_simulator.h"
29 #include "tensorflow/compiler/xla/service/hlo_computation.h"
30 #include "tensorflow/compiler/xla/service/hlo_opcode.h"
31 #include "tensorflow/compiler/xla/service/hlo_schedule.h"
32 #include "tensorflow/compiler/xla/service/tuple_points_to_analysis.h"
33 #include "tensorflow/compiler/xla/shape_util.h"
34 #include "tensorflow/compiler/xla/status_macros.h"
35 #include "tensorflow/compiler/xla/statusor.h"
36 #include "tensorflow/compiler/xla/types.h"
37 #include "tensorflow/compiler/xla/util.h"
38 #include "tensorflow/core/lib/core/errors.h"
39 #include "tensorflow/core/lib/gtl/map_util.h"
40 #include "tensorflow/core/platform/logging.h"
41
42 namespace xla {
43 namespace {
44
45 using ::tensorflow::strings::HumanReadableNumBytes;
46
47 // Class implementing a list scheduler of HLO instructions which produces a
48 // sequence which minimizes memory usage by preferring to schedule the node that
49 // frees bigger buffer and defines smaller outputs.
50 //
51 // Note that list scheduler is a greedy algorithm which cannot guarantee a
52 // global optimal solution. As a counterexample, considering the following
53 // graph:
54 //
55 // +--> B ===> C -------+
56 // A -> | |
57 // | v
58 // +--> D ---> F=======>G
59 // | ^
60 // | |
61 // +--> E -----+
62 //
63 // --> : Buffer with size 1
64 // ==> : Buffer with size 2
65 //
66 // The list scheduler will always try to defer scheduling B in a greedy way
67 // since its output buffer is bigger than input. The sequence it creates will
68 // be:
69 // A D E F B C G
70 // , which has a maximum memory usage of 6 (B is alive while F is executing).
71 //
72 // An optimal way to schedule the previous graph is:
73 // A B C D E F G
74 // , which has a maximum memory usage of 5 (when F is executing).
75 //
76 class ListScheduler {
77 public:
78 // Construct and return a memory-minimizing sequence of HLO instructions
79 // containing the given HLO computation.
Run(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation)80 static StatusOr<HloInstructionSequence> Run(
81 HloComputation* computation,
82 const TuplePointsToAnalysis& points_to_analysis,
83 const BufferValue::SizeFunction& size_function,
84 const absl::flat_hash_map<const HloComputation*, int64>&
85 memory_by_computation) {
86 ListScheduler scheduler(computation, points_to_analysis, size_function,
87 memory_by_computation);
88 return scheduler.CreateSchedule();
89 }
90
91 // Returns whether the memory used by the given HLO should be ignored by the
92 // scheduling heuristic.
IgnoreInstruction(const HloInstruction & instruction)93 static bool IgnoreInstruction(const HloInstruction& instruction) {
94 return instruction.opcode() == HloOpcode::kParameter ||
95 instruction.opcode() == HloOpcode::kConstant;
96 }
97
98 private:
99 // The scheduling priority of an instruction is first the number of bytes
100 // freed by scheduling the instruction, and second (tie-breaker) by the number
101 // of users. This is represented as a std::pair containing these two values
102 // (first element is the bytes freed). std::pair provides the necessary
103 // comparison operators.
104 using Priority = std::pair<int64, int64>;
105
ListScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation)106 ListScheduler(HloComputation* computation,
107 const TuplePointsToAnalysis& points_to_analysis,
108 const BufferValue::SizeFunction& size_function,
109 const absl::flat_hash_map<const HloComputation*, int64>&
110 memory_by_computation)
111 : computation_(computation),
112 points_to_analysis_(points_to_analysis),
113 size_function_(size_function),
114 memory_by_computation_(memory_by_computation) {
115 // Create a map containing the LogicalBuffer uses for each HLO
116 // instruction. An HLO instruction "uses" a LogicalBuffer if the
117 // LogicalBuffer is in an operand of the instruction as indicated by
118 // points-to analysis.
119 for (auto* instruction : computation->instructions()) {
120 absl::flat_hash_set<const LogicalBuffer*> instr_uses;
121 for (auto* operand : instruction->operands()) {
122 points_to_analysis.GetPointsToSet(operand).ForEachElement(
123 [&](const ShapeIndex& /*index*/,
124 const PointsToSet::BufferList& buffers) {
125 instr_uses.insert(buffers.begin(), buffers.end());
126 });
127 }
128 buffer_uses_[instruction] = std::vector<const LogicalBuffer*>(
129 instr_uses.begin(), instr_uses.end());
130 }
131
132 // Create map containing the number of unscheduled uses (hlo instructions)
133 // of each logical buffer.
