1 //===- HexagonConstPropagation.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #define DEBUG_TYPE "hcp"
10
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <cstring>
41 #include <iterator>
42 #include <map>
43 #include <queue>
44 #include <set>
45 #include <utility>
46 #include <vector>
47
48 using namespace llvm;
49
50 namespace {
51
52 // Properties of a value that are tracked by the propagation.
53 // A property that is marked as present (i.e. bit is set) dentes that the
54 // value is known (proven) to have this property. Not all combinations
55 // of bits make sense, for example Zero and NonZero are mutually exclusive,
56 // but on the other hand, Zero implies Finite. In this case, whenever
57 // the Zero property is present, Finite should also be present.
58 class ConstantProperties {
59 public:
60 enum {
61 Unknown = 0x0000,
62 Zero = 0x0001,
63 NonZero = 0x0002,
64 Finite = 0x0004,
65 Infinity = 0x0008,
66 NaN = 0x0010,
67 SignedZero = 0x0020,
68 NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
69 PosOrZero = 0x0100,
70 NegOrZero = 0x0200,
71 SignProperties = (PosOrZero|NegOrZero),
72 Everything = (NumericProperties|SignProperties)
73 };
74
75 // For a given constant, deduce the set of trackable properties that this
76 // constant has.
77 static uint32_t deduce(const Constant *C);
78 };
79
80 // A representation of a register as it can appear in a MachineOperand,
81 // i.e. a pair register:subregister.
82
83 // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in
84 // HexagonGenPredicate
85 struct RegisterSubReg {
86 unsigned Reg, SubReg;
87
RegisterSubReg__anone811cc040111::RegisterSubReg88 explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
RegisterSubReg__anone811cc040111::RegisterSubReg89 explicit RegisterSubReg(const MachineOperand &MO)
90 : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}
91
print__anone811cc040111::RegisterSubReg92 void print(const TargetRegisterInfo *TRI = nullptr) const {
93 dbgs() << printReg(Reg, TRI, SubReg);
94 }
95
operator ==__anone811cc040111::RegisterSubReg96 bool operator== (const RegisterSubReg &R) const {
97 return (Reg == R.Reg) && (SubReg == R.SubReg);
98 }
99 };
100
101 // Lattice cell, based on that was described in the W-Z paper on constant
102 // propagation.
103 // Latice cell will be allowed to hold multiple constant values. While
104 // multiple values would normally indicate "bottom", we can still derive
105 // some useful information from them. For example, comparison X > 0
106 // could be folded if all the values in the cell associated with X are
107 // positive.
108 class LatticeCell {
109 private:
110 enum { Normal, Top, Bottom };
111
112 static const unsigned MaxCellSize = 4;
113
114 unsigned Kind:2;
115 unsigned Size:3;
116 unsigned IsSpecial:1;
117 unsigned :0;
118
119 public:
120 union {
121 uint32_t Properties;
122 const Constant *Value;
123 const Constant *Values[MaxCellSize];
124 };
125
LatticeCell()126 LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
127 for (unsigned i = 0; i < MaxCellSize; ++i)
128 Values[i] = nullptr;
129 }
130
131 bool meet(const LatticeCell &L);
132 bool add(const Constant *C);
133 bool add(uint32_t Property);
134 uint32_t properties() const;
size() const135 unsigned size() const { return Size; }
136
LatticeCell(const LatticeCell & L)137 LatticeCell(const LatticeCell &L) {
138 // This memcpy also copies Properties (when L.Size == 0).
139 uint32_t N =
140 L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *);
141 memcpy(Values, L.Values, N);
142 Kind = L.Kind;
143 Size = L.Size;
144 IsSpecial = L.IsSpecial;
145 }
146
operator =(const LatticeCell & L)147 LatticeCell &operator=(const LatticeCell &L) {
148 if (this != &L) {
149 // This memcpy also copies Properties (when L.Size == 0).
150 uint32_t N = L.IsSpecial ? sizeof L.Properties
151 : L.Size * sizeof(const Constant *);
152 memcpy(Values, L.Values, N);
153 Kind = L.Kind;
154 Size = L.Size;
155 IsSpecial = L.IsSpecial;
156 }
157 return *this;
158 }
159
isSingle() const160 bool isSingle() const { return size() == 1; }
isProperty() const161 bool isProperty() const { return IsSpecial; }
isTop() const162 bool isTop() const { return Kind == Top; }
isBottom() const163 bool isBottom() const { return Kind == Bottom; }
164
setBottom()165 bool setBottom() {
166 bool Changed = (Kind != Bottom);
167 Kind = Bottom;
168 Size = 0;
169 IsSpecial = false;
170 return Changed;
171 }
172
173 void print(raw_ostream &os) const;
174
175 private:
setProperty()176 void setProperty() {
177 IsSpecial = true;
178 Size = 0;
179 Kind = Normal;
180 }
181
182 bool convertToProperty();
183 };
184
185 #ifndef NDEBUG
operator <<(raw_ostream & os,const LatticeCell & L)186 raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
187 L.print(os);
188 return os;
189 }
190 #endif
191
192 class MachineConstEvaluator;
193
194 class MachineConstPropagator {
195 public:
MachineConstPropagator(MachineConstEvaluator & E)196 MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
197 Bottom.setBottom();
198 }
199
200 // Mapping: vreg -> cell
201 // The keys are registers _without_ subregisters. This won't allow
202 // definitions in the form of "vreg:subreg = ...". Such definitions
203 // would be questionable from the point of view of SSA, since the "vreg"
204 // could not be initialized in its entirety (specifically, an instruction
205 // defining the "other part" of "vreg" would also count as a definition
206 // of "vreg", which would violate the SSA).
207 // If a value of a pair vreg:subreg needs to be obtained, the cell for
208 // "vreg" needs to be looked up, and then the value of subregister "subreg"
209 // needs to be evaluated.
210 class CellMap {
211 public:
CellMap()212 CellMap() {
213 assert(Top.isTop());
214 Bottom.setBottom();
215 }
216
clear()217 void clear() { Map.clear(); }
218
has(unsigned R) const219 bool has(unsigned R) const {
220 // All non-virtual registers are considered "bottom".
221 if (!Register::isVirtualRegister(R))
222 return true;
223 MapType::const_iterator F = Map.find(R);
224 return F != Map.end();
225 }
226
get(unsigned R) const227 const LatticeCell &get(unsigned R) const {
228 if (!Register::isVirtualRegister(R))
229 return Bottom;
230 MapType::const_iterator F = Map.find(R);
231 if (F != Map.end())
232 return F->second;
233 return Top;
234 }
235
236 // Invalidates any const references.
update(unsigned R,const LatticeCell & L)237 void update(unsigned R, const LatticeCell &L) {
238 Map[R] = L;
239 }
240
241 void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;
242
243 private:
244 using MapType = std::map<unsigned, LatticeCell>;
245
246 MapType Map;
247 // To avoid creating "top" entries, return a const reference to
248 // this cell in "get". Also, have a "Bottom" cell to return from
249 // get when a value of a physical register is requested.
250 LatticeCell Top, Bottom;
251
252 public:
253 using const_iterator = MapType::const_iterator;
254
begin() const255 const_iterator begin() const { return Map.begin(); }
end() const256 const_iterator end() const { return Map.end(); }
257 };
258
259 bool run(MachineFunction &MF);
260
261 private:
262 void visitPHI(const MachineInstr &PN);
263 void visitNonBranch(const MachineInstr &MI);
264 void visitBranchesFrom(const MachineInstr &BrI);
265 void visitUsesOf(unsigned R);
266 bool computeBlockSuccessors(const MachineBasicBlock *MB,
267 SetVector<const MachineBasicBlock*> &Targets);
268 void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);
269
270 void propagate(MachineFunction &MF);
271 bool rewrite(MachineFunction &MF);
272
273 MachineRegisterInfo *MRI = nullptr;
274 MachineConstEvaluator &MCE;
275
276 using CFGEdge = std::pair<unsigned, unsigned>;
277 using SetOfCFGEdge = std::set<CFGEdge>;
278 using SetOfInstr = std::set<const MachineInstr *>;
279 using QueueOfCFGEdge = std::queue<CFGEdge>;
280
281 LatticeCell Bottom;
282 CellMap Cells;
283 SetOfCFGEdge EdgeExec;
284 SetOfInstr InstrExec;
285 QueueOfCFGEdge FlowQ;
286 };
287
288 // The "evaluator/rewriter" of machine instructions. This is an abstract
289 // base class that provides the interface that the propagator will use,
290 // as well as some helper functions that are target-independent.
291 class MachineConstEvaluator {
292 public:
MachineConstEvaluator(MachineFunction & Fn)293 MachineConstEvaluator(MachineFunction &Fn)
294 : TRI(*Fn.getSubtarget().getRegisterInfo()),
295 MF(Fn), CX(Fn.getFunction().getContext()) {}
296 virtual ~MachineConstEvaluator() = default;
297
298 // The required interface:
299 // - A set of three "evaluate" functions. Each returns "true" if the
300 // computation succeeded, "false" otherwise.
301 // (1) Given an instruction MI, and the map with input values "Inputs",
302 // compute the set of output values "Outputs". An example of when
303 // the computation can "fail" is if MI is not an instruction that
304 // is recognized by the evaluator.
305 // (2) Given a register R (as reg:subreg), compute the cell that
306 // corresponds to the "subreg" part of the given register.
307 // (3) Given a branch instruction BrI, compute the set of target blocks.
308 // If the branch can fall-through, add null (0) to the list of
309 // possible targets.
310 // - A function "rewrite", that given the cell map after propagation,
311 // could rewrite instruction MI in a more beneficial form. Return
312 // "true" if a change has been made, "false" otherwise.
313 using CellMap = MachineConstPropagator::CellMap;
314 virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
315 CellMap &Outputs) = 0;
316 virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
317 LatticeCell &Result) = 0;
318 virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
319 SetVector<const MachineBasicBlock*> &Targets,
320 bool &CanFallThru) = 0;
321 virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;
322
323 const TargetRegisterInfo &TRI;
324
325 protected:
326 MachineFunction &MF;
327 LLVMContext &CX;
328
329 struct Comparison {
330 enum {
331 Unk = 0x00,
332 EQ = 0x01,
333 NE = 0x02,
334 L = 0x04, // Less-than property.
335 G = 0x08, // Greater-than property.
336 U = 0x40, // Unsigned property.
337 LTs = L,
338 LEs = L | EQ,
339 GTs = G,
340 GEs = G | EQ,
341 LTu = L | U,
342 LEu = L | EQ | U,
343 GTu = G | U,
344 GEu = G | EQ | U
345 };
346
negate__anone811cc040111::MachineConstEvaluator::Comparison347 static uint32_t negate(uint32_t Cmp) {
348 if (Cmp == EQ)
349 return NE;
350 if (Cmp == NE)
351 return EQ;
352 assert((Cmp & (L|G)) != (L|G));
353 return Cmp ^ (L|G);
354 }
355 };
356
357 // Helper functions.
358
359 bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC);
360 bool constToInt(const Constant *C, APInt &Val) const;
361 bool constToFloat(const Constant *C, APFloat &Val) const;
362 const ConstantInt *intToConst(const APInt &Val) const;
363
364 // Compares.
365 bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2,
366 const CellMap &Inputs, bool &Result);
367 bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2,
368 const CellMap &Inputs, bool &Result);
369 bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2,
370 const CellMap &Inputs, bool &Result);
371 bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
372 bool &Result);
373 bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
374 bool &Result);
375 bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
376 bool &Result);
377
378 bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs,
379 LatticeCell &Result);
380
381 // Logical operations.
382 bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
383 const CellMap &Inputs, LatticeCell &Result);
384 bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2,
385 const CellMap &Inputs, LatticeCell &Result);
386 bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
387 bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
388 const CellMap &Inputs, LatticeCell &Result);
389 bool evaluateORri(const RegisterSubReg &R1, const APInt &A2,
390 const CellMap &Inputs, LatticeCell &Result);
391 bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
392 bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
393 const CellMap &Inputs, LatticeCell &Result);
394 bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2,
395 const CellMap &Inputs, LatticeCell &Result);
396 bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);
397
398 // Extensions.
399 bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
400 const CellMap &Inputs, LatticeCell &Result);
401 bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
402 APInt &Result);
403 bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
404 const CellMap &Inputs, LatticeCell &Result);
405 bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
406 APInt &Result);
407
408 // Leading/trailing bits.
409 bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
410 const CellMap &Inputs, LatticeCell &Result);
411 bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
412 bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
413 const CellMap &Inputs, LatticeCell &Result);
414 bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
415
416 // Bitfield extract.
417 bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
418 unsigned Offset, bool Signed, const CellMap &Inputs,
419 LatticeCell &Result);
420 bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
421 bool Signed, APInt &Result);
422 // Vector operations.
423 bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count,
424 const CellMap &Inputs, LatticeCell &Result);
425 bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
426 APInt &Result);
427 };
428
429 } // end anonymous namespace
430
deduce(const Constant * C)431 uint32_t ConstantProperties::deduce(const Constant *C) {
432 if (isa<ConstantInt>(C)) {
433 const ConstantInt *CI = cast<ConstantInt>(C);
434 if (CI->isZero())
435 return Zero | PosOrZero | NegOrZero | Finite;
436 uint32_t Props = (NonZero | Finite);
437 if (CI->isNegative())
438 return Props | NegOrZero;
439 return Props | PosOrZero;
440 }
441
442 if (isa<ConstantFP>(C)) {
443 const ConstantFP *CF = cast<ConstantFP>(C);
444 uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
445 : PosOrZero;
446 if (CF->isZero())
447 return (Props & ~NumericProperties) | (Zero|Finite);
448 Props = (Props & ~NumericProperties) | NonZero;
449 if (CF->isNaN())
450 return (Props & ~NumericProperties) | NaN;
451 const APFloat &Val = CF->getValueAPF();
452 if (Val.isInfinity())
453 return (Props & ~NumericProperties) | Infinity;
454 Props |= Finite;
455 return Props;
456 }
457
458 return Unknown;
459 }
460
461 // Convert a cell from a set of specific values to a cell that tracks
462 // properties.
convertToProperty()463 bool LatticeCell::convertToProperty() {
464 if (isProperty())
465 return false;
466 // Corner case: converting a fresh (top) cell to "special".
