1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // The MATCHER* family of macros can be used in a namespace scope to
34 // define custom matchers easily.
35 //
36 // Basic Usage
37 // ===========
38 //
39 // The syntax
40 //
41 // MATCHER(name, description_string) { statements; }
42 //
43 // defines a matcher with the given name that executes the statements,
44 // which must return a bool to indicate if the match succeeds. Inside
45 // the statements, you can refer to the value being matched by 'arg',
46 // and refer to its type by 'arg_type'.
47 //
48 // The description string documents what the matcher does, and is used
49 // to generate the failure message when the match fails. Since a
50 // MATCHER() is usually defined in a header file shared by multiple
51 // C++ source files, we require the description to be a C-string
52 // literal to avoid possible side effects. It can be empty, in which
53 // case we'll use the sequence of words in the matcher name as the
54 // description.
55 //
56 // For example:
57 //
58 // MATCHER(IsEven, "") { return (arg % 2) == 0; }
59 //
60 // allows you to write
61 //
62 // // Expects mock_foo.Bar(n) to be called where n is even.
63 // EXPECT_CALL(mock_foo, Bar(IsEven()));
64 //
65 // or,
66 //
67 // // Verifies that the value of some_expression is even.
68 // EXPECT_THAT(some_expression, IsEven());
69 //
70 // If the above assertion fails, it will print something like:
71 //
72 // Value of: some_expression
73 // Expected: is even
74 // Actual: 7
75 //
76 // where the description "is even" is automatically calculated from the
77 // matcher name IsEven.
78 //
79 // Argument Type
80 // =============
81 //
82 // Note that the type of the value being matched (arg_type) is
83 // determined by the context in which you use the matcher and is
84 // supplied to you by the compiler, so you don't need to worry about
85 // declaring it (nor can you). This allows the matcher to be
86 // polymorphic. For example, IsEven() can be used to match any type
87 // where the value of "(arg % 2) == 0" can be implicitly converted to
88 // a bool. In the "Bar(IsEven())" example above, if method Bar()
89 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
90 // 'arg_type' will be unsigned long; and so on.
91 //
92 // Parameterizing Matchers
93 // =======================
94 //
95 // Sometimes you'll want to parameterize the matcher. For that you
96 // can use another macro:
97 //
98 // MATCHER_P(name, param_name, description_string) { statements; }
99 //
100 // For example:
101 //
102 // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
103 //
104 // will allow you to write:
105 //
106 // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
107 //
108 // which may lead to this message (assuming n is 10):
109 //
110 // Value of: Blah("a")
111 // Expected: has absolute value 10
112 // Actual: -9
113 //
114 // Note that both the matcher description and its parameter are
115 // printed, making the message human-friendly.
116 //
117 // In the matcher definition body, you can write 'foo_type' to
118 // reference the type of a parameter named 'foo'. For example, in the
119 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
120 // 'value_type' to refer to the type of 'value'.
121 //
122 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
123 // support multi-parameter matchers.
124 //
125 // Describing Parameterized Matchers
126 // =================================
127 //
128 // The last argument to MATCHER*() is a string-typed expression. The
129 // expression can reference all of the matcher's parameters and a
130 // special bool-typed variable named 'negation'. When 'negation' is
131 // false, the expression should evaluate to the matcher's description;
132 // otherwise it should evaluate to the description of the negation of
133 // the matcher. For example,
134 //
135 // using testing::PrintToString;
136 //
137 // MATCHER_P2(InClosedRange, low, hi,
138 // std::string(negation ? "is not" : "is") + " in range [" +
139 // PrintToString(low) + ", " + PrintToString(hi) + "]") {
140 // return low <= arg && arg <= hi;
141 // }
142 // ...
143 // EXPECT_THAT(3, InClosedRange(4, 6));
144 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
145 //
146 // would generate two failures that contain the text:
147 //
148 // Expected: is in range [4, 6]
149 // ...
150 // Expected: is not in range [2, 4]
151 //
152 // If you specify "" as the description, the failure message will
153 // contain the sequence of words in the matcher name followed by the
154 // parameter values printed as a tuple. For example,
155 //
156 // MATCHER_P2(InClosedRange, low, hi, "") { ... }
157 // ...
158 // EXPECT_THAT(3, InClosedRange(4, 6));
159 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
160 //
161 // would generate two failures that contain the text:
162 //
163 // Expected: in closed range (4, 6)
164 // ...
165 // Expected: not (in closed range (2, 4))
166 //
167 // Types of Matcher Parameters
168 // ===========================
169 //
170 // For the purpose of typing, you can view
171 //
172 // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
173 //
174 // as shorthand for
175 //
176 // template <typename p1_type, ..., typename pk_type>
177 // FooMatcherPk<p1_type, ..., pk_type>
178 // Foo(p1_type p1, ..., pk_type pk) { ... }
179 //
180 // When you write Foo(v1, ..., vk), the compiler infers the types of
181 // the parameters v1, ..., and vk for you. If you are not happy with
182 // the result of the type inference, you can specify the types by
183 // explicitly instantiating the template, as in Foo<long, bool>(5,
184 // false). As said earlier, you don't get to (or need to) specify
185 // 'arg_type' as that's determined by the context in which the matcher
186 // is used. You can assign the result of expression Foo(p1, ..., pk)
187 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
188 // can be useful when composing matchers.
189 //
190 // While you can instantiate a matcher template with reference types,
191 // passing the parameters by pointer usually makes your code more
192 // readable. If, however, you still want to pass a parameter by
193 // reference, be aware that in the failure message generated by the
194 // matcher you will see the value of the referenced object but not its
195 // address.
196 //
197 // Explaining Match Results
198 // ========================
199 //
200 // Sometimes the matcher description alone isn't enough to explain why
201 // the match has failed or succeeded. For example, when expecting a
202 // long string, it can be very helpful to also print the diff between
203 // the expected string and the actual one. To achieve that, you can
204 // optionally stream additional information to a special variable
205 // named result_listener, whose type is a pointer to class
206 // MatchResultListener:
207 //
208 // MATCHER_P(EqualsLongString, str, "") {
209 // if (arg == str) return true;
210 //
211 // *result_listener << "the difference: "
212 /// << DiffStrings(str, arg);
213 // return false;
214 // }
215 //
216 // Overloading Matchers
217 // ====================
218 //
219 // You can overload matchers with different numbers of parameters:
220 //
221 // MATCHER_P(Blah, a, description_string1) { ... }
222 // MATCHER_P2(Blah, a, b, description_string2) { ... }
223 //
224 // Caveats
225 // =======
226 //
227 // When defining a new matcher, you should also consider implementing
228 // MatcherInterface or using MakePolymorphicMatcher(). These
229 // approaches require more work than the MATCHER* macros, but also
230 // give you more control on the types of the value being matched and
231 // the matcher parameters, which may leads to better compiler error
232 // messages when the matcher is used wrong. They also allow
233 // overloading matchers based on parameter types (as opposed to just
234 // based on the number of parameters).
235 //
236 // MATCHER*() can only be used in a namespace scope as templates cannot be
237 // declared inside of a local class.
238 //
239 // More Information
240 // ================
241 //
242 // To learn more about using these macros, please search for 'MATCHER'
243 // on
244 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
245 //
246 // This file also implements some commonly used argument matchers. More
247 // matchers can be defined by the user implementing the
248 // MatcherInterface<T> interface if necessary.
249 //
250 // See googletest/include/gtest/gtest-matchers.h for the definition of class
251 // Matcher, class MatcherInterface, and others.
252
253 // GOOGLETEST_CM0002 DO NOT DELETE
254
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258 #include <algorithm>
259 #include <cmath>
260 #include <initializer_list>
261 #include <iterator>
262 #include <limits>
263 #include <memory>
264 #include <ostream> // NOLINT
265 #include <sstream>
266 #include <string>
267 #include <type_traits>
268 #include <utility>
269 #include <vector>
270
271 #include "gmock/internal/gmock-internal-utils.h"
272 #include "gmock/internal/gmock-port.h"
273 #include "gmock/internal/gmock-pp.h"
274 #include "gtest/gtest.h"
275
276 // MSVC warning C5046 is new as of VS2017 version 15.8.
277 #if defined(_MSC_VER) && _MSC_VER >= 1915
278 #define GMOCK_MAYBE_5046_ 5046
279 #else
280 #define GMOCK_MAYBE_5046_
281 #endif
282
283 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
284 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
285 clients of class B */
286 /* Symbol involving type with internal linkage not defined */)
287
288 #pragma GCC system_header
289
290 namespace testing {
291
292 // To implement a matcher Foo for type T, define:
293 // 1. a class FooMatcherImpl that implements the
294 // MatcherInterface<T> interface, and
295 // 2. a factory function that creates a Matcher<T> object from a
296 // FooMatcherImpl*.
297 //
298 // The two-level delegation design makes it possible to allow a user
299 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
300 // is impossible if we pass matchers by pointers. It also eases
301 // ownership management as Matcher objects can now be copied like
302 // plain values.
303
304 // A match result listener that stores the explanation in a string.
305 class StringMatchResultListener : public MatchResultListener {
306 public:
StringMatchResultListener()307 StringMatchResultListener() : MatchResultListener(&ss_) {}
308
309 // Returns the explanation accumulated so far.
str()310 std::string str() const { return ss_.str(); }
311
312 // Clears the explanation accumulated so far.
Clear()313 void Clear() { ss_.str(""); }
314
315 private:
316 ::std::stringstream ss_;
317
318 GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
319 };
320
321 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
322 // and MUST NOT BE USED IN USER CODE!!!
323 namespace internal {
324
325 // The MatcherCastImpl class template is a helper for implementing
326 // MatcherCast(). We need this helper in order to partially
327 // specialize the implementation of MatcherCast() (C++ allows
328 // class/struct templates to be partially specialized, but not
329 // function templates.).
330
331 // This general version is used when MatcherCast()'s argument is a
332 // polymorphic matcher (i.e. something that can be converted to a
333 // Matcher but is not one yet; for example, Eq(value)) or a value (for
334 // example, "hello").
335 template <typename T, typename M>
336 class MatcherCastImpl {
337 public:
Cast(const M & polymorphic_matcher_or_value)338 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
339 // M can be a polymorphic matcher, in which case we want to use
340 // its conversion operator to create Matcher<T>. Or it can be a value
341 // that should be passed to the Matcher<T>'s constructor.
342 //
343 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
344 // polymorphic matcher because it'll be ambiguous if T has an implicit
345 // constructor from M (this usually happens when T has an implicit
346 // constructor from any type).
347 //
348 // It won't work to unconditionally implicit_cast
349 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
350 // a user-defined conversion from M to T if one exists (assuming M is
351 // a value).
352 return CastImpl(polymorphic_matcher_or_value,
353 std::is_convertible<M, Matcher<T>>{},
354 std::is_convertible<M, T>{});
355 }
356
357 private:
358 template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)359 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
360 std::true_type /* convertible_to_matcher */,
361 std::integral_constant<bool, Ignore>) {
362 // M is implicitly convertible to Matcher<T>, which means that either
363 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
364 // from M. In both cases using the implicit conversion will produce a
365 // matcher.
366 //
367 // Even if T has an implicit constructor from M, it won't be called because
368 // creating Matcher<T> would require a chain of two user-defined conversions
369 // (first to create T from M and then to create Matcher<T> from T).
370 return polymorphic_matcher_or_value;
371 }
372
373 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
374 // matcher. It's a value of a type implicitly convertible to T. Use direct
375 // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)376 static Matcher<T> CastImpl(const M& value,
377 std::false_type /* convertible_to_matcher */,
378 std::true_type /* convertible_to_T */) {
379 return Matcher<T>(ImplicitCast_<T>(value));
380 }
381
382 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
383 // polymorphic matcher Eq(value) in this case.
384 //
385 // Note that we first attempt to perform an implicit cast on the value and
386 // only fall back to the polymorphic Eq() matcher afterwards because the
387 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
388 // which might be undefined even when Rhs is implicitly convertible to Lhs
389 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
390 //
391 // We don't define this method inline as we need the declaration of Eq().
392 static Matcher<T> CastImpl(const M& value,
393 std::false_type /* convertible_to_matcher */,
394 std::false_type /* convertible_to_T */);
395 };
396
397 // This more specialized version is used when MatcherCast()'s argument
398 // is already a Matcher. This only compiles when type T can be
399 // statically converted to type U.
400 template <typename T, typename U>
401 class MatcherCastImpl<T, Matcher<U> > {
402 public:
Cast(const Matcher<U> & source_matcher)403 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
404 return Matcher<T>(new Impl(source_matcher));
405 }
406
407 private:
408 class Impl : public MatcherInterface<T> {
409 public:
Impl(const Matcher<U> & source_matcher)410 explicit Impl(const Matcher<U>& source_matcher)
411 : source_matcher_(source_matcher) {}
412
413 // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)414 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
415 using FromType = typename std::remove_cv<typename std::remove_pointer<
416 typename std::remove_reference<T>::type>::type>::type;
417 using ToType = typename std::remove_cv<typename std::remove_pointer<
418 typename std::remove_reference<U>::type>::type>::type;
419 // Do not allow implicitly converting base*/& to derived*/&.
420 static_assert(
421 // Do not trigger if only one of them is a pointer. That implies a
422 // regular conversion and not a down_cast.
423 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
424 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
425 std::is_same<FromType, ToType>::value ||
426 !std::is_base_of<FromType, ToType>::value,
427 "Can't implicitly convert from <base> to <derived>");
428
429 // Do the cast to `U` explicitly if necessary.
430 // Otherwise, let implicit conversions do the trick.
431 using CastType =
432 typename std::conditional<std::is_convertible<T&, const U&>::value,
433 T&, U>::type;
434
435 return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
436 listener);
437 }
438
DescribeTo(::std::ostream * os)439 void DescribeTo(::std::ostream* os) const override {
440 source_matcher_.DescribeTo(os);
441 }
442
DescribeNegationTo(::std::ostream * os)443 void DescribeNegationTo(::std::ostream* os) const override {
444 source_matcher_.DescribeNegationTo(os);
445 }
446
447 private:
448 const Matcher<U> source_matcher_;
449 };
450 };
451
452 // This even more specialized version is used for efficiently casting
453 // a matcher to its own type.
454 template <typename T>
455 class MatcherCastImpl<T, Matcher<T> > {
456 public:
Cast(const Matcher<T> & matcher)457 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
458 };
459
460 // Template specialization for parameterless Matcher.
461 template <typename Derived>
462 class MatcherBaseImpl {
463 public:
464 MatcherBaseImpl() = default;
465
466 template <typename T>
467 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
468 return ::testing::Matcher<T>(new
469 typename Derived::template gmock_Impl<T>());
470 }
471 };
472
473 // Template specialization for Matcher with parameters.
474 template <template <typename...> class Derived, typename... Ts>
475 class MatcherBaseImpl<Derived<Ts...>> {
476 public:
477 // Mark the constructor explicit for single argument T to avoid implicit
478 // conversions.
479 template <typename E = std::enable_if<sizeof...(Ts) == 1>,
480 typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)481 explicit MatcherBaseImpl(Ts... params)
482 : params_(std::forward<Ts>(params)...) {}
483 template <typename E = std::enable_if<sizeof...(Ts) != 1>,
484 typename = typename E::type>
MatcherBaseImpl(Ts...params)485 MatcherBaseImpl(Ts... params) // NOLINT
486 : params_(std::forward<Ts>(params)...) {}
487
488 template <typename F>
489 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
490 return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
491 }
492
493 private:
494 template <typename F, std::size_t... tuple_ids>
Apply(IndexSequence<tuple_ids...>)495 ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
496 return ::testing::Matcher<F>(
497 new typename Derived<Ts...>::template gmock_Impl<F>(
498 std::get<tuple_ids>(params_)...));
499 }
500
501 const std::tuple<Ts...> params_;
502 };
503
504 } // namespace internal
505
506 // In order to be safe and clear, casting between different matcher
507 // types is done explicitly via MatcherCast<T>(m), which takes a
508 // matcher m and returns a Matcher<T>. It compiles only when T can be
509 // statically converted to the argument type of m.
510 template <typename T, typename M>
MatcherCast(const M & matcher)511 inline Matcher<T> MatcherCast(const M& matcher) {
512 return internal::MatcherCastImpl<T, M>::Cast(matcher);
513 }
514
515 // This overload handles polymorphic matchers and values only since
516 // monomorphic matchers are handled by the next one.
517 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)518 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
519 return MatcherCast<T>(polymorphic_matcher_or_value);
520 }
521
522 // This overload handles monomorphic matchers.
523 //
524 // In general, if type T can be implicitly converted to type U, we can
525 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
526 // contravariant): just keep a copy of the original Matcher<U>, convert the
527 // argument from type T to U, and then pass it to the underlying Matcher<U>.
528 // The only exception is when U is a reference and T is not, as the
529 // underlying Matcher<U> may be interested in the argument's address, which
530 // is not preserved in the conversion from T to U.
531 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)532 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
533 // Enforce that T can be implicitly converted to U.
534 static_assert(std::is_convertible<const T&, const U&>::value,
535 "T must be implicitly convertible to U");
536 // Enforce that we are not converting a non-reference type T to a reference
537 // type U.
538 GTEST_COMPILE_ASSERT_(
539 std::is_reference<T>::value || !std::is_reference<U>::value,
540 cannot_convert_non_reference_arg_to_reference);
541 // In case both T and U are arithmetic types, enforce that the
542 // conversion is not lossy.
543 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
544 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
545 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
546 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
547 GTEST_COMPILE_ASSERT_(
548 kTIsOther || kUIsOther ||
549 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
550 conversion_of_arithmetic_types_must_be_lossless);
551 return MatcherCast<T>(matcher);
552 }
553
554 // A<T>() returns a matcher that matches any value of type T.
555 template <typename T>
556 Matcher<T> A();
557
558 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
559 // and MUST NOT BE USED IN USER CODE!!!
560 namespace internal {
561
562 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)563 inline void PrintIfNotEmpty(const std::string& explanation,
564 ::std::ostream* os) {
565 if (explanation != "" && os != nullptr) {
566 *os << ", " << explanation;
567 }
568 }
569
570 // Returns true if the given type name is easy to read by a human.
571 // This is used to decide whether printing the type of a value might
572 // be helpful.
IsReadableTypeName(const std::string & type_name)573 inline bool IsReadableTypeName(const std::string& type_name) {
574 // We consider a type name readable if it's short or doesn't contain
575 // a template or function type.
576 return (type_name.length() <= 20 ||
577 type_name.find_first_of("<(") == std::string::npos);
578 }
579
580 // Matches the value against the given matcher, prints the value and explains
581 // the match result to the listener. Returns the match result.
582 // 'listener' must not be NULL.
583 // Value cannot be passed by const reference, because some matchers take a
584 // non-const argument.
585 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)586 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
587 MatchResultListener* listener) {
588 if (!listener->IsInterested()) {
589 // If the listener is not interested, we do not need to construct the
590 // inner explanation.
591 return matcher.Matches(value);
592 }
593
594 StringMatchResultListener inner_listener;
595 const bool match = matcher.MatchAndExplain(value, &inner_listener);
596
597 UniversalPrint(value, listener->stream());
598 #if GTEST_HAS_RTTI
599 const std::string& type_name = GetTypeName<Value>();
600 if (IsReadableTypeName(type_name))
601 *listener->stream() << " (of type " << type_name << ")";
602 #endif
603 PrintIfNotEmpty(inner_listener.str(), listener->stream());
604
605 return match;
606 }
607
608 // An internal helper class for doing compile-time loop on a tuple's
609 // fields.
610 template <size_t N>
611 class TuplePrefix {
612 public:
613 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
614 // if and only if the first N fields of matcher_tuple matches
615 // the first N fields of value_tuple, respectively.
616 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)617 static bool Matches(const MatcherTuple& matcher_tuple,
618 const ValueTuple& value_tuple) {
619 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
620 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
621 }
622
623 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
624 // describes failures in matching the first N fields of matchers
625 // against the first N fields of values. If there is no failure,
626 // nothing will be streamed to os.
627 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)628 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
629 const ValueTuple& values,
630 ::std::ostream* os) {
631 // First, describes failures in the first N - 1 fields.
632 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
633
634 // Then describes the failure (if any) in the (N - 1)-th (0-based)
635 // field.
636 typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
637 std::get<N - 1>(matchers);
638 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
639 const Value& value = std::get<N - 1>(values);
640 StringMatchResultListener listener;
641 if (!matcher.MatchAndExplain(value, &listener)) {
642 *os << " Expected arg #" << N - 1 << ": ";
643 std::get<N - 1>(matchers).DescribeTo(os);
644 *os << "\n Actual: ";
645 // We remove the reference in type Value to prevent the
646 // universal printer from printing the address of value, which
647 // isn't interesting to the user most of the time. The
648 // matcher's MatchAndExplain() method handles the case when
649 // the address is interesting.
650 internal::UniversalPrint(value, os);
651 PrintIfNotEmpty(listener.str(), os);
652 *os << "\n";
653 }
654 }
655 };
656
657 // The base case.
658 template <>
659 class TuplePrefix<0> {
660 public:
661 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)662 static bool Matches(const MatcherTuple& /* matcher_tuple */,
663 const ValueTuple& /* value_tuple */) {
664 return true;
665 }
666
667 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)668 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
669 const ValueTuple& /* values */,
670 ::std::ostream* /* os */) {}
671 };
672
673 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
674 // all matchers in matcher_tuple match the corresponding fields in
675 // value_tuple. It is a compiler error if matcher_tuple and
676 // value_tuple have different number of fields or incompatible field
677 // types.