134 unscheduled_use_count_.reserve(points_to_analysis.num_logical_buffers());
135 for (auto* instruction : computation->instructions()) {
136 for (auto* buffer :
137 points_to_analysis.GetBuffersDefinedByInstruction(instruction)) {
138 unscheduled_use_count_[buffer] = 0;
139 }
140 }
141 for (auto* instruction : computation->instructions()) {
142 for (const LogicalBuffer* buffer : buffer_uses_.at(instruction)) {
143 ++unscheduled_use_count_[buffer];
144 }
145 }
146
147 // Buffers live out of the computation have an implicit use at the end of
148 // the computation.
149 for (const LogicalBuffer* live_out_buffer :
150 points_to_analysis.GetPointsToSet(computation->root_instruction())
151 .CreateFlattenedSet()) {
152 ++unscheduled_use_count_[live_out_buffer];
153 }
154 }
155
156 // Returns whether the memory used by the given buffer should be ignored by
157 // the scheduling heuristic.
IgnoreBuffer(const LogicalBuffer & buffer)158 static bool IgnoreBuffer(const LogicalBuffer& buffer) {
159 return IgnoreInstruction(*buffer.instruction());
160 }
161
162 // An entry in the worklist used by CreateSchedule. Corresponds to one
163 // HloInstruction, plus some cached metadata, saved for the purposes of making
164 // BytesFreedIfScheduled fast.
165 struct ReadyListEntry {
166 HloInstruction* instruction;
167
168 // The total size of all buffers defined by this instruction.
169 int64 bytes_defined;
170
171 // For each buffer B used by this instruction, we keep a pair (B, U), where
172 // U is the number of uses of B that have not yet been scheduled. This pair
173 // is a pointer into the unscheduled_use_count_ map, so it gets updated for
174 // free when we update counts in the map.
175 std::vector<const std::pair<const LogicalBuffer* const, int64>*>
176 used_buffer_unscheduled_use_counts;
177 };
178
179 // Creates a ReadyListEntry for the given instruction.
MakeReadyListEntry(HloInstruction * instruction)180 ReadyListEntry MakeReadyListEntry(HloInstruction* instruction) {
181 ReadyListEntry entry;
182 entry.instruction = instruction;
183
184 entry.bytes_defined = 0;
185 for (auto* buffer :
186 points_to_analysis_.GetBuffersDefinedByInstruction(instruction)) {
187 if (!IgnoreBuffer(*buffer)) {
188 entry.bytes_defined += size_function_(*buffer);
189 }
190 }
191
192 for (auto* buffer : buffer_uses_.at(instruction)) {
193 if (IgnoreBuffer(*buffer)) {
194 continue;
195 }
196 auto unscheduled_use_count_it = unscheduled_use_count_.find(buffer);
197 CHECK(unscheduled_use_count_it != unscheduled_use_count_.end());
198 entry.used_buffer_unscheduled_use_counts.push_back(
199 &*unscheduled_use_count_it);
200 }
201 return entry;
202 }
203
204 // Returns the number of bytes freed *after* the HLO instruction finishes.
205 // The current List algorithm only considers two states for an instruction:
206 // right before it runs, and after it finishes. We don't represent memory
207 // usage during the execution of an instruction. But if the instruction calls
208 // subcomputations, they are only live during the instruction's execution.
209 // We end up counting the memory used by subcomputations as memory "defined"
210 // by the instruction. This is not entirely accurate, but it is more accurate
211 // than not taking subcomputations into account at all. In the future, we may
212 // improve accounting for subcomputation memory (b/65409243).
BytesFreedIfScheduled(const ReadyListEntry & entry)213 int64 BytesFreedIfScheduled(const ReadyListEntry& entry) {
214 auto instruction = entry.instruction;
215 auto opcode = instruction->opcode();
216
217 // Scheduling the outfeed early and the infeed late gives more time to the
218 // communicating processor to do its work.