467 // This can happen, when adding a property to a top cell.
468 uint32_t Everything = ConstantProperties::Everything;
469 uint32_t Ps = !isTop() ? properties()
470 : Everything;
471 if (Ps != ConstantProperties::Unknown) {
472 Properties = Ps;
473 setProperty();
474 } else {
475 setBottom();
476 }
477 return true;
478 }
479
480 #ifndef NDEBUG
print(raw_ostream & os) const481 void LatticeCell::print(raw_ostream &os) const {
482 if (isProperty()) {
483 os << "{ ";
484 uint32_t Ps = properties();
485 if (Ps & ConstantProperties::Zero)
486 os << "zero ";
487 if (Ps & ConstantProperties::NonZero)
488 os << "nonzero ";
489 if (Ps & ConstantProperties::Finite)
490 os << "finite ";
491 if (Ps & ConstantProperties::Infinity)
492 os << "infinity ";
493 if (Ps & ConstantProperties::NaN)
494 os << "nan ";
495 if (Ps & ConstantProperties::PosOrZero)
496 os << "poz ";
497 if (Ps & ConstantProperties::NegOrZero)
498 os << "nez ";
499 os << '}';
500 return;
501 }
502
503 os << "{ ";
504 if (isBottom()) {
505 os << "bottom";
506 } else if (isTop()) {
507 os << "top";
508 } else {
509 for (unsigned i = 0; i < size(); ++i) {
510 const Constant *C = Values[i];
511 if (i != 0)
512 os << ", ";
513 C->print(os);
514 }
515 }
516 os << " }";
517 }
518 #endif
519
520 // "Meet" operation on two cells. This is the key of the propagation
521 // algorithm.
meet(const LatticeCell & L)522 bool LatticeCell::meet(const LatticeCell &L) {
523 bool Changed = false;
524 if (L.isBottom())
525 Changed = setBottom();
526 if (isBottom() || L.isTop())
527 return Changed;
528 if (isTop()) {
529 *this = L;
530 // L can be neither Top nor Bottom, so *this must have changed.
531 return true;
532 }
533
534 // Top/bottom cases covered. Need to integrate L's set into ours.
535 if (L.isProperty())
536 return add(L.properties());
537 for (unsigned i = 0; i < L.size(); ++i) {
538 const Constant *LC = L.Values[i];
539 Changed |= add(LC);
540 }
541 return Changed;
542 }
543
544 // Add a new constant to the cell. This is actually where the cell update
545 // happens. If a cell has room for more constants, the new constant is added.
546 // Otherwise, the cell is converted to a "property" cell (i.e. a cell that
547 // will track properties of the associated values, and not the values
548 // themselves. Care is taken to handle special cases, like "bottom", etc.
add(const Constant * LC)549 bool LatticeCell::add(const Constant *LC) {
550 assert(LC);
551 if (isBottom())
552 return false;
553
554 if (!isProperty()) {
555 // Cell is not special. Try to add the constant here first,
556 // if there is room.
557 unsigned Index = 0;
558 while (Index < Size) {
559 const Constant *C = Values[Index];
560 // If the constant is already here, no change is needed.
561 if (C == LC)
562 return false;
563 Index++;
564 }
565 if (Index < MaxCellSize) {
566 Values[Index] = LC;
567 Kind = Normal;
568 Size++;
569 return true;
570 }
571 }
572
573 bool Changed = false;
574
575 // This cell is special, or is not special, but is full. After this
576 // it will be special.
577 Changed = convertToProperty();
578 uint32_t Ps = properties();
579 uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
580 if (NewPs == ConstantProperties::Unknown) {
581 setBottom();
582 return true;
583 }
584 if (Ps != NewPs) {
585 Properties = NewPs;
586 Changed = true;
587 }
588 return Changed;
589 }
590
591 // Add a property to the cell. This will force the cell to become a property-
592 // tracking cell.
add(uint32_t Property)593 bool LatticeCell::add(uint32_t Property) {
594 bool Changed = convertToProperty();
595 uint32_t Ps = properties();
596 if (Ps == (Ps & Property))
597 return Changed;
598 Properties = Property & Ps;
599 return true;
600 }
601
602 // Return the properties of the values in the cell. This is valid for any
603 // cell, and does not alter the cell itself.
properties() const604 uint32_t LatticeCell::properties() const {
605 if (isProperty())
606 return Properties;
607 assert(!isTop() && "Should not call this for a top cell");
608 if (isBottom())
609 return ConstantProperties::Unknown;
610
611 assert(size() > 0 && "Empty cell");
612 uint32_t Ps = ConstantProperties::deduce(Values[0]);
613 for (unsigned i = 1; i < size(); ++i) {
614 if (Ps == ConstantProperties::Unknown)
615 break;
616 Ps &= ConstantProperties::deduce(Values[i]);
617 }
618 return Ps;
619 }
620
621 #ifndef NDEBUG
print(raw_ostream & os,const TargetRegisterInfo & TRI) const622 void MachineConstPropagator::CellMap::print(raw_ostream &os,
623 const TargetRegisterInfo &TRI) const {
624 for (auto &I : Map)
625 dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
626 }
627 #endif
628
visitPHI(const MachineInstr & PN)629 void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
630 const MachineBasicBlock *MB = PN.getParent();
631 unsigned MBN = MB->getNumber();
632 LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);
633
634 const MachineOperand &MD = PN.getOperand(0);
635 RegisterSubReg DefR(MD);
636 assert(Register::isVirtualRegister(DefR.Reg));
637
638 bool Changed = false;
639
640 // If the def has a sub-register, set the corresponding cell to "bottom".
641 if (DefR.SubReg) {
642 Bottomize:
643 const LatticeCell &T = Cells.get(DefR.Reg);
644 Changed = !T.isBottom();
645 Cells.update(DefR.Reg, Bottom);
646 if (Changed)
647 visitUsesOf(DefR.Reg);
648 return;
649 }
650
651 LatticeCell DefC = Cells.get(DefR.Reg);
652
653 for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
654 const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
655 unsigned PBN = PB->getNumber();
656 if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
657 LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->"
658 << printMBBReference(*MB) << " not executable\n");
659 continue;
660 }
661 const MachineOperand &SO = PN.getOperand(i);
662 RegisterSubReg UseR(SO);
663 // If the input is not a virtual register, we don't really know what
664 // value it holds.
665 if (!Register::isVirtualRegister(UseR.Reg))
666 goto Bottomize;
667 // If there is no cell for an input register, it means top.
668 if (!Cells.has(UseR.Reg))
669 continue;
670
671 LatticeCell SrcC;
672 bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
673 LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": "
674 << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC
675 << '\n');
676 Changed |= Eval ? DefC.meet(SrcC)
677 : DefC.setBottom();
678 Cells.update(DefR.Reg, DefC);
679 if (DefC.isBottom())
680 break;
681 }
682 if (Changed)
683 visitUsesOf(DefR.Reg);
684 }
685
visitNonBranch(const MachineInstr & MI)686 void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
687 LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
688 << "): " << MI);
689 CellMap Outputs;
690 bool Eval = MCE.evaluate(MI, Cells, Outputs);
691 LLVM_DEBUG({
692 if (Eval) {
693 dbgs() << " outputs:";
694 for (auto &I : Outputs)
695 dbgs() << ' ' << I.second;
696 dbgs() << '\n';
697 }
698 });
699
700 // Update outputs. If the value was not computed, set all the
701 // def cells to bottom.
702 for (const MachineOperand &MO : MI.operands()) {
703 if (!MO.isReg() || !MO.isDef())
704 continue;
705 RegisterSubReg DefR(MO);
706 // Only track virtual registers.
707 if (!Register::isVirtualRegister(DefR.Reg))
708 continue;
709 bool Changed = false;
710 // If the evaluation failed, set cells for all output registers to bottom.
711 if (!Eval) {
712 const LatticeCell &T = Cells.get(DefR.Reg);
713 Changed = !T.isBottom();
714 Cells.update(DefR.Reg, Bottom);
715 } else {
716 // Find the corresponding cell in the computed outputs.
717 // If it's not there, go on to the next def.
718 if (!Outputs.has(DefR.Reg))
719 continue;
720 LatticeCell RC = Cells.get(DefR.Reg);
721 Changed = RC.meet(Outputs.get(DefR.Reg));
722 Cells.update(DefR.Reg, RC);
723 }
724 if (Changed)
725 visitUsesOf(DefR.Reg);
726 }
727 }
728
729 // Starting at a given branch, visit remaining branches in the block.
730 // Traverse over the subsequent branches for as long as the preceding one
731 // can fall through. Add all the possible targets to the flow work queue,
732 // including the potential fall-through to the layout-successor block.
visitBranchesFrom(const MachineInstr & BrI)733 void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
734 const MachineBasicBlock &B = *BrI.getParent();
735 unsigned MBN = B.getNumber();
736 MachineBasicBlock::const_iterator It = BrI.getIterator();
737 MachineBasicBlock::const_iterator End = B.end();
738
739 SetVector<const MachineBasicBlock*> Targets;
740 bool EvalOk = true, FallsThru = true;
741 while (It != End) {
742 const MachineInstr &MI = *It;
743 InstrExec.insert(&MI);
744 LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
745 << printMBBReference(B) << "): " << MI);
746 // Do not evaluate subsequent branches if the evaluation of any of the
747 // previous branches failed. Keep iterating over the branches only
748 // to mark them as executable.
749 EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
750 if (!EvalOk)
751 FallsThru = true;
752 if (!FallsThru)
753 break;
754 ++It;
755 }
756
757 if (EvalOk) {
758 // Need to add all CFG successors that lead to EH landing pads.
759 // There won't be explicit branches to these blocks, but they must
760 // be processed.
761 for (const MachineBasicBlock *SB : B.successors()) {
762 if (SB->isEHPad())
763 Targets.insert(SB);
764 }
765 if (FallsThru) {
766 const MachineFunction &MF = *B.getParent();
767 MachineFunction::const_iterator BI = B.getIterator();
768 MachineFunction::const_iterator Next = std::next(BI);
769 if (Next != MF.end())
770 Targets.insert(&*Next);
771 }
772 } else {
773 // If the evaluation of the branches failed, make "Targets" to be the
774 // set of all successors of the block from the CFG.
775 // If the evaluation succeeded for all visited branches, then if the
776 // last one set "FallsThru", then add an edge to the layout successor
777 // to the targets.
778 Targets.clear();
779 LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG "
780 "successors\n");
781 for (const MachineBasicBlock *SB : B.successors())
782 Targets.insert(SB);
783 }
784
785 for (const MachineBasicBlock *TB : Targets) {
786 unsigned TBN = TB->getNumber();
787 LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> "
788 << printMBBReference(*TB) << "\n");
789 FlowQ.push(CFGEdge(MBN, TBN));
790 }
791 }
792
visitUsesOf(unsigned Reg)793 void MachineConstPropagator::visitUsesOf(unsigned Reg) {
794 LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
795 << Cells.get(Reg) << '\n');
796 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
797 // Do not process non-executable instructions. They can become exceutable
798 // later (via a flow-edge in the work queue). In such case, the instruc-
799 // tion will be visited at that time.
800 if (!InstrExec.count(&MI))
801 continue;
802 if (MI.isPHI())
803 visitPHI(MI);
804 else if (!MI.isBranch())
805 visitNonBranch(MI);
806 else
807 visitBranchesFrom(MI);
808 }
809 }
810
computeBlockSuccessors(const MachineBasicBlock * MB,SetVector<const MachineBasicBlock * > & Targets)811 bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
812 SetVector<const MachineBasicBlock*> &Targets) {
813 MachineBasicBlock::const_iterator FirstBr = MB->end();
814 for (const MachineInstr &MI : *MB) {
815 if (MI.isDebugInstr())
816 continue;
817 if (MI.isBranch()) {
818 FirstBr = MI.getIterator();
819 break;
820 }
821 }
822
823 Targets.clear();
824 MachineBasicBlock::const_iterator End = MB->end();
825
826 bool DoNext = true;
827 for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
828 const MachineInstr &MI = *I;
829 // Can there be debug instructions between branches?
830 if (MI.isDebugInstr())
831 continue;
832 if (!InstrExec.count(&MI))
833 continue;
834 bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
835 if (!Eval)
836 return false;
837 if (!DoNext)
838 break;
839 }
840 // If the last branch could fall-through, add block's layout successor.
841 if (DoNext) {
842 MachineFunction::const_iterator BI = MB->getIterator();
843 MachineFunction::const_iterator NextI = std::next(BI);
844 if (NextI != MB->getParent()->end())
845 Targets.insert(&*NextI);
846 }
847
848 // Add all the EH landing pads.
849 for (const MachineBasicBlock *SB : MB->successors())
850 if (SB->isEHPad())
851 Targets.insert(SB);
852
853 return true;
854 }
855
removeCFGEdge(MachineBasicBlock * From,MachineBasicBlock * To)856 void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
857 MachineBasicBlock *To) {
858 // First, remove the CFG successor/predecessor information.
859 From->removeSuccessor(To);
860 // Remove all corresponding PHI operands in the To block.
861 for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
862 MachineInstr *PN = &*I;
863 // reg0 = PHI reg1, bb2, reg3, bb4, ...
864 int N = PN->getNumOperands()-2;
865 while (N > 0) {
866 if (PN->getOperand(N+1).getMBB() == From) {
867 PN->RemoveOperand(N+1);
868 PN->RemoveOperand(N);
869 }
870 N -= 2;
871 }
872 }
873 }
874
propagate(MachineFunction & MF)875 void MachineConstPropagator::propagate(MachineFunction &MF) {
876 MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
877 unsigned EntryNum = Entry->getNumber();
878
879 // Start with a fake edge, just to process the entry node.