678 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)679 bool TupleMatches(const MatcherTuple& matcher_tuple,
680 const ValueTuple& value_tuple) {
681 // Makes sure that matcher_tuple and value_tuple have the same
682 // number of fields.
683 GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
684 std::tuple_size<ValueTuple>::value,
685 matcher_and_value_have_different_numbers_of_fields);
686 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
687 value_tuple);
688 }
689
690 // Describes failures in matching matchers against values. If there
691 // is no failure, nothing will be streamed to os.
692 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)693 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
694 const ValueTuple& values,
695 ::std::ostream* os) {
696 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
697 matchers, values, os);
698 }
699
700 // TransformTupleValues and its helper.
701 //
702 // TransformTupleValuesHelper hides the internal machinery that
703 // TransformTupleValues uses to implement a tuple traversal.
704 template <typename Tuple, typename Func, typename OutIter>
705 class TransformTupleValuesHelper {
706 private:
707 typedef ::std::tuple_size<Tuple> TupleSize;
708
709 public:
710 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
711 // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)712 static OutIter Run(Func f, const Tuple& t, OutIter out) {
713 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
714 }
715
716 private:
717 template <typename Tup, size_t kRemainingSize>
718 struct IterateOverTuple {
operatorIterateOverTuple719 OutIter operator() (Func f, const Tup& t, OutIter out) const {
720 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
721 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
722 }
723 };
724 template <typename Tup>
725 struct IterateOverTuple<Tup, 0> {
726 OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
727 return out;
728 }
729 };
730 };
731
732 // Successively invokes 'f(element)' on each element of the tuple 't',
733 // appending each result to the 'out' iterator. Returns the final value
734 // of 'out'.
735 template <typename Tuple, typename Func, typename OutIter>
736 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
737 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
738 }
739
740 // Implements _, a matcher that matches any value of any
741 // type. This is a polymorphic matcher, so we need a template type
742 // conversion operator to make it appearing as a Matcher<T> for any
743 // type T.
744 class AnythingMatcher {
745 public:
746 using is_gtest_matcher = void;
747
748 template <typename T>
749 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
750 return true;
751 }
752 void DescribeTo(std::ostream* os) const { *os << "is anything"; }
753 void DescribeNegationTo(::std::ostream* os) const {
754 // This is mostly for completeness' sake, as it's not very useful
755 // to write Not(A<bool>()). However we cannot completely rule out
756 // such a possibility, and it doesn't hurt to be prepared.
757 *os << "never matches";
758 }
759 };
760
761 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
762 // pointer that is NULL.
763 class IsNullMatcher {
764 public:
765 template <typename Pointer>
766 bool MatchAndExplain(const Pointer& p,
767 MatchResultListener* /* listener */) const {
768 return p == nullptr;
769 }
770
771 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
772 void DescribeNegationTo(::std::ostream* os) const {
773 *os << "isn't NULL";
774 }
775 };
776
777 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
778 // pointer that is not NULL.
779 class NotNullMatcher {
780 public:
781 template <typename Pointer>
782 bool MatchAndExplain(const Pointer& p,
783 MatchResultListener* /* listener */) const {
784 return p != nullptr;
785 }
786
787 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
788 void DescribeNegationTo(::std::ostream* os) const {
789 *os << "is NULL";
790 }
791 };
792
793 // Ref(variable) matches any argument that is a reference to
794 // 'variable'. This matcher is polymorphic as it can match any
795 // super type of the type of 'variable'.
796 //
797 // The RefMatcher template class implements Ref(variable). It can
798 // only be instantiated with a reference type. This prevents a user
799 // from mistakenly using Ref(x) to match a non-reference function
800 // argument. For example, the following will righteously cause a
801 // compiler error:
802 //
803 // int n;
804 // Matcher<int> m1 = Ref(n); // This won't compile.
805 // Matcher<int&> m2 = Ref(n); // This will compile.
806 template <typename T>
807 class RefMatcher;
808
809 template <typename T>
810 class RefMatcher<T&> {
811 // Google Mock is a generic framework and thus needs to support
812 // mocking any function types, including those that take non-const
813 // reference arguments. Therefore the template parameter T (and
814 // Super below) can be instantiated to either a const type or a
815 // non-const type.
816 public:
817 // RefMatcher() takes a T& instead of const T&, as we want the
818 // compiler to catch using Ref(const_value) as a matcher for a
819 // non-const reference.
820 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
821
822 template <typename Super>
823 operator Matcher<Super&>() const {
824 // By passing object_ (type T&) to Impl(), which expects a Super&,
825 // we make sure that Super is a super type of T. In particular,
826 // this catches using Ref(const_value) as a matcher for a
827 // non-const reference, as you cannot implicitly convert a const
828 // reference to a non-const reference.
829 return MakeMatcher(new Impl<Super>(object_));
830 }
831
832 private:
833 template <typename Super>
834 class Impl : public MatcherInterface<Super&> {
835 public:
836 explicit Impl(Super& x) : object_(x) {} // NOLINT
837
838 // MatchAndExplain() takes a Super& (as opposed to const Super&)
839 // in order to match the interface MatcherInterface<Super&>.
840 bool MatchAndExplain(Super& x,
841 MatchResultListener* listener) const override {
842 *listener << "which is located @" << static_cast<const void*>(&x);
843 return &x == &object_;
844 }
845
846 void DescribeTo(::std::ostream* os) const override {
847 *os << "references the variable ";
848 UniversalPrinter<Super&>::Print(object_, os);
849 }
850
851 void DescribeNegationTo(::std::ostream* os) const override {
852 *os << "does not reference the variable ";
853 UniversalPrinter<Super&>::Print(object_, os);
854 }
855
856 private:
857 const Super& object_;
858 };
859
860 T& object_;
861 };
862
863 // Polymorphic helper functions for narrow and wide string matchers.
864 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
865 return String::CaseInsensitiveCStringEquals(lhs, rhs);
866 }
867
868 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
869 const wchar_t* rhs) {
870 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
871 }
872
873 // String comparison for narrow or wide strings that can have embedded NUL
874 // characters.
875 template <typename StringType>
876 bool CaseInsensitiveStringEquals(const StringType& s1,
877 const StringType& s2) {
878 // Are the heads equal?
879 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
880 return false;
881 }
882
883 // Skip the equal heads.
884 const typename StringType::value_type nul = 0;
885 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
886
887 // Are we at the end of either s1 or s2?
888 if (i1 == StringType::npos || i2 == StringType::npos) {
889 return i1 == i2;
890 }
891
892 // Are the tails equal?
893 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
894 }
895
896 // String matchers.
897
898 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
899 template <typename StringType>
900 class StrEqualityMatcher {
901 public:
902 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
903 : string_(std::move(str)),
904 expect_eq_(expect_eq),
905 case_sensitive_(case_sensitive) {}
906
907 #if GTEST_INTERNAL_HAS_STRING_VIEW
908 bool MatchAndExplain(const internal::StringView& s,
909 MatchResultListener* listener) const {
910 // This should fail to compile if StringView is used with wide
911 // strings.
912 const StringType& str = std::string(s);
913 return MatchAndExplain(str, listener);
914 }
915 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
916
917 // Accepts pointer types, particularly:
918 // const char*
919 // char*
920 // const wchar_t*
921 // wchar_t*
922 template <typename CharType>
923 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
924 if (s == nullptr) {
925 return !expect_eq_;
926 }
927 return MatchAndExplain(StringType(s), listener);
928 }
929
930 // Matches anything that can convert to StringType.
931 //
932 // This is a template, not just a plain function with const StringType&,
933 // because StringView has some interfering non-explicit constructors.
934 template <typename MatcheeStringType>
935 bool MatchAndExplain(const MatcheeStringType& s,
936 MatchResultListener* /* listener */) const {
937 const StringType s2(s);
938 const bool eq = case_sensitive_ ? s2 == string_ :
939 CaseInsensitiveStringEquals(s2, string_);
940 return expect_eq_ == eq;
941 }
942
943 void DescribeTo(::std::ostream* os) const {
944 DescribeToHelper(expect_eq_, os);
945 }
946
947 void DescribeNegationTo(::std::ostream* os) const {
948 DescribeToHelper(!expect_eq_, os);
949 }
950
951 private:
952 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
953 *os << (expect_eq ? "is " : "isn't ");
954 *os << "equal to ";
955 if (!case_sensitive_) {
956 *os << "(ignoring case) ";
957 }
958 UniversalPrint(string_, os);
959 }
960
961 const StringType string_;
962 const bool expect_eq_;
963 const bool case_sensitive_;
964 };
965
966 // Implements the polymorphic HasSubstr(substring) matcher, which
967 // can be used as a Matcher<T> as long as T can be converted to a
968 // string.
969 template <typename StringType>
970 class HasSubstrMatcher {
971 public:
972 explicit HasSubstrMatcher(const StringType& substring)
973 : substring_(substring) {}
974
975 #if GTEST_INTERNAL_HAS_STRING_VIEW
976 bool MatchAndExplain(const internal::StringView& s,
977 MatchResultListener* listener) const {
978 // This should fail to compile if StringView is used with wide
979 // strings.
980 const StringType& str = std::string(s);
981 return MatchAndExplain(str, listener);
982 }
983 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
984
985 // Accepts pointer types, particularly:
986 // const char*
987 // char*
988 // const wchar_t*
989 // wchar_t*
990 template <typename CharType>
991 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
992 return s != nullptr && MatchAndExplain(StringType(s), listener);
993 }
994
995 // Matches anything that can convert to StringType.
996 //
997 // This is a template, not just a plain function with const StringType&,
998 // because StringView has some interfering non-explicit constructors.
999 template <typename MatcheeStringType>
1000 bool MatchAndExplain(const MatcheeStringType& s,
1001 MatchResultListener* /* listener */) const {
1002 return StringType(s).find(substring_) != StringType::npos;
1003 }
1004
1005 // Describes what this matcher matches.
1006 void DescribeTo(::std::ostream* os) const {
1007 *os << "has substring ";
1008 UniversalPrint(substring_, os);
1009 }
1010
1011 void DescribeNegationTo(::std::ostream* os) const {
1012 *os << "has no substring ";
1013 UniversalPrint(substring_, os);
1014 }
1015
1016 private:
1017 const StringType substring_;
1018 };
1019
1020 // Implements the polymorphic StartsWith(substring) matcher, which
1021 // can be used as a Matcher<T> as long as T can be converted to a
1022 // string.
1023 template <typename StringType>
1024 class StartsWithMatcher {
1025 public:
1026 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1027 }
1028
1029 #if GTEST_INTERNAL_HAS_STRING_VIEW
1030 bool MatchAndExplain(const internal::StringView& s,
1031 MatchResultListener* listener) const {
1032 // This should fail to compile if StringView is used with wide
1033 // strings.
1034 const StringType& str = std::string(s);
1035 return MatchAndExplain(str, listener);
1036 }
1037 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1038
1039 // Accepts pointer types, particularly:
1040 // const char*
1041 // char*
1042 // const wchar_t*
1043 // wchar_t*
1044 template <typename CharType>
1045 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1046 return s != nullptr && MatchAndExplain(StringType(s), listener);
1047 }
1048
1049 // Matches anything that can convert to StringType.
1050 //
1051 // This is a template, not just a plain function with const StringType&,
1052 // because StringView has some interfering non-explicit constructors.
1053 template <typename MatcheeStringType>
1054 bool MatchAndExplain(const MatcheeStringType& s,
1055 MatchResultListener* /* listener */) const {
1056 const StringType& s2(s);
1057 return s2.length() >= prefix_.length() &&
1058 s2.substr(0, prefix_.length()) == prefix_;
1059 }
1060
1061 void DescribeTo(::std::ostream* os) const {
1062 *os << "starts with ";
1063 UniversalPrint(prefix_, os);
1064 }
1065
1066 void DescribeNegationTo(::std::ostream* os) const {
1067 *os << "doesn't start with ";
1068 UniversalPrint(prefix_, os);
1069 }
1070
1071 private:
1072 const StringType prefix_;
1073 };
1074
1075 // Implements the polymorphic EndsWith(substring) matcher, which
1076 // can be used as a Matcher<T> as long as T can be converted to a
1077 // string.
1078 template <typename StringType>
1079 class EndsWithMatcher {
1080 public:
1081 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1082
1083 #if GTEST_INTERNAL_HAS_STRING_VIEW
1084 bool MatchAndExplain(const internal::StringView& s,
1085 MatchResultListener* listener) const {
1086 // This should fail to compile if StringView is used with wide
1087 // strings.
1088 const StringType& str = std::string(s);
1089 return MatchAndExplain(str, listener);
1090 }
1091 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1092
1093 // Accepts pointer types, particularly:
1094 // const char*
1095 // char*
1096 // const wchar_t*
1097 // wchar_t*
1098 template <typename CharType>
1099 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1100 return s != nullptr && MatchAndExplain(StringType(s), listener);
1101 }
1102
1103 // Matches anything that can convert to StringType.
1104 //
1105 // This is a template, not just a plain function with const StringType&,
1106 // because StringView has some interfering non-explicit constructors.
1107 template <typename MatcheeStringType>
1108 bool MatchAndExplain(const MatcheeStringType& s,
1109 MatchResultListener* /* listener */) const {
1110 const StringType& s2(s);
1111 return s2.length() >= suffix_.length() &&
1112 s2.substr(s2.length() - suffix_.length()) == suffix_;
1113 }
1114
1115 void DescribeTo(::std::ostream* os) const {
1116 *os << "ends with ";
1117 UniversalPrint(suffix_, os);
1118 }
1119
1120 void DescribeNegationTo(::std::ostream* os) const {
1121 *os << "doesn't end with ";
1122 UniversalPrint(suffix_, os);
1123 }
1124
1125 private:
1126 const StringType suffix_;
1127 };
1128
1129 // Implements a matcher that compares the two fields of a 2-tuple
1130 // using one of the ==, <=, <, etc, operators. The two fields being
1131 // compared don't have to have the same type.
1132 //
1133 // The matcher defined here is polymorphic (for example, Eq() can be
1134 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1135 // etc). Therefore we use a template type conversion operator in the
1136 // implementation.
1137 template <typename D, typename Op>
1138 class PairMatchBase {
1139 public:
1140 template <typename T1, typename T2>
1141 operator Matcher<::std::tuple<T1, T2>>() const {
1142 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1143 }
1144 template <typename T1, typename T2>
1145 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1146 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1147 }
1148
1149 private:
1150 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1151 return os << D::Desc();
1152 }
1153
1154 template <typename Tuple>
1155 class Impl : public MatcherInterface<Tuple> {
1156 public:
1157 bool MatchAndExplain(Tuple args,
1158 MatchResultListener* /* listener */) const override {
1159 return Op()(::std::get<0>(args), ::std::get<1>(args));
1160 }
1161 void DescribeTo(::std::ostream* os) const override {
1162 *os << "are " << GetDesc;
1163 }
1164 void DescribeNegationTo(::std::ostream* os) const override {
1165 *os << "aren't " << GetDesc;
1166 }
1167 };
1168 };
1169
1170 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1171 public:
1172 static const char* Desc() { return "an equal pair"; }
1173 };
1174 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1175 public:
1176 static const char* Desc() { return "an unequal pair"; }
1177 };
1178 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1179 public:
1180 static const char* Desc() { return "a pair where the first < the second"; }
1181 };
1182 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1183 public:
1184 static const char* Desc() { return "a pair where the first > the second"; }
1185 };
1186 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1187 public:
1188 static const char* Desc() { return "a pair where the first <= the second"; }
1189 };
1190 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1191 public:
1192 static const char* Desc() { return "a pair where the first >= the second"; }
1193 };
1194
1195 // Implements the Not(...) matcher for a particular argument type T.
1196 // We do not nest it inside the NotMatcher class template, as that
1197 // will prevent different instantiations of NotMatcher from sharing
1198 // the same NotMatcherImpl<T> class.
1199 template <typename T>
1200 class NotMatcherImpl : public MatcherInterface<const T&> {
1201 public:
1202 explicit NotMatcherImpl(const Matcher<T>& matcher)
1203 : matcher_(matcher) {}
1204
1205 bool MatchAndExplain(const T& x,
1206 MatchResultListener* listener) const override {
1207 return !matcher_.MatchAndExplain(x, listener);
1208 }
1209
1210 void DescribeTo(::std::ostream* os) const override {
1211 matcher_.DescribeNegationTo(os);
1212 }
1213
1214 void DescribeNegationTo(::std::ostream* os) const override {
1215 matcher_.DescribeTo(os);
1216 }
1217
1218 private:
1219 const Matcher<T> matcher_;
1220 };
1221
1222 // Implements the Not(m) matcher, which matches a value that doesn't
1223 // match matcher m.
1224 template <typename InnerMatcher>
1225 class NotMatcher {
1226 public:
1227 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1228
1229 // This template type conversion operator allows Not(m) to be used
1230 // to match any type m can match.
1231 template <typename T>
1232 operator Matcher<T>() const {
1233 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1234 }
1235
1236 private:
1237 InnerMatcher matcher_;
1238 };
1239
1240 // Implements the AllOf(m1, m2) matcher for a particular argument type
1241 // T. We do not nest it inside the BothOfMatcher class template, as
1242 // that will prevent different instantiations of BothOfMatcher from
1243 // sharing the same BothOfMatcherImpl<T> class.
1244 template <typename T>
1245 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1246 public:
1247 explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
1248 : matchers_(std::move(matchers)) {}
1249
1250 void DescribeTo(::std::ostream* os) const override {
1251 *os << "(";
1252 for (size_t i = 0; i < matchers_.size(); ++i) {
1253 if (i != 0) *os << ") and (";
1254 matchers_[i].DescribeTo(os);
1255 }
1256 *os << ")";
1257 }
1258
1259 void DescribeNegationTo(::std::ostream* os) const override {
1260 *os << "(";
1261 for (size_t i = 0; i < matchers_.size(); ++i) {
1262 if (i != 0) *os << ") or (";
1263 matchers_[i].DescribeNegationTo(os);
1264 }
1265 *os << ")";
1266 }
1267
1268 bool MatchAndExplain(const T& x,
1269 MatchResultListener* listener) const override {
1270 // If either matcher1_ or matcher2_ doesn't match x, we only need
1271 // to explain why one of them fails.
1272 std::string all_match_result;
1273
1274 for (size_t i = 0; i < matchers_.size(); ++i) {
1275 StringMatchResultListener slistener;
1276 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1277 if (all_match_result.empty()) {
1278 all_match_result = slistener.str();
1279 } else {
1280 std::string result = slistener.str();
1281 if (!result.empty()) {
1282 all_match_result += ", and ";
1283 all_match_result += result;
1284 }
1285 }
1286 } else {
1287 *listener << slistener.str();
1288 return false;
1289 }
1290 }
1291
1292 // Otherwise we need to explain why *both* of them match.
1293 *listener << all_match_result;
1294 return true;
1295 }
1296
1297 private:
1298 const std::vector<Matcher<T> > matchers_;
1299 };
1300
1301 // VariadicMatcher is used for the variadic implementation of
1302 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1303 // CombiningMatcher<T> is used to recursively combine the provided matchers
1304 // (of type Args...).
1305 template <template <typename T> class CombiningMatcher, typename... Args>
1306 class VariadicMatcher {
1307 public:
1308 VariadicMatcher(const Args&... matchers) // NOLINT
1309 : matchers_(matchers...) {
1310 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1311 }
1312
1313 VariadicMatcher(const VariadicMatcher&) = default;
1314 VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1315
1316 // This template type conversion operator allows an
1317 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1318 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1319 template <typename T>
1320 operator Matcher<T>() const {
1321 std::vector<Matcher<T> > values;
1322 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1323 return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1324 }
1325
1326 private:
1327 template <typename T, size_t I>
1328 void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
1329 std::integral_constant<size_t, I>) const {
1330 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1331 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1332 }
1333
1334 template <typename T>
1335 void CreateVariadicMatcher(
1336 std::vector<Matcher<T> >*,
1337 std::integral_constant<size_t, sizeof...(Args)>) const {}
1338
1339 std::tuple<Args...> matchers_;
1340 };
1341
1342 template <typename... Args>
1343 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1344
1345 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1346 // T. We do not nest it inside the AnyOfMatcher class template, as
1347 // that will prevent different instantiations of AnyOfMatcher from
1348 // sharing the same EitherOfMatcherImpl<T> class.
1349 template <typename T>
1350 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1351 public:
1352 explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
1353 : matchers_(std::move(matchers)) {}
1354
1355 void DescribeTo(::std::ostream* os) const override {
1356 *os << "(";
1357 for (size_t i = 0; i < matchers_.size(); ++i) {
1358 if (i != 0) *os << ") or (";
1359 matchers_[i].DescribeTo(os);
1360 }
1361 *os << ")";
1362 }
1363
1364 void DescribeNegationTo(::std::ostream* os) const override {
1365 *os << "(";
1366 for (size_t i = 0; i < matchers_.size(); ++i) {
1367 if (i != 0) *os << ") and (";
1368 matchers_[i].DescribeNegationTo(os);
1369 }
1370 *os << ")";
1371 }
1372
1373 bool MatchAndExplain(const T& x,
1374 MatchResultListener* listener) const override {
1375 std::string no_match_result;
1376
1377 // If either matcher1_ or matcher2_ matches x, we just need to
1378 // explain why *one* of them matches.