219 if (opcode == HloOpcode::kOutfeed &&
220 !instruction->outfeed_config().empty()) {
221 return INT_MAX;
222 }
223 if (opcode == HloOpcode::kInfeed && !instruction->infeed_config().empty()) {
224 return INT_MIN;
225 }
226
227 int64_t freed_bytes = 0;
228 for (const auto& kv : entry.used_buffer_unscheduled_use_counts) {
229 auto buffer = kv->first;
230 auto use_count = kv->second;
231 if (use_count == 1) {
232 freed_bytes += size_function_(*buffer);
233 }
234 }
235 // We only count the memory usage of the largest subcomputation, instead of
236 // adding them all, because subcomputations won't execute in parallel.
237 int64_t max_subcomputation_bytes = 0;
238 for (const auto* c : instruction->called_computations()) {
239 auto it = memory_by_computation_.find(c);
240 if (it != memory_by_computation_.end()) {
241 int64_t subcomputation_bytes = it->second;
242 if (subcomputation_bytes > max_subcomputation_bytes) {
243 max_subcomputation_bytes = subcomputation_bytes;
244 }
245 }
246 }
247 int64_t bytes_defined;
248 if (max_subcomputation_bytes > 0 &&
249 (opcode == HloOpcode::kWhile || opcode == HloOpcode::kCall ||
250 opcode == HloOpcode::kConditional)) {
251 // The output buffer of while/call/conditional is always aliased with the
252 // output buffer of the root instruction in the body. Don't double count.
253 bytes_defined = max_subcomputation_bytes;
254 } else {
255 bytes_defined = entry.bytes_defined + max_subcomputation_bytes;
256 }
257 return freed_bytes - bytes_defined;
258 }
259
260 // Constructs the scheduling priority of the given instruction.
GetPriority(const ReadyListEntry & entry)261 Priority GetPriority(const ReadyListEntry& entry) {
262 // Try to cluster scalars as close together as possible so that if they are
263 // in unfused hlos, they can still live in machine registers without
264 // excessive spilling.
265 if (ShapeUtil::IsEffectiveScalar(entry.instruction->shape())) {
266 return {std::numeric_limits<int64>::max(),
267 std::numeric_limits<int64>::max()};
268 }
269 return {BytesFreedIfScheduled(entry), entry.instruction->user_count()};
270 }
271
CreateSchedule()272 HloInstructionSequence CreateSchedule() {
273 HloInstructionSequence schedule;
274
275 // Populate the ready list with instructions which have no operands or
276 // control predecessors.
277 absl::flat_hash_map<const HloInstruction*, int64> unscheduled_pred_count;
278 for (auto* instruction : computation_->instructions()) {
279 // TODO(b/34466113): Replace this and above with successors() or
280 // predecessors() when these methods are added to HloInstruction.
281 for (HloInstruction* user : instruction->users()) {
282 unscheduled_pred_count[user]++;
283 }
284 for (HloInstruction* succ : instruction->control_successors()) {
285 unscheduled_pred_count[succ]++;
286 }
287 }
288
289 // Use a multimap to sort ReadyListEntry according to their priority.
290 std::multimap<Priority, ReadyListEntry> ready_queue;
291
292 // Map of ready instructions to their iterators in ready_queue.
293 absl::flat_hash_map<const HloInstruction*,
294 std::multimap<Priority, ReadyListEntry>::iterator>
295 ready_instructions;
296
297 auto add_to_ready_queue = [&](HloInstruction* inst) {
298 auto entry = MakeReadyListEntry(inst);
299 auto it = ready_queue.emplace(GetPriority(entry), std::move(entry));
300 ready_instructions[inst] = it;
301 };
302
303 for (auto* instruction : computation_->instructions()) {
304 if (instruction->operands().empty() &&
305 instruction->control_predecessors().empty()) {
306 add_to_ready_queue(instruction);
307 }
308 }
309
310 while (!ready_queue.empty()) {
311 // Remove the selected instruction from the ready list and add it to the
312 // schedule.
313 auto best_it = ready_queue.end();
314 --best_it;
315 HloInstruction* best = best_it->second.instruction;
316 VLOG(2) << "Schedule instruction: " << best->ToShortString()
317 << " Bytes freed: " << best_it->first.first;
318 ready_queue.erase(best_it);
319 ready_instructions.erase(best);
320 schedule.push_back(best);
321 scheduled_instructions_.insert(best);
322
323 bool adjust_ready_queue = false;
324 // Update the unscheduled uses of the logical buffers.
325 for (const LogicalBuffer* buffer : buffer_uses_.at(best)) {
326 int64& count = unscheduled_use_count_[buffer];
327 CHECK_GT(count, 0);
328 --count;
329 if (count == 1) {
330 adjust_ready_queue = true;
331 }
332 }
333
334 // Add new instructions to ready list.