880 FlowQ.push(CFGEdge(EntryNum, EntryNum));
881
882 while (!FlowQ.empty()) {
883 CFGEdge Edge = FlowQ.front();
884 FlowQ.pop();
885
886 LLVM_DEBUG(
887 dbgs() << "Picked edge "
888 << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
889 << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n');
890 if (Edge.first != EntryNum)
891 if (EdgeExec.count(Edge))
892 continue;
893 EdgeExec.insert(Edge);
894 MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);
895
896 // Process the block in three stages:
897 // - visit all PHI nodes,
898 // - visit all non-branch instructions,
899 // - visit block branches.
900 MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();
901
902 // Visit PHI nodes in the successor block.
903 while (It != End && It->isPHI()) {
904 InstrExec.insert(&*It);
905 visitPHI(*It);
906 ++It;
907 }
908
909 // If the successor block just became executable, visit all instructions.
910 // To see if this is the first time we're visiting it, check the first
911 // non-debug instruction to see if it is executable.
912 while (It != End && It->isDebugInstr())
913 ++It;
914 assert(It == End || !It->isPHI());
915 // If this block has been visited, go on to the next one.
916 if (It != End && InstrExec.count(&*It))
917 continue;
918 // For now, scan all non-branch instructions. Branches require different
919 // processing.
920 while (It != End && !It->isBranch()) {
921 if (!It->isDebugInstr()) {
922 InstrExec.insert(&*It);
923 visitNonBranch(*It);
924 }
925 ++It;
926 }
927
928 // Time to process the end of the block. This is different from
929 // processing regular (non-branch) instructions, because there can
930 // be multiple branches in a block, and they can cause the block to
931 // terminate early.
932 if (It != End) {
933 visitBranchesFrom(*It);
934 } else {
935 // If the block didn't have a branch, add all successor edges to the
936 // work queue. (There should really be only one successor in such case.)
937 unsigned SBN = SB->getNumber();
938 for (const MachineBasicBlock *SSB : SB->successors())
939 FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
940 }
941 } // while (FlowQ)
942
943 LLVM_DEBUG({
944 dbgs() << "Cells after propagation:\n";
945 Cells.print(dbgs(), MCE.TRI);
946 dbgs() << "Dead CFG edges:\n";
947 for (const MachineBasicBlock &B : MF) {
948 unsigned BN = B.getNumber();
949 for (const MachineBasicBlock *SB : B.successors()) {
950 unsigned SN = SB->getNumber();
951 if (!EdgeExec.count(CFGEdge(BN, SN)))
952 dbgs() << " " << printMBBReference(B) << " -> "
953 << printMBBReference(*SB) << '\n';
954 }
955 }
956 });
957 }
958
rewrite(MachineFunction & MF)959 bool MachineConstPropagator::rewrite(MachineFunction &MF) {
960 bool Changed = false;
961 // Rewrite all instructions based on the collected cell information.
962 //
963 // Traverse the instructions in a post-order, so that rewriting an
964 // instruction can make changes "downstream" in terms of control-flow
965 // without affecting the rewriting process. (We should not change
966 // instructions that have not yet been visited by the rewriter.)
967 // The reason for this is that the rewriter can introduce new vregs,
968 // and replace uses of old vregs (which had corresponding cells
969 // computed during propagation) with these new vregs (which at this
970 // point would not have any cells, and would appear to be "top").
971 // If an attempt was made to evaluate an instruction with a fresh
972 // "top" vreg, it would cause an error (abend) in the evaluator.
973
974 // Collect the post-order-traversal block ordering. The subsequent
975 // traversal/rewrite will update block successors, so it's safer
976 // if the visiting order it computed ahead of time.
977 std::vector<MachineBasicBlock*> POT;
978 for (MachineBasicBlock *B : post_order(&MF))
979 if (!B->empty())
980 POT.push_back(B);
981
982 for (MachineBasicBlock *B : POT) {
983 // Walk the block backwards (which usually begin with the branches).
984 // If any branch is rewritten, we may need to update the successor
985 // information for this block. Unless the block's successors can be
986 // precisely determined (which may not be the case for indirect
987 // branches), we cannot modify any branch.
988
989 // Compute the successor information.
990 SetVector<const MachineBasicBlock*> Targets;
991 bool HaveTargets = computeBlockSuccessors(B, Targets);
992 // Rewrite the executable instructions. Skip branches if we don't
993 // have block successor information.
994 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
995 MachineInstr &MI = *I;
996 if (InstrExec.count(&MI)) {
997 if (MI.isBranch() && !HaveTargets)
998 continue;
999 Changed |= MCE.rewrite(MI, Cells);
1000 }
1001 }
1002 // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
1003 // regular instructions to appear in between PHI nodes. Bring all
1004 // the PHI nodes to the beginning of the block.
1005 for (auto I = B->begin(), E = B->end(); I != E; ++I) {
1006 if (I->isPHI())
1007 continue;
1008 // I is not PHI. Find the next PHI node P.
1009 auto P = I;
1010 while (++P != E)
1011 if (P->isPHI())
1012 break;
1013 // Not found.
1014 if (P == E)
1015 break;
1016 // Splice P right before I.
1017 B->splice(I, B, P);
1018 // Reset I to point at the just spliced PHI node.
1019 --I;
1020 }
1021 // Update the block successor information: remove unnecessary successors.
1022 if (HaveTargets) {
1023 SmallVector<MachineBasicBlock*,2> ToRemove;
1024 for (MachineBasicBlock *SB : B->successors()) {
1025 if (!Targets.count(SB))
1026 ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
1027 Targets.remove(SB);
1028 }
1029 for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
1030 removeCFGEdge(B, ToRemove[i]);
1031 // If there are any blocks left in the computed targets, it means that
1032 // we think that the block could go somewhere, but the CFG does not.
1033 // This could legitimately happen in blocks that have non-returning
1034 // calls---we would think that the execution can continue, but the
1035 // CFG will not have a successor edge.
1036 }
1037 }
1038 // Need to do some final post-processing.
1039 // If a branch was not executable, it will not get rewritten, but should
1040 // be removed (or replaced with something equivalent to a A2_nop). We can't
1041 // erase instructions during rewriting, so this needs to be delayed until
1042 // now.
1043 for (MachineBasicBlock &B : MF) {
1044 MachineBasicBlock::iterator I = B.begin(), E = B.end();
1045 while (I != E) {
1046 auto Next = std::next(I);
1047 if (I->isBranch() && !InstrExec.count(&*I))
1048 B.erase(I);
1049 I = Next;
1050 }
1051 }
1052 return Changed;
1053 }
1054
1055 // This is the constant propagation algorithm as described by Wegman-Zadeck.
1056 // Most of the terminology comes from there.
run(MachineFunction & MF)1057 bool MachineConstPropagator::run(MachineFunction &MF) {
1058 LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));
1059
1060 MRI = &MF.getRegInfo();
1061
1062 Cells.clear();
1063 EdgeExec.clear();
1064 InstrExec.clear();
1065 assert(FlowQ.empty());
1066
1067 propagate(MF);
1068 bool Changed = rewrite(MF);
1069
1070 LLVM_DEBUG({
1071 dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
1072 if (Changed)
1073 MF.print(dbgs(), nullptr);
1074 });
1075 return Changed;
1076 }
1077
1078 // --------------------------------------------------------------------
1079 // Machine const evaluator.
1080
getCell(const RegisterSubReg & R,const CellMap & Inputs,LatticeCell & RC)1081 bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs,
1082 LatticeCell &RC) {
1083 if (!Register::isVirtualRegister(R.Reg))
1084 return false;
1085 const LatticeCell &L = Inputs.get(R.Reg);
1086 if (!R.SubReg) {
1087 RC = L;
1088 return !RC.isBottom();
1089 }
1090 bool Eval = evaluate(R, L, RC);
1091 return Eval && !RC.isBottom();
1092 }
1093
constToInt(const Constant * C,APInt & Val) const1094 bool MachineConstEvaluator::constToInt(const Constant *C,
1095 APInt &Val) const {
1096 const ConstantInt *CI = dyn_cast<ConstantInt>(C);
1097 if (!CI)
1098 return false;
1099 Val = CI->getValue();
1100 return true;
1101 }
1102
intToConst(const APInt & Val) const1103 const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
1104 return ConstantInt::get(CX, Val);
1105 }
1106
evaluateCMPrr(uint32_t Cmp,const RegisterSubReg & R1,const RegisterSubReg & R2,const CellMap & Inputs,bool & Result)1107 bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1,
1108 const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) {
1109 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1110 LatticeCell LS1, LS2;
1111 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1112 return false;
1113
1114 bool IsProp1 = LS1.isProperty();
1115 bool IsProp2 = LS2.isProperty();
1116 if (IsProp1) {
1117 uint32_t Prop1 = LS1.properties();
1118 if (IsProp2)
1119 return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
1120 uint32_t NegCmp = Comparison::negate(Cmp);
1121 return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
1122 }
1123 if (IsProp2) {
1124 uint32_t Prop2 = LS2.properties();
1125 return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
1126 }
1127
1128 APInt A;
1129 bool IsTrue = true, IsFalse = true;
1130 for (unsigned i = 0; i < LS2.size(); ++i) {
1131 bool Res;
1132 bool Computed = constToInt(LS2.Values[i], A) &&
1133 evaluateCMPri(Cmp, R1, A, Inputs, Res);
1134 if (!Computed)
1135 return false;
1136 IsTrue &= Res;
1137 IsFalse &= !Res;
1138 }
1139 assert(!IsTrue || !IsFalse);
1140 // The actual logical value of the comparison is same as IsTrue.
1141 Result = IsTrue;
1142 // Return true if the result was proven to be true or proven to be false.
1143 return IsTrue || IsFalse;
1144 }
1145
evaluateCMPri(uint32_t Cmp,const RegisterSubReg & R1,const APInt & A2,const CellMap & Inputs,bool & Result)1146 bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1,
1147 const APInt &A2, const CellMap &Inputs, bool &Result) {
1148 assert(Inputs.has(R1.Reg));
1149 LatticeCell LS;
1150 if (!getCell(R1, Inputs, LS))
1151 return false;
1152 if (LS.isProperty())
1153 return evaluateCMPpi(Cmp, LS.properties(), A2, Result);
1154
1155 APInt A;
1156 bool IsTrue = true, IsFalse = true;
1157 for (unsigned i = 0; i < LS.size(); ++i) {
1158 bool Res;
1159 bool Computed = constToInt(LS.Values[i], A) &&
1160 evaluateCMPii(Cmp, A, A2, Res);
1161 if (!Computed)
1162 return false;
1163 IsTrue &= Res;
1164 IsFalse &= !Res;
1165 }
1166 assert(!IsTrue || !IsFalse);
1167 // The actual logical value of the comparison is same as IsTrue.
1168 Result = IsTrue;
1169 // Return true if the result was proven to be true or proven to be false.
1170 return IsTrue || IsFalse;
1171 }
1172
evaluateCMPrp(uint32_t Cmp,const RegisterSubReg & R1,uint64_t Props2,const CellMap & Inputs,bool & Result)1173 bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1,
1174 uint64_t Props2, const CellMap &Inputs, bool &Result) {
1175 assert(Inputs.has(R1.Reg));
1176 LatticeCell LS;
1177 if (!getCell(R1, Inputs, LS))
1178 return false;
1179 if (LS.isProperty())
1180 return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);
1181
1182 APInt A;
1183 uint32_t NegCmp = Comparison::negate(Cmp);
1184 bool IsTrue = true, IsFalse = true;
1185 for (unsigned i = 0; i < LS.size(); ++i) {
1186 bool Res;
1187 bool Computed = constToInt(LS.Values[i], A) &&
1188 evaluateCMPpi(NegCmp, Props2, A, Res);
1189 if (!Computed)
1190 return false;
1191 IsTrue &= Res;
1192 IsFalse &= !Res;
1193 }
1194 assert(!IsTrue || !IsFalse);
1195 Result = IsTrue;
1196 return IsTrue || IsFalse;
1197 }
1198
evaluateCMPii(uint32_t Cmp,const APInt & A1,const APInt & A2,bool & Result)1199 bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
1200 const APInt &A2, bool &Result) {
1201 // NE is a special kind of comparison (not composed of smaller properties).
1202 if (Cmp == Comparison::NE) {
1203 Result = !APInt::isSameValue(A1, A2);
1204 return true;
1205 }
1206 if (Cmp == Comparison::EQ) {
1207 Result = APInt::isSameValue(A1, A2);
1208 return true;
1209 }
1210 if (Cmp & Comparison::EQ) {
1211 if (APInt::isSameValue(A1, A2))
1212 return (Result = true);
1213 }
1214 assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
1215 Result = false;
1216
1217 unsigned W1 = A1.getBitWidth();
1218 unsigned W2 = A2.getBitWidth();
1219 unsigned MaxW = (W1 >= W2) ? W1 : W2;
1220 if (Cmp & Comparison::U) {
1221 const APInt Zx1 = A1.zextOrSelf(MaxW);
1222 const APInt Zx2 = A2.zextOrSelf(MaxW);
1223 if (Cmp & Comparison::L)
1224 Result = Zx1.ult(Zx2);
1225 else if (Cmp & Comparison::G)
1226 Result = Zx2.ult(Zx1);
1227 return true;
1228 }
1229
1230 // Signed comparison.
1231 const APInt Sx1 = A1.sextOrSelf(MaxW);
1232 const APInt Sx2 = A2.sextOrSelf(MaxW);
1233 if (Cmp & Comparison::L)
1234 Result = Sx1.slt(Sx2);
1235 else if (Cmp & Comparison::G)
1236 Result = Sx2.slt(Sx1);
1237 return true;
1238 }
1239
evaluateCMPpi(uint32_t Cmp,uint32_t Props,const APInt & A2,bool & Result)1240 bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
1241 const APInt &A2, bool &Result) {
1242 if (Props == ConstantProperties::Unknown)
1243 return false;
1244
1245 // Should never see NaN here, but check for it for completeness.
1246 if (Props & ConstantProperties::NaN)
1247 return false;
1248 // Infinity could theoretically be compared to a number, but the
1249 // presence of infinity here would be very suspicious. If we don't
1250 // know for sure that the number is finite, bail out.