1379 for (size_t i = 0; i < matchers_.size(); ++i) {
1380 StringMatchResultListener slistener;
1381 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1382 *listener << slistener.str();
1383 return true;
1384 } else {
1385 if (no_match_result.empty()) {
1386 no_match_result = slistener.str();
1387 } else {
1388 std::string result = slistener.str();
1389 if (!result.empty()) {
1390 no_match_result += ", and ";
1391 no_match_result += result;
1392 }
1393 }
1394 }
1395 }
1396
1397 // Otherwise we need to explain why *both* of them fail.
1398 *listener << no_match_result;
1399 return false;
1400 }
1401
1402 private:
1403 const std::vector<Matcher<T> > matchers_;
1404 };
1405
1406 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1407 template <typename... Args>
1408 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1409
1410 // Wrapper for implementation of Any/AllOfArray().
1411 template <template <class> class MatcherImpl, typename T>
1412 class SomeOfArrayMatcher {
1413 public:
1414 // Constructs the matcher from a sequence of element values or
1415 // element matchers.
1416 template <typename Iter>
1417 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1418
1419 template <typename U>
1420 operator Matcher<U>() const { // NOLINT
1421 using RawU = typename std::decay<U>::type;
1422 std::vector<Matcher<RawU>> matchers;
1423 for (const auto& matcher : matchers_) {
1424 matchers.push_back(MatcherCast<RawU>(matcher));
1425 }
1426 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1427 }
1428
1429 private:
1430 const ::std::vector<T> matchers_;
1431 };
1432
1433 template <typename T>
1434 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1435
1436 template <typename T>
1437 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1438
1439 // Used for implementing Truly(pred), which turns a predicate into a
1440 // matcher.
1441 template <typename Predicate>
1442 class TrulyMatcher {
1443 public:
1444 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1445
1446 // This method template allows Truly(pred) to be used as a matcher
1447 // for type T where T is the argument type of predicate 'pred'. The
1448 // argument is passed by reference as the predicate may be
1449 // interested in the address of the argument.
1450 template <typename T>
1451 bool MatchAndExplain(T& x, // NOLINT
1452 MatchResultListener* listener) const {
1453 // Without the if-statement, MSVC sometimes warns about converting
1454 // a value to bool (warning 4800).
1455 //
1456 // We cannot write 'return !!predicate_(x);' as that doesn't work
1457 // when predicate_(x) returns a class convertible to bool but
1458 // having no operator!().
1459 if (predicate_(x))
1460 return true;
1461 *listener << "didn't satisfy the given predicate";
1462 return false;
1463 }
1464
1465 void DescribeTo(::std::ostream* os) const {
1466 *os << "satisfies the given predicate";
1467 }
1468
1469 void DescribeNegationTo(::std::ostream* os) const {
1470 *os << "doesn't satisfy the given predicate";
1471 }
1472
1473 private:
1474 Predicate predicate_;
1475 };
1476
1477 // Used for implementing Matches(matcher), which turns a matcher into
1478 // a predicate.
1479 template <typename M>
1480 class MatcherAsPredicate {
1481 public:
1482 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1483
1484 // This template operator() allows Matches(m) to be used as a
1485 // predicate on type T where m is a matcher on type T.
1486 //
1487 // The argument x is passed by reference instead of by value, as
1488 // some matcher may be interested in its address (e.g. as in
1489 // Matches(Ref(n))(x)).
1490 template <typename T>
1491 bool operator()(const T& x) const {
1492 // We let matcher_ commit to a particular type here instead of
1493 // when the MatcherAsPredicate object was constructed. This
1494 // allows us to write Matches(m) where m is a polymorphic matcher
1495 // (e.g. Eq(5)).
1496 //
1497 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1498 // compile when matcher_ has type Matcher<const T&>; if we write
1499 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1500 // when matcher_ has type Matcher<T>; if we just write
1501 // matcher_.Matches(x), it won't compile when matcher_ is
1502 // polymorphic, e.g. Eq(5).
1503 //
1504 // MatcherCast<const T&>() is necessary for making the code work
1505 // in all of the above situations.
1506 return MatcherCast<const T&>(matcher_).Matches(x);
1507 }
1508
1509 private:
1510 M matcher_;
1511 };
1512
1513 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1514 // argument M must be a type that can be converted to a matcher.
1515 template <typename M>
1516 class PredicateFormatterFromMatcher {
1517 public:
1518 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1519
1520 // This template () operator allows a PredicateFormatterFromMatcher
1521 // object to act as a predicate-formatter suitable for using with
1522 // Google Test's EXPECT_PRED_FORMAT1() macro.
1523 template <typename T>
1524 AssertionResult operator()(const char* value_text, const T& x) const {
1525 // We convert matcher_ to a Matcher<const T&> *now* instead of
1526 // when the PredicateFormatterFromMatcher object was constructed,
1527 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1528 // know which type to instantiate it to until we actually see the
1529 // type of x here.
1530 //
1531 // We write SafeMatcherCast<const T&>(matcher_) instead of
1532 // Matcher<const T&>(matcher_), as the latter won't compile when
1533 // matcher_ has type Matcher<T> (e.g. An<int>()).
1534 // We don't write MatcherCast<const T&> either, as that allows
1535 // potentially unsafe downcasting of the matcher argument.
1536 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1537
1538 // The expected path here is that the matcher should match (i.e. that most
1539 // tests pass) so optimize for this case.
1540 if (matcher.Matches(x)) {
1541 return AssertionSuccess();
1542 }
1543
1544 ::std::stringstream ss;
1545 ss << "Value of: " << value_text << "\n"
1546 << "Expected: ";
1547 matcher.DescribeTo(&ss);
1548
1549 // Rerun the matcher to "PrintAndExplain" the failure.
1550 StringMatchResultListener listener;
1551 if (MatchPrintAndExplain(x, matcher, &listener)) {
1552 ss << "\n The matcher failed on the initial attempt; but passed when "
1553 "rerun to generate the explanation.";
1554 }
1555 ss << "\n Actual: " << listener.str();
1556 return AssertionFailure() << ss.str();
1557 }
1558
1559 private:
1560 const M matcher_;
1561 };
1562
1563 // A helper function for converting a matcher to a predicate-formatter
1564 // without the user needing to explicitly write the type. This is
1565 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1566 // Implementation detail: 'matcher' is received by-value to force decaying.
1567 template <typename M>
1568 inline PredicateFormatterFromMatcher<M>
1569 MakePredicateFormatterFromMatcher(M matcher) {
1570 return PredicateFormatterFromMatcher<M>(std::move(matcher));
1571 }
1572
1573 // Implements the polymorphic IsNan() matcher, which matches any floating type
1574 // value that is Nan.
1575 class IsNanMatcher {
1576 public:
1577 template <typename FloatType>
1578 bool MatchAndExplain(const FloatType& f,
1579 MatchResultListener* /* listener */) const {
1580 return (::std::isnan)(f);
1581 }
1582
1583 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1584 void DescribeNegationTo(::std::ostream* os) const {
1585 *os << "isn't NaN";
1586 }
1587 };
1588
1589 // Implements the polymorphic floating point equality matcher, which matches
1590 // two float values using ULP-based approximation or, optionally, a
1591 // user-specified epsilon. The template is meant to be instantiated with
1592 // FloatType being either float or double.
1593 template <typename FloatType>
1594 class FloatingEqMatcher {
1595 public:
1596 // Constructor for FloatingEqMatcher.
1597 // The matcher's input will be compared with expected. The matcher treats two
1598 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1599 // equality comparisons between NANs will always return false. We specify a
1600 // negative max_abs_error_ term to indicate that ULP-based approximation will
1601 // be used for comparison.
1602 FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
1603 expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
1604 }
1605
1606 // Constructor that supports a user-specified max_abs_error that will be used
1607 // for comparison instead of ULP-based approximation. The max absolute
1608 // should be non-negative.
1609 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1610 FloatType max_abs_error)
1611 : expected_(expected),
1612 nan_eq_nan_(nan_eq_nan),
1613 max_abs_error_(max_abs_error) {
1614 GTEST_CHECK_(max_abs_error >= 0)
1615 << ", where max_abs_error is" << max_abs_error;
1616 }
1617
1618 // Implements floating point equality matcher as a Matcher<T>.
1619 template <typename T>
1620 class Impl : public MatcherInterface<T> {
1621 public:
1622 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1623 : expected_(expected),
1624 nan_eq_nan_(nan_eq_nan),
1625 max_abs_error_(max_abs_error) {}
1626
1627 bool MatchAndExplain(T value,
1628 MatchResultListener* listener) const override {
1629 const FloatingPoint<FloatType> actual(value), expected(expected_);
1630
1631 // Compares NaNs first, if nan_eq_nan_ is true.
1632 if (actual.is_nan() || expected.is_nan()) {
1633 if (actual.is_nan() && expected.is_nan()) {
1634 return nan_eq_nan_;
1635 }
1636 // One is nan; the other is not nan.
1637 return false;
1638 }
1639 if (HasMaxAbsError()) {
1640 // We perform an equality check so that inf will match inf, regardless
1641 // of error bounds. If the result of value - expected_ would result in
1642 // overflow or if either value is inf, the default result is infinity,
1643 // which should only match if max_abs_error_ is also infinity.
1644 if (value == expected_) {
1645 return true;
1646 }
1647
1648 const FloatType diff = value - expected_;
1649 if (::std::fabs(diff) <= max_abs_error_) {
1650 return true;
1651 }
1652
1653 if (listener->IsInterested()) {
1654 *listener << "which is " << diff << " from " << expected_;
1655 }
1656 return false;
1657 } else {
1658 return actual.AlmostEquals(expected);
1659 }
1660 }
1661
1662 void DescribeTo(::std::ostream* os) const override {
1663 // os->precision() returns the previously set precision, which we
1664 // store to restore the ostream to its original configuration
1665 // after outputting.
1666 const ::std::streamsize old_precision = os->precision(
1667 ::std::numeric_limits<FloatType>::digits10 + 2);
1668 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1669 if (nan_eq_nan_) {
1670 *os << "is NaN";
1671 } else {
1672 *os << "never matches";
1673 }
1674 } else {
1675 *os << "is approximately " << expected_;
1676 if (HasMaxAbsError()) {
1677 *os << " (absolute error <= " << max_abs_error_ << ")";
1678 }
1679 }
1680 os->precision(old_precision);
1681 }
1682
1683 void DescribeNegationTo(::std::ostream* os) const override {
1684 // As before, get original precision.
1685 const ::std::streamsize old_precision = os->precision(
1686 ::std::numeric_limits<FloatType>::digits10 + 2);
1687 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1688 if (nan_eq_nan_) {
1689 *os << "isn't NaN";
1690 } else {
1691 *os << "is anything";
1692 }
1693 } else {
1694 *os << "isn't approximately " << expected_;
1695 if (HasMaxAbsError()) {
1696 *os << " (absolute error > " << max_abs_error_ << ")";
1697 }
1698 }
1699 // Restore original precision.
1700 os->precision(old_precision);
1701 }
1702
1703 private:
1704 bool HasMaxAbsError() const {
1705 return max_abs_error_ >= 0;
1706 }
1707
1708 const FloatType expected_;
1709 const bool nan_eq_nan_;
1710 // max_abs_error will be used for value comparison when >= 0.
1711 const FloatType max_abs_error_;
1712 };
1713
1714 // The following 3 type conversion operators allow FloatEq(expected) and
1715 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1716 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1717 operator Matcher<FloatType>() const {
1718 return MakeMatcher(
1719 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1720 }
1721
1722 operator Matcher<const FloatType&>() const {
1723 return MakeMatcher(
1724 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1725 }
1726
1727 operator Matcher<FloatType&>() const {
1728 return MakeMatcher(
1729 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1730 }
1731
1732 private:
1733 const FloatType expected_;
1734 const bool nan_eq_nan_;
1735 // max_abs_error will be used for value comparison when >= 0.
1736 const FloatType max_abs_error_;
1737 };
1738
1739 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1740 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1741 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1742 // against y. The former implements "Eq", the latter "Near". At present, there
1743 // is no version that compares NaNs as equal.
1744 template <typename FloatType>
1745 class FloatingEq2Matcher {
1746 public:
1747 FloatingEq2Matcher() { Init(-1, false); }
1748
1749 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1750
1751 explicit FloatingEq2Matcher(FloatType max_abs_error) {
1752 Init(max_abs_error, false);
1753 }
1754
1755 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1756 Init(max_abs_error, nan_eq_nan);
1757 }
1758
1759 template <typename T1, typename T2>
1760 operator Matcher<::std::tuple<T1, T2>>() const {
1761 return MakeMatcher(
1762 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1763 }
1764 template <typename T1, typename T2>
1765 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1766 return MakeMatcher(
1767 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1768 }
1769
1770 private:
1771 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1772 return os << "an almost-equal pair";
1773 }
1774
1775 template <typename Tuple>
1776 class Impl : public MatcherInterface<Tuple> {
1777 public:
1778 Impl(FloatType max_abs_error, bool nan_eq_nan) :
1779 max_abs_error_(max_abs_error),
1780 nan_eq_nan_(nan_eq_nan) {}
1781
1782 bool MatchAndExplain(Tuple args,
1783 MatchResultListener* listener) const override {
1784 if (max_abs_error_ == -1) {
1785 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1786 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1787 ::std::get<1>(args), listener);
1788 } else {
1789 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1790 max_abs_error_);
1791 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1792 ::std::get<1>(args), listener);
1793 }
1794 }
1795 void DescribeTo(::std::ostream* os) const override {
1796 *os << "are " << GetDesc;
1797 }
1798 void DescribeNegationTo(::std::ostream* os) const override {
1799 *os << "aren't " << GetDesc;
1800 }
1801
1802 private:
1803 FloatType max_abs_error_;
1804 const bool nan_eq_nan_;
1805 };
1806
1807 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1808 max_abs_error_ = max_abs_error_val;
1809 nan_eq_nan_ = nan_eq_nan_val;
1810 }
1811 FloatType max_abs_error_;
1812 bool nan_eq_nan_;
1813 };
1814
1815 // Implements the Pointee(m) matcher for matching a pointer whose
1816 // pointee matches matcher m. The pointer can be either raw or smart.
1817 template <typename InnerMatcher>
1818 class PointeeMatcher {
1819 public:
1820 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1821
1822 // This type conversion operator template allows Pointee(m) to be
1823 // used as a matcher for any pointer type whose pointee type is
1824 // compatible with the inner matcher, where type Pointer can be
1825 // either a raw pointer or a smart pointer.
1826 //
1827 // The reason we do this instead of relying on
1828 // MakePolymorphicMatcher() is that the latter is not flexible
1829 // enough for implementing the DescribeTo() method of Pointee().
1830 template <typename Pointer>
1831 operator Matcher<Pointer>() const {
1832 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1833 }
1834
1835 private:
1836 // The monomorphic implementation that works for a particular pointer type.
1837 template <typename Pointer>
1838 class Impl : public MatcherInterface<Pointer> {
1839 public:
1840 using Pointee =
1841 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1842 Pointer)>::element_type;
1843
1844 explicit Impl(const InnerMatcher& matcher)
1845 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1846
1847 void DescribeTo(::std::ostream* os) const override {
1848 *os << "points to a value that ";
1849 matcher_.DescribeTo(os);
1850 }
1851
1852 void DescribeNegationTo(::std::ostream* os) const override {
1853 *os << "does not point to a value that ";
1854 matcher_.DescribeTo(os);
1855 }
1856
1857 bool MatchAndExplain(Pointer pointer,
1858 MatchResultListener* listener) const override {
1859 if (GetRawPointer(pointer) == nullptr) return false;
1860
1861 *listener << "which points to ";
1862 return MatchPrintAndExplain(*pointer, matcher_, listener);
1863 }
1864
1865 private:
1866 const Matcher<const Pointee&> matcher_;
1867 };
1868
1869 const InnerMatcher matcher_;
1870 };
1871
1872 // Implements the Pointer(m) matcher
1873 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1874 // m. The pointer can be either raw or smart, and will match `m` against the
1875 // raw pointer.
1876 template <typename InnerMatcher>
1877 class PointerMatcher {
1878 public:
1879 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1880
1881 // This type conversion operator template allows Pointer(m) to be
1882 // used as a matcher for any pointer type whose pointer type is
1883 // compatible with the inner matcher, where type PointerType can be
1884 // either a raw pointer or a smart pointer.
1885 //
1886 // The reason we do this instead of relying on
1887 // MakePolymorphicMatcher() is that the latter is not flexible
1888 // enough for implementing the DescribeTo() method of Pointer().
1889 template <typename PointerType>
1890 operator Matcher<PointerType>() const { // NOLINT
1891 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1892 }
1893
1894 private:
1895 // The monomorphic implementation that works for a particular pointer type.
1896 template <typename PointerType>
1897 class Impl : public MatcherInterface<PointerType> {
1898 public:
1899 using Pointer =
1900 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1901 PointerType)>::element_type*;
1902
1903 explicit Impl(const InnerMatcher& matcher)
1904 : matcher_(MatcherCast<Pointer>(matcher)) {}
1905
1906 void DescribeTo(::std::ostream* os) const override {
1907 *os << "is a pointer that ";
1908 matcher_.DescribeTo(os);
1909 }
1910
1911 void DescribeNegationTo(::std::ostream* os) const override {
1912 *os << "is not a pointer that ";
1913 matcher_.DescribeTo(os);
1914 }
1915
1916 bool MatchAndExplain(PointerType pointer,
1917 MatchResultListener* listener) const override {
1918 *listener << "which is a pointer that ";
1919 Pointer p = GetRawPointer(pointer);
1920 return MatchPrintAndExplain(p, matcher_, listener);
1921 }
1922
1923 private:
1924 Matcher<Pointer> matcher_;
1925 };
1926
1927 const InnerMatcher matcher_;
1928 };
1929
1930 #if GTEST_HAS_RTTI
1931 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1932 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1933 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1934 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
1935 // If To is a reference and the cast fails, this matcher returns false
1936 // immediately.
1937 template <typename To>
1938 class WhenDynamicCastToMatcherBase {
1939 public:
1940 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1941 : matcher_(matcher) {}
1942
1943 void DescribeTo(::std::ostream* os) const {
1944 GetCastTypeDescription(os);
1945 matcher_.DescribeTo(os);
1946 }
1947
1948 void DescribeNegationTo(::std::ostream* os) const {
1949 GetCastTypeDescription(os);
1950 matcher_.DescribeNegationTo(os);
1951 }
1952
1953 protected:
1954 const Matcher<To> matcher_;
1955
1956 static std::string GetToName() {
1957 return GetTypeName<To>();
1958 }
1959
1960 private:
1961 static void GetCastTypeDescription(::std::ostream* os) {
1962 *os << "when dynamic_cast to " << GetToName() << ", ";
1963 }
1964 };
1965
1966 // Primary template.
1967 // To is a pointer. Cast and forward the result.
1968 template <typename To>
1969 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
1970 public:
1971 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
1972 : WhenDynamicCastToMatcherBase<To>(matcher) {}
1973
1974 template <typename From>
1975 bool MatchAndExplain(From from, MatchResultListener* listener) const {
1976 To to = dynamic_cast<To>(from);
1977 return MatchPrintAndExplain(to, this->matcher_, listener);
1978 }
1979 };
1980
1981 // Specialize for references.
1982 // In this case we return false if the dynamic_cast fails.
1983 template <typename To>
1984 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
1985 public:
1986 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
1987 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
1988
1989 template <typename From>
1990 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
1991 // We don't want an std::bad_cast here, so do the cast with pointers.
1992 To* to = dynamic_cast<To*>(&from);
1993 if (to == nullptr) {
1994 *listener << "which cannot be dynamic_cast to " << this->GetToName();
1995 return false;
1996 }
1997 return MatchPrintAndExplain(*to, this->matcher_, listener);
1998 }
1999 };
2000 #endif // GTEST_HAS_RTTI
2001
2002 // Implements the Field() matcher for matching a field (i.e. member
2003 // variable) of an object.
2004 template <typename Class, typename FieldType>
2005 class FieldMatcher {
2006 public:
2007 FieldMatcher(FieldType Class::*field,
2008 const Matcher<const FieldType&>& matcher)
2009 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2010
2011 FieldMatcher(const std::string& field_name, FieldType Class::*field,
2012 const Matcher<const FieldType&>& matcher)
2013 : field_(field),
2014 matcher_(matcher),
2015 whose_field_("whose field `" + field_name + "` ") {}
2016
2017 void DescribeTo(::std::ostream* os) const {
2018 *os << "is an object " << whose_field_;
2019 matcher_.DescribeTo(os);
2020 }
2021
2022 void DescribeNegationTo(::std::ostream* os) const {
2023 *os << "is an object " << whose_field_;
2024 matcher_.DescribeNegationTo(os);
2025 }
2026
2027 template <typename T>
2028 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2029 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2030 // a compiler bug, and can now be removed.
2031 return MatchAndExplainImpl(
2032 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2033 value, listener);
2034 }
2035
2036 private:
2037 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2038 const Class& obj,
2039 MatchResultListener* listener) const {
2040 *listener << whose_field_ << "is ";
2041 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2042 }
2043
2044 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2045 MatchResultListener* listener) const {
2046 if (p == nullptr) return false;
2047
2048 *listener << "which points to an object ";
2049 // Since *p has a field, it must be a class/struct/union type and
2050 // thus cannot be a pointer. Therefore we pass false_type() as
2051 // the first argument.
2052 return MatchAndExplainImpl(std::false_type(), *p, listener);
2053 }
2054
2055 const FieldType Class::*field_;
2056 const Matcher<const FieldType&> matcher_;
2057
2058 // Contains either "whose given field " if the name of the field is unknown
2059 // or "whose field `name_of_field` " if the name is known.