335 auto update_pred_count = [&](HloInstruction* inst) {
336 int64_t pred_count = --unscheduled_pred_count.at(inst);
337 CHECK_GE(pred_count, 0);
338 if (pred_count == 0) {
339 add_to_ready_queue(inst);
340 }
341 };
342 // TODO(b/34466113): Replace this and above with successors() or
343 // predecessors() when these methods are added to HloInstruction.
344 for (HloInstruction* user : best->users()) {
345 update_pred_count(user);
346 }
347 for (HloInstruction* succ : best->control_successors()) {
348 update_pred_count(succ);
349 }
350 // The unscheduled use count for a buffer has changed to 1, so the
351 // priorities of some ready instructions may go up. We update them in the
352 // ready queue, so that they can appear earlier.
353 if (adjust_ready_queue) {
354 for (HloInstruction* operand : best->operands()) {
355 for (HloInstruction* operand_user : operand->users()) {
356 auto ready_instructions_it = ready_instructions.find(operand_user);
357 if (ready_instructions_it == ready_instructions.end()) {
358 continue;
359 }
360 auto ready_queue_it = ready_instructions_it->second;
361 auto& entry = ready_queue_it->second;
362 Priority new_priority = GetPriority(entry);
363 if (new_priority == ready_queue_it->first) {
364 continue;
365 }
366 // Create a new entry in ready_queue, then update
367 // ready_instructions[operand_user] to refer to the new entry.
368 ready_instructions_it->second =
369 ready_queue.emplace(new_priority, std::move(entry));
370 // Remove the old entry in ready_queue.
371 ready_queue.erase(ready_queue_it);
372 }
373 }
374 }
375 }
376 CHECK_EQ(schedule.size(), computation_->instruction_count());
377 CHECK_EQ(scheduled_instructions_.size(), computation_->instruction_count());
378
379 return schedule;
380 }
381
382 HloComputation* computation_;
383 const TuplePointsToAnalysis& points_to_analysis_;
384 const BufferValue::SizeFunction& size_function_;
385 // Computations are analyzed in post-order. When scheduling an instruction
386 // that includes subcomputations, such as a while loop, we use this map to
387 // look up the memory needed by subcomputations.
388 const absl::flat_hash_map<const HloComputation*, int64>&
389 memory_by_computation_;
390
391 // A map containing the LogicalBuffers that each instruction uses.
392 absl::flat_hash_map<const HloInstruction*, std::vector<const LogicalBuffer*>>
393 buffer_uses_;
394
395 // A map containing the count of unscheduled HLOs which using a particular
396 // LogicalBuffer.
397 absl::flat_hash_map<const LogicalBuffer*, int64> unscheduled_use_count_;
398
399 // Set of instructions which have been scheduled.
400 absl::flat_hash_set<const HloInstruction*> scheduled_instructions_;
401 };
402
SumLogicalBufferSizes(const TuplePointsToAnalysis::BufferDefinitionVector & buffers,const BufferValue::SizeFunction & size_function)403 int64 SumLogicalBufferSizes(
404 const TuplePointsToAnalysis::BufferDefinitionVector& buffers,
405 const BufferValue::SizeFunction& size_function) {
406 int64_t size = 0;
407 for (const LogicalBuffer* buffer : buffers) {
408 size += size_function(*buffer);
409 }
410 return size;
411 }
412
ScheduleComputationHelper(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const MemorySchedulerAlgorithm & algorithm,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,const MemorySchedulerPostprocessor & postprocessor,int64 * peak_memory)413 StatusOr<HloInstructionSequence> ScheduleComputationHelper(
414 HloComputation* computation,
415 const TuplePointsToAnalysis& points_to_analysis,
416 const HloAliasAnalysis& alias_analysis,
417 const BufferValue::SizeFunction& size_function,
418 const MemorySchedulerAlgorithm& algorithm,
419 const absl::flat_hash_map<const HloComputation*, int64>&
420 memory_by_computation,
421 const MemorySchedulerPostprocessor& postprocessor, int64* peak_memory) {
422 VLOG(2) << "Computation: " << computation->name();
423
424 if (algorithm) {
425 return algorithm(computation, points_to_analysis, alias_analysis,
426 size_function, memory_by_computation, postprocessor,
427 peak_memory);
428 }
429 return DefaultMemoryScheduler(computation, points_to_analysis, alias_analysis,
430 size_function, memory_by_computation,
431 postprocessor, peak_memory);
432 }
433
434 } // namespace
435
DFSMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,const MemorySchedulerPostprocessor & postprocessor,int64 * peak_memory)436 StatusOr<HloInstructionSequence> DFSMemoryScheduler(
437 HloComputation* computation,
438 const TuplePointsToAnalysis& points_to_analysis,
439 const HloAliasAnalysis& alias_analysis,
440 const BufferValue::SizeFunction& size_function,
441 const absl::flat_hash_map<const HloComputation*, int64>&
442 memory_by_computation,
443 const MemorySchedulerPostprocessor& postprocessor, int64* peak_memory) {
444 // These variables are a hack to prevent overflows.