1251 if (!(Props & ConstantProperties::Finite))
1252 return false;
1253
1254 // Let X be a number that has properties Props.
1255
1256 if (Cmp & Comparison::U) {
1257 // In case of unsigned comparisons, we can only compare against 0.
1258 if (A2 == 0) {
1259 // Any x!=0 will be considered >0 in an unsigned comparison.
1260 if (Props & ConstantProperties::Zero)
1261 Result = (Cmp & Comparison::EQ);
1262 else if (Props & ConstantProperties::NonZero)
1263 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1264 else
1265 return false;
1266 return true;
1267 }
1268 // A2 is not zero. The only handled case is if X = 0.
1269 if (Props & ConstantProperties::Zero) {
1270 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1271 return true;
1272 }
1273 return false;
1274 }
1275
1276 // Signed comparisons are different.
1277 if (Props & ConstantProperties::Zero) {
1278 if (A2 == 0)
1279 Result = (Cmp & Comparison::EQ);
1280 else
1281 Result = (Cmp == Comparison::NE) ||
1282 ((Cmp & Comparison::L) && !A2.isNegative()) ||
1283 ((Cmp & Comparison::G) && A2.isNegative());
1284 return true;
1285 }
1286 if (Props & ConstantProperties::PosOrZero) {
1287 // X >= 0 and !(A2 < 0) => cannot compare
1288 if (!A2.isNegative())
1289 return false;
1290 // X >= 0 and A2 < 0
1291 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1292 return true;
1293 }
1294 if (Props & ConstantProperties::NegOrZero) {
1295 // X <= 0 and Src1 < 0 => cannot compare
1296 if (A2 == 0 || A2.isNegative())
1297 return false;
1298 // X <= 0 and A2 > 0
1299 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1300 return true;
1301 }
1302
1303 return false;
1304 }
1305
evaluateCMPpp(uint32_t Cmp,uint32_t Props1,uint32_t Props2,bool & Result)1306 bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
1307 uint32_t Props2, bool &Result) {
1308 using P = ConstantProperties;
1309
1310 if ((Props1 & P::NaN) && (Props2 & P::NaN))
1311 return false;
1312 if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
1313 return false;
1314
1315 bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
1316 bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
1317 if (Zero1 && Zero2) {
1318 Result = (Cmp & Comparison::EQ);
1319 return true;
1320 }
1321 if (Cmp == Comparison::NE) {
1322 if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
1323 return (Result = true);
1324 return false;
1325 }
1326
1327 if (Cmp & Comparison::U) {
1328 // In unsigned comparisons, we can only compare against a known zero,
1329 // or a known non-zero.
1330 if (Zero1 && NonZero2) {
1331 Result = (Cmp & Comparison::L);
1332 return true;
1333 }
1334 if (NonZero1 && Zero2) {
1335 Result = (Cmp & Comparison::G);
1336 return true;
1337 }
1338 return false;
1339 }
1340
1341 // Signed comparison. The comparison is not NE.
1342 bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
1343 bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
1344 if (Nez1 && Poz2) {
1345 if (NonZero1 || NonZero2) {
1346 Result = (Cmp & Comparison::L);
1347 return true;
1348 }
1349 // Either (or both) could be zero. Can only say that X <= Y.
1350 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
1351 return (Result = true);
1352 }
1353 if (Poz1 && Nez2) {
1354 if (NonZero1 || NonZero2) {
1355 Result = (Cmp & Comparison::G);
1356 return true;
1357 }
1358 // Either (or both) could be zero. Can only say that X >= Y.
1359 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
1360 return (Result = true);
1361 }
1362
1363 return false;
1364 }
1365
evaluateCOPY(const RegisterSubReg & R1,const CellMap & Inputs,LatticeCell & Result)1366 bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1,
1367 const CellMap &Inputs, LatticeCell &Result) {
1368 return getCell(R1, Inputs, Result);
1369 }
1370
evaluateANDrr(const RegisterSubReg & R1,const RegisterSubReg & R2,const CellMap & Inputs,LatticeCell & Result)1371 bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1,
1372 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1373 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1374 const LatticeCell &L1 = Inputs.get(R2.Reg);
1375 const LatticeCell &L2 = Inputs.get(R2.Reg);
1376 // If both sources are bottom, exit. Otherwise try to evaluate ANDri
1377 // with the non-bottom argument passed as the immediate. This is to
1378 // catch cases of ANDing with 0.
1379 if (L2.isBottom()) {
1380 if (L1.isBottom())
1381 return false;
1382 return evaluateANDrr(R2, R1, Inputs, Result);
1383 }
1384 LatticeCell LS2;
1385 if (!evaluate(R2, L2, LS2))
1386 return false;
1387 if (LS2.isBottom() || LS2.isProperty())
1388 return false;
1389
1390 APInt A;
1391 for (unsigned i = 0; i < LS2.size(); ++i) {
1392 LatticeCell RC;
1393 bool Eval = constToInt(LS2.Values[i], A) &&
1394 evaluateANDri(R1, A, Inputs, RC);
1395 if (!Eval)
1396 return false;
1397 Result.meet(RC);
1398 }
1399 return !Result.isBottom();
1400 }
1401
evaluateANDri(const RegisterSubReg & R1,const APInt & A2,const CellMap & Inputs,LatticeCell & Result)1402 bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1,
1403 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1404 assert(Inputs.has(R1.Reg));
1405 if (A2 == -1)
1406 return getCell(R1, Inputs, Result);
1407 if (A2 == 0) {
1408 LatticeCell RC;
1409 RC.add(intToConst(A2));
1410 // Overwrite Result.
1411 Result = RC;
1412 return true;
1413 }
1414 LatticeCell LS1;
1415 if (!getCell(R1, Inputs, LS1))
1416 return false;
1417 if (LS1.isBottom() || LS1.isProperty())
1418 return false;
1419
1420 APInt A, ResA;
1421 for (unsigned i = 0; i < LS1.size(); ++i) {
1422 bool Eval = constToInt(LS1.Values[i], A) &&
1423 evaluateANDii(A, A2, ResA);
1424 if (!Eval)
1425 return false;
1426 const Constant *C = intToConst(ResA);
1427 Result.add(C);
1428 }
1429 return !Result.isBottom();
1430 }
1431
evaluateANDii(const APInt & A1,const APInt & A2,APInt & Result)1432 bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
1433 const APInt &A2, APInt &Result) {
1434 Result = A1 & A2;
1435 return true;
1436 }
1437
evaluateORrr(const RegisterSubReg & R1,const RegisterSubReg & R2,const CellMap & Inputs,LatticeCell & Result)1438 bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1,
1439 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1440 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1441 const LatticeCell &L1 = Inputs.get(R2.Reg);
1442 const LatticeCell &L2 = Inputs.get(R2.Reg);
1443 // If both sources are bottom, exit. Otherwise try to evaluate ORri
1444 // with the non-bottom argument passed as the immediate. This is to
1445 // catch cases of ORing with -1.
1446 if (L2.isBottom()) {
1447 if (L1.isBottom())
1448 return false;
1449 return evaluateORrr(R2, R1, Inputs, Result);
1450 }
1451 LatticeCell LS2;
1452 if (!evaluate(R2, L2, LS2))
1453 return false;
1454 if (LS2.isBottom() || LS2.isProperty())
1455 return false;
1456
1457 APInt A;
1458 for (unsigned i = 0; i < LS2.size(); ++i) {
1459 LatticeCell RC;
1460 bool Eval = constToInt(LS2.Values[i], A) &&
1461 evaluateORri(R1, A, Inputs, RC);
1462 if (!Eval)
1463 return false;
1464 Result.meet(RC);
1465 }
1466 return !Result.isBottom();
1467 }
1468
evaluateORri(const RegisterSubReg & R1,const APInt & A2,const CellMap & Inputs,LatticeCell & Result)1469 bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1,
1470 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1471 assert(Inputs.has(R1.Reg));
1472 if (A2 == 0)
1473 return getCell(R1, Inputs, Result);
1474 if (A2 == -1) {
1475 LatticeCell RC;
1476 RC.add(intToConst(A2));
1477 // Overwrite Result.
1478 Result = RC;
1479 return true;
1480 }
1481 LatticeCell LS1;
1482 if (!getCell(R1, Inputs, LS1))
1483 return false;
1484 if (LS1.isBottom() || LS1.isProperty())
1485 return false;
1486
1487 APInt A, ResA;
1488 for (unsigned i = 0; i < LS1.size(); ++i) {
1489 bool Eval = constToInt(LS1.Values[i], A) &&
1490 evaluateORii(A, A2, ResA);
1491 if (!Eval)
1492 return false;
1493 const Constant *C = intToConst(ResA);
1494 Result.add(C);
1495 }
1496 return !Result.isBottom();
1497 }
1498
evaluateORii(const APInt & A1,const APInt & A2,APInt & Result)1499 bool MachineConstEvaluator::evaluateORii(const APInt &A1,
1500 const APInt &A2, APInt &Result) {
1501 Result = A1 | A2;
1502 return true;
1503 }
1504
evaluateXORrr(const RegisterSubReg & R1,const RegisterSubReg & R2,const CellMap & Inputs,LatticeCell & Result)1505 bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1,
1506 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1507 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1508 LatticeCell LS1, LS2;
1509 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1510 return false;
1511 if (LS1.isProperty()) {
1512 if (LS1.properties() & ConstantProperties::Zero)
1513 return !(Result = LS2).isBottom();
1514 return false;
1515 }
1516 if (LS2.isProperty()) {
1517 if (LS2.properties() & ConstantProperties::Zero)
1518 return !(Result = LS1).isBottom();
1519 return false;
1520 }
1521
1522 APInt A;
1523 for (unsigned i = 0; i < LS2.size(); ++i) {
1524 LatticeCell RC;
1525 bool Eval = constToInt(LS2.Values[i], A) &&
1526 evaluateXORri(R1, A, Inputs, RC);
1527 if (!Eval)
1528 return false;
1529 Result.meet(RC);
1530 }
1531 return !Result.isBottom();
1532 }
1533
evaluateXORri(const RegisterSubReg & R1,const APInt & A2,const CellMap & Inputs,LatticeCell & Result)1534 bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1,
1535 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1536 assert(Inputs.has(R1.Reg));
1537 LatticeCell LS1;
1538 if (!getCell(R1, Inputs, LS1))
1539 return false;
1540 if (LS1.isProperty()) {
1541 if (LS1.properties() & ConstantProperties::Zero) {
1542 const Constant *C = intToConst(A2);
1543 Result.add(C);
1544 return !Result.isBottom();
1545 }
1546 return false;
1547 }
1548
1549 APInt A, XA;
1550 for (unsigned i = 0; i < LS1.size(); ++i) {
1551 bool Eval = constToInt(LS1.Values[i], A) &&
1552 evaluateXORii(A, A2, XA);
1553 if (!Eval)
1554 return false;
1555 const Constant *C = intToConst(XA);
1556 Result.add(C);
1557 }
1558 return !Result.isBottom();
1559 }
1560
evaluateXORii(const APInt & A1,const APInt & A2,APInt & Result)1561 bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
1562 const APInt &A2, APInt &Result) {
1563 Result = A1 ^ A2;
1564 return true;
1565 }
1566
evaluateZEXTr(const RegisterSubReg & R1,unsigned Width,unsigned Bits,const CellMap & Inputs,LatticeCell & Result)1567 bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width,
1568 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1569 assert(Inputs.has(R1.Reg));
1570 LatticeCell LS1;
1571 if (!getCell(R1, Inputs, LS1))
1572 return false;
1573 if (LS1.isProperty())
1574 return false;
1575
1576 APInt A, XA;
1577 for (unsigned i = 0; i < LS1.size(); ++i) {
1578 bool Eval = constToInt(LS1.Values[i], A) &&
1579 evaluateZEXTi(A, Width, Bits, XA);
1580 if (!Eval)
1581 return false;
1582 const Constant *C = intToConst(XA);
1583 Result.add(C);
1584 }
1585 return true;
1586 }
1587
evaluateZEXTi(const APInt & A1,unsigned Width,unsigned Bits,APInt & Result)1588 bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
1589 unsigned Bits, APInt &Result) {
1590 unsigned BW = A1.getBitWidth();
1591 (void)BW;
1592 assert(Width >= Bits && BW >= Bits);
1593 APInt Mask = APInt::getLowBitsSet(Width, Bits);
1594 Result = A1.zextOrTrunc(Width) & Mask;
1595 return true;
1596 }
1597
evaluateSEXTr(const RegisterSubReg & R1,unsigned Width,unsigned Bits,const CellMap & Inputs,LatticeCell & Result)1598 bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width,
1599 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1600 assert(Inputs.has(R1.Reg));
1601 LatticeCell LS1;
1602 if (!getCell(R1, Inputs, LS1))
1603 return false;
1604 if (LS1.isBottom() || LS1.isProperty())
1605 return false;
1606
1607 APInt A, XA;
1608 for (unsigned i = 0; i < LS1.size(); ++i) {
1609 bool Eval = constToInt(LS1.Values[i], A) &&
1610 evaluateSEXTi(A, Width, Bits, XA);
1611 if (!Eval)
1612 return false;
1613 const Constant *C = intToConst(XA);
1614 Result.add(C);
1615 }
1616 return true;
1617 }
1618
evaluateSEXTi(const APInt & A1,unsigned Width,unsigned Bits,APInt & Result)1619 bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
1620 unsigned Bits, APInt &Result) {
1621 unsigned BW = A1.getBitWidth();
1622 assert(Width >= Bits && BW >= Bits);
1623 // Special case to make things faster for smaller source widths.
1624 // Sign extension of 0 bits generates 0 as a result. This is consistent
1625 // with what the HW does.