2060 const std::string whose_field_;
2061 };
2062
2063 // Implements the Property() matcher for matching a property
2064 // (i.e. return value of a getter method) of an object.
2065 //
2066 // Property is a const-qualified member function of Class returning
2067 // PropertyType.
2068 template <typename Class, typename PropertyType, typename Property>
2069 class PropertyMatcher {
2070 public:
2071 typedef const PropertyType& RefToConstProperty;
2072
2073 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2074 : property_(property),
2075 matcher_(matcher),
2076 whose_property_("whose given property ") {}
2077
2078 PropertyMatcher(const std::string& property_name, Property property,
2079 const Matcher<RefToConstProperty>& matcher)
2080 : property_(property),
2081 matcher_(matcher),
2082 whose_property_("whose property `" + property_name + "` ") {}
2083
2084 void DescribeTo(::std::ostream* os) const {
2085 *os << "is an object " << whose_property_;
2086 matcher_.DescribeTo(os);
2087 }
2088
2089 void DescribeNegationTo(::std::ostream* os) const {
2090 *os << "is an object " << whose_property_;
2091 matcher_.DescribeNegationTo(os);
2092 }
2093
2094 template <typename T>
2095 bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
2096 return MatchAndExplainImpl(
2097 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2098 value, listener);
2099 }
2100
2101 private:
2102 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2103 const Class& obj,
2104 MatchResultListener* listener) const {
2105 *listener << whose_property_ << "is ";
2106 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2107 // which takes a non-const reference as argument.
2108 RefToConstProperty result = (obj.*property_)();
2109 return MatchPrintAndExplain(result, matcher_, listener);
2110 }
2111
2112 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2113 MatchResultListener* listener) const {
2114 if (p == nullptr) return false;
2115
2116 *listener << "which points to an object ";
2117 // Since *p has a property method, it must be a class/struct/union
2118 // type and thus cannot be a pointer. Therefore we pass
2119 // false_type() as the first argument.
2120 return MatchAndExplainImpl(std::false_type(), *p, listener);
2121 }
2122
2123 Property property_;
2124 const Matcher<RefToConstProperty> matcher_;
2125
2126 // Contains either "whose given property " if the name of the property is
2127 // unknown or "whose property `name_of_property` " if the name is known.
2128 const std::string whose_property_;
2129 };
2130
2131 // Type traits specifying various features of different functors for ResultOf.
2132 // The default template specifies features for functor objects.
2133 template <typename Functor>
2134 struct CallableTraits {
2135 typedef Functor StorageType;
2136
2137 static void CheckIsValid(Functor /* functor */) {}
2138
2139 template <typename T>
2140 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2141 return f(arg);
2142 }
2143 };
2144
2145 // Specialization for function pointers.
2146 template <typename ArgType, typename ResType>
2147 struct CallableTraits<ResType(*)(ArgType)> {
2148 typedef ResType ResultType;
2149 typedef ResType(*StorageType)(ArgType);
2150
2151 static void CheckIsValid(ResType(*f)(ArgType)) {
2152 GTEST_CHECK_(f != nullptr)
2153 << "NULL function pointer is passed into ResultOf().";
2154 }
2155 template <typename T>
2156 static ResType Invoke(ResType(*f)(ArgType), T arg) {
2157 return (*f)(arg);
2158 }
2159 };
2160
2161 // Implements the ResultOf() matcher for matching a return value of a
2162 // unary function of an object.
2163 template <typename Callable, typename InnerMatcher>
2164 class ResultOfMatcher {
2165 public:
2166 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2167 : callable_(std::move(callable)), matcher_(std::move(matcher)) {
2168 CallableTraits<Callable>::CheckIsValid(callable_);
2169 }
2170
2171 template <typename T>
2172 operator Matcher<T>() const {
2173 return Matcher<T>(new Impl<const T&>(callable_, matcher_));
2174 }
2175
2176 private:
2177 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2178
2179 template <typename T>
2180 class Impl : public MatcherInterface<T> {
2181 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2182 std::declval<CallableStorageType>(), std::declval<T>()));
2183
2184 public:
2185 template <typename M>
2186 Impl(const CallableStorageType& callable, const M& matcher)
2187 : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
2188
2189 void DescribeTo(::std::ostream* os) const override {
2190 *os << "is mapped by the given callable to a value that ";
2191 matcher_.DescribeTo(os);
2192 }
2193
2194 void DescribeNegationTo(::std::ostream* os) const override {
2195 *os << "is mapped by the given callable to a value that ";
2196 matcher_.DescribeNegationTo(os);
2197 }
2198
2199 bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2200 *listener << "which is mapped by the given callable to ";
2201 // Cannot pass the return value directly to MatchPrintAndExplain, which
2202 // takes a non-const reference as argument.
2203 // Also, specifying template argument explicitly is needed because T could
2204 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2205 ResultType result =
2206 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2207 return MatchPrintAndExplain(result, matcher_, listener);
2208 }
2209
2210 private:
2211 // Functors often define operator() as non-const method even though
2212 // they are actually stateless. But we need to use them even when
2213 // 'this' is a const pointer. It's the user's responsibility not to
2214 // use stateful callables with ResultOf(), which doesn't guarantee
2215 // how many times the callable will be invoked.
2216 mutable CallableStorageType callable_;
2217 const Matcher<ResultType> matcher_;
2218 }; // class Impl
2219
2220 const CallableStorageType callable_;
2221 const InnerMatcher matcher_;
2222 };
2223
2224 // Implements a matcher that checks the size of an STL-style container.
2225 template <typename SizeMatcher>
2226 class SizeIsMatcher {
2227 public:
2228 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2229 : size_matcher_(size_matcher) {
2230 }
2231
2232 template <typename Container>
2233 operator Matcher<Container>() const {
2234 return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2235 }
2236
2237 template <typename Container>
2238 class Impl : public MatcherInterface<Container> {
2239 public:
2240 using SizeType = decltype(std::declval<Container>().size());
2241 explicit Impl(const SizeMatcher& size_matcher)
2242 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2243
2244 void DescribeTo(::std::ostream* os) const override {
2245 *os << "size ";
2246 size_matcher_.DescribeTo(os);
2247 }
2248 void DescribeNegationTo(::std::ostream* os) const override {
2249 *os << "size ";
2250 size_matcher_.DescribeNegationTo(os);
2251 }
2252
2253 bool MatchAndExplain(Container container,
2254 MatchResultListener* listener) const override {
2255 SizeType size = container.size();
2256 StringMatchResultListener size_listener;
2257 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2258 *listener
2259 << "whose size " << size << (result ? " matches" : " doesn't match");
2260 PrintIfNotEmpty(size_listener.str(), listener->stream());
2261 return result;
2262 }
2263
2264 private:
2265 const Matcher<SizeType> size_matcher_;
2266 };
2267
2268 private:
2269 const SizeMatcher size_matcher_;
2270 };
2271
2272 // Implements a matcher that checks the begin()..end() distance of an STL-style
2273 // container.
2274 template <typename DistanceMatcher>
2275 class BeginEndDistanceIsMatcher {
2276 public:
2277 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2278 : distance_matcher_(distance_matcher) {}
2279
2280 template <typename Container>
2281 operator Matcher<Container>() const {
2282 return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2283 }
2284
2285 template <typename Container>
2286 class Impl : public MatcherInterface<Container> {
2287 public:
2288 typedef internal::StlContainerView<
2289 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2290 typedef typename std::iterator_traits<
2291 typename ContainerView::type::const_iterator>::difference_type
2292 DistanceType;
2293 explicit Impl(const DistanceMatcher& distance_matcher)
2294 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2295
2296 void DescribeTo(::std::ostream* os) const override {
2297 *os << "distance between begin() and end() ";
2298 distance_matcher_.DescribeTo(os);
2299 }
2300 void DescribeNegationTo(::std::ostream* os) const override {
2301 *os << "distance between begin() and end() ";
2302 distance_matcher_.DescribeNegationTo(os);
2303 }
2304
2305 bool MatchAndExplain(Container container,
2306 MatchResultListener* listener) const override {
2307 using std::begin;
2308 using std::end;
2309 DistanceType distance = std::distance(begin(container), end(container));
2310 StringMatchResultListener distance_listener;
2311 const bool result =
2312 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2313 *listener << "whose distance between begin() and end() " << distance
2314 << (result ? " matches" : " doesn't match");
2315 PrintIfNotEmpty(distance_listener.str(), listener->stream());
2316 return result;
2317 }
2318
2319 private:
2320 const Matcher<DistanceType> distance_matcher_;
2321 };
2322
2323 private:
2324 const DistanceMatcher distance_matcher_;
2325 };
2326
2327 // Implements an equality matcher for any STL-style container whose elements
2328 // support ==. This matcher is like Eq(), but its failure explanations provide
2329 // more detailed information that is useful when the container is used as a set.
2330 // The failure message reports elements that are in one of the operands but not
2331 // the other. The failure messages do not report duplicate or out-of-order
2332 // elements in the containers (which don't properly matter to sets, but can
2333 // occur if the containers are vectors or lists, for example).
2334 //
2335 // Uses the container's const_iterator, value_type, operator ==,
2336 // begin(), and end().
2337 template <typename Container>
2338 class ContainerEqMatcher {
2339 public:
2340 typedef internal::StlContainerView<Container> View;
2341 typedef typename View::type StlContainer;
2342 typedef typename View::const_reference StlContainerReference;
2343
2344 static_assert(!std::is_const<Container>::value,
2345 "Container type must not be const");
2346 static_assert(!std::is_reference<Container>::value,
2347 "Container type must not be a reference");
2348
2349 // We make a copy of expected in case the elements in it are modified
2350 // after this matcher is created.
2351 explicit ContainerEqMatcher(const Container& expected)
2352 : expected_(View::Copy(expected)) {}
2353
2354 void DescribeTo(::std::ostream* os) const {
2355 *os << "equals ";
2356 UniversalPrint(expected_, os);
2357 }
2358 void DescribeNegationTo(::std::ostream* os) const {
2359 *os << "does not equal ";
2360 UniversalPrint(expected_, os);
2361 }
2362
2363 template <typename LhsContainer>
2364 bool MatchAndExplain(const LhsContainer& lhs,
2365 MatchResultListener* listener) const {
2366 typedef internal::StlContainerView<
2367 typename std::remove_const<LhsContainer>::type>
2368 LhsView;
2369 typedef typename LhsView::type LhsStlContainer;
2370 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2371 if (lhs_stl_container == expected_)
2372 return true;
2373
2374 ::std::ostream* const os = listener->stream();
2375 if (os != nullptr) {
2376 // Something is different. Check for extra values first.
2377 bool printed_header = false;
2378 for (typename LhsStlContainer::const_iterator it =
2379 lhs_stl_container.begin();
2380 it != lhs_stl_container.end(); ++it) {
2381 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2382 expected_.end()) {
2383 if (printed_header) {
2384 *os << ", ";
2385 } else {
2386 *os << "which has these unexpected elements: ";
2387 printed_header = true;
2388 }
2389 UniversalPrint(*it, os);
2390 }
2391 }
2392
2393 // Now check for missing values.
2394 bool printed_header2 = false;
2395 for (typename StlContainer::const_iterator it = expected_.begin();
2396 it != expected_.end(); ++it) {
2397 if (internal::ArrayAwareFind(
2398 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
2399 lhs_stl_container.end()) {
2400 if (printed_header2) {
2401 *os << ", ";
2402 } else {
2403 *os << (printed_header ? ",\nand" : "which")
2404 << " doesn't have these expected elements: ";
2405 printed_header2 = true;
2406 }
2407 UniversalPrint(*it, os);
2408 }
2409 }
2410 }
2411
2412 return false;
2413 }
2414
2415 private:
2416 const StlContainer expected_;
2417 };
2418
2419 // A comparator functor that uses the < operator to compare two values.
2420 struct LessComparator {
2421 template <typename T, typename U>
2422 bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2423 };
2424
2425 // Implements WhenSortedBy(comparator, container_matcher).
2426 template <typename Comparator, typename ContainerMatcher>
2427 class WhenSortedByMatcher {
2428 public:
2429 WhenSortedByMatcher(const Comparator& comparator,
2430 const ContainerMatcher& matcher)
2431 : comparator_(comparator), matcher_(matcher) {}
2432
2433 template <typename LhsContainer>
2434 operator Matcher<LhsContainer>() const {
2435 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2436 }
2437
2438 template <typename LhsContainer>
2439 class Impl : public MatcherInterface<LhsContainer> {
2440 public:
2441 typedef internal::StlContainerView<
2442 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2443 typedef typename LhsView::type LhsStlContainer;
2444 typedef typename LhsView::const_reference LhsStlContainerReference;
2445 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2446 // so that we can match associative containers.
2447 typedef typename RemoveConstFromKey<
2448 typename LhsStlContainer::value_type>::type LhsValue;
2449
2450 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2451 : comparator_(comparator), matcher_(matcher) {}
2452
2453 void DescribeTo(::std::ostream* os) const override {
2454 *os << "(when sorted) ";
2455 matcher_.DescribeTo(os);
2456 }
2457
2458 void DescribeNegationTo(::std::ostream* os) const override {
2459 *os << "(when sorted) ";
2460 matcher_.DescribeNegationTo(os);
2461 }
2462
2463 bool MatchAndExplain(LhsContainer lhs,
2464 MatchResultListener* listener) const override {
2465 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2466 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2467 lhs_stl_container.end());
2468 ::std::sort(
2469 sorted_container.begin(), sorted_container.end(), comparator_);
2470
2471 if (!listener->IsInterested()) {
2472 // If the listener is not interested, we do not need to
2473 // construct the inner explanation.
2474 return matcher_.Matches(sorted_container);
2475 }
2476
2477 *listener << "which is ";
2478 UniversalPrint(sorted_container, listener->stream());
2479 *listener << " when sorted";
2480
2481 StringMatchResultListener inner_listener;
2482 const bool match = matcher_.MatchAndExplain(sorted_container,
2483 &inner_listener);
2484 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2485 return match;
2486 }
2487
2488 private:
2489 const Comparator comparator_;
2490 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2491
2492 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2493 };
2494
2495 private:
2496 const Comparator comparator_;
2497 const ContainerMatcher matcher_;
2498 };
2499
2500 // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2501 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2502 // T2&> >, where T1 and T2 are the types of elements in the LHS
2503 // container and the RHS container respectively.
2504 template <typename TupleMatcher, typename RhsContainer>
2505 class PointwiseMatcher {
2506 GTEST_COMPILE_ASSERT_(
2507 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2508 use_UnorderedPointwise_with_hash_tables);
2509
2510 public:
2511 typedef internal::StlContainerView<RhsContainer> RhsView;
2512 typedef typename RhsView::type RhsStlContainer;
2513 typedef typename RhsStlContainer::value_type RhsValue;
2514
2515 static_assert(!std::is_const<RhsContainer>::value,
2516 "RhsContainer type must not be const");
2517 static_assert(!std::is_reference<RhsContainer>::value,
2518 "RhsContainer type must not be a reference");
2519
2520 // Like ContainerEq, we make a copy of rhs in case the elements in
2521 // it are modified after this matcher is created.
2522 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2523 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2524
2525 template <typename LhsContainer>
2526 operator Matcher<LhsContainer>() const {
2527 GTEST_COMPILE_ASSERT_(
2528 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2529 use_UnorderedPointwise_with_hash_tables);
2530
2531 return Matcher<LhsContainer>(
2532 new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2533 }
2534
2535 template <typename LhsContainer>
2536 class Impl : public MatcherInterface<LhsContainer> {
2537 public:
2538 typedef internal::StlContainerView<
2539 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2540 typedef typename LhsView::type LhsStlContainer;
2541 typedef typename LhsView::const_reference LhsStlContainerReference;
2542 typedef typename LhsStlContainer::value_type LhsValue;
2543 // We pass the LHS value and the RHS value to the inner matcher by
2544 // reference, as they may be expensive to copy. We must use tuple
2545 // instead of pair here, as a pair cannot hold references (C++ 98,
2546 // 20.2.2 [lib.pairs]).
2547 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2548
2549 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2550 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2551 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2552 rhs_(rhs) {}
2553
2554 void DescribeTo(::std::ostream* os) const override {
2555 *os << "contains " << rhs_.size()
2556 << " values, where each value and its corresponding value in ";
2557 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2558 *os << " ";
2559 mono_tuple_matcher_.DescribeTo(os);
2560 }
2561 void DescribeNegationTo(::std::ostream* os) const override {
2562 *os << "doesn't contain exactly " << rhs_.size()
2563 << " values, or contains a value x at some index i"
2564 << " where x and the i-th value of ";
2565 UniversalPrint(rhs_, os);
2566 *os << " ";
2567 mono_tuple_matcher_.DescribeNegationTo(os);
2568 }
2569
2570 bool MatchAndExplain(LhsContainer lhs,
2571 MatchResultListener* listener) const override {
2572 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2573 const size_t actual_size = lhs_stl_container.size();
2574 if (actual_size != rhs_.size()) {
2575 *listener << "which contains " << actual_size << " values";
2576 return false;
2577 }
2578
2579 typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2580 typename RhsStlContainer::const_iterator right = rhs_.begin();
2581 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2582 if (listener->IsInterested()) {
2583 StringMatchResultListener inner_listener;
2584 // Create InnerMatcherArg as a temporarily object to avoid it outlives
2585 // *left and *right. Dereference or the conversion to `const T&` may
2586 // return temp objects, e.g for vector<bool>.
2587 if (!mono_tuple_matcher_.MatchAndExplain(
2588 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2589 ImplicitCast_<const RhsValue&>(*right)),
2590 &inner_listener)) {
2591 *listener << "where the value pair (";
2592 UniversalPrint(*left, listener->stream());
2593 *listener << ", ";
2594 UniversalPrint(*right, listener->stream());
2595 *listener << ") at index #" << i << " don't match";
2596 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2597 return false;
2598 }
2599 } else {
2600 if (!mono_tuple_matcher_.Matches(
2601 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2602 ImplicitCast_<const RhsValue&>(*right))))
2603 return false;
2604 }
2605 }
2606
2607 return true;
2608 }
2609
2610 private:
2611 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2612 const RhsStlContainer rhs_;
2613 };
2614
2615 private:
2616 const TupleMatcher tuple_matcher_;
2617 const RhsStlContainer rhs_;
2618 };
2619
2620 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2621 template <typename Container>
2622 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2623 public:
2624 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2625 typedef StlContainerView<RawContainer> View;
2626 typedef typename View::type StlContainer;
2627 typedef typename View::const_reference StlContainerReference;
2628 typedef typename StlContainer::value_type Element;
2629
2630 template <typename InnerMatcher>
2631 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2632 : inner_matcher_(
2633 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2634
2635 // Checks whether:
2636 // * All elements in the container match, if all_elements_should_match.
2637 // * Any element in the container matches, if !all_elements_should_match.
2638 bool MatchAndExplainImpl(bool all_elements_should_match,
2639 Container container,
2640 MatchResultListener* listener) const {
2641 StlContainerReference stl_container = View::ConstReference(container);
2642 size_t i = 0;
2643 for (typename StlContainer::const_iterator it = stl_container.begin();
2644 it != stl_container.end(); ++it, ++i) {
2645 StringMatchResultListener inner_listener;
2646 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2647
2648 if (matches != all_elements_should_match) {
2649 *listener << "whose element #" << i
2650 << (matches ? " matches" : " doesn't match");
2651 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2652 return !all_elements_should_match;
2653 }
2654 }
2655 return all_elements_should_match;
2656 }
2657
2658 protected:
2659 const Matcher<const Element&> inner_matcher_;
2660 };
2661
2662 // Implements Contains(element_matcher) for the given argument type Container.
2663 // Symmetric to EachMatcherImpl.
2664 template <typename Container>
2665 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2666 public:
2667 template <typename InnerMatcher>
2668 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2669 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2670
2671 // Describes what this matcher does.
2672 void DescribeTo(::std::ostream* os) const override {
2673 *os << "contains at least one element that ";
2674 this->inner_matcher_.DescribeTo(os);
2675 }
2676
2677 void DescribeNegationTo(::std::ostream* os) const override {
2678 *os << "doesn't contain any element that ";
2679 this->inner_matcher_.DescribeTo(os);
2680 }
2681
2682 bool MatchAndExplain(Container container,
2683 MatchResultListener* listener) const override {
2684 return this->MatchAndExplainImpl(false, container, listener);
2685 }
2686 };
2687
2688 // Implements Each(element_matcher) for the given argument type Container.
2689 // Symmetric to ContainsMatcherImpl.
2690 template <typename Container>
2691 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2692 public:
2693 template <typename InnerMatcher>
2694 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2695 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2696
2697 // Describes what this matcher does.
2698 void DescribeTo(::std::ostream* os) const override {
2699 *os << "only contains elements that ";
2700 this->inner_matcher_.DescribeTo(os);
2701 }
2702
2703 void DescribeNegationTo(::std::ostream* os) const override {
2704 *os << "contains some element that ";
2705 this->inner_matcher_.DescribeNegationTo(os);
2706 }
2707
2708 bool MatchAndExplain(Container container,
2709 MatchResultListener* listener) const override {
2710 return this->MatchAndExplainImpl(true, container, listener);
2711 }
2712 };
2713
2714 // Implements polymorphic Contains(element_matcher).