445 int64_t cumulative_total_size = 0;
446 int64_t total_hlos = computation->parent()->instruction_count();
447 absl::flat_hash_map<const HloInstruction*, int64> extra_users;
448 absl::flat_hash_map<const HloInstruction*, int64> total_sizes;
449 for (const HloInstruction* hlo : computation->MakeInstructionPostOrder()) {
450 if (ListScheduler::IgnoreInstruction(*hlo)) {
451 extra_users[hlo] = 0;
452 total_sizes[hlo] = 0;
453 continue;
454 }
455 // This ordering is based on DFS post-order, with a heuristic to decide
456 // which operand to visit first. The heuristic is based on 'extra_users',
457 // which is simply users-1 for each instruction. By subtracting 1, we're
458 // saying that instructions with no users or a single user don't count;
459 // instructions with lots of fan-out will be visited earlier.
460 extra_users[hlo] = hlo->users().empty() ? 0 : hlo->users().size() - 1;
461 int64_t logical_buffer_size = SumLogicalBufferSizes(
462 points_to_analysis.GetBuffersDefinedByInstruction(hlo), size_function);
463 total_sizes[hlo] = logical_buffer_size;
464 cumulative_total_size += logical_buffer_size;
465 absl::flat_hash_set<const HloInstruction*> unique_operands(
466 hlo->operands().begin(), hlo->operands().end());
467 for (const HloInstruction* operand : unique_operands) {
468 extra_users[hlo] += extra_users[operand];
469 total_sizes[hlo] += total_sizes[operand];
470 }
471 // total_sizes[hlo] transitively includes the sizes of all nodes that
472 // lead to it. But computation is a DAG, so we are double-counting nodes,
473 // which can lead to overflows for large programs.
474 // cumulative_total_size caps the size to prevent overflows.
475 // Same for total_hlos: it prevents overflows on very large and branchy
476 // models, where the number of paths is exponential to the number of nodes.
477 // NOTE(dimvar): this is quite ugly and should be changed. It's unclear
478 // why we care about transitive sizes; when scheduling a node, its input
479 // and output buffers should be all that matters, not its "history".
480 total_sizes[hlo] = std::min(total_sizes[hlo], cumulative_total_size);
481 extra_users[hlo] = std::min(extra_users[hlo], total_hlos);
482 }
483 CHECK_EQ(extra_users.size(), computation->instruction_count());
484 CHECK_EQ(total_sizes.size(), computation->instruction_count());
485
486 // Construct a total order based on DFS post-order, visiting operands in
487 // decreasing cumulative extra user order, and next by cumulative size, with a
488 // tiebreaker by name for determinism.