1626 if (Bits == 0) {
1627 Result = APInt(Width, 0);
1628 return true;
1629 }
1630 // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
1631 if (BW <= 64 && Bits != 0) {
1632 int64_t V = A1.getSExtValue();
1633 switch (Bits) {
1634 case 8:
1635 V = static_cast<int8_t>(V);
1636 break;
1637 case 16:
1638 V = static_cast<int16_t>(V);
1639 break;
1640 case 32:
1641 V = static_cast<int32_t>(V);
1642 break;
1643 default:
1644 // Shift left to lose all bits except lower "Bits" bits, then shift
1645 // the value back, replicating what was a sign bit after the first
1646 // shift.
1647 V = (V << (64-Bits)) >> (64-Bits);
1648 break;
1649 }
1650 // V is a 64-bit sign-extended value. Convert it to APInt of desired
1651 // width.
1652 Result = APInt(Width, V, true);
1653 return true;
1654 }
1655 // Slow case: the value doesn't fit in int64_t.
1656 if (Bits < BW)
1657 Result = A1.trunc(Bits).sext(Width);
1658 else // Bits == BW
1659 Result = A1.sext(Width);
1660 return true;
1661 }
1662
evaluateCLBr(const RegisterSubReg & R1,bool Zeros,bool Ones,const CellMap & Inputs,LatticeCell & Result)1663 bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros,
1664 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1665 assert(Inputs.has(R1.Reg));
1666 LatticeCell LS1;
1667 if (!getCell(R1, Inputs, LS1))
1668 return false;
1669 if (LS1.isBottom() || LS1.isProperty())
1670 return false;
1671
1672 APInt A, CA;
1673 for (unsigned i = 0; i < LS1.size(); ++i) {
1674 bool Eval = constToInt(LS1.Values[i], A) &&
1675 evaluateCLBi(A, Zeros, Ones, CA);
1676 if (!Eval)
1677 return false;
1678 const Constant *C = intToConst(CA);
1679 Result.add(C);
1680 }
1681 return true;
1682 }
1683
evaluateCLBi(const APInt & A1,bool Zeros,bool Ones,APInt & Result)1684 bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
1685 bool Ones, APInt &Result) {
1686 unsigned BW = A1.getBitWidth();
1687 if (!Zeros && !Ones)
1688 return false;
1689 unsigned Count = 0;
1690 if (Zeros && (Count == 0))
1691 Count = A1.countLeadingZeros();
1692 if (Ones && (Count == 0))
1693 Count = A1.countLeadingOnes();
1694 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1695 return true;
1696 }
1697
evaluateCTBr(const RegisterSubReg & R1,bool Zeros,bool Ones,const CellMap & Inputs,LatticeCell & Result)1698 bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros,
1699 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1700 assert(Inputs.has(R1.Reg));
1701 LatticeCell LS1;
1702 if (!getCell(R1, Inputs, LS1))
1703 return false;
1704 if (LS1.isBottom() || LS1.isProperty())
1705 return false;
1706
1707 APInt A, CA;
1708 for (unsigned i = 0; i < LS1.size(); ++i) {
1709 bool Eval = constToInt(LS1.Values[i], A) &&
1710 evaluateCTBi(A, Zeros, Ones, CA);
1711 if (!Eval)
1712 return false;
1713 const Constant *C = intToConst(CA);
1714 Result.add(C);
1715 }
1716 return true;
1717 }
1718
evaluateCTBi(const APInt & A1,bool Zeros,bool Ones,APInt & Result)1719 bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
1720 bool Ones, APInt &Result) {
1721 unsigned BW = A1.getBitWidth();
1722 if (!Zeros && !Ones)
1723 return false;
1724 unsigned Count = 0;
1725 if (Zeros && (Count == 0))
1726 Count = A1.countTrailingZeros();
1727 if (Ones && (Count == 0))
1728 Count = A1.countTrailingOnes();
1729 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1730 return true;
1731 }
1732
evaluateEXTRACTr(const RegisterSubReg & R1,unsigned Width,unsigned Bits,unsigned Offset,bool Signed,const CellMap & Inputs,LatticeCell & Result)1733 bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1,
1734 unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
1735 const CellMap &Inputs, LatticeCell &Result) {
1736 assert(Inputs.has(R1.Reg));
1737 assert(Bits+Offset <= Width);
1738 LatticeCell LS1;
1739 if (!getCell(R1, Inputs, LS1))
1740 return false;
1741 if (LS1.isBottom())
1742 return false;
1743 if (LS1.isProperty()) {
1744 uint32_t Ps = LS1.properties();
1745 if (Ps & ConstantProperties::Zero) {
1746 const Constant *C = intToConst(APInt(Width, 0, false));
1747 Result.add(C);
1748 return true;
1749 }
1750 return false;
1751 }
1752
1753 APInt A, CA;
1754 for (unsigned i = 0; i < LS1.size(); ++i) {
1755 bool Eval = constToInt(LS1.Values[i], A) &&
1756 evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
1757 if (!Eval)
1758 return false;
1759 const Constant *C = intToConst(CA);
1760 Result.add(C);
1761 }
1762 return true;
1763 }
1764
evaluateEXTRACTi(const APInt & A1,unsigned Bits,unsigned Offset,bool Signed,APInt & Result)1765 bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
1766 unsigned Offset, bool Signed, APInt &Result) {
1767 unsigned BW = A1.getBitWidth();
1768 assert(Bits+Offset <= BW);
1769 // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
1770 if (Bits == 0) {
1771 Result = APInt(BW, 0);
1772 return true;
1773 }
1774 if (BW <= 64) {
1775 int64_t V = A1.getZExtValue();
1776 V <<= (64-Bits-Offset);
1777 if (Signed)
1778 V >>= (64-Bits);
1779 else
1780 V = static_cast<uint64_t>(V) >> (64-Bits);
1781 Result = APInt(BW, V, Signed);
1782 return true;
1783 }
1784 if (Signed)
1785 Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
1786 else
1787 Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
1788 return true;
1789 }
1790
evaluateSplatr(const RegisterSubReg & R1,unsigned Bits,unsigned Count,const CellMap & Inputs,LatticeCell & Result)1791 bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1,
1792 unsigned Bits, unsigned Count, const CellMap &Inputs,
1793 LatticeCell &Result) {
1794 assert(Inputs.has(R1.Reg));
1795 LatticeCell LS1;
1796 if (!getCell(R1, Inputs, LS1))
1797 return false;
1798 if (LS1.isBottom() || LS1.isProperty())
1799 return false;
1800
1801 APInt A, SA;
1802 for (unsigned i = 0; i < LS1.size(); ++i) {
1803 bool Eval = constToInt(LS1.Values[i], A) &&
1804 evaluateSplati(A, Bits, Count, SA);
1805 if (!Eval)
1806 return false;
1807 const Constant *C = intToConst(SA);
1808 Result.add(C);
1809 }
1810 return true;
1811 }
1812
evaluateSplati(const APInt & A1,unsigned Bits,unsigned Count,APInt & Result)1813 bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
1814 unsigned Count, APInt &Result) {
1815 assert(Count > 0);
1816 unsigned BW = A1.getBitWidth(), SW = Count*Bits;
1817 APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
1818 if (Count > 1)
1819 LoBits = LoBits.zext(SW);
1820
1821 APInt Res(SW, 0, false);
1822 for (unsigned i = 0; i < Count; ++i) {
1823 Res <<= Bits;
1824 Res |= LoBits;
1825 }
1826 Result = Res;
1827 return true;
1828 }
1829
1830 // ----------------------------------------------------------------------
1831 // Hexagon-specific code.
1832
1833 namespace llvm {
1834
1835 FunctionPass *createHexagonConstPropagationPass();
1836 void initializeHexagonConstPropagationPass(PassRegistry &Registry);
1837
1838 } // end namespace llvm
1839
1840 namespace {
1841
1842 class HexagonConstEvaluator : public MachineConstEvaluator {
1843 public:
1844 HexagonConstEvaluator(MachineFunction &Fn);
1845
1846 bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
1847 CellMap &Outputs) override;
1848 bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
1849 LatticeCell &Result) override;
1850 bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
1851 SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
1852 override;
1853 bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;
1854
1855 private:
1856 unsigned getRegBitWidth(unsigned Reg) const;
1857
1858 static uint32_t getCmp(unsigned Opc);
1859 static APInt getCmpImm(unsigned Opc, unsigned OpX,
1860 const MachineOperand &MO);
1861 void replaceWithNop(MachineInstr &MI);
1862
1863 bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs,
1864 LatticeCell &Result);
1865 bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
1866 CellMap &Outputs);
1867 // This is suitable to be called for compare-and-jump instructions.
1868 bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
1869 const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
1870 bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
1871 CellMap &Outputs);
1872 bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
1873 CellMap &Outputs);
1874 bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
1875 CellMap &Outputs);
1876 bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
1877 CellMap &Outputs);
1878 bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
1879 CellMap &Outputs);
1880
1881 void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg);
1882 bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
1883 bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
1884 bool &AllDefs);
1885 bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);
1886
1887 MachineRegisterInfo *MRI;
1888 const HexagonInstrInfo &HII;
1889 const HexagonRegisterInfo &HRI;
1890 };
1891
1892 class HexagonConstPropagation : public MachineFunctionPass {
1893 public:
1894 static char ID;
1895
HexagonConstPropagation()1896 HexagonConstPropagation() : MachineFunctionPass(ID) {}
1897
getPassName() const1898 StringRef getPassName() const override {
1899 return "Hexagon Constant Propagation";
1900 }
1901
runOnMachineFunction(MachineFunction & MF)1902 bool runOnMachineFunction(MachineFunction &MF) override {
1903 const Function &F = MF.getFunction();
1904 if (skipFunction(F))
1905 return false;
1906
1907 HexagonConstEvaluator HCE(MF);
1908 return MachineConstPropagator(HCE).run(MF);
1909 }
1910 };
1911
1912 } // end anonymous namespace
1913
1914 char HexagonConstPropagation::ID = 0;
1915
1916 INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp",
1917 "Hexagon Constant Propagation", false, false)
1918
HexagonConstEvaluator(MachineFunction & Fn)1919 HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
1920 : MachineConstEvaluator(Fn),
1921 HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
1922 HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
1923 MRI = &Fn.getRegInfo();
1924 }
1925
evaluate(const MachineInstr & MI,const CellMap & Inputs,CellMap & Outputs)1926 bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
1927 const CellMap &Inputs, CellMap &Outputs) {
1928 if (MI.isCall())
1929 return false;
1930 if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
1931 return false;
1932 const MachineOperand &MD = MI.getOperand(0);
1933 if (!MD.isDef())
1934 return false;
1935
1936 unsigned Opc = MI.getOpcode();
1937 RegisterSubReg DefR(MD);
1938 assert(!DefR.SubReg);
1939 if (!Register::isVirtualRegister(DefR.Reg))
1940 return false;
1941
1942 if (MI.isCopy()) {
1943 LatticeCell RC;
1944 RegisterSubReg SrcR(MI.getOperand(1));
1945 bool Eval = evaluateCOPY(SrcR, Inputs, RC);
1946 if (!Eval)
1947 return false;
1948 Outputs.update(DefR.Reg, RC);
1949 return true;
1950 }
1951 if (MI.isRegSequence()) {
1952 unsigned Sub1 = MI.getOperand(2).getImm();
1953 unsigned Sub2 = MI.getOperand(4).getImm();
1954 const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
1955 unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
1956 unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
1957 if (Sub1 != SubLo && Sub1 != SubHi)
1958 return false;
1959 if (Sub2 != SubLo && Sub2 != SubHi)
1960 return false;
1961 assert(Sub1 != Sub2);
1962 bool LoIs1 = (Sub1 == SubLo);
1963 const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
1964 const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
1965 LatticeCell RC;
1966 RegisterSubReg SrcRL(OpLo), SrcRH(OpHi);
1967 bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
1968 if (!Eval)
1969 return false;
1970 Outputs.update(DefR.Reg, RC);
1971 return true;
1972 }
1973 if (MI.isCompare()) {
1974 bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
1975 return Eval;
1976 }
1977
1978 switch (Opc) {
1979 default:
1980 return false;
1981 case Hexagon::A2_tfrsi:
1982 case Hexagon::A2_tfrpi:
1983 case Hexagon::CONST32:
1984 case Hexagon::CONST64:
1985 {
1986 const MachineOperand &VO = MI.getOperand(1);
1987 // The operand of CONST32 can be a blockaddress, e.g.
1988 // %0 = CONST32 <blockaddress(@eat, %l)>
1989 // Do this check for all instructions for safety.