2715 template <typename M>
2716 class ContainsMatcher {
2717 public:
2718 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2719
2720 template <typename Container>
2721 operator Matcher<Container>() const {
2722 return Matcher<Container>(
2723 new ContainsMatcherImpl<const Container&>(inner_matcher_));
2724 }
2725
2726 private:
2727 const M inner_matcher_;
2728 };
2729
2730 // Implements polymorphic Each(element_matcher).
2731 template <typename M>
2732 class EachMatcher {
2733 public:
2734 explicit EachMatcher(M m) : inner_matcher_(m) {}
2735
2736 template <typename Container>
2737 operator Matcher<Container>() const {
2738 return Matcher<Container>(
2739 new EachMatcherImpl<const Container&>(inner_matcher_));
2740 }
2741
2742 private:
2743 const M inner_matcher_;
2744 };
2745
2746 struct Rank1 {};
2747 struct Rank0 : Rank1 {};
2748
2749 namespace pair_getters {
2750 using std::get;
2751 template <typename T>
2752 auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
2753 return get<0>(x);
2754 }
2755 template <typename T>
2756 auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
2757 return x.first;
2758 }
2759
2760 template <typename T>
2761 auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
2762 return get<1>(x);
2763 }
2764 template <typename T>
2765 auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
2766 return x.second;
2767 }
2768 } // namespace pair_getters
2769
2770 // Implements Key(inner_matcher) for the given argument pair type.
2771 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2772 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2773 // std::map that contains at least one element whose key is >= 5.
2774 template <typename PairType>
2775 class KeyMatcherImpl : public MatcherInterface<PairType> {
2776 public:
2777 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2778 typedef typename RawPairType::first_type KeyType;
2779
2780 template <typename InnerMatcher>
2781 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2782 : inner_matcher_(
2783 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2784 }
2785
2786 // Returns true if and only if 'key_value.first' (the key) matches the inner
2787 // matcher.
2788 bool MatchAndExplain(PairType key_value,
2789 MatchResultListener* listener) const override {
2790 StringMatchResultListener inner_listener;
2791 const bool match = inner_matcher_.MatchAndExplain(
2792 pair_getters::First(key_value, Rank0()), &inner_listener);
2793 const std::string explanation = inner_listener.str();
2794 if (explanation != "") {
2795 *listener << "whose first field is a value " << explanation;
2796 }
2797 return match;
2798 }
2799
2800 // Describes what this matcher does.
2801 void DescribeTo(::std::ostream* os) const override {
2802 *os << "has a key that ";
2803 inner_matcher_.DescribeTo(os);
2804 }
2805
2806 // Describes what the negation of this matcher does.
2807 void DescribeNegationTo(::std::ostream* os) const override {
2808 *os << "doesn't have a key that ";
2809 inner_matcher_.DescribeTo(os);
2810 }
2811
2812 private:
2813 const Matcher<const KeyType&> inner_matcher_;
2814 };
2815
2816 // Implements polymorphic Key(matcher_for_key).
2817 template <typename M>
2818 class KeyMatcher {
2819 public:
2820 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2821
2822 template <typename PairType>
2823 operator Matcher<PairType>() const {
2824 return Matcher<PairType>(
2825 new KeyMatcherImpl<const PairType&>(matcher_for_key_));
2826 }
2827
2828 private:
2829 const M matcher_for_key_;
2830 };
2831
2832 // Implements polymorphic Address(matcher_for_address).
2833 template <typename InnerMatcher>
2834 class AddressMatcher {
2835 public:
2836 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
2837
2838 template <typename Type>
2839 operator Matcher<Type>() const { // NOLINT
2840 return Matcher<Type>(new Impl<const Type&>(matcher_));
2841 }
2842
2843 private:
2844 // The monomorphic implementation that works for a particular object type.
2845 template <typename Type>
2846 class Impl : public MatcherInterface<Type> {
2847 public:
2848 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
2849 explicit Impl(const InnerMatcher& matcher)
2850 : matcher_(MatcherCast<Address>(matcher)) {}
2851
2852 void DescribeTo(::std::ostream* os) const override {
2853 *os << "has address that ";
2854 matcher_.DescribeTo(os);
2855 }
2856
2857 void DescribeNegationTo(::std::ostream* os) const override {
2858 *os << "does not have address that ";
2859 matcher_.DescribeTo(os);
2860 }
2861
2862 bool MatchAndExplain(Type object,
2863 MatchResultListener* listener) const override {
2864 *listener << "which has address ";
2865 Address address = std::addressof(object);
2866 return MatchPrintAndExplain(address, matcher_, listener);
2867 }
2868
2869 private:
2870 const Matcher<Address> matcher_;
2871 };
2872 const InnerMatcher matcher_;
2873 };
2874
2875 // Implements Pair(first_matcher, second_matcher) for the given argument pair
2876 // type with its two matchers. See Pair() function below.
2877 template <typename PairType>
2878 class PairMatcherImpl : public MatcherInterface<PairType> {
2879 public:
2880 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2881 typedef typename RawPairType::first_type FirstType;
2882 typedef typename RawPairType::second_type SecondType;
2883
2884 template <typename FirstMatcher, typename SecondMatcher>
2885 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2886 : first_matcher_(
2887 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2888 second_matcher_(
2889 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2890 }
2891
2892 // Describes what this matcher does.
2893 void DescribeTo(::std::ostream* os) const override {
2894 *os << "has a first field that ";
2895 first_matcher_.DescribeTo(os);
2896 *os << ", and has a second field that ";
2897 second_matcher_.DescribeTo(os);
2898 }
2899
2900 // Describes what the negation of this matcher does.
2901 void DescribeNegationTo(::std::ostream* os) const override {
2902 *os << "has a first field that ";
2903 first_matcher_.DescribeNegationTo(os);
2904 *os << ", or has a second field that ";
2905 second_matcher_.DescribeNegationTo(os);
2906 }
2907
2908 // Returns true if and only if 'a_pair.first' matches first_matcher and
2909 // 'a_pair.second' matches second_matcher.
2910 bool MatchAndExplain(PairType a_pair,
2911 MatchResultListener* listener) const override {
2912 if (!listener->IsInterested()) {
2913 // If the listener is not interested, we don't need to construct the
2914 // explanation.
2915 return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
2916 second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
2917 }
2918 StringMatchResultListener first_inner_listener;
2919 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
2920 &first_inner_listener)) {
2921 *listener << "whose first field does not match";
2922 PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2923 return false;
2924 }
2925 StringMatchResultListener second_inner_listener;
2926 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
2927 &second_inner_listener)) {
2928 *listener << "whose second field does not match";
2929 PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2930 return false;
2931 }
2932 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2933 listener);
2934 return true;
2935 }
2936
2937 private:
2938 void ExplainSuccess(const std::string& first_explanation,
2939 const std::string& second_explanation,
2940 MatchResultListener* listener) const {
2941 *listener << "whose both fields match";
2942 if (first_explanation != "") {
2943 *listener << ", where the first field is a value " << first_explanation;
2944 }
2945 if (second_explanation != "") {
2946 *listener << ", ";
2947 if (first_explanation != "") {
2948 *listener << "and ";
2949 } else {
2950 *listener << "where ";
2951 }
2952 *listener << "the second field is a value " << second_explanation;
2953 }
2954 }
2955
2956 const Matcher<const FirstType&> first_matcher_;
2957 const Matcher<const SecondType&> second_matcher_;
2958 };
2959
2960 // Implements polymorphic Pair(first_matcher, second_matcher).
2961 template <typename FirstMatcher, typename SecondMatcher>
2962 class PairMatcher {
2963 public:
2964 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2965 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2966
2967 template <typename PairType>
2968 operator Matcher<PairType> () const {
2969 return Matcher<PairType>(
2970 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
2971 }
2972
2973 private:
2974 const FirstMatcher first_matcher_;
2975 const SecondMatcher second_matcher_;
2976 };
2977
2978 template <typename T, size_t... I>
2979 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
2980 -> decltype(std::tie(get<I>(t)...)) {
2981 static_assert(std::tuple_size<T>::value == sizeof...(I),
2982 "Number of arguments doesn't match the number of fields.");
2983 return std::tie(get<I>(t)...);
2984 }
2985
2986 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
2987 template <typename T>
2988 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
2989 const auto& [a] = t;
2990 return std::tie(a);
2991 }
2992 template <typename T>
2993 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
2994 const auto& [a, b] = t;
2995 return std::tie(a, b);
2996 }
2997 template <typename T>
2998 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
2999 const auto& [a, b, c] = t;
3000 return std::tie(a, b, c);
3001 }
3002 template <typename T>
3003 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3004 const auto& [a, b, c, d] = t;
3005 return std::tie(a, b, c, d);
3006 }
3007 template <typename T>
3008 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3009 const auto& [a, b, c, d, e] = t;
3010 return std::tie(a, b, c, d, e);
3011 }
3012 template <typename T>
3013 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3014 const auto& [a, b, c, d, e, f] = t;
3015 return std::tie(a, b, c, d, e, f);
3016 }
3017 template <typename T>
3018 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3019 const auto& [a, b, c, d, e, f, g] = t;
3020 return std::tie(a, b, c, d, e, f, g);
3021 }
3022 template <typename T>
3023 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3024 const auto& [a, b, c, d, e, f, g, h] = t;
3025 return std::tie(a, b, c, d, e, f, g, h);
3026 }
3027 template <typename T>
3028 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3029 const auto& [a, b, c, d, e, f, g, h, i] = t;
3030 return std::tie(a, b, c, d, e, f, g, h, i);
3031 }
3032 template <typename T>
3033 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3034 const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3035 return std::tie(a, b, c, d, e, f, g, h, i, j);
3036 }
3037 template <typename T>
3038 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3039 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3040 return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3041 }
3042 template <typename T>
3043 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3044 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3045 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3046 }
3047 template <typename T>
3048 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3049 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3050 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3051 }
3052 template <typename T>
3053 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3054 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3055 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3056 }
3057 template <typename T>
3058 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3059 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3060 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3061 }
3062 template <typename T>
3063 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3064 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3065 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3066 }
3067 #endif // defined(__cpp_structured_bindings)
3068
3069 template <size_t I, typename T>
3070 auto UnpackStruct(const T& t)
3071 -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3072 return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3073 }
3074
3075 // Helper function to do comma folding in C++11.
3076 // The array ensures left-to-right order of evaluation.
3077 // Usage: VariadicExpand({expr...});
3078 template <typename T, size_t N>
3079 void VariadicExpand(const T (&)[N]) {}
3080
3081 template <typename Struct, typename StructSize>
3082 class FieldsAreMatcherImpl;
3083
3084 template <typename Struct, size_t... I>
3085 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3086 : public MatcherInterface<Struct> {
3087 using UnpackedType =
3088 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3089 using MatchersType = std::tuple<
3090 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3091
3092 public:
3093 template <typename Inner>
3094 explicit FieldsAreMatcherImpl(const Inner& matchers)
3095 : matchers_(testing::SafeMatcherCast<
3096 const typename std::tuple_element<I, UnpackedType>::type&>(
3097 std::get<I>(matchers))...) {}
3098
3099 void DescribeTo(::std::ostream* os) const override {
3100 const char* separator = "";
3101 VariadicExpand(
3102 {(*os << separator << "has field #" << I << " that ",
3103 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3104 }
3105
3106 void DescribeNegationTo(::std::ostream* os) const override {
3107 const char* separator = "";
3108 VariadicExpand({(*os << separator << "has field #" << I << " that ",
3109 std::get<I>(matchers_).DescribeNegationTo(os),
3110 separator = ", or ")...});
3111 }
3112
3113 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3114 return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3115 }
3116
3117 private:
3118 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3119 if (!listener->IsInterested()) {
3120 // If the listener is not interested, we don't need to construct the
3121 // explanation.
3122 bool good = true;
3123 VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3124 std::get<I>(tuple))...});
3125 return good;
3126 }
3127
3128 size_t failed_pos = ~size_t{};
3129
3130 std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3131
3132 VariadicExpand(
3133 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3134 std::get<I>(tuple), &inner_listener[I])
3135 ? failed_pos = I
3136 : 0 ...});
3137 if (failed_pos != ~size_t{}) {
3138 *listener << "whose field #" << failed_pos << " does not match";
3139 PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3140 return false;
3141 }
3142
3143 *listener << "whose all elements match";
3144 const char* separator = ", where";
3145 for (size_t index = 0; index < sizeof...(I); ++index) {
3146 const std::string str = inner_listener[index].str();
3147 if (!str.empty()) {
3148 *listener << separator << " field #" << index << " is a value " << str;
3149 separator = ", and";
3150 }
3151 }
3152
3153 return true;
3154 }
3155
3156 MatchersType matchers_;
3157 };
3158
3159 template <typename... Inner>
3160 class FieldsAreMatcher {
3161 public:
3162 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3163
3164 template <typename Struct>
3165 operator Matcher<Struct>() const { // NOLINT
3166 return Matcher<Struct>(
3167 new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3168 matchers_));
3169 }
3170
3171 private:
3172 std::tuple<Inner...> matchers_;
3173 };
3174
3175 // Implements ElementsAre() and ElementsAreArray().
3176 template <typename Container>
3177 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3178 public:
3179 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3180 typedef internal::StlContainerView<RawContainer> View;
3181 typedef typename View::type StlContainer;
3182 typedef typename View::const_reference StlContainerReference;
3183 typedef typename StlContainer::value_type Element;
3184
3185 // Constructs the matcher from a sequence of element values or
3186 // element matchers.
3187 template <typename InputIter>
3188 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3189 while (first != last) {
3190 matchers_.push_back(MatcherCast<const Element&>(*first++));
3191 }
3192 }
3193
3194 // Describes what this matcher does.
3195 void DescribeTo(::std::ostream* os) const override {
3196 if (count() == 0) {
3197 *os << "is empty";
3198 } else if (count() == 1) {
3199 *os << "has 1 element that ";
3200 matchers_[0].DescribeTo(os);
3201 } else {
3202 *os << "has " << Elements(count()) << " where\n";
3203 for (size_t i = 0; i != count(); ++i) {
3204 *os << "element #" << i << " ";
3205 matchers_[i].DescribeTo(os);
3206 if (i + 1 < count()) {
3207 *os << ",\n";
3208 }
3209 }
3210 }
3211 }
3212
3213 // Describes what the negation of this matcher does.
3214 void DescribeNegationTo(::std::ostream* os) const override {
3215 if (count() == 0) {
3216 *os << "isn't empty";
3217 return;
3218 }
3219
3220 *os << "doesn't have " << Elements(count()) << ", or\n";
3221 for (size_t i = 0; i != count(); ++i) {
3222 *os << "element #" << i << " ";
3223 matchers_[i].DescribeNegationTo(os);
3224 if (i + 1 < count()) {
3225 *os << ", or\n";
3226 }
3227 }
3228 }
3229
3230 bool MatchAndExplain(Container container,
3231 MatchResultListener* listener) const override {
3232 // To work with stream-like "containers", we must only walk
3233 // through the elements in one pass.
3234
3235 const bool listener_interested = listener->IsInterested();
3236
3237 // explanations[i] is the explanation of the element at index i.
3238 ::std::vector<std::string> explanations(count());
3239 StlContainerReference stl_container = View::ConstReference(container);
3240 typename StlContainer::const_iterator it = stl_container.begin();
3241 size_t exam_pos = 0;
3242 bool mismatch_found = false; // Have we found a mismatched element yet?
3243
3244 // Go through the elements and matchers in pairs, until we reach
3245 // the end of either the elements or the matchers, or until we find a
3246 // mismatch.
3247 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3248 bool match; // Does the current element match the current matcher?
3249 if (listener_interested) {
3250 StringMatchResultListener s;
3251 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3252 explanations[exam_pos] = s.str();
3253 } else {
3254 match = matchers_[exam_pos].Matches(*it);
3255 }
3256
3257 if (!match) {
3258 mismatch_found = true;
3259 break;
3260 }
3261 }
3262 // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3263
3264 // Find how many elements the actual container has. We avoid
3265 // calling size() s.t. this code works for stream-like "containers"
3266 // that don't define size().
3267 size_t actual_count = exam_pos;
3268 for (; it != stl_container.end(); ++it) {
3269 ++actual_count;
3270 }
3271
3272 if (actual_count != count()) {
3273 // The element count doesn't match. If the container is empty,
3274 // there's no need to explain anything as Google Mock already
3275 // prints the empty container. Otherwise we just need to show
3276 // how many elements there actually are.
3277 if (listener_interested && (actual_count != 0)) {
3278 *listener << "which has " << Elements(actual_count);
3279 }
3280 return false;
3281 }
3282
3283 if (mismatch_found) {
3284 // The element count matches, but the exam_pos-th element doesn't match.
3285 if (listener_interested) {
3286 *listener << "whose element #" << exam_pos << " doesn't match";
3287 PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3288 }
3289 return false;
3290 }
3291
3292 // Every element matches its expectation. We need to explain why
3293 // (the obvious ones can be skipped).
3294 if (listener_interested) {
3295 bool reason_printed = false;
3296 for (size_t i = 0; i != count(); ++i) {
3297 const std::string& s = explanations[i];
3298 if (!s.empty()) {
3299 if (reason_printed) {
3300 *listener << ",\nand ";
3301 }
3302 *listener << "whose element #" << i << " matches, " << s;
3303 reason_printed = true;
3304 }
3305 }
3306 }
3307 return true;
3308 }
3309
3310 private:
3311 static Message Elements(size_t count) {
3312 return Message() << count << (count == 1 ? " element" : " elements");
3313 }
3314
3315 size_t count() const { return matchers_.size(); }
3316
3317 ::std::vector<Matcher<const Element&> > matchers_;
3318 };
3319
3320 // Connectivity matrix of (elements X matchers), in element-major order.
3321 // Initially, there are no edges.
3322 // Use NextGraph() to iterate over all possible edge configurations.
3323 // Use Randomize() to generate a random edge configuration.
3324 class GTEST_API_ MatchMatrix {
3325 public:
3326 MatchMatrix(size_t num_elements, size_t num_matchers)
3327 : num_elements_(num_elements),
3328 num_matchers_(num_matchers),
3329 matched_(num_elements_* num_matchers_, 0) {
3330 }
3331
3332 size_t LhsSize() const { return num_elements_; }
3333 size_t RhsSize() const { return num_matchers_; }
3334 bool HasEdge(size_t ilhs, size_t irhs) const {
3335 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3336 }
3337 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3338 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3339 }
3340
3341 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3342 // adds 1 to that number; returns false if incrementing the graph left it
3343 // empty.
3344 bool NextGraph();
3345
3346 void Randomize();
3347
3348 std::string DebugString() const;
3349
3350 private:
3351 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3352 return ilhs * num_matchers_ + irhs;
3353 }
3354
3355 size_t num_elements_;
3356 size_t num_matchers_;
3357
3358 // Each element is a char interpreted as bool. They are stored as a
3359 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3360 // a (ilhs, irhs) matrix coordinate into an offset.
3361 ::std::vector<char> matched_;
3362 };
3363
3364 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3365 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3366
3367 // Returns a maximum bipartite matching for the specified graph 'g'.
3368 // The matching is represented as a vector of {element, matcher} pairs.
3369 GTEST_API_ ElementMatcherPairs
3370 FindMaxBipartiteMatching(const MatchMatrix& g);
3371
3372 struct UnorderedMatcherRequire {
3373 enum Flags {
3374 Superset = 1 << 0,
3375 Subset = 1 << 1,
3376 ExactMatch = Superset | Subset,
3377 };
3378 };
3379
3380 // Untyped base class for implementing UnorderedElementsAre. By
3381 // putting logic that's not specific to the element type here, we
3382 // reduce binary bloat and increase compilation speed.
3383 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3384 protected:
3385 explicit UnorderedElementsAreMatcherImplBase(
3386 UnorderedMatcherRequire::Flags matcher_flags)
3387 : match_flags_(matcher_flags) {}
3388
3389 // A vector of matcher describers, one for each element matcher.
3390 // Does not own the describers (and thus can be used only when the
3391 // element matchers are alive).
3392 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3393
3394 // Describes this UnorderedElementsAre matcher.
3395 void DescribeToImpl(::std::ostream* os) const;
3396
3397 // Describes the negation of this UnorderedElementsAre matcher.
3398 void DescribeNegationToImpl(::std::ostream* os) const;
3399
3400 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3401 const MatchMatrix& matrix,
3402 MatchResultListener* listener) const;
3403
3404 bool FindPairing(const MatchMatrix& matrix,
3405 MatchResultListener* listener) const;
3406
3407 MatcherDescriberVec& matcher_describers() {
3408 return matcher_describers_;
3409 }
3410
3411 static Message Elements(size_t n) {
3412 return Message() << n << " element" << (n == 1 ? "" : "s");
3413 }
3414
3415 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3416
3417 private:
3418 UnorderedMatcherRequire::Flags match_flags_;
3419 MatcherDescriberVec matcher_describers_;
3420 };
3421
3422 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3423 // IsSupersetOf.
3424 template <typename Container>
3425 class UnorderedElementsAreMatcherImpl
3426 : public MatcherInterface<Container>,
3427 public UnorderedElementsAreMatcherImplBase {
3428 public:
3429 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3430 typedef internal::StlContainerView<RawContainer> View;
3431 typedef typename View::type StlContainer;
3432 typedef typename View::const_reference StlContainerReference;
3433 typedef typename StlContainer::const_iterator StlContainerConstIterator;
3434 typedef typename StlContainer::value_type Element;
3435
3436 template <typename InputIter>
3437 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3438 InputIter first, InputIter last)
3439 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3440 for (; first != last; ++first) {
3441 matchers_.push_back(MatcherCast<const Element&>(*first));
3442 }
3443 for (const auto& m : matchers_) {
3444 matcher_describers().push_back(m.GetDescriber());
3445 }
3446 }
3447
3448 // Describes what this matcher does.