489 HloInstructionSequence sequence;
490 FunctionVisitor visitor([&sequence](HloInstruction* hlo) {
491 sequence.push_back(hlo);
492 return Status::OK();
493 });
494 visitor.ReserveVisitStates(computation->instruction_count());
495 TF_RETURN_IF_ERROR(computation->AcceptWithOperandOrder(
496 &visitor, [&extra_users, &total_sizes](const HloInstruction* a,
497 const HloInstruction* b) {
498 if (extra_users[a] != extra_users[b]) {
499 return extra_users[a] > extra_users[b];
500 }
501 if (total_sizes[a] != total_sizes[b]) {
502 return total_sizes[a] > total_sizes[b];
503 }
504 return a->name() < b->name();
505 }));
506 if (postprocessor) {
507 sequence = postprocessor(sequence);
508 }
509 CHECK_EQ(sequence.size(), computation->instruction_count());
510 if (peak_memory) {
511 TF_ASSIGN_OR_RETURN(
512 *peak_memory, HeapSimulator::MinimumMemoryForComputation(
513 *computation, sequence, alias_analysis, size_function,
514 &memory_by_computation));
515 }
516 return sequence;
517 } // namespace xla
518
ComputationSchedulerToModuleScheduler(const MemorySchedulerAlgorithm & computation_scheduler,const MemorySchedulerPostprocessor & postprocessor)519 ModuleSchedulerAlgorithm ComputationSchedulerToModuleScheduler(
520 const MemorySchedulerAlgorithm& computation_scheduler,
521 const MemorySchedulerPostprocessor& postprocessor) {
522 return [computation_scheduler, postprocessor](
523 HloModule* module, const TuplePointsToAnalysis& points_to_analysis,
524 const HloAliasAnalysis& alias_analysis,
525 const LogicalBuffer::SizeFunction& size_func,
526 int64* peak_memory) -> StatusOr<HloSchedule> {
527 HloSchedule schedule(module);
528 absl::flat_hash_map<const HloComputation*, int64> memory_by_computation;
529 for (auto* computation : module->MakeComputationPostOrder()) {
530 if (!computation->IsFusionComputation()) {
531 TF_ASSIGN_OR_RETURN(
532 HloInstructionSequence computation_sequence,
533 ScheduleComputationHelper(
534 computation, points_to_analysis, alias_analysis, size_func,
535 computation_scheduler, memory_by_computation, postprocessor,
536 /*peak_memory=*/nullptr));
537 schedule.set_sequence(computation, std::move(computation_sequence));
538 }
539 }
540 if (peak_memory) {
541 TF_ASSIGN_OR_RETURN(*peak_memory, HeapSimulator::MinimumMemoryForModule(
542 schedule, size_func));
543 }
544 return std::move(schedule);
545 };
546 }
547
ListMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,const MemorySchedulerPostprocessor & postprocessor,int64 * peak_memory)548 StatusOr<HloInstructionSequence> ListMemoryScheduler(
549 HloComputation* computation,
550 const TuplePointsToAnalysis& points_to_analysis,
551 const HloAliasAnalysis& alias_analysis,
552 const BufferValue::SizeFunction& size_function,
553 const absl::flat_hash_map<const HloComputation*, int64>&
554 memory_by_computation,
555 const MemorySchedulerPostprocessor& postprocessor, int64* peak_memory) {
556 TF_ASSIGN_OR_RETURN(HloInstructionSequence sequence,
557 ListScheduler::Run(computation, points_to_analysis,
558 size_function, memory_by_computation));
559 if (postprocessor) {
560 sequence = postprocessor(sequence);
561 }
562 if (peak_memory) {
563 TF_ASSIGN_OR_RETURN(
564 *peak_memory, HeapSimulator::MinimumMemoryForComputation(
565 *computation, sequence, alias_analysis, size_function,
566 &memory_by_computation));
567 }
568 return sequence;
569 }
570
PostOrderMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,const MemorySchedulerPostprocessor & postprocessor,int64 * peak_memory)571 StatusOr<HloInstructionSequence> PostOrderMemoryScheduler(
572 HloComputation* computation,
573 const TuplePointsToAnalysis& points_to_analysis,
574 const HloAliasAnalysis& alias_analysis,
575 const BufferValue::SizeFunction& size_function,
576 const absl::flat_hash_map<const HloComputation*, int64>&
577 memory_by_computation,
578 const MemorySchedulerPostprocessor& postprocessor, int64* peak_memory) {
579 HloInstructionSequence sequence(computation->MakeInstructionPostOrder());
580 if (postprocessor) {
581 sequence = postprocessor(sequence);
582 }
583 if (peak_memory) {
584 TF_ASSIGN_OR_RETURN(
585 *peak_memory, HeapSimulator::MinimumMemoryForComputation(
586 *computation, sequence, alias_analysis, size_function,
587 &memory_by_computation));
588 }
589 return sequence;
590 }
591
DefaultMemoryScheduler(HloComputation * computation,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,const absl::flat_hash_map<const HloComputation *,int64> & memory_by_computation,const MemorySchedulerPostprocessor & postprocessor,int64 * peak_memory)592 StatusOr<HloInstructionSequence> DefaultMemoryScheduler(
593 HloComputation* computation,
594 const TuplePointsToAnalysis& points_to_analysis,
595 const HloAliasAnalysis& alias_analysis,
596 const BufferValue::SizeFunction& size_function,
597 const absl::flat_hash_map<const HloComputation*, int64>&
598 memory_by_computation,
599 const MemorySchedulerPostprocessor& postprocessor, int64* peak_memory) {
600 // We try a few schedulers and choose whichever returns a lower min-memory,
601 // not accounting for fragmentation.
