• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEElementwiseOperationKernel.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/IAccessWindow.h"
28 #include "src/core/CPP/Validate.h"
29 #include "src/core/NEON/NEAsymm.h"
30 #include "src/core/NEON/NEFixedPoint.h"
31 #include "src/core/NEON/wrapper/wrapper.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 
35 #include <arm_neon.h>
36 #include <map>
37 
38 namespace arm_compute
39 {
40 namespace
41 {
load_quantized(const uint8_t * input1_ptr,const int32x4_t & offset,const float32x4_t & scale)42 float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
43 {
44     qasymm8x16_t        x = vld1q_u8(input1_ptr);
45     const float32x4x4_t out =
46     {
47         {
48             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
49             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
50             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
51             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
52         }
53     };
54     return out;
55 }
56 
load_quantized