3449 void DescribeTo(::std::ostream* os) const override {
3450 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3451 }
3452
3453 // Describes what the negation of this matcher does.
3454 void DescribeNegationTo(::std::ostream* os) const override {
3455 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3456 }
3457
3458 bool MatchAndExplain(Container container,
3459 MatchResultListener* listener) const override {
3460 StlContainerReference stl_container = View::ConstReference(container);
3461 ::std::vector<std::string> element_printouts;
3462 MatchMatrix matrix =
3463 AnalyzeElements(stl_container.begin(), stl_container.end(),
3464 &element_printouts, listener);
3465
3466 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
3467 return true;
3468 }
3469
3470 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
3471 if (matrix.LhsSize() != matrix.RhsSize()) {
3472 // The element count doesn't match. If the container is empty,
3473 // there's no need to explain anything as Google Mock already
3474 // prints the empty container. Otherwise we just need to show
3475 // how many elements there actually are.
3476 if (matrix.LhsSize() != 0 && listener->IsInterested()) {
3477 *listener << "which has " << Elements(matrix.LhsSize());
3478 }
3479 return false;
3480 }
3481 }
3482
3483 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3484 FindPairing(matrix, listener);
3485 }
3486
3487 private:
3488 template <typename ElementIter>
3489 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3490 ::std::vector<std::string>* element_printouts,
3491 MatchResultListener* listener) const {
3492 element_printouts->clear();
3493 ::std::vector<char> did_match;
3494 size_t num_elements = 0;
3495 DummyMatchResultListener dummy;
3496 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3497 if (listener->IsInterested()) {
3498 element_printouts->push_back(PrintToString(*elem_first));
3499 }
3500 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3501 did_match.push_back(
3502 matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3503 }
3504 }
3505
3506 MatchMatrix matrix(num_elements, matchers_.size());
3507 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3508 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3509 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3510 matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3511 }
3512 }
3513 return matrix;
3514 }
3515
3516 ::std::vector<Matcher<const Element&> > matchers_;
3517 };
3518
3519 // Functor for use in TransformTuple.
3520 // Performs MatcherCast<Target> on an input argument of any type.
3521 template <typename Target>
3522 struct CastAndAppendTransform {
3523 template <typename Arg>
3524 Matcher<Target> operator()(const Arg& a) const {
3525 return MatcherCast<Target>(a);
3526 }
3527 };
3528
3529 // Implements UnorderedElementsAre.
3530 template <typename MatcherTuple>
3531 class UnorderedElementsAreMatcher {
3532 public:
3533 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3534 : matchers_(args) {}
3535
3536 template <typename Container>
3537 operator Matcher<Container>() const {
3538 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3539 typedef typename internal::StlContainerView<RawContainer>::type View;
3540 typedef typename View::value_type Element;
3541 typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3542 MatcherVec matchers;
3543 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3544 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3545 ::std::back_inserter(matchers));
3546 return Matcher<Container>(
3547 new UnorderedElementsAreMatcherImpl<const Container&>(
3548 UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3549 matchers.end()));
3550 }
3551
3552 private:
3553 const MatcherTuple matchers_;
3554 };
3555
3556 // Implements ElementsAre.
3557 template <typename MatcherTuple>
3558 class ElementsAreMatcher {
3559 public:
3560 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3561
3562 template <typename Container>
3563 operator Matcher<Container>() const {
3564 GTEST_COMPILE_ASSERT_(
3565 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3566 ::std::tuple_size<MatcherTuple>::value < 2,
3567 use_UnorderedElementsAre_with_hash_tables);
3568
3569 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3570 typedef typename internal::StlContainerView<RawContainer>::type View;
3571 typedef typename View::value_type Element;
3572 typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3573 MatcherVec matchers;
3574 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3575 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3576 ::std::back_inserter(matchers));
3577 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3578 matchers.begin(), matchers.end()));
3579 }
3580
3581 private:
3582 const MatcherTuple matchers_;
3583 };
3584
3585 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3586 template <typename T>
3587 class UnorderedElementsAreArrayMatcher {
3588 public:
3589 template <typename Iter>
3590 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3591 Iter first, Iter last)
3592 : match_flags_(match_flags), matchers_(first, last) {}
3593
3594 template <typename Container>
3595 operator Matcher<Container>() const {
3596 return Matcher<Container>(
3597 new UnorderedElementsAreMatcherImpl<const Container&>(
3598 match_flags_, matchers_.begin(), matchers_.end()));
3599 }
3600
3601 private:
3602 UnorderedMatcherRequire::Flags match_flags_;
3603 ::std::vector<T> matchers_;
3604 };
3605
3606 // Implements ElementsAreArray().
3607 template <typename T>
3608 class ElementsAreArrayMatcher {
3609 public:
3610 template <typename Iter>
3611 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3612
3613 template <typename Container>
3614 operator Matcher<Container>() const {
3615 GTEST_COMPILE_ASSERT_(
3616 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3617 use_UnorderedElementsAreArray_with_hash_tables);
3618
3619 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3620 matchers_.begin(), matchers_.end()));
3621 }
3622
3623 private:
3624 const ::std::vector<T> matchers_;
3625 };
3626
3627 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3628 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3629 // second) is a polymorphic matcher that matches a value x if and only if
3630 // tm matches tuple (x, second). Useful for implementing
3631 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3632 //
3633 // BoundSecondMatcher is copyable and assignable, as we need to put
3634 // instances of this class in a vector when implementing
3635 // UnorderedPointwise().
3636 template <typename Tuple2Matcher, typename Second>
3637 class BoundSecondMatcher {
3638 public:
3639 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3640 : tuple2_matcher_(tm), second_value_(second) {}
3641
3642 BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3643
3644 template <typename T>
3645 operator Matcher<T>() const {
3646 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3647 }
3648
3649 // We have to define this for UnorderedPointwise() to compile in
3650 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3651 // which requires the elements to be assignable in C++98. The
3652 // compiler cannot generate the operator= for us, as Tuple2Matcher
3653 // and Second may not be assignable.
3654 //
3655 // However, this should never be called, so the implementation just
3656 // need to assert.
3657 void operator=(const BoundSecondMatcher& /*rhs*/) {
3658 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3659 }
3660
3661 private:
3662 template <typename T>
3663 class Impl : public MatcherInterface<T> {
3664 public:
3665 typedef ::std::tuple<T, Second> ArgTuple;
3666
3667 Impl(const Tuple2Matcher& tm, const Second& second)
3668 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3669 second_value_(second) {}
3670
3671 void DescribeTo(::std::ostream* os) const override {
3672 *os << "and ";
3673 UniversalPrint(second_value_, os);
3674 *os << " ";
3675 mono_tuple2_matcher_.DescribeTo(os);
3676 }
3677
3678 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3679 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3680 listener);
3681 }
3682
3683 private:
3684 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3685 const Second second_value_;
3686 };
3687
3688 const Tuple2Matcher tuple2_matcher_;
3689 const Second second_value_;
3690 };
3691
3692 // Given a 2-tuple matcher tm and a value second,
3693 // MatcherBindSecond(tm, second) returns a matcher that matches a
3694 // value x if and only if tm matches tuple (x, second). Useful for
3695 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3696 template <typename Tuple2Matcher, typename Second>
3697 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3698 const Tuple2Matcher& tm, const Second& second) {
3699 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3700 }
3701
3702 // Returns the description for a matcher defined using the MATCHER*()
3703 // macro where the user-supplied description string is "", if
3704 // 'negation' is false; otherwise returns the description of the
3705 // negation of the matcher. 'param_values' contains a list of strings
3706 // that are the print-out of the matcher's parameters.
3707 GTEST_API_ std::string FormatMatcherDescription(bool negation,
3708 const char* matcher_name,
3709 const Strings& param_values);
3710
3711 // Implements a matcher that checks the value of a optional<> type variable.
3712 template <typename ValueMatcher>
3713 class OptionalMatcher {
3714 public:
3715 explicit OptionalMatcher(const ValueMatcher& value_matcher)
3716 : value_matcher_(value_matcher) {}
3717
3718 template <typename Optional>
3719 operator Matcher<Optional>() const {
3720 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3721 }
3722
3723 template <typename Optional>
3724 class Impl : public MatcherInterface<Optional> {
3725 public:
3726 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3727 typedef typename OptionalView::value_type ValueType;
3728 explicit Impl(const ValueMatcher& value_matcher)
3729 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3730
3731 void DescribeTo(::std::ostream* os) const override {
3732 *os << "value ";
3733 value_matcher_.DescribeTo(os);
3734 }
3735
3736 void DescribeNegationTo(::std::ostream* os) const override {
3737 *os << "value ";
3738 value_matcher_.DescribeNegationTo(os);
3739 }
3740
3741 bool MatchAndExplain(Optional optional,
3742 MatchResultListener* listener) const override {
3743 if (!optional) {
3744 *listener << "which is not engaged";
3745 return false;
3746 }
3747 const ValueType& value = *optional;
3748 StringMatchResultListener value_listener;
3749 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3750 *listener << "whose value " << PrintToString(value)
3751 << (match ? " matches" : " doesn't match");
3752 PrintIfNotEmpty(value_listener.str(), listener->stream());
3753 return match;
3754 }
3755
3756 private:
3757 const Matcher<ValueType> value_matcher_;
3758 };
3759
3760 private:
3761 const ValueMatcher value_matcher_;
3762 };
3763
3764 namespace variant_matcher {
3765 // Overloads to allow VariantMatcher to do proper ADL lookup.
3766 template <typename T>
3767 void holds_alternative() {}
3768 template <typename T>
3769 void get() {}
3770
3771 // Implements a matcher that checks the value of a variant<> type variable.
3772 template <typename T>
3773 class VariantMatcher {
3774 public:
3775 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3776 : matcher_(std::move(matcher)) {}
3777
3778 template <typename Variant>
3779 bool MatchAndExplain(const Variant& value,
3780 ::testing::MatchResultListener* listener) const {
3781 using std::get;
3782 if (!listener->IsInterested()) {
3783 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3784 }
3785
3786 if (!holds_alternative<T>(value)) {
3787 *listener << "whose value is not of type '" << GetTypeName() << "'";
3788 return false;
3789 }
3790
3791 const T& elem = get<T>(value);
3792 StringMatchResultListener elem_listener;
3793 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3794 *listener << "whose value " << PrintToString(elem)
3795 << (match ? " matches" : " doesn't match");
3796 PrintIfNotEmpty(elem_listener.str(), listener->stream());
3797 return match;
3798 }
3799
3800 void DescribeTo(std::ostream* os) const {
3801 *os << "is a variant<> with value of type '" << GetTypeName()
3802 << "' and the value ";
3803 matcher_.DescribeTo(os);
3804 }
3805
3806 void DescribeNegationTo(std::ostream* os) const {
3807 *os << "is a variant<> with value of type other than '" << GetTypeName()
3808 << "' or the value ";
3809 matcher_.DescribeNegationTo(os);
3810 }
3811
3812 private:
3813 static std::string GetTypeName() {
3814 #if GTEST_HAS_RTTI
3815 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3816 return internal::GetTypeName<T>());
3817 #endif
3818 return "the element type";
3819 }
3820
3821 const ::testing::Matcher<const T&> matcher_;
3822 };
3823
3824 } // namespace variant_matcher
3825
3826 namespace any_cast_matcher {
3827
3828 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
3829 template <typename T>
3830 void any_cast() {}
3831
3832 // Implements a matcher that any_casts the value.
3833 template <typename T>
3834 class AnyCastMatcher {
3835 public:
3836 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
3837 : matcher_(matcher) {}
3838
3839 template <typename AnyType>
3840 bool MatchAndExplain(const AnyType& value,
3841 ::testing::MatchResultListener* listener) const {
3842 if (!listener->IsInterested()) {
3843 const T* ptr = any_cast<T>(&value);
3844 return ptr != nullptr && matcher_.Matches(*ptr);
3845 }
3846
3847 const T* elem = any_cast<T>(&value);
3848 if (elem == nullptr) {
3849 *listener << "whose value is not of type '" << GetTypeName() << "'";
3850 return false;
3851 }
3852
3853 StringMatchResultListener elem_listener;
3854 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
3855 *listener << "whose value " << PrintToString(*elem)
3856 << (match ? " matches" : " doesn't match");
3857 PrintIfNotEmpty(elem_listener.str(), listener->stream());
3858 return match;
3859 }
3860
3861 void DescribeTo(std::ostream* os) const {
3862 *os << "is an 'any' type with value of type '" << GetTypeName()
3863 << "' and the value ";
3864 matcher_.DescribeTo(os);
3865 }
3866
3867 void DescribeNegationTo(std::ostream* os) const {
3868 *os << "is an 'any' type with value of type other than '" << GetTypeName()
3869 << "' or the value ";
3870 matcher_.DescribeNegationTo(os);
3871 }
3872
3873 private:
3874 static std::string GetTypeName() {
3875 #if GTEST_HAS_RTTI
3876 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3877 return internal::GetTypeName<T>());
3878 #endif
3879 return "the element type";
3880 }
3881
3882 const ::testing::Matcher<const T&> matcher_;
3883 };
3884
3885 } // namespace any_cast_matcher
3886
3887 // Implements the Args() matcher.
3888 template <class ArgsTuple, size_t... k>
3889 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
3890 public:
3891 using RawArgsTuple = typename std::decay<ArgsTuple>::type;
3892 using SelectedArgs =
3893 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
3894 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
3895
3896 template <typename InnerMatcher>
3897 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
3898 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
3899
3900 bool MatchAndExplain(ArgsTuple args,
3901 MatchResultListener* listener) const override {
3902 // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
3903 (void)args;
3904 const SelectedArgs& selected_args =
3905 std::forward_as_tuple(std::get<k>(args)...);
3906 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
3907
3908 PrintIndices(listener->stream());
3909 *listener << "are " << PrintToString(selected_args);
3910
3911 StringMatchResultListener inner_listener;
3912 const bool match =
3913 inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
3914 PrintIfNotEmpty(inner_listener.str(), listener->stream());
3915 return match;
3916 }
3917
3918 void DescribeTo(::std::ostream* os) const override {
3919 *os << "are a tuple ";
3920 PrintIndices(os);
3921 inner_matcher_.DescribeTo(os);
3922 }
3923
3924 void DescribeNegationTo(::std::ostream* os) const override {
3925 *os << "are a tuple ";
3926 PrintIndices(os);
3927 inner_matcher_.DescribeNegationTo(os);
3928 }
3929
3930 private:
3931 // Prints the indices of the selected fields.
3932 static void PrintIndices(::std::ostream* os) {
3933 *os << "whose fields (";
3934 const char* sep = "";
3935 // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
3936 (void)sep;
3937 const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
3938 (void)dummy;
3939 *os << ") ";
3940 }
3941
3942 MonomorphicInnerMatcher inner_matcher_;
3943 };
3944
3945 template <class InnerMatcher, size_t... k>
3946 class ArgsMatcher {
3947 public:
3948 explicit ArgsMatcher(InnerMatcher inner_matcher)
3949 : inner_matcher_(std::move(inner_matcher)) {}
3950
3951 template <typename ArgsTuple>
3952 operator Matcher<ArgsTuple>() const { // NOLINT
3953 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
3954 }
3955
3956 private:
3957 InnerMatcher inner_matcher_;
3958 };
3959
3960 } // namespace internal
3961
3962 // ElementsAreArray(iterator_first, iterator_last)
3963 // ElementsAreArray(pointer, count)
3964 // ElementsAreArray(array)
3965 // ElementsAreArray(container)
3966 // ElementsAreArray({ e1, e2, ..., en })
3967 //
3968 // The ElementsAreArray() functions are like ElementsAre(...), except
3969 // that they are given a homogeneous sequence rather than taking each
3970 // element as a function argument. The sequence can be specified as an
3971 // array, a pointer and count, a vector, an initializer list, or an
3972 // STL iterator range. In each of these cases, the underlying sequence
3973 // can be either a sequence of values or a sequence of matchers.
3974 //
3975 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
3976
3977 template <typename Iter>
3978 inline internal::ElementsAreArrayMatcher<
3979 typename ::std::iterator_traits<Iter>::value_type>
3980 ElementsAreArray(Iter first, Iter last) {
3981 typedef typename ::std::iterator_traits<Iter>::value_type T;
3982 return internal::ElementsAreArrayMatcher<T>(first, last);
3983 }
3984
3985 template <typename T>
3986 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3987 const T* pointer, size_t count) {
3988 return ElementsAreArray(pointer, pointer + count);
3989 }
3990
3991 template <typename T, size_t N>
3992 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3993 const T (&array)[N]) {
3994 return ElementsAreArray(array, N);
3995 }
3996
3997 template <typename Container>
3998 inline internal::ElementsAreArrayMatcher<typename Container::value_type>
3999 ElementsAreArray(const Container& container) {
4000 return ElementsAreArray(container.begin(), container.end());
4001 }
4002
4003 template <typename T>
4004 inline internal::ElementsAreArrayMatcher<T>
4005 ElementsAreArray(::std::initializer_list<T> xs) {
4006 return ElementsAreArray(xs.begin(), xs.end());
4007 }
4008
4009 // UnorderedElementsAreArray(iterator_first, iterator_last)
4010 // UnorderedElementsAreArray(pointer, count)
4011 // UnorderedElementsAreArray(array)
4012 // UnorderedElementsAreArray(container)
4013 // UnorderedElementsAreArray({ e1, e2, ..., en })
4014 //
4015 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4016 // collection of matchers exists.
4017 //
4018 // The matchers can be specified as an array, a pointer and count, a container,
4019 // an initializer list, or an STL iterator range. In each of these cases, the
4020 // underlying matchers can be either values or matchers.
4021
4022 template <typename Iter>
4023 inline internal::UnorderedElementsAreArrayMatcher<
4024 typename ::std::iterator_traits<Iter>::value_type>
4025 UnorderedElementsAreArray(Iter first, Iter last) {
4026 typedef typename ::std::iterator_traits<Iter>::value_type T;
4027 return internal::UnorderedElementsAreArrayMatcher<T>(
4028 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4029 }
4030
4031 template <typename T>
4032 inline internal::UnorderedElementsAreArrayMatcher<T>
4033 UnorderedElementsAreArray(const T* pointer, size_t count) {
4034 return UnorderedElementsAreArray(pointer, pointer + count);
4035 }
4036
4037 template <typename T, size_t N>
4038 inline internal::UnorderedElementsAreArrayMatcher<T>
4039 UnorderedElementsAreArray(const T (&array)[N]) {
4040 return UnorderedElementsAreArray(array, N);
4041 }
4042
4043 template <typename Container>
4044 inline internal::UnorderedElementsAreArrayMatcher<
4045 typename Container::value_type>
4046 UnorderedElementsAreArray(const Container& container) {
4047 return UnorderedElementsAreArray(container.begin(), container.end());
4048 }
4049
4050 template <typename T>
4051 inline internal::UnorderedElementsAreArrayMatcher<T>
4052 UnorderedElementsAreArray(::std::initializer_list<T> xs) {
4053 return UnorderedElementsAreArray(xs.begin(), xs.end());
4054 }
4055
4056 // _ is a matcher that matches anything of any type.
4057 //
4058 // This definition is fine as:
4059 //
4060 // 1. The C++ standard permits using the name _ in a namespace that
4061 // is not the global namespace or ::std.
4062 // 2. The AnythingMatcher class has no data member or constructor,
4063 // so it's OK to create global variables of this type.
4064 // 3. c-style has approved of using _ in this case.
4065 const internal::AnythingMatcher _ = {};
4066 // Creates a matcher that matches any value of the given type T.
4067 template <typename T>
4068 inline Matcher<T> A() {
4069 return _;
4070 }
4071
4072 // Creates a matcher that matches any value of the given type T.
4073 template <typename T>
4074 inline Matcher<T> An() {
4075 return _;
4076 }
4077
4078 template <typename T, typename M>
4079 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4080 const M& value, std::false_type /* convertible_to_matcher */,
4081 std::false_type /* convertible_to_T */) {
4082 return Eq(value);
4083 }
4084
4085 // Creates a polymorphic matcher that matches any NULL pointer.
4086 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
4087 return MakePolymorphicMatcher(internal::IsNullMatcher());
4088 }
4089
4090 // Creates a polymorphic matcher that matches any non-NULL pointer.
4091 // This is convenient as Not(NULL) doesn't compile (the compiler
4092 // thinks that that expression is comparing a pointer with an integer).
4093 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
4094 return MakePolymorphicMatcher(internal::NotNullMatcher());
4095 }
4096
4097 // Creates a polymorphic matcher that matches any argument that
4098 // references variable x.
4099 template <typename T>
4100 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4101 return internal::RefMatcher<T&>(x);
4102 }
4103
4104 // Creates a polymorphic matcher that matches any NaN floating point.
4105 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4106 return MakePolymorphicMatcher(internal::IsNanMatcher());
4107 }
4108
4109 // Creates a matcher that matches any double argument approximately
4110 // equal to rhs, where two NANs are considered unequal.
4111 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4112 return internal::FloatingEqMatcher<double>(rhs, false);
4113 }
4114
4115 // Creates a matcher that matches any double argument approximately
4116 // equal to rhs, including NaN values when rhs is NaN.
4117 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4118 return internal::FloatingEqMatcher<double>(rhs, true);
4119 }
4120
4121 // Creates a matcher that matches any double argument approximately equal to
4122 // rhs, up to the specified max absolute error bound, where two NANs are
4123 // considered unequal. The max absolute error bound must be non-negative.