1990 if (!VO.isImm())
1991 return false;
1992 int64_t V = MI.getOperand(1).getImm();
1993 unsigned W = getRegBitWidth(DefR.Reg);
1994 if (W != 32 && W != 64)
1995 return false;
1996 IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
1997 : Type::getInt64Ty(CX);
1998 const ConstantInt *CI = ConstantInt::get(Ty, V, true);
1999 LatticeCell RC = Outputs.get(DefR.Reg);
2000 RC.add(CI);
2001 Outputs.update(DefR.Reg, RC);
2002 break;
2003 }
2004
2005 case Hexagon::PS_true:
2006 case Hexagon::PS_false:
2007 {
2008 LatticeCell RC = Outputs.get(DefR.Reg);
2009 bool NonZero = (Opc == Hexagon::PS_true);
2010 uint32_t P = NonZero ? ConstantProperties::NonZero
2011 : ConstantProperties::Zero;
2012 RC.add(P);
2013 Outputs.update(DefR.Reg, RC);
2014 break;
2015 }
2016
2017 case Hexagon::A2_and:
2018 case Hexagon::A2_andir:
2019 case Hexagon::A2_andp:
2020 case Hexagon::A2_or:
2021 case Hexagon::A2_orir:
2022 case Hexagon::A2_orp:
2023 case Hexagon::A2_xor:
2024 case Hexagon::A2_xorp:
2025 {
2026 bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
2027 if (!Eval)
2028 return false;
2029 break;
2030 }
2031
2032 case Hexagon::A2_combineii: // combine(#s8Ext, #s8)
2033 case Hexagon::A4_combineii: // combine(#s8, #u6Ext)
2034 {
2035 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm())
2036 return false;
2037 uint64_t Hi = MI.getOperand(1).getImm();
2038 uint64_t Lo = MI.getOperand(2).getImm();
2039 uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
2040 IntegerType *Ty = Type::getInt64Ty(CX);
2041 const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
2042 LatticeCell RC = Outputs.get(DefR.Reg);
2043 RC.add(CI);
2044 Outputs.update(DefR.Reg, RC);
2045 break;
2046 }
2047
2048 case Hexagon::S2_setbit_i:
2049 {
2050 int64_t B = MI.getOperand(2).getImm();
2051 assert(B >=0 && B < 32);
2052 APInt A(32, (1ull << B), false);
2053 RegisterSubReg R(MI.getOperand(1));
2054 LatticeCell RC = Outputs.get(DefR.Reg);
2055 bool Eval = evaluateORri(R, A, Inputs, RC);
2056 if (!Eval)
2057 return false;
2058 Outputs.update(DefR.Reg, RC);
2059 break;
2060 }
2061
2062 case Hexagon::C2_mux:
2063 case Hexagon::C2_muxir:
2064 case Hexagon::C2_muxri:
2065 case Hexagon::C2_muxii:
2066 {
2067 bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
2068 if (!Eval)
2069 return false;
2070 break;
2071 }
2072
2073 case Hexagon::A2_sxtb:
2074 case Hexagon::A2_sxth:
2075 case Hexagon::A2_sxtw:
2076 case Hexagon::A2_zxtb:
2077 case Hexagon::A2_zxth:
2078 {
2079 bool Eval = evaluateHexExt(MI, Inputs, Outputs);
2080 if (!Eval)
2081 return false;
2082 break;
2083 }
2084
2085 case Hexagon::S2_ct0:
2086 case Hexagon::S2_ct0p:
2087 case Hexagon::S2_ct1:
2088 case Hexagon::S2_ct1p:
2089 {
2090 using namespace Hexagon;
2091
2092 bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
2093 RegisterSubReg R1(MI.getOperand(1));
2094 assert(Inputs.has(R1.Reg));
2095 LatticeCell T;
2096 bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
2097 if (!Eval)
2098 return false;
2099 // All of these instructions return a 32-bit value. The evaluate
2100 // will generate the same type as the operand, so truncate the
2101 // result if necessary.
2102 APInt C;
2103 LatticeCell RC = Outputs.get(DefR.Reg);
2104 for (unsigned i = 0; i < T.size(); ++i) {
2105 const Constant *CI = T.Values[i];
2106 if (constToInt(CI, C) && C.getBitWidth() > 32)
2107 CI = intToConst(C.trunc(32));
2108 RC.add(CI);
2109 }
2110 Outputs.update(DefR.Reg, RC);
2111 break;
2112 }
2113
2114 case Hexagon::S2_cl0:
2115 case Hexagon::S2_cl0p:
2116 case Hexagon::S2_cl1:
2117 case Hexagon::S2_cl1p:
2118 case Hexagon::S2_clb:
2119 case Hexagon::S2_clbp:
2120 {
2121 using namespace Hexagon;
2122
2123 bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
2124 bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p);
2125 RegisterSubReg R1(MI.getOperand(1));
2126 assert(Inputs.has(R1.Reg));
2127 LatticeCell T;
2128 bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
2129 if (!Eval)
2130 return false;
2131 // All of these instructions return a 32-bit value. The evaluate
2132 // will generate the same type as the operand, so truncate the
2133 // result if necessary.
2134 APInt C;
2135 LatticeCell RC = Outputs.get(DefR.Reg);
2136 for (unsigned i = 0; i < T.size(); ++i) {
2137 const Constant *CI = T.Values[i];
2138 if (constToInt(CI, C) && C.getBitWidth() > 32)
2139 CI = intToConst(C.trunc(32));
2140 RC.add(CI);
2141 }
2142 Outputs.update(DefR.Reg, RC);
2143 break;
2144 }
2145
2146 case Hexagon::S4_extract:
2147 case Hexagon::S4_extractp:
2148 case Hexagon::S2_extractu:
2149 case Hexagon::S2_extractup:
2150 {
2151 bool Signed = (Opc == Hexagon::S4_extract) ||
2152 (Opc == Hexagon::S4_extractp);
2153 RegisterSubReg R1(MI.getOperand(1));
2154 unsigned BW = getRegBitWidth(R1.Reg);
2155 unsigned Bits = MI.getOperand(2).getImm();
2156 unsigned Offset = MI.getOperand(3).getImm();
2157 LatticeCell RC = Outputs.get(DefR.Reg);
2158 if (Offset >= BW) {
2159 APInt Zero(BW, 0, false);
2160 RC.add(intToConst(Zero));
2161 break;
2162 }
2163 if (Offset+Bits > BW) {
2164 // If the requested bitfield extends beyond the most significant bit,
2165 // the extra bits are treated as 0s. To emulate this behavior, reduce
2166 // the number of requested bits, and make the extract unsigned.
2167 Bits = BW-Offset;
2168 Signed = false;
2169 }
2170 bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
2171 if (!Eval)
2172 return false;
2173 Outputs.update(DefR.Reg, RC);
2174 break;
2175 }
2176
2177 case Hexagon::S2_vsplatrb:
2178 case Hexagon::S2_vsplatrh:
2179 // vabsh, vabsh:sat
2180 // vabsw, vabsw:sat
2181 // vconj:sat
2182 // vrndwh, vrndwh:sat
2183 // vsathb, vsathub, vsatwuh
2184 // vsxtbh, vsxthw
2185 // vtrunehb, vtrunohb
2186 // vzxtbh, vzxthw
2187 {
2188 bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
2189 if (!Eval)
2190 return false;
2191 break;
2192 }
2193
2194 // TODO:
2195 // A2_vaddh
2196 // A2_vaddhs
2197 // A2_vaddw
2198 // A2_vaddws
2199 }
2200
2201 return true;
2202 }
2203
evaluate(const RegisterSubReg & R,const LatticeCell & Input,LatticeCell & Result)2204 bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R,
2205 const LatticeCell &Input, LatticeCell &Result) {
2206 if (!R.SubReg) {
2207 Result = Input;
2208 return true;
2209 }
2210 const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
2211 if (RC != &Hexagon::DoubleRegsRegClass)
2212 return false;
2213 if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
2214 return false;
2215
2216 assert(!Input.isTop());
2217 if (Input.isBottom())
2218 return false;
2219
2220 using P = ConstantProperties;
2221
2222 if (Input.isProperty()) {
2223 uint32_t Ps = Input.properties();
2224 if (Ps & (P::Zero|P::NaN)) {
2225 uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
2226 Result.add(Ns);
2227 return true;
2228 }
2229 if (R.SubReg == Hexagon::isub_hi) {
2230 uint32_t Ns = (Ps & P::SignProperties);
2231 Result.add(Ns);
2232 return true;
2233 }
2234 return false;
2235 }
2236
2237 // The Input cell contains some known values. Pick the word corresponding
2238 // to the subregister.
2239 APInt A;
2240 for (unsigned i = 0; i < Input.size(); ++i) {
2241 const Constant *C = Input.Values[i];
2242 if (!constToInt(C, A))
2243 return false;
2244 if (!A.isIntN(64))
2245 return false;
2246 uint64_t U = A.getZExtValue();
2247 if (R.SubReg == Hexagon::isub_hi)
2248 U >>= 32;
2249 U &= 0xFFFFFFFFULL;
2250 uint32_t U32 = Lo_32(U);
2251 int32_t V32;
2252 memcpy(&V32, &U32, sizeof V32);
2253 IntegerType *Ty = Type::getInt32Ty(CX);
2254 const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
2255 Result.add(C32);
2256 }
2257 return true;
2258 }
2259
evaluate(const MachineInstr & BrI,const CellMap & Inputs,SetVector<const MachineBasicBlock * > & Targets,bool & FallsThru)2260 bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
2261 const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
2262 bool &FallsThru) {
2263 // We need to evaluate one branch at a time. TII::analyzeBranch checks
2264 // all the branches in a basic block at once, so we cannot use it.
2265 unsigned Opc = BrI.getOpcode();
2266 bool SimpleBranch = false;
2267 bool Negated = false;
2268 switch (Opc) {
2269 case Hexagon::J2_jumpf:
2270 case Hexagon::J2_jumpfnew:
2271 case Hexagon::J2_jumpfnewpt:
2272 Negated = true;
2273 LLVM_FALLTHROUGH;
2274 case Hexagon::J2_jumpt:
2275 case Hexagon::J2_jumptnew:
2276 case Hexagon::J2_jumptnewpt:
2277 // Simple branch: if([!]Pn) jump ...
2278 // i.e. Op0 = predicate, Op1 = branch target.
2279 SimpleBranch = true;
2280 break;
2281 case Hexagon::J2_jump:
2282 Targets.insert(BrI.getOperand(0).getMBB());
2283 FallsThru = false;
2284 return true;
2285 default:
2286 Undetermined:
2287 // If the branch is of unknown type, assume that all successors are
2288 // executable.
2289 FallsThru = !BrI.isUnconditionalBranch();
2290 return false;
2291 }
2292
2293 if (SimpleBranch) {
2294 const MachineOperand &MD = BrI.getOperand(0);
2295 RegisterSubReg PR(MD);
2296 // If the condition operand has a subregister, this is not something
2297 // we currently recognize.
2298 if (PR.SubReg)
2299 goto Undetermined;
2300 assert(Inputs.has(PR.Reg));
2301 const LatticeCell &PredC = Inputs.get(PR.Reg);
2302 if (PredC.isBottom())
2303 goto Undetermined;
2304
2305 uint32_t Props = PredC.properties();
2306 bool CTrue = false, CFalse = false;
2307 if (Props & ConstantProperties::Zero)
2308 CFalse = true;
2309 else if (Props & ConstantProperties::NonZero)
2310 CTrue = true;
2311 // If the condition is not known to be either, bail out.
2312 if (!CTrue && !CFalse)
2313 goto Undetermined;
2314
2315 const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();
2316
2317 FallsThru = false;
2318 if ((!Negated && CTrue) || (Negated && CFalse))
2319 Targets.insert(BranchTarget);
2320 else if ((!Negated && CFalse) || (Negated && CTrue))
2321 FallsThru = true;
2322 else
2323 goto Undetermined;
2324 }
2325
2326 return true;
2327 }
2328
rewrite(MachineInstr & MI,const CellMap & Inputs)2329 bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
2330 if (MI.isBranch())
2331 return rewriteHexBranch(MI, Inputs);
2332
2333 unsigned Opc = MI.getOpcode();
2334 switch (Opc) {
2335 default:
2336 break;
2337 case Hexagon::A2_tfrsi:
2338 case Hexagon::A2_tfrpi:
2339 case Hexagon::CONST32:
2340 case Hexagon::CONST64:
2341 case Hexagon::PS_true:
2342 case Hexagon::PS_false:
2343 return false;
2344 }
2345
2346 unsigned NumOp = MI.getNumOperands();
2347 if (NumOp == 0)
2348 return false;
2349
2350 bool AllDefs, Changed;
2351 Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
2352 // If not all defs have been rewritten (i.e. the instruction defines
2353 // a register that is not compile-time constant), then try to rewrite
2354 // register operands that are known to be constant with immediates.