602 // - List is a scheduler that uses greedy heuristics.
603 // - DFS visits HLOs in postorder, with a heuristic to decide the order of
604 // children.
605 // - Postorder does not use any heuristics.
606 // List wins for most of our benchmarks; postorder-based schedulers win for
607 // some RNNs.
608 int64_t list_memory;
609 TF_ASSIGN_OR_RETURN(
610 HloInstructionSequence list_sequence,
611 ListMemoryScheduler(computation, points_to_analysis, alias_analysis,
612 size_function, memory_by_computation, postprocessor,
613 &list_memory));
614 VLOG(2) << "Min-memory list sequence: " << HumanReadableNumBytes(list_memory);
615
616 int64_t dfs_memory;
617 TF_ASSIGN_OR_RETURN(
618 HloInstructionSequence dfs_sequence,
619 DFSMemoryScheduler(computation, points_to_analysis, alias_analysis,
620 size_function, memory_by_computation, postprocessor,
621 &dfs_memory));
622 VLOG(2) << "Min-memory dfs sequence: " << HumanReadableNumBytes(dfs_memory);
623
624 int64_t post_order_memory;
625 TF_ASSIGN_OR_RETURN(
626 HloInstructionSequence post_order_sequence,
627 PostOrderMemoryScheduler(computation, points_to_analysis, alias_analysis,
628 size_function, memory_by_computation,
629 postprocessor, &post_order_memory));
630 VLOG(2) << "Min-memory post order sequence: "
631 << HumanReadableNumBytes(post_order_memory);
632
633 auto min_memory = std::min({dfs_memory, post_order_memory, list_memory});
634 if (peak_memory) {
635 *peak_memory = min_memory;
636 }
637
638 if (min_memory == list_memory) {
639 VLOG(2) << "Chose min-memory list sequence: "
640 << HumanReadableNumBytes(list_memory);
641 return list_sequence;
642 } else if (min_memory == dfs_memory) {
643 VLOG(2) << "Chose min-memory dfs sequence: "
644 << HumanReadableNumBytes(dfs_memory);
645 return dfs_sequence;
646 } else {
647 VLOG(2) << "Chose min-memory post_order sequence: "
648 << HumanReadableNumBytes(post_order_memory);
649 return post_order_sequence;
650 }
651 }
652
DefaultModuleScheduler(HloModule * module,const TuplePointsToAnalysis & points_to_analysis,const HloAliasAnalysis & alias_analysis,const BufferValue::SizeFunction & size_function,int64 * peak_memory)653 StatusOr<HloSchedule> DefaultModuleScheduler(
654 HloModule* module, const TuplePointsToAnalysis& points_to_analysis,
655 const HloAliasAnalysis& alias_analysis,
656 const BufferValue::SizeFunction& size_function, int64* peak_memory) {
657 // We try a few schedulers and choose whichever returns a lower min-memory,
658 // not accounting for fragmentation.
659 // - List is a scheduler that uses greedy heuristics.
660 // - DFS visits HLOs in postorder, with a heuristic to decide the order of
661 // children.
662 // - Postorder does not use any heuristics.
663 // List wins for most of our benchmarks; postorder-based schedulers win for
664 // some RNNs.