4124 inline internal::FloatingEqMatcher<double> DoubleNear(
4125 double rhs, double max_abs_error) {
4126 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4127 }
4128
4129 // Creates a matcher that matches any double argument approximately equal to
4130 // rhs, up to the specified max absolute error bound, including NaN values when
4131 // rhs is NaN. The max absolute error bound must be non-negative.
4132 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4133 double rhs, double max_abs_error) {
4134 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4135 }
4136
4137 // Creates a matcher that matches any float argument approximately
4138 // equal to rhs, where two NANs are considered unequal.
4139 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4140 return internal::FloatingEqMatcher<float>(rhs, false);
4141 }
4142
4143 // Creates a matcher that matches any float argument approximately
4144 // equal to rhs, including NaN values when rhs is NaN.
4145 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4146 return internal::FloatingEqMatcher<float>(rhs, true);
4147 }
4148
4149 // Creates a matcher that matches any float argument approximately equal to
4150 // rhs, up to the specified max absolute error bound, where two NANs are
4151 // considered unequal. The max absolute error bound must be non-negative.
4152 inline internal::FloatingEqMatcher<float> FloatNear(
4153 float rhs, float max_abs_error) {
4154 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4155 }
4156
4157 // Creates a matcher that matches any float argument approximately equal to
4158 // rhs, up to the specified max absolute error bound, including NaN values when
4159 // rhs is NaN. The max absolute error bound must be non-negative.
4160 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4161 float rhs, float max_abs_error) {
4162 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4163 }
4164
4165 // Creates a matcher that matches a pointer (raw or smart) that points
4166 // to a value that matches inner_matcher.
4167 template <typename InnerMatcher>
4168 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4169 const InnerMatcher& inner_matcher) {
4170 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4171 }
4172
4173 #if GTEST_HAS_RTTI
4174 // Creates a matcher that matches a pointer or reference that matches
4175 // inner_matcher when dynamic_cast<To> is applied.
4176 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4177 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4178 // If To is a reference and the cast fails, this matcher returns false
4179 // immediately.
4180 template <typename To>
4181 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
4182 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4183 return MakePolymorphicMatcher(
4184 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4185 }
4186 #endif // GTEST_HAS_RTTI
4187
4188 // Creates a matcher that matches an object whose given field matches
4189 // 'matcher'. For example,
4190 // Field(&Foo::number, Ge(5))
4191 // matches a Foo object x if and only if x.number >= 5.
4192 template <typename Class, typename FieldType, typename FieldMatcher>
4193 inline PolymorphicMatcher<
4194 internal::FieldMatcher<Class, FieldType> > Field(
4195 FieldType Class::*field, const FieldMatcher& matcher) {
4196 return MakePolymorphicMatcher(
4197 internal::FieldMatcher<Class, FieldType>(
4198 field, MatcherCast<const FieldType&>(matcher)));
4199 // The call to MatcherCast() is required for supporting inner
4200 // matchers of compatible types. For example, it allows
4201 // Field(&Foo::bar, m)
4202 // to compile where bar is an int32 and m is a matcher for int64.
4203 }
4204
4205 // Same as Field() but also takes the name of the field to provide better error
4206 // messages.
4207 template <typename Class, typename FieldType, typename FieldMatcher>
4208 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
4209 const std::string& field_name, FieldType Class::*field,
4210 const FieldMatcher& matcher) {
4211 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4212 field_name, field, MatcherCast<const FieldType&>(matcher)));
4213 }
4214
4215 // Creates a matcher that matches an object whose given property
4216 // matches 'matcher'. For example,
4217 // Property(&Foo::str, StartsWith("hi"))
4218 // matches a Foo object x if and only if x.str() starts with "hi".
4219 template <typename Class, typename PropertyType, typename PropertyMatcher>
4220 inline PolymorphicMatcher<internal::PropertyMatcher<
4221 Class, PropertyType, PropertyType (Class::*)() const> >
4222 Property(PropertyType (Class::*property)() const,
4223 const PropertyMatcher& matcher) {
4224 return MakePolymorphicMatcher(
4225 internal::PropertyMatcher<Class, PropertyType,
4226 PropertyType (Class::*)() const>(
4227 property, MatcherCast<const PropertyType&>(matcher)));
4228 // The call to MatcherCast() is required for supporting inner
4229 // matchers of compatible types. For example, it allows
4230 // Property(&Foo::bar, m)
4231 // to compile where bar() returns an int32 and m is a matcher for int64.
4232 }
4233
4234 // Same as Property() above, but also takes the name of the property to provide
4235 // better error messages.
4236 template <typename Class, typename PropertyType, typename PropertyMatcher>
4237 inline PolymorphicMatcher<internal::PropertyMatcher<
4238 Class, PropertyType, PropertyType (Class::*)() const> >
4239 Property(const std::string& property_name,
4240 PropertyType (Class::*property)() const,
4241 const PropertyMatcher& matcher) {
4242 return MakePolymorphicMatcher(
4243 internal::PropertyMatcher<Class, PropertyType,
4244 PropertyType (Class::*)() const>(
4245 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4246 }
4247
4248 // The same as above but for reference-qualified member functions.
4249 template <typename Class, typename PropertyType, typename PropertyMatcher>
4250 inline PolymorphicMatcher<internal::PropertyMatcher<
4251 Class, PropertyType, PropertyType (Class::*)() const &> >
4252 Property(PropertyType (Class::*property)() const &,
4253 const PropertyMatcher& matcher) {
4254 return MakePolymorphicMatcher(
4255 internal::PropertyMatcher<Class, PropertyType,
4256 PropertyType (Class::*)() const&>(
4257 property, MatcherCast<const PropertyType&>(matcher)));
4258 }
4259
4260 // Three-argument form for reference-qualified member functions.
4261 template <typename Class, typename PropertyType, typename PropertyMatcher>
4262 inline PolymorphicMatcher<internal::PropertyMatcher<
4263 Class, PropertyType, PropertyType (Class::*)() const &> >
4264 Property(const std::string& property_name,
4265 PropertyType (Class::*property)() const &,
4266 const PropertyMatcher& matcher) {
4267 return MakePolymorphicMatcher(
4268 internal::PropertyMatcher<Class, PropertyType,
4269 PropertyType (Class::*)() const&>(
4270 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4271 }
4272
4273 // Creates a matcher that matches an object if and only if the result of
4274 // applying a callable to x matches 'matcher'. For example,
4275 // ResultOf(f, StartsWith("hi"))
4276 // matches a Foo object x if and only if f(x) starts with "hi".
4277 // `callable` parameter can be a function, function pointer, or a functor. It is
4278 // required to keep no state affecting the results of the calls on it and make
4279 // no assumptions about how many calls will be made. Any state it keeps must be
4280 // protected from the concurrent access.
4281 template <typename Callable, typename InnerMatcher>
4282 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4283 Callable callable, InnerMatcher matcher) {
4284 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4285 std::move(callable), std::move(matcher));
4286 }
4287
4288 // String matchers.
4289
4290 // Matches a string equal to str.
4291 template <typename T = std::string>
4292 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
4293 const internal::StringLike<T>& str) {
4294 return MakePolymorphicMatcher(
4295 internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4296 }
4297
4298 // Matches a string not equal to str.
4299 template <typename T = std::string>
4300 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
4301 const internal::StringLike<T>& str) {
4302 return MakePolymorphicMatcher(
4303 internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4304 }
4305
4306 // Matches a string equal to str, ignoring case.
4307 template <typename T = std::string>
4308 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
4309 const internal::StringLike<T>& str) {
4310 return MakePolymorphicMatcher(
4311 internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4312 }
4313
4314 // Matches a string not equal to str, ignoring case.
4315 template <typename T = std::string>
4316 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
4317 const internal::StringLike<T>& str) {
4318 return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4319 std::string(str), false, false));
4320 }
4321
4322 // Creates a matcher that matches any string, std::string, or C string
4323 // that contains the given substring.
4324 template <typename T = std::string>
4325 PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
4326 const internal::StringLike<T>& substring) {
4327 return MakePolymorphicMatcher(
4328 internal::HasSubstrMatcher<std::string>(std::string(substring)));
4329 }
4330
4331 // Matches a string that starts with 'prefix' (case-sensitive).
4332 template <typename T = std::string>
4333 PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
4334 const internal::StringLike<T>& prefix) {
4335 return MakePolymorphicMatcher(
4336 internal::StartsWithMatcher<std::string>(std::string(prefix)));
4337 }
4338
4339 // Matches a string that ends with 'suffix' (case-sensitive).
4340 template <typename T = std::string>
4341 PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
4342 const internal::StringLike<T>& suffix) {
4343 return MakePolymorphicMatcher(
4344 internal::EndsWithMatcher<std::string>(std::string(suffix)));
4345 }
4346
4347 #if GTEST_HAS_STD_WSTRING
4348 // Wide string matchers.
4349
4350 // Matches a string equal to str.
4351 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
4352 const std::wstring& str) {
4353 return MakePolymorphicMatcher(
4354 internal::StrEqualityMatcher<std::wstring>(str, true, true));
4355 }
4356
4357 // Matches a string not equal to str.
4358 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
4359 const std::wstring& str) {
4360 return MakePolymorphicMatcher(
4361 internal::StrEqualityMatcher<std::wstring>(str, false, true));
4362 }
4363
4364 // Matches a string equal to str, ignoring case.
4365 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4366 StrCaseEq(const std::wstring& str) {
4367 return MakePolymorphicMatcher(
4368 internal::StrEqualityMatcher<std::wstring>(str, true, false));
4369 }
4370
4371 // Matches a string not equal to str, ignoring case.
4372 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4373 StrCaseNe(const std::wstring& str) {
4374 return MakePolymorphicMatcher(
4375 internal::StrEqualityMatcher<std::wstring>(str, false, false));
4376 }
4377
4378 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4379 // that contains the given substring.
4380 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
4381 const std::wstring& substring) {
4382 return MakePolymorphicMatcher(
4383 internal::HasSubstrMatcher<std::wstring>(substring));
4384 }
4385
4386 // Matches a string that starts with 'prefix' (case-sensitive).
4387 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
4388 StartsWith(const std::wstring& prefix) {
4389 return MakePolymorphicMatcher(
4390 internal::StartsWithMatcher<std::wstring>(prefix));
4391 }
4392
4393 // Matches a string that ends with 'suffix' (case-sensitive).
4394 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
4395 const std::wstring& suffix) {
4396 return MakePolymorphicMatcher(
4397 internal::EndsWithMatcher<std::wstring>(suffix));
4398 }
4399
4400 #endif // GTEST_HAS_STD_WSTRING
4401
4402 // Creates a polymorphic matcher that matches a 2-tuple where the
4403 // first field == the second field.
4404 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4405
4406 // Creates a polymorphic matcher that matches a 2-tuple where the
4407 // first field >= the second field.
4408 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4409
4410 // Creates a polymorphic matcher that matches a 2-tuple where the
4411 // first field > the second field.
4412 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4413
4414 // Creates a polymorphic matcher that matches a 2-tuple where the
4415 // first field <= the second field.
4416 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4417
4418 // Creates a polymorphic matcher that matches a 2-tuple where the
4419 // first field < the second field.
4420 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4421
4422 // Creates a polymorphic matcher that matches a 2-tuple where the
4423 // first field != the second field.
4424 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4425
4426 // Creates a polymorphic matcher that matches a 2-tuple where
4427 // FloatEq(first field) matches the second field.
4428 inline internal::FloatingEq2Matcher<float> FloatEq() {
4429 return internal::FloatingEq2Matcher<float>();
4430 }
4431
4432 // Creates a polymorphic matcher that matches a 2-tuple where
4433 // DoubleEq(first field) matches the second field.
4434 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4435 return internal::FloatingEq2Matcher<double>();
4436 }
4437
4438 // Creates a polymorphic matcher that matches a 2-tuple where
4439 // FloatEq(first field) matches the second field with NaN equality.
4440 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4441 return internal::FloatingEq2Matcher<float>(true);
4442 }
4443
4444 // Creates a polymorphic matcher that matches a 2-tuple where
4445 // DoubleEq(first field) matches the second field with NaN equality.
4446 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4447 return internal::FloatingEq2Matcher<double>(true);
4448 }
4449
4450 // Creates a polymorphic matcher that matches a 2-tuple where
4451 // FloatNear(first field, max_abs_error) matches the second field.
4452 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4453 return internal::FloatingEq2Matcher<float>(max_abs_error);
4454 }
4455
4456 // Creates a polymorphic matcher that matches a 2-tuple where
4457 // DoubleNear(first field, max_abs_error) matches the second field.
4458 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4459 return internal::FloatingEq2Matcher<double>(max_abs_error);
4460 }
4461
4462 // Creates a polymorphic matcher that matches a 2-tuple where
4463 // FloatNear(first field, max_abs_error) matches the second field with NaN
4464 // equality.
4465 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4466 float max_abs_error) {
4467 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4468 }
4469
4470 // Creates a polymorphic matcher that matches a 2-tuple where
4471 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4472 // equality.
4473 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4474 double max_abs_error) {
4475 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4476 }
4477
4478 // Creates a matcher that matches any value of type T that m doesn't
4479 // match.
4480 template <typename InnerMatcher>
4481 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4482 return internal::NotMatcher<InnerMatcher>(m);
4483 }
4484
4485 // Returns a matcher that matches anything that satisfies the given
4486 // predicate. The predicate can be any unary function or functor
4487 // whose return type can be implicitly converted to bool.
4488 template <typename Predicate>
4489 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
4490 Truly(Predicate pred) {
4491 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4492 }
4493
4494 // Returns a matcher that matches the container size. The container must
4495 // support both size() and size_type which all STL-like containers provide.
4496 // Note that the parameter 'size' can be a value of type size_type as well as
4497 // matcher. For instance:
4498 // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4499 // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4500 template <typename SizeMatcher>
4501 inline internal::SizeIsMatcher<SizeMatcher>
4502 SizeIs(const SizeMatcher& size_matcher) {
4503 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4504 }
4505
4506 // Returns a matcher that matches the distance between the container's begin()
4507 // iterator and its end() iterator, i.e. the size of the container. This matcher
4508 // can be used instead of SizeIs with containers such as std::forward_list which
4509 // do not implement size(). The container must provide const_iterator (with
4510 // valid iterator_traits), begin() and end().
4511 template <typename DistanceMatcher>
4512 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
4513 BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
4514 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4515 }
4516
4517 // Returns a matcher that matches an equal container.
4518 // This matcher behaves like Eq(), but in the event of mismatch lists the
4519 // values that are included in one container but not the other. (Duplicate
4520 // values and order differences are not explained.)
4521 template <typename Container>
4522 inline PolymorphicMatcher<internal::ContainerEqMatcher<
4523 typename std::remove_const<Container>::type>>
4524 ContainerEq(const Container& rhs) {
4525 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4526 }
4527
4528 // Returns a matcher that matches a container that, when sorted using
4529 // the given comparator, matches container_matcher.
4530 template <typename Comparator, typename ContainerMatcher>
4531 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
4532 WhenSortedBy(const Comparator& comparator,
4533 const ContainerMatcher& container_matcher) {
4534 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4535 comparator, container_matcher);
4536 }
4537
4538 // Returns a matcher that matches a container that, when sorted using
4539 // the < operator, matches container_matcher.
4540 template <typename ContainerMatcher>
4541 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4542 WhenSorted(const ContainerMatcher& container_matcher) {
4543 return
4544 internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
4545 internal::LessComparator(), container_matcher);
4546 }
4547
4548 // Matches an STL-style container or a native array that contains the
4549 // same number of elements as in rhs, where its i-th element and rhs's
4550 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4551 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4552 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4553 // LHS container and the RHS container respectively.
4554 template <typename TupleMatcher, typename Container>
4555 inline internal::PointwiseMatcher<TupleMatcher,
4556 typename std::remove_const<Container>::type>
4557 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4558 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4559 rhs);
4560 }
4561
4562
4563 // Supports the Pointwise(m, {a, b, c}) syntax.
4564 template <typename TupleMatcher, typename T>
4565 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
4566 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4567 return Pointwise(tuple_matcher, std::vector<T>(rhs));
4568 }
4569
4570
4571 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4572 // container or a native array that contains the same number of
4573 // elements as in rhs, where in some permutation of the container, its
4574 // i-th element and rhs's i-th element (as a pair) satisfy the given
4575 // pair matcher, for all i. Tuple2Matcher must be able to be safely
4576 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4577 // the types of elements in the LHS container and the RHS container
4578 // respectively.
4579 //
4580 // This is like Pointwise(pair_matcher, rhs), except that the element
4581 // order doesn't matter.
4582 template <typename Tuple2Matcher, typename RhsContainer>
4583 inline internal::UnorderedElementsAreArrayMatcher<
4584 typename internal::BoundSecondMatcher<
4585 Tuple2Matcher,
4586 typename internal::StlContainerView<
4587 typename std::remove_const<RhsContainer>::type>::type::value_type>>
4588 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4589 const RhsContainer& rhs_container) {
4590 // RhsView allows the same code to handle RhsContainer being a
4591 // STL-style container and it being a native C-style array.
4592 typedef typename internal::StlContainerView<RhsContainer> RhsView;
4593 typedef typename RhsView::type RhsStlContainer;
4594 typedef typename RhsStlContainer::value_type Second;
4595 const RhsStlContainer& rhs_stl_container =
4596 RhsView::ConstReference(rhs_container);
4597
4598 // Create a matcher for each element in rhs_container.
4599 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
4600 for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
4601 it != rhs_stl_container.end(); ++it) {
4602 matchers.push_back(
4603 internal::MatcherBindSecond(tuple2_matcher, *it));
4604 }
4605
4606 // Delegate the work to UnorderedElementsAreArray().
4607 return UnorderedElementsAreArray(matchers);
4608 }
4609
4610
4611 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4612 template <typename Tuple2Matcher, typename T>
4613 inline internal::UnorderedElementsAreArrayMatcher<
4614 typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
4615 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4616 std::initializer_list<T> rhs) {
4617 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4618 }
4619
4620
4621 // Matches an STL-style container or a native array that contains at
4622 // least one element matching the given value or matcher.
4623 //
4624 // Examples:
4625 // ::std::set<int> page_ids;
4626 // page_ids.insert(3);
4627 // page_ids.insert(1);
4628 // EXPECT_THAT(page_ids, Contains(1));
4629 // EXPECT_THAT(page_ids, Contains(Gt(2)));
4630 // EXPECT_THAT(page_ids, Not(Contains(4)));
4631 //
4632 // ::std::map<int, size_t> page_lengths;
4633 // page_lengths[1] = 100;
4634 // EXPECT_THAT(page_lengths,
4635 // Contains(::std::pair<const int, size_t>(1, 100)));
4636 //
4637 // const char* user_ids[] = { "joe", "mike", "tom" };
4638 // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4639 template <typename M>
4640 inline internal::ContainsMatcher<M> Contains(M matcher) {
4641 return internal::ContainsMatcher<M>(matcher);
4642 }
4643
4644 // IsSupersetOf(iterator_first, iterator_last)
4645 // IsSupersetOf(pointer, count)
4646 // IsSupersetOf(array)
4647 // IsSupersetOf(container)
4648 // IsSupersetOf({e1, e2, ..., en})
4649 //
4650 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4651 // of matchers exists. In other words, a container matches
4652 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4653 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4654 // ..., and yn matches en. Obviously, the size of the container must be >= n
4655 // in order to have a match. Examples:
4656 //
4657 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4658 // 1 matches Ne(0).
4659 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4660 // both Eq(1) and Lt(2). The reason is that different matchers must be used
4661 // for elements in different slots of the container.
4662 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4663 // Eq(1) and (the second) 1 matches Lt(2).
4664 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4665 // Gt(1) and 3 matches (the second) Gt(1).
4666 //
4667 // The matchers can be specified as an array, a pointer and count, a container,
4668 // an initializer list, or an STL iterator range. In each of these cases, the
4669 // underlying matchers can be either values or matchers.
4670
4671 template <typename Iter>
4672 inline internal::UnorderedElementsAreArrayMatcher<
4673 typename ::std::iterator_traits<Iter>::value_type>
4674 IsSupersetOf(Iter first, Iter last) {
4675 typedef typename ::std::iterator_traits<Iter>::value_type T;
4676 return internal::UnorderedElementsAreArrayMatcher<T>(
4677 internal::UnorderedMatcherRequire::Superset, first, last);
4678 }
4679
4680 template <typename T>
4681 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4682 const T* pointer, size_t count) {
4683 return IsSupersetOf(pointer, pointer + count);
4684 }
4685
4686 template <typename T, size_t N>
4687 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4688 const T (&array)[N]) {
4689 return IsSupersetOf(array, N);
4690 }
4691
4692 template <typename Container>
4693 inline internal::UnorderedElementsAreArrayMatcher<
4694 typename Container::value_type>
4695 IsSupersetOf(const Container& container) {
4696 return IsSupersetOf(container.begin(), container.end());
4697 }
4698
4699 template <typename T>
4700 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4701 ::std::initializer_list<T> xs) {
4702 return IsSupersetOf(xs.begin(), xs.end());
4703 }
4704
4705 // IsSubsetOf(iterator_first, iterator_last)
4706 // IsSubsetOf(pointer, count)
4707 // IsSubsetOf(array)
4708 // IsSubsetOf(container)
4709 // IsSubsetOf({e1, e2, ..., en})
4710 //
4711 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4712 // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4713 // only if there is a subset of matchers {m1, ..., mk} which would match the
4714 // container using UnorderedElementsAre. Obviously, the size of the container
4715 // must be <= n in order to have a match. Examples:
4716 //
4717 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4718 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4719 // matches Lt(0).