2355 if (!AllDefs)
2356 Changed |= rewriteHexConstUses(MI, Inputs);
2357
2358 return Changed;
2359 }
2360
getRegBitWidth(unsigned Reg) const2361 unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
2362 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2363 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
2364 return 32;
2365 if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
2366 return 64;
2367 if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
2368 return 8;
2369 llvm_unreachable("Invalid register");
2370 return 0;
2371 }
2372
getCmp(unsigned Opc)2373 uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
2374 switch (Opc) {
2375 case Hexagon::C2_cmpeq:
2376 case Hexagon::C2_cmpeqp:
2377 case Hexagon::A4_cmpbeq:
2378 case Hexagon::A4_cmpheq:
2379 case Hexagon::A4_cmpbeqi:
2380 case Hexagon::A4_cmpheqi:
2381 case Hexagon::C2_cmpeqi:
2382 case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
2383 case Hexagon::J4_cmpeqn1_t_jumpnv_t:
2384 case Hexagon::J4_cmpeqi_t_jumpnv_nt:
2385 case Hexagon::J4_cmpeqi_t_jumpnv_t:
2386 case Hexagon::J4_cmpeq_t_jumpnv_nt:
2387 case Hexagon::J4_cmpeq_t_jumpnv_t:
2388 return Comparison::EQ;
2389
2390 case Hexagon::C4_cmpneq:
2391 case Hexagon::C4_cmpneqi:
2392 case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
2393 case Hexagon::J4_cmpeqn1_f_jumpnv_t:
2394 case Hexagon::J4_cmpeqi_f_jumpnv_nt:
2395 case Hexagon::J4_cmpeqi_f_jumpnv_t:
2396 case Hexagon::J4_cmpeq_f_jumpnv_nt:
2397 case Hexagon::J4_cmpeq_f_jumpnv_t:
2398 return Comparison::NE;
2399
2400 case Hexagon::C2_cmpgt:
2401 case Hexagon::C2_cmpgtp:
2402 case Hexagon::A4_cmpbgt:
2403 case Hexagon::A4_cmphgt:
2404 case Hexagon::A4_cmpbgti:
2405 case Hexagon::A4_cmphgti:
2406 case Hexagon::C2_cmpgti:
2407 case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
2408 case Hexagon::J4_cmpgtn1_t_jumpnv_t:
2409 case Hexagon::J4_cmpgti_t_jumpnv_nt:
2410 case Hexagon::J4_cmpgti_t_jumpnv_t:
2411 case Hexagon::J4_cmpgt_t_jumpnv_nt:
2412 case Hexagon::J4_cmpgt_t_jumpnv_t:
2413 return Comparison::GTs;
2414
2415 case Hexagon::C4_cmplte:
2416 case Hexagon::C4_cmpltei:
2417 case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
2418 case Hexagon::J4_cmpgtn1_f_jumpnv_t:
2419 case Hexagon::J4_cmpgti_f_jumpnv_nt:
2420 case Hexagon::J4_cmpgti_f_jumpnv_t:
2421 case Hexagon::J4_cmpgt_f_jumpnv_nt:
2422 case Hexagon::J4_cmpgt_f_jumpnv_t:
2423 return Comparison::LEs;
2424
2425 case Hexagon::C2_cmpgtu:
2426 case Hexagon::C2_cmpgtup:
2427 case Hexagon::A4_cmpbgtu:
2428 case Hexagon::A4_cmpbgtui:
2429 case Hexagon::A4_cmphgtu:
2430 case Hexagon::A4_cmphgtui:
2431 case Hexagon::C2_cmpgtui:
2432 case Hexagon::J4_cmpgtui_t_jumpnv_nt:
2433 case Hexagon::J4_cmpgtui_t_jumpnv_t:
2434 case Hexagon::J4_cmpgtu_t_jumpnv_nt:
2435 case Hexagon::J4_cmpgtu_t_jumpnv_t:
2436 return Comparison::GTu;
2437
2438 case Hexagon::J4_cmpltu_f_jumpnv_nt:
2439 case Hexagon::J4_cmpltu_f_jumpnv_t:
2440 return Comparison::GEu;
2441
2442 case Hexagon::J4_cmpltu_t_jumpnv_nt:
2443 case Hexagon::J4_cmpltu_t_jumpnv_t:
2444 return Comparison::LTu;
2445
2446 case Hexagon::J4_cmplt_f_jumpnv_nt:
2447 case Hexagon::J4_cmplt_f_jumpnv_t:
2448 return Comparison::GEs;
2449
2450 case Hexagon::C4_cmplteu:
2451 case Hexagon::C4_cmplteui:
2452 case Hexagon::J4_cmpgtui_f_jumpnv_nt:
2453 case Hexagon::J4_cmpgtui_f_jumpnv_t:
2454 case Hexagon::J4_cmpgtu_f_jumpnv_nt:
2455 case Hexagon::J4_cmpgtu_f_jumpnv_t:
2456 return Comparison::LEu;
2457
2458 case Hexagon::J4_cmplt_t_jumpnv_nt:
2459 case Hexagon::J4_cmplt_t_jumpnv_t:
2460 return Comparison::LTs;
2461
2462 default:
2463 break;
2464 }
2465 return Comparison::Unk;
2466 }
2467
getCmpImm(unsigned Opc,unsigned OpX,const MachineOperand & MO)2468 APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
2469 const MachineOperand &MO) {
2470 bool Signed = false;
2471 switch (Opc) {
2472 case Hexagon::A4_cmpbgtui: // u7
2473 case Hexagon::A4_cmphgtui: // u7
2474 break;
2475 case Hexagon::A4_cmpheqi: // s8
2476 case Hexagon::C4_cmpneqi: // s8
2477 Signed = true;
2478 break;
2479 case Hexagon::A4_cmpbeqi: // u8
2480 break;
2481 case Hexagon::C2_cmpgtui: // u9
2482 case Hexagon::C4_cmplteui: // u9
2483 break;
2484 case Hexagon::C2_cmpeqi: // s10
2485 case Hexagon::C2_cmpgti: // s10
2486 case Hexagon::C4_cmpltei: // s10
2487 Signed = true;
2488 break;
2489 case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5
2490 case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5
2491 case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5
2492 case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5
2493 case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5
2494 case Hexagon::J4_cmpgti_f_jumpnv_t: // u5
2495 case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5
2496 case Hexagon::J4_cmpgti_t_jumpnv_t: // u5
2497 case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5
2498 case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5
2499 case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5
2500 case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5
2501 break;
2502 default:
2503 llvm_unreachable("Unhandled instruction");
2504 break;
2505 }
2506
2507 uint64_t Val = MO.getImm();
2508 return APInt(32, Val, Signed);
2509 }
2510
replaceWithNop(MachineInstr & MI)2511 void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
2512 MI.setDesc(HII.get(Hexagon::A2_nop));
2513 while (MI.getNumOperands() > 0)
2514 MI.RemoveOperand(0);
2515 }
2516
evaluateHexRSEQ32(RegisterSubReg RL,RegisterSubReg RH,const CellMap & Inputs,LatticeCell & Result)2517 bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH,
2518 const CellMap &Inputs, LatticeCell &Result) {
2519 assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
2520 LatticeCell LSL, LSH;
2521 if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
2522 return false;
2523 if (LSL.isProperty() || LSH.isProperty())
2524 return false;
2525
2526 unsigned LN = LSL.size(), HN = LSH.size();
2527 SmallVector<APInt,4> LoVs(LN), HiVs(HN);
2528 for (unsigned i = 0; i < LN; ++i) {
2529 bool Eval = constToInt(LSL.Values[i], LoVs[i]);
2530 if (!Eval)
2531 return false;
2532 assert(LoVs[i].getBitWidth() == 32);
2533 }
2534 for (unsigned i = 0; i < HN; ++i) {
2535 bool Eval = constToInt(LSH.Values[i], HiVs[i]);
2536 if (!Eval)
2537 return false;
2538 assert(HiVs[i].getBitWidth() == 32);
2539 }
2540
2541 for (unsigned i = 0; i < HiVs.size(); ++i) {
2542 APInt HV = HiVs[i].zextOrSelf(64) << 32;
2543 for (unsigned j = 0; j < LoVs.size(); ++j) {
2544 APInt LV = LoVs[j].zextOrSelf(64);
2545 const Constant *C = intToConst(HV | LV);
2546 Result.add(C);
2547 if (Result.isBottom())
2548 return false;
2549 }
2550 }
2551 return !Result.isBottom();
2552 }
2553
evaluateHexCompare(const MachineInstr & MI,const CellMap & Inputs,CellMap & Outputs)2554 bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
2555 const CellMap &Inputs, CellMap &Outputs) {
2556 unsigned Opc = MI.getOpcode();
2557 bool Classic = false;
2558 switch (Opc) {
2559 case Hexagon::C2_cmpeq:
2560 case Hexagon::C2_cmpeqp:
2561 case Hexagon::C2_cmpgt:
2562 case Hexagon::C2_cmpgtp:
2563 case Hexagon::C2_cmpgtu:
2564 case Hexagon::C2_cmpgtup:
2565 case Hexagon::C2_cmpeqi:
2566 case Hexagon::C2_cmpgti:
2567 case Hexagon::C2_cmpgtui:
2568 // Classic compare: Dst0 = CMP Src1, Src2
2569 Classic = true;
2570 break;
2571 default:
2572 // Not handling other compare instructions now.
2573 return false;
2574 }
2575
2576 if (Classic) {
2577 const MachineOperand &Src1 = MI.getOperand(1);
2578 const MachineOperand &Src2 = MI.getOperand(2);
2579
2580 bool Result;
2581 unsigned Opc = MI.getOpcode();
2582 bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
2583 if (Computed) {
2584 // Only create a zero/non-zero cell. At this time there isn't really
2585 // much need for specific values.
2586 RegisterSubReg DefR(MI.getOperand(0));
2587 LatticeCell L = Outputs.get(DefR.Reg);
2588 uint32_t P = Result ? ConstantProperties::NonZero
2589 : ConstantProperties::Zero;
2590 L.add(P);
2591 Outputs.update(DefR.Reg, L);
2592 return true;
2593 }
2594 }
2595
2596 return false;
2597 }
2598
evaluateHexCompare2(unsigned Opc,const MachineOperand & Src1,const MachineOperand & Src2,const CellMap & Inputs,bool & Result)2599 bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
2600 const MachineOperand &Src1, const MachineOperand &Src2,
2601 const CellMap &Inputs, bool &Result) {
2602 uint32_t Cmp = getCmp(Opc);
2603 bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
2604 bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
2605 if (Reg1) {
2606 RegisterSubReg R1(Src1);
2607 if (Reg2) {
2608 RegisterSubReg R2(Src2);
2609 return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
2610 } else if (Imm2) {
2611 APInt A2 = getCmpImm(Opc, 2, Src2);
2612 return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
2613 }
2614 } else if (Imm1) {
2615 APInt A1 = getCmpImm(Opc, 1, Src1);
2616 if (Reg2) {
2617 RegisterSubReg R2(Src2);
2618 uint32_t NegCmp = Comparison::negate(Cmp);
2619 return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
2620 } else if (Imm2) {
2621 APInt A2 = getCmpImm(Opc, 2, Src2);
2622 return evaluateCMPii(Cmp, A1, A2, Result);
2623 }
2624 }
2625 // Unknown kind of comparison.
2626 return false;
2627 }
2628
evaluateHexLogical(const MachineInstr & MI,const CellMap & Inputs,CellMap & Outputs)2629 bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
2630 const CellMap &Inputs, CellMap &Outputs) {
2631 unsigned Opc = MI.getOpcode();
2632 if (MI.getNumOperands() != 3)
2633 return false;
2634 const MachineOperand &Src1 = MI.getOperand(1);
2635 const MachineOperand &Src2 = MI.getOperand(2);
2636 RegisterSubReg R1(Src1);
2637 bool Eval = false;
2638 LatticeCell RC;
2639 switch (Opc) {
2640 default:
2641 return false;
2642 case Hexagon::A2_and:
2643 case Hexagon::A2_andp:
2644 Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC);
2645 break;
2646 case Hexagon::A2_andir: {
2647 if (!Src2.isImm())
2648 return false;
2649 APInt A(32, Src2.getImm(), true);
2650 Eval = evaluateANDri(R1, A, Inputs, RC);
2651 break;
2652 }
2653 case Hexagon::A2_or:
2654 case Hexagon::A2_orp:
2655 Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2656 break;
2657 case Hexagon::A2_orir: {
2658 if (!Src2.isImm())
2659 return false;
2660 APInt A(32, Src2.getImm(), true);
2661 Eval = evaluateORri(R1, A, Inputs, RC);
2662 break;
2663 }
2664 case Hexagon::A2_xor:
2665 case Hexagon::A2_xorp:
2666 Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2667 break;
2668 }
2669 if (Eval) {
2670 RegisterSubReg DefR(MI.getOperand(0));
2671 Outputs.update(DefR.Reg, RC);
2672 }
2673 return Eval;
2674 }
2675
evaluateHexCondMove(const MachineInstr & MI,const CellMap & Inputs,CellMap & Outputs)2676 bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
2677 const CellMap &Inputs, CellMap &Outputs) {
2678 // Dst0 = Cond1 ? Src2 : Src3
2679 RegisterSubReg CR(MI.getOperand(1));
2680 assert(Inputs.has(CR.Reg));
2681 LatticeCell LS;
2682 if (!getCell(CR, Inputs, LS))
2683 return false;
2684 uint32_t Ps = LS.properties();
2685 unsigned TakeOp;
2686 if (Ps & ConstantProperties::Zero)
2687 TakeOp = 3;
2688 else if (Ps & ConstantProperties::NonZero)
2689 TakeOp = 2;
2690 else
2691 return false;
2692
2693 const MachineOperand &ValOp = MI.getOperand(TakeOp);
2694 RegisterSubReg DefR(MI.getOperand(0));
2695 LatticeCell RC = Outputs.get(DefR.Reg);
2696
2697 if (ValOp.isImm()) {
2698 int64_t V = ValOp.getImm();
2699 unsigned W = getRegBitWidth(DefR.Reg);
2700 APInt A(W, V, true);
2701 const Constant *C = intToConst(A);
2702 RC.add(C);
2703 Outputs.update(DefR.Reg, RC);
2704 return true;
2705 }
2706 if (ValOp.isReg()) {
2707 RegisterSubReg R(ValOp);
2708 const LatticeCell &LR = Inputs.get(R.Reg);
2709 LatticeCell LSR;
2710 if (!evaluate(R, LR, LSR))
2711 return false;
2712 RC.meet(LSR);
2713 Outputs.update(DefR.Reg, RC);
2714 return true;
2715 }
2716 return false;
2717 }
2718
evaluateHexExt(const MachineInstr & MI,const CellMap & Inputs,CellMap & Outputs)2719 bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
2720 const CellMap &Inputs, CellMap &Outputs) {
2721 // Dst0 = ext R1
2722 RegisterSubReg R1(MI.getOperand(1));
2723 assert(Inputs.has(R1.Reg));
2724
2725 unsigned Opc = MI.getOpcode();
2726 unsigned Bits;
2727 switch (Opc) {
2728 case Hexagon::A2_sxtb:
2729 case Hexagon::A2_zxtb:
2730 Bits = 8;
2731 break;
2732 case Hexagon::A2_sxth:
2733 case Hexagon::A2_zxth:
2734 Bits = 16;
2735 break;
2736 case Hexagon::A2_sxtw:
2737 Bits = 32;
2738 break;
2739 default:
2740 llvm_unreachable("Unhandled extension opcode");
2741 }
2742
2743 bool Signed = false;
2744 switch (Opc) {
2745 case Hexagon::A2_sxtb:
2746 case Hexagon::A2_sxth:
2747 case Hexagon::A2_sxtw:
2748 Signed = true;
2749 break;
2750 }
2751
2752 RegisterSubReg DefR(MI.getOperand(0));
2753 unsigned BW = getRegBitWidth(DefR.Reg);
2754 LatticeCell RC = Outputs.get(DefR.Reg);
2755 bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
2756 : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
2757 if (!Eval)
2758 return false;
2759 Outputs.update(DefR.Reg, RC);
2760 return true;
2761 }
2762
evaluateHexVector1(const MachineInstr & MI,const CellMap & Inputs,CellMap & Outputs)2763 bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
2764 const CellMap &Inputs, CellMap &Outputs) {
2765 // DefR = op R1
2766 RegisterSubReg DefR(MI.getOperand(0));
2767 RegisterSubReg R1(MI.getOperand(1));
2768 assert(Inputs.has(R1.Reg));
2769 LatticeCell RC = Outputs.get(DefR.Reg);
2770 bool Eval;
2771
2772 unsigned Opc = MI.getOpcode();
2773 switch (Opc) {
2774 case Hexagon::S2_vsplatrb:
2775 // Rd = 4 times Rs:0..7
2776 Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
2777 break;
2778 case Hexagon::S2_vsplatrh:
2779 // Rdd = 4 times Rs:0..15
2780 Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
2781 break;
2782 default:
2783 return false;
2784 }
2785
2786 if (!Eval)
2787 return false;
2788 Outputs.update(DefR.Reg, RC);
2789 return true;
2790 }
2791
rewriteHexConstDefs(MachineInstr & MI,const CellMap & Inputs,bool & AllDefs)2792 bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
2793 const CellMap &Inputs, bool &AllDefs) {
2794 AllDefs = false;
2795
2796 // Some diagnostics.