665 int64_t list_memory;
666 TF_ASSIGN_OR_RETURN(
667 HloSchedule list_sequence,
668 ComputationSchedulerToModuleScheduler(ListMemoryScheduler, {})(
669 module, points_to_analysis, alias_analysis, size_function,
670 &list_memory));
671
672 VLOG(2) << "Min-memory list sequence: " << HumanReadableNumBytes(list_memory);
673
674 int64_t dfs_memory;
675 TF_ASSIGN_OR_RETURN(
676 HloSchedule dfs_sequence,
677 ComputationSchedulerToModuleScheduler(DFSMemoryScheduler, {})(
678 module, points_to_analysis, alias_analysis, size_function,
679 &dfs_memory));
680 VLOG(2) << "Min-memory dfs sequence: " << HumanReadableNumBytes(dfs_memory);
681
682 int64_t post_order_memory;
683 TF_ASSIGN_OR_RETURN(
684 HloSchedule post_order_sequence,
685 ComputationSchedulerToModuleScheduler(PostOrderMemoryScheduler, {})(
686 module, points_to_analysis, alias_analysis, size_function,
687 &post_order_memory));
688 VLOG(2) << "Min-memory post order sequence: "
689 << HumanReadableNumBytes(post_order_memory);
690
691 auto min_memory = std::min({dfs_memory, post_order_memory, list_memory});
692 if (peak_memory) {
693 *peak_memory = min_memory;
694 }
695
696 if (min_memory == list_memory) {
697 VLOG(2) << "Chose min-memory list sequence: "
698 << HumanReadableNumBytes(list_memory);
699 return list_sequence;
700 } else if (min_memory == dfs_memory) {
701 VLOG(2) << "Chose min-memory dfs sequence: "
702 << HumanReadableNumBytes(dfs_memory);
703 return dfs_sequence;
704 } else {
705 VLOG(2) << "Chose min-memory post_order sequence: "
706 << HumanReadableNumBytes(post_order_memory);
707 return post_order_sequence;
708 }
709 }
710
ScheduleModule(HloModule * module,const BufferValue::SizeFunction & size_function,const ModuleSchedulerAlgorithm & algorithm,int64 * peak_memory)711 StatusOr<HloSchedule> ScheduleModule(
712 HloModule* module, const BufferValue::SizeFunction& size_function,
713 const ModuleSchedulerAlgorithm& algorithm, int64* peak_memory) {
714 TF_ASSIGN_OR_RETURN(std::unique_ptr<TuplePointsToAnalysis> points_to_analysis,
715 TuplePointsToAnalysis::Run(module));
716 TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis,
717 HloAliasAnalysis::Run(module));
718
719 TF_ASSIGN_OR_RETURN(HloSchedule schedule,
720 (algorithm ? algorithm : DefaultModuleScheduler)(
721 module, *points_to_analysis, *alias_analysis,
722 size_function, peak_memory));
723
724 TF_RETURN_IF_ERROR(schedule.Verify());
725
726 return std::move(schedule);
727 }
728
ScheduleComputation(HloComputation * computation,const BufferValue::SizeFunction & size_function,const MemorySchedulerPostprocessor & postprocessor)729 StatusOr<HloInstructionSequence> ScheduleComputation(
730 HloComputation* computation, const BufferValue::SizeFunction& size_function,
731 const MemorySchedulerPostprocessor& postprocessor) {
732 CHECK(!computation->IsFusionComputation());
733 TF_ASSIGN_OR_RETURN(std::unique_ptr<TuplePointsToAnalysis> points_to_analysis,
734 TuplePointsToAnalysis::Run(computation->parent()));
735 TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis,
736 HloAliasAnalysis::Run(computation->parent()));
737 absl::flat_hash_map<const HloComputation*, int64> empty_map;
738 return ScheduleComputationHelper(
739 computation, *points_to_analysis, *alias_analysis, size_function,
740 /*algorithm=*/nullptr, empty_map, postprocessor,
741 /*peak_memory=*/nullptr);
742 }
743
HloMemoryScheduler(const BufferValue::SizeFunction & size_function,const ModuleSchedulerAlgorithm & algorithm)744 HloMemoryScheduler::HloMemoryScheduler(
745 const BufferValue::SizeFunction& size_function,
746 const ModuleSchedulerAlgorithm& algorithm)
747 : size_function_(size_function), algorithm_(algorithm) {}
748
Run(HloModule * module)749 StatusOr<bool> HloMemoryScheduler::Run(HloModule* module) {
750 TF_ASSIGN_OR_RETURN(HloSchedule schedule,
751 ScheduleModule(module, size_function_, algorithm_));
752 TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule)));
753 return true;
754 }
755
Run(HloModule * module)756 StatusOr<bool> HloTrivialScheduler::Run(HloModule* module) {
757 HloSchedule schedule(module);
758 for (HloComputation* computation : module->MakeComputationPostOrder()) {
759 if (!computation->IsFusionComputation()) {
760 HloInstructionSequence& computation_sequence =
761 schedule.GetOrCreateSequence(computation);
762 FunctionVisitor visitor(
763 [&computation_sequence](HloInstruction* instruction) {
764 computation_sequence.push_back(instruction);
765 return Status::OK();
766 });
767 visitor.ReserveVisitStates(computation->instruction_count());
768 TF_RETURN_IF_ERROR(computation->Accept(&visitor));
769 }
770 }
771 TF_RETURN_IF_ERROR(module->set_schedule(std::move(schedule)));
772 return true;
773 }
774
Run(HloModule * module)775 StatusOr<bool> HloDescheduler::Run(HloModule* module) {
776 bool changed = module->has_schedule();
777 module->clear_schedule();
778 return changed;
779 }
780
781 } // namespace xla
782