4720 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4721 // match Gt(0). The reason is that different matchers must be used for
4722 // elements in different slots of the container.
4723 //
4724 // The matchers can be specified as an array, a pointer and count, a container,
4725 // an initializer list, or an STL iterator range. In each of these cases, the
4726 // underlying matchers can be either values or matchers.
4727
4728 template <typename Iter>
4729 inline internal::UnorderedElementsAreArrayMatcher<
4730 typename ::std::iterator_traits<Iter>::value_type>
4731 IsSubsetOf(Iter first, Iter last) {
4732 typedef typename ::std::iterator_traits<Iter>::value_type T;
4733 return internal::UnorderedElementsAreArrayMatcher<T>(
4734 internal::UnorderedMatcherRequire::Subset, first, last);
4735 }
4736
4737 template <typename T>
4738 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4739 const T* pointer, size_t count) {
4740 return IsSubsetOf(pointer, pointer + count);
4741 }
4742
4743 template <typename T, size_t N>
4744 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4745 const T (&array)[N]) {
4746 return IsSubsetOf(array, N);
4747 }
4748
4749 template <typename Container>
4750 inline internal::UnorderedElementsAreArrayMatcher<
4751 typename Container::value_type>
4752 IsSubsetOf(const Container& container) {
4753 return IsSubsetOf(container.begin(), container.end());
4754 }
4755
4756 template <typename T>
4757 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4758 ::std::initializer_list<T> xs) {
4759 return IsSubsetOf(xs.begin(), xs.end());
4760 }
4761
4762 // Matches an STL-style container or a native array that contains only
4763 // elements matching the given value or matcher.
4764 //
4765 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
4766 // the messages are different.
4767 //
4768 // Examples:
4769 // ::std::set<int> page_ids;
4770 // // Each(m) matches an empty container, regardless of what m is.
4771 // EXPECT_THAT(page_ids, Each(Eq(1)));
4772 // EXPECT_THAT(page_ids, Each(Eq(77)));
4773 //
4774 // page_ids.insert(3);
4775 // EXPECT_THAT(page_ids, Each(Gt(0)));
4776 // EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4777 // page_ids.insert(1);
4778 // EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4779 //
4780 // ::std::map<int, size_t> page_lengths;
4781 // page_lengths[1] = 100;
4782 // page_lengths[2] = 200;
4783 // page_lengths[3] = 300;
4784 // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4785 // EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4786 //
4787 // const char* user_ids[] = { "joe", "mike", "tom" };
4788 // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4789 template <typename M>
4790 inline internal::EachMatcher<M> Each(M matcher) {
4791 return internal::EachMatcher<M>(matcher);
4792 }
4793
4794 // Key(inner_matcher) matches an std::pair whose 'first' field matches
4795 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
4796 // std::map that contains at least one element whose key is >= 5.
4797 template <typename M>
4798 inline internal::KeyMatcher<M> Key(M inner_matcher) {
4799 return internal::KeyMatcher<M>(inner_matcher);
4800 }
4801
4802 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4803 // matches first_matcher and whose 'second' field matches second_matcher. For
4804 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4805 // to match a std::map<int, string> that contains exactly one element whose key
4806 // is >= 5 and whose value equals "foo".
4807 template <typename FirstMatcher, typename SecondMatcher>
4808 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
4809 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
4810 return internal::PairMatcher<FirstMatcher, SecondMatcher>(
4811 first_matcher, second_matcher);
4812 }
4813
4814 namespace no_adl {
4815 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
4816 // These include those that support `get<I>(obj)`, and when structured bindings
4817 // are enabled any class that supports them.
4818 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
4819 template <typename... M>
4820 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
4821 M&&... matchers) {
4822 return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
4823 std::forward<M>(matchers)...);
4824 }
4825
4826 // Creates a matcher that matches a pointer (raw or smart) that matches
4827 // inner_matcher.
4828 template <typename InnerMatcher>
4829 inline internal::PointerMatcher<InnerMatcher> Pointer(
4830 const InnerMatcher& inner_matcher) {
4831 return internal::PointerMatcher<InnerMatcher>(inner_matcher);
4832 }
4833
4834 // Creates a matcher that matches an object that has an address that matches
4835 // inner_matcher.
4836 template <typename InnerMatcher>
4837 inline internal::AddressMatcher<InnerMatcher> Address(
4838 const InnerMatcher& inner_matcher) {
4839 return internal::AddressMatcher<InnerMatcher>(inner_matcher);
4840 }
4841 } // namespace no_adl
4842
4843 // Returns a predicate that is satisfied by anything that matches the
4844 // given matcher.
4845 template <typename M>
4846 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
4847 return internal::MatcherAsPredicate<M>(matcher);
4848 }
4849
4850 // Returns true if and only if the value matches the matcher.
4851 template <typename T, typename M>
4852 inline bool Value(const T& value, M matcher) {
4853 return testing::Matches(matcher)(value);
4854 }
4855
4856 // Matches the value against the given matcher and explains the match
4857 // result to listener.
4858 template <typename T, typename M>
4859 inline bool ExplainMatchResult(
4860 M matcher, const T& value, MatchResultListener* listener) {
4861 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
4862 }
4863
4864 // Returns a string representation of the given matcher. Useful for description
4865 // strings of matchers defined using MATCHER_P* macros that accept matchers as
4866 // their arguments. For example:
4867 //
4868 // MATCHER_P(XAndYThat, matcher,
4869 // "X that " + DescribeMatcher<int>(matcher, negation) +
4870 // " and Y that " + DescribeMatcher<double>(matcher, negation)) {
4871 // return ExplainMatchResult(matcher, arg.x(), result_listener) &&
4872 // ExplainMatchResult(matcher, arg.y(), result_listener);
4873 // }
4874 template <typename T, typename M>
4875 std::string DescribeMatcher(const M& matcher, bool negation = false) {
4876 ::std::stringstream ss;
4877 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
4878 if (negation) {
4879 monomorphic_matcher.DescribeNegationTo(&ss);
4880 } else {
4881 monomorphic_matcher.DescribeTo(&ss);
4882 }
4883 return ss.str();
4884 }
4885
4886 template <typename... Args>
4887 internal::ElementsAreMatcher<
4888 std::tuple<typename std::decay<const Args&>::type...>>
4889 ElementsAre(const Args&... matchers) {
4890 return internal::ElementsAreMatcher<
4891 std::tuple<typename std::decay<const Args&>::type...>>(
4892 std::make_tuple(matchers...));
4893 }
4894
4895 template <typename... Args>
4896 internal::UnorderedElementsAreMatcher<
4897 std::tuple<typename std::decay<const Args&>::type...>>
4898 UnorderedElementsAre(const Args&... matchers) {
4899 return internal::UnorderedElementsAreMatcher<
4900 std::tuple<typename std::decay<const Args&>::type...>>(
4901 std::make_tuple(matchers...));
4902 }
4903
4904 // Define variadic matcher versions.
4905 template <typename... Args>
4906 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
4907 const Args&... matchers) {
4908 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
4909 matchers...);
4910 }
4911
4912 template <typename... Args>
4913 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
4914 const Args&... matchers) {
4915 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
4916 matchers...);
4917 }
4918
4919 // AnyOfArray(array)
4920 // AnyOfArray(pointer, count)
4921 // AnyOfArray(container)
4922 // AnyOfArray({ e1, e2, ..., en })
4923 // AnyOfArray(iterator_first, iterator_last)
4924 //
4925 // AnyOfArray() verifies whether a given value matches any member of a
4926 // collection of matchers.
4927 //
4928 // AllOfArray(array)
4929 // AllOfArray(pointer, count)
4930 // AllOfArray(container)
4931 // AllOfArray({ e1, e2, ..., en })
4932 // AllOfArray(iterator_first, iterator_last)
4933 //
4934 // AllOfArray() verifies whether a given value matches all members of a
4935 // collection of matchers.
4936 //
4937 // The matchers can be specified as an array, a pointer and count, a container,
4938 // an initializer list, or an STL iterator range. In each of these cases, the
4939 // underlying matchers can be either values or matchers.
4940
4941 template <typename Iter>
4942 inline internal::AnyOfArrayMatcher<
4943 typename ::std::iterator_traits<Iter>::value_type>
4944 AnyOfArray(Iter first, Iter last) {
4945 return internal::AnyOfArrayMatcher<
4946 typename ::std::iterator_traits<Iter>::value_type>(first, last);
4947 }
4948
4949 template <typename Iter>
4950 inline internal::AllOfArrayMatcher<
4951 typename ::std::iterator_traits<Iter>::value_type>
4952 AllOfArray(Iter first, Iter last) {
4953 return internal::AllOfArrayMatcher<
4954 typename ::std::iterator_traits<Iter>::value_type>(first, last);
4955 }
4956
4957 template <typename T>
4958 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
4959 return AnyOfArray(ptr, ptr + count);
4960 }
4961
4962 template <typename T>
4963 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
4964 return AllOfArray(ptr, ptr + count);
4965 }
4966
4967 template <typename T, size_t N>
4968 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
4969 return AnyOfArray(array, N);
4970 }
4971
4972 template <typename T, size_t N>
4973 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
4974 return AllOfArray(array, N);
4975 }
4976
4977 template <typename Container>
4978 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
4979 const Container& container) {
4980 return AnyOfArray(container.begin(), container.end());
4981 }
4982
4983 template <typename Container>
4984 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
4985 const Container& container) {
4986 return AllOfArray(container.begin(), container.end());
4987 }
4988
4989 template <typename T>
4990 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
4991 ::std::initializer_list<T> xs) {
4992 return AnyOfArray(xs.begin(), xs.end());
4993 }
4994
4995 template <typename T>
4996 inline internal::AllOfArrayMatcher<T> AllOfArray(
4997 ::std::initializer_list<T> xs) {
4998 return AllOfArray(xs.begin(), xs.end());
4999 }
5000
5001 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5002 // fields of it matches a_matcher. C++ doesn't support default
5003 // arguments for function templates, so we have to overload it.
5004 template <size_t... k, typename InnerMatcher>
5005 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5006 InnerMatcher&& matcher) {
5007 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5008 std::forward<InnerMatcher>(matcher));
5009 }
5010
5011 // AllArgs(m) is a synonym of m. This is useful in
5012 //
5013 // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5014 //
5015 // which is easier to read than
5016 //
5017 // EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5018 template <typename InnerMatcher>
5019 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
5020
5021 // Returns a matcher that matches the value of an optional<> type variable.
5022 // The matcher implementation only uses '!arg' and requires that the optional<>
5023 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5024 // and is printable using 'PrintToString'. It is compatible with
5025 // std::optional/std::experimental::optional.
5026 // Note that to compare an optional type variable against nullopt you should
5027 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5028 // optional value contains an optional itself.
5029 template <typename ValueMatcher>
5030 inline internal::OptionalMatcher<ValueMatcher> Optional(
5031 const ValueMatcher& value_matcher) {
5032 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5033 }
5034
5035 // Returns a matcher that matches the value of a absl::any type variable.
5036 template <typename T>
5037 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
5038 const Matcher<const T&>& matcher) {
5039 return MakePolymorphicMatcher(
5040 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5041 }
5042
5043 // Returns a matcher that matches the value of a variant<> type variable.
5044 // The matcher implementation uses ADL to find the holds_alternative and get
5045 // functions.
5046 // It is compatible with std::variant.
5047 template <typename T>
5048 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
5049 const Matcher<const T&>& matcher) {
5050 return MakePolymorphicMatcher(
5051 internal::variant_matcher::VariantMatcher<T>(matcher));
5052 }
5053
5054 #if GTEST_HAS_EXCEPTIONS
5055
5056 // Anything inside the `internal` namespace is internal to the implementation
5057 // and must not be used in user code!
5058 namespace internal {
5059
5060 class WithWhatMatcherImpl {
5061 public:
5062 WithWhatMatcherImpl(Matcher<std::string> matcher)
5063 : matcher_(std::move(matcher)) {}
5064
5065 void DescribeTo(std::ostream* os) const {
5066 *os << "contains .what() that ";
5067 matcher_.DescribeTo(os);
5068 }
5069
5070 void DescribeNegationTo(std::ostream* os) const {
5071 *os << "contains .what() that does not ";
5072 matcher_.DescribeTo(os);
5073 }
5074
5075 template <typename Err>
5076 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5077 *listener << "which contains .what() that ";
5078 return matcher_.MatchAndExplain(err.what(), listener);
5079 }
5080
5081 private:
5082 const Matcher<std::string> matcher_;
5083 };
5084
5085 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5086 Matcher<std::string> m) {
5087 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5088 }
5089
5090 template <typename Err>
5091 class ExceptionMatcherImpl {
5092 class NeverThrown {
5093 public:
5094 const char* what() const noexcept {
5095 return "this exception should never be thrown";
5096 }
5097 };
5098
5099 // If the matchee raises an exception of a wrong type, we'd like to
5100 // catch it and print its message and type. To do that, we add an additional
5101 // catch clause:
5102 //
5103 // try { ... }
5104 // catch (const Err&) { /* an expected exception */ }
5105 // catch (const std::exception&) { /* exception of a wrong type */ }
5106 //
5107 // However, if the `Err` itself is `std::exception`, we'd end up with two
5108 // identical `catch` clauses:
5109 //
5110 // try { ... }
5111 // catch (const std::exception&) { /* an expected exception */ }
5112 // catch (const std::exception&) { /* exception of a wrong type */ }
5113 //
5114 // This can cause a warning or an error in some compilers. To resolve
5115 // the issue, we use a fake error type whenever `Err` is `std::exception`:
5116 //
5117 // try { ... }
5118 // catch (const std::exception&) { /* an expected exception */ }
5119 // catch (const NeverThrown&) { /* exception of a wrong type */ }
5120 using DefaultExceptionType = typename std::conditional<
5121 std::is_same<typename std::remove_cv<
5122 typename std::remove_reference<Err>::type>::type,
5123 std::exception>::value,
5124 const NeverThrown&, const std::exception&>::type;
5125
5126 public:
5127 ExceptionMatcherImpl(Matcher<const Err&> matcher)
5128 : matcher_(std::move(matcher)) {}
5129
5130 void DescribeTo(std::ostream* os) const {
5131 *os << "throws an exception which is a " << GetTypeName<Err>();
5132 *os << " which ";
5133 matcher_.DescribeTo(os);
5134 }
5135
5136 void DescribeNegationTo(std::ostream* os) const {
5137 *os << "throws an exception which is not a " << GetTypeName<Err>();
5138 *os << " which ";
5139 matcher_.DescribeNegationTo(os);
5140 }
5141
5142 template <typename T>
5143 bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5144 try {
5145 (void)(std::forward<T>(x)());
5146 } catch (const Err& err) {
5147 *listener << "throws an exception which is a " << GetTypeName<Err>();
5148 *listener << " ";
5149 return matcher_.MatchAndExplain(err, listener);
5150 } catch (DefaultExceptionType err) {
5151 #if GTEST_HAS_RTTI
5152 *listener << "throws an exception of type " << GetTypeName(typeid(err));
5153 *listener << " ";
5154 #else
5155 *listener << "throws an std::exception-derived type ";
5156 #endif
5157 *listener << "with description \"" << err.what() << "\"";
5158 return false;
5159 } catch (...) {
5160 *listener << "throws an exception of an unknown type";
5161 return false;
5162 }
5163
5164 *listener << "does not throw any exception";
5165 return false;
5166 }
5167
5168 private:
5169 const Matcher<const Err&> matcher_;
5170 };
5171
5172 } // namespace internal
5173
5174 // Throws()
5175 // Throws(exceptionMatcher)
5176 // ThrowsMessage(messageMatcher)
5177 //
5178 // This matcher accepts a callable and verifies that when invoked, it throws
5179 // an exception with the given type and properties.
5180 //
5181 // Examples:
5182 //
5183 // EXPECT_THAT(
5184 // []() { throw std::runtime_error("message"); },
5185 // Throws<std::runtime_error>());
5186 //
5187 // EXPECT_THAT(
5188 // []() { throw std::runtime_error("message"); },
5189 // ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5190 //
5191 // EXPECT_THAT(
5192 // []() { throw std::runtime_error("message"); },
5193 // Throws<std::runtime_error>(
5194 // Property(&std::runtime_error::what, HasSubstr("message"))));
5195
5196 template <typename Err>
5197 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5198 return MakePolymorphicMatcher(
5199 internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5200 }
5201
5202 template <typename Err, typename ExceptionMatcher>
5203 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5204 const ExceptionMatcher& exception_matcher) {
5205 // Using matcher cast allows users to pass a matcher of a more broad type.
5206 // For example user may want to pass Matcher<std::exception>
5207 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5208 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5209 SafeMatcherCast<const Err&>(exception_matcher)));
5210 }
5211
5212 template <typename Err, typename MessageMatcher>
5213 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5214 MessageMatcher&& message_matcher) {
5215 static_assert(std::is_base_of<std::exception, Err>::value,
5216 "expected an std::exception-derived type");
5217 return Throws<Err>(internal::WithWhat(
5218 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5219 }
5220
5221 #endif // GTEST_HAS_EXCEPTIONS
5222
5223 // These macros allow using matchers to check values in Google Test
5224 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5225 // succeed if and only if the value matches the matcher. If the assertion
5226 // fails, the value and the description of the matcher will be printed.
5227 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
5228 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5229 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
5230 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5231
5232 // MATCHER* macroses itself are listed below.
5233 #define MATCHER(name, description) \
5234 class name##Matcher \
5235 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
5236 public: \
5237 template <typename arg_type> \
5238 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5239 public: \
5240 gmock_Impl() {} \
5241 bool MatchAndExplain( \
5242 const arg_type& arg, \
5243 ::testing::MatchResultListener* result_listener) const override; \
5244 void DescribeTo(::std::ostream* gmock_os) const override { \
5245 *gmock_os << FormatDescription(false); \
5246 } \
5247 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5248 *gmock_os << FormatDescription(true); \
5249 } \
5250 \
5251 private: \
5252 ::std::string FormatDescription(bool negation) const { \
5253 ::std::string gmock_description = (description); \
5254 if (!gmock_description.empty()) { \
5255 return gmock_description; \
5256 } \
5257 return ::testing::internal::FormatMatcherDescription(negation, #name, \
5258 {}); \
5259 } \
5260 }; \
5261 }; \
5262 GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \
5263 template <typename arg_type> \
5264 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
5265 const arg_type& arg, \
5266 ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5267 const
5268
5269 #define MATCHER_P(name, p0, description) \
5270 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
5271 #define MATCHER_P2(name, p0, p1, description) \
5272 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
5273 #define MATCHER_P3(name, p0, p1, p2, description) \
5274 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
5275 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
5276 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
5277 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
5278 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5279 (p0, p1, p2, p3, p4))
5280 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5281 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
5282 (p0, p1, p2, p3, p4, p5))
5283 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5284 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
5285 (p0, p1, p2, p3, p4, p5, p6))
5286 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5287 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
5288 (p0, p1, p2, p3, p4, p5, p6, p7))
5289 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5290 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
5291 (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5292 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5293 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
5294 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5295
5296 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
5297 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5298 class full_name : public ::testing::internal::MatcherBaseImpl< \
5299 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5300 public: \
5301 using full_name::MatcherBaseImpl::MatcherBaseImpl; \
5302 template <typename arg_type> \
5303 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5304 public: \
5305 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
5306 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
5307 bool MatchAndExplain( \
5308 const arg_type& arg, \
5309 ::testing::MatchResultListener* result_listener) const override; \
5310 void DescribeTo(::std::ostream* gmock_os) const override { \
5311 *gmock_os << FormatDescription(false); \
5312 } \
5313 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5314 *gmock_os << FormatDescription(true); \
5315 } \
5316 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5317 \
5318 private: \
5319 ::std::string FormatDescription(bool negation) const { \
5320 ::std::string gmock_description = (description); \
5321 if (!gmock_description.empty()) { \
5322 return gmock_description; \
5323 } \
5324 return ::testing::internal::FormatMatcherDescription( \
5325 negation, #name, \
5326 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
5327 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5328 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
5329 } \
5330 }; \
5331 }; \
5332 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5333 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
5334 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
5335 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5336 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
5337 } \
5338 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5339 template <typename arg_type> \
5340 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
5341 arg_type>::MatchAndExplain(const arg_type& arg, \
5342 ::testing::MatchResultListener* \
5343 result_listener GTEST_ATTRIBUTE_UNUSED_) \
5344 const
5345
5346 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5347 GMOCK_PP_TAIL( \
5348 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5349 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5350 , typename arg##_type
5351
5352 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5353 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5354 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5355 , arg##_type
5356
5357 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5358 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
5359 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5360 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5361 , arg##_type gmock_p##i
5362
5363 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5364 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5365 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5366 , arg(::std::forward<arg##_type>(gmock_p##i))
5367
5368 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5369 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5370 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5371 const arg##_type arg;
5372
5373 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5374 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5375 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5376
5377 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5378 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5379 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5380 , gmock_p##i
5381
5382 // To prevent ADL on certain functions we put them on a separate namespace.
5383 using namespace no_adl; // NOLINT
5384
5385 } // namespace testing
5386
5387 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5388
5389 // Include any custom callback matchers added by the local installation.
5390 // We must include this header at the end to make sure it can use the
5391 // declarations from this file.
5392 #include "gmock/internal/custom/gmock-matchers.h"
5393
5394 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5395