2797 // LLVM_DEBUG({...}) gets confused with all this code as an argument.
2798 #ifndef NDEBUG
2799 bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
2800 if (Debugging) {
2801 bool Const = true, HasUse = false;
2802 for (const MachineOperand &MO : MI.operands()) {
2803 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2804 continue;
2805 RegisterSubReg R(MO);
2806 if (!Register::isVirtualRegister(R.Reg))
2807 continue;
2808 HasUse = true;
2809 // PHIs can legitimately have "top" cells after propagation.
2810 if (!MI.isPHI() && !Inputs.has(R.Reg)) {
2811 dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
2812 << " in MI: " << MI;
2813 continue;
2814 }
2815 const LatticeCell &L = Inputs.get(R.Reg);
2816 Const &= L.isSingle();
2817 if (!Const)
2818 break;
2819 }
2820 if (HasUse && Const) {
2821 if (!MI.isCopy()) {
2822 dbgs() << "CONST: " << MI;
2823 for (const MachineOperand &MO : MI.operands()) {
2824 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2825 continue;
2826 Register R = MO.getReg();
2827 dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
2828 }
2829 }
2830 }
2831 }
2832 #endif
2833
2834 // Avoid generating TFRIs for register transfers---this will keep the
2835 // coalescing opportunities.
2836 if (MI.isCopy())
2837 return false;
2838
2839 // Collect all virtual register-def operands.
2840 SmallVector<unsigned,2> DefRegs;
2841 for (const MachineOperand &MO : MI.operands()) {
2842 if (!MO.isReg() || !MO.isDef())
2843 continue;
2844 Register R = MO.getReg();
2845 if (!Register::isVirtualRegister(R))
2846 continue;
2847 assert(!MO.getSubReg());
2848 assert(Inputs.has(R));
2849 DefRegs.push_back(R);
2850 }
2851
2852 MachineBasicBlock &B = *MI.getParent();
2853 const DebugLoc &DL = MI.getDebugLoc();
2854 unsigned ChangedNum = 0;
2855 #ifndef NDEBUG
2856 SmallVector<const MachineInstr*,4> NewInstrs;
2857 #endif
2858
2859 // For each defined register, if it is a constant, create an instruction
2860 // NewR = const
2861 // and replace all uses of the defined register with NewR.
2862 for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
2863 unsigned R = DefRegs[i];
2864 const LatticeCell &L = Inputs.get(R);
2865 if (L.isBottom())
2866 continue;
2867 const TargetRegisterClass *RC = MRI->getRegClass(R);
2868 MachineBasicBlock::iterator At = MI.getIterator();
2869
2870 if (!L.isSingle()) {
2871 // If this a zero/non-zero cell, we can fold a definition
2872 // of a predicate register.
2873 using P = ConstantProperties;
2874
2875 uint64_t Ps = L.properties();
2876 if (!(Ps & (P::Zero|P::NonZero)))
2877 continue;
2878 const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
2879 if (RC != PredRC)
2880 continue;
2881 const MCInstrDesc *NewD = (Ps & P::Zero) ?
2882 &HII.get(Hexagon::PS_false) :
2883 &HII.get(Hexagon::PS_true);
2884 Register NewR = MRI->createVirtualRegister(PredRC);
2885 const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
2886 (void)MIB;
2887 #ifndef NDEBUG
2888 NewInstrs.push_back(&*MIB);
2889 #endif
2890 replaceAllRegUsesWith(R, NewR);
2891 } else {
2892 // This cell has a single value.
2893 APInt A;
2894 if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
2895 continue;
2896 const TargetRegisterClass *NewRC;
2897 const MCInstrDesc *NewD;
2898
2899 unsigned W = getRegBitWidth(R);
2900 int64_t V = A.getSExtValue();
2901 assert(W == 32 || W == 64);
2902 if (W == 32)
2903 NewRC = &Hexagon::IntRegsRegClass;
2904 else
2905 NewRC = &Hexagon::DoubleRegsRegClass;
2906 Register NewR = MRI->createVirtualRegister(NewRC);
2907 const MachineInstr *NewMI;
2908
2909 if (W == 32) {
2910 NewD = &HII.get(Hexagon::A2_tfrsi);
2911 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2912 .addImm(V);
2913 } else {
2914 if (A.isSignedIntN(8)) {
2915 NewD = &HII.get(Hexagon::A2_tfrpi);
2916 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2917 .addImm(V);
2918 } else {
2919 int32_t Hi = V >> 32;
2920 int32_t Lo = V & 0xFFFFFFFFLL;
2921 if (isInt<8>(Hi) && isInt<8>(Lo)) {
2922 NewD = &HII.get(Hexagon::A2_combineii);
2923 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2924 .addImm(Hi)
2925 .addImm(Lo);
2926 } else {
2927 NewD = &HII.get(Hexagon::CONST64);
2928 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2929 .addImm(V);
2930 }
2931 }
2932 }
2933 (void)NewMI;
2934 #ifndef NDEBUG
2935 NewInstrs.push_back(NewMI);
2936 #endif
2937 replaceAllRegUsesWith(R, NewR);
2938 }
2939 ChangedNum++;
2940 }
2941
2942 LLVM_DEBUG({
2943 if (!NewInstrs.empty()) {
2944 MachineFunction &MF = *MI.getParent()->getParent();
2945 dbgs() << "In function: " << MF.getName() << "\n";
2946 dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0];
2947 for (unsigned i = 1; i < NewInstrs.size(); ++i)
2948 dbgs() << " " << *NewInstrs[i];
2949 }
2950 });
2951
2952 AllDefs = (ChangedNum == DefRegs.size());
2953 return ChangedNum > 0;
2954 }
2955
rewriteHexConstUses(MachineInstr & MI,const CellMap & Inputs)2956 bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
2957 const CellMap &Inputs) {
2958 bool Changed = false;
2959 unsigned Opc = MI.getOpcode();
2960 MachineBasicBlock &B = *MI.getParent();
2961 const DebugLoc &DL = MI.getDebugLoc();
2962 MachineBasicBlock::iterator At = MI.getIterator();
2963 MachineInstr *NewMI = nullptr;
2964
2965 switch (Opc) {
2966 case Hexagon::M2_maci:
2967 // Convert DefR += mpyi(R2, R3)
2968 // to DefR += mpyi(R, #imm),
2969 // or DefR -= mpyi(R, #imm).
2970 {
2971 RegisterSubReg DefR(MI.getOperand(0));
2972 assert(!DefR.SubReg);
2973 RegisterSubReg R2(MI.getOperand(2));
2974 RegisterSubReg R3(MI.getOperand(3));
2975 assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
2976 LatticeCell LS2, LS3;
2977 // It is enough to get one of the input cells, since we will only try
2978 // to replace one argument---whichever happens to be a single constant.
2979 bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
2980 if (!HasC2 && !HasC3)
2981 return false;
2982 bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
2983 (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
2984 // If one of the operands is zero, eliminate the multiplication.
2985 if (Zero) {
2986 // DefR == R1 (tied operands).
2987 MachineOperand &Acc = MI.getOperand(1);
2988 RegisterSubReg R1(Acc);
2989 unsigned NewR = R1.Reg;
2990 if (R1.SubReg) {
2991 // Generate COPY. FIXME: Replace with the register:subregister.
2992 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
2993 NewR = MRI->createVirtualRegister(RC);
2994 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
2995 .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
2996 }
2997 replaceAllRegUsesWith(DefR.Reg, NewR);
2998 MRI->clearKillFlags(NewR);
2999 Changed = true;
3000 break;
3001 }
3002
3003 bool Swap = false;
3004 if (!LS3.isSingle()) {
3005 if (!LS2.isSingle())
3006 return false;
3007 Swap = true;
3008 }
3009 const LatticeCell &LI = Swap ? LS2 : LS3;
3010 const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
3011 : MI.getOperand(2);
3012 // LI is single here.
3013 APInt A;
3014 if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
3015 return false;
3016 int64_t V = A.getSExtValue();
3017 const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
3018 : HII.get(Hexagon::M2_macsin);
3019 if (V < 0)
3020 V = -V;
3021 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3022 Register NewR = MRI->createVirtualRegister(RC);
3023 const MachineOperand &Src1 = MI.getOperand(1);
3024 NewMI = BuildMI(B, At, DL, D, NewR)
3025 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
3026 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
3027 .addImm(V);
3028 replaceAllRegUsesWith(DefR.Reg, NewR);
3029 Changed = true;
3030 break;
3031 }
3032
3033 case Hexagon::A2_and:
3034 {
3035 RegisterSubReg R1(MI.getOperand(1));
3036 RegisterSubReg R2(MI.getOperand(2));
3037 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3038 LatticeCell LS1, LS2;
3039 unsigned CopyOf = 0;
3040 // Check if any of the operands is -1 (i.e. all bits set).
3041 if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
3042 APInt M1;
3043 if (constToInt(LS1.Value, M1) && !~M1)
3044 CopyOf = 2;
3045 }
3046 else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
3047 APInt M1;
3048 if (constToInt(LS2.Value, M1) && !~M1)
3049 CopyOf = 1;
3050 }
3051 if (!CopyOf)
3052 return false;
3053 MachineOperand &SO = MI.getOperand(CopyOf);
3054 RegisterSubReg SR(SO);
3055 RegisterSubReg DefR(MI.getOperand(0));
3056 unsigned NewR = SR.Reg;
3057 if (SR.SubReg) {
3058 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3059 NewR = MRI->createVirtualRegister(RC);
3060 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3061 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3062 }
3063 replaceAllRegUsesWith(DefR.Reg, NewR);
3064 MRI->clearKillFlags(NewR);
3065 Changed = true;
3066 }
3067 break;
3068
3069 case Hexagon::A2_or:
3070 {
3071 RegisterSubReg R1(MI.getOperand(1));
3072 RegisterSubReg R2(MI.getOperand(2));
3073 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3074 LatticeCell LS1, LS2;
3075 unsigned CopyOf = 0;
3076
3077 using P = ConstantProperties;
3078
3079 if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
3080 CopyOf = 2;
3081 else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
3082 CopyOf = 1;
3083 if (!CopyOf)
3084 return false;
3085 MachineOperand &SO = MI.getOperand(CopyOf);
3086 RegisterSubReg SR(SO);
3087 RegisterSubReg DefR(MI.getOperand(0));
3088 unsigned NewR = SR.Reg;
3089 if (SR.SubReg) {
3090 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3091 NewR = MRI->createVirtualRegister(RC);
3092 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3093 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3094 }
3095 replaceAllRegUsesWith(DefR.Reg, NewR);
3096 MRI->clearKillFlags(NewR);
3097 Changed = true;
3098 }
3099 break;
3100 }
3101
3102 if (NewMI) {
3103 // clear all the kill flags of this new instruction.
3104 for (MachineOperand &MO : NewMI->operands())
3105 if (MO.isReg() && MO.isUse())
3106 MO.setIsKill(false);
3107 }
3108
3109 LLVM_DEBUG({
3110 if (NewMI) {
3111 dbgs() << "Rewrite: for " << MI;
3112 if (NewMI != &MI)
3113 dbgs() << " created " << *NewMI;
3114 else
3115 dbgs() << " modified the instruction itself and created:" << *NewMI;
3116 }
3117 });
3118
3119 return Changed;
3120 }
3121
replaceAllRegUsesWith(unsigned FromReg,unsigned ToReg)3122 void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg,
3123 unsigned ToReg) {
3124 assert(Register::isVirtualRegister(FromReg));
3125 assert(Register::isVirtualRegister(ToReg));
3126 for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
3127 MachineOperand &O = *I;
3128 ++I;
3129 O.setReg(ToReg);
3130 }
3131 }
3132
rewriteHexBranch(MachineInstr & BrI,const CellMap & Inputs)3133 bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
3134 const CellMap &Inputs) {
3135 MachineBasicBlock &B = *BrI.getParent();
3136 unsigned NumOp = BrI.getNumOperands();
3137 if (!NumOp)
3138 return false;
3139
3140 bool FallsThru;
3141 SetVector<const MachineBasicBlock*> Targets;
3142 bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
3143 unsigned NumTargets = Targets.size();
3144 if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
3145 return false;
3146 if (BrI.getOpcode() == Hexagon::J2_jump)
3147 return false;
3148
3149 LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
3150 bool Rewritten = false;
3151 if (NumTargets > 0) {
3152 assert(!FallsThru && "This should have been checked before");
3153 // MIB.addMBB needs non-const pointer.
3154 MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
3155 bool Moot = B.isLayoutSuccessor(TargetB);
3156 if (!Moot) {
3157 // If we build a branch here, we must make sure that it won't be
3158 // erased as "non-executable". We can't mark any new instructions
3159 // as executable here, so we need to overwrite the BrI, which we
3160 // know is executable.
3161 const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
3162 auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
3163 .addMBB(TargetB);
3164 BrI.setDesc(JD);
3165 while (BrI.getNumOperands() > 0)
3166 BrI.RemoveOperand(0);
3167 // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
3168 // are present in the rewritten branch.
3169 for (auto &Op : NI->operands())
3170 BrI.addOperand(Op);
3171 NI->eraseFromParent();
3172 Rewritten = true;
3173 }
3174 }
3175
3176 // Do not erase instructions. A newly created instruction could get
3177 // the same address as an instruction marked as executable during the
3178 // propagation.
3179 if (!Rewritten)
3180 replaceWithNop(BrI);
3181 return true;
3182 }
3183
createHexagonConstPropagationPass()3184 FunctionPass *llvm::createHexagonConstPropagationPass() {
3185 return new HexagonConstPropagation();
3186 }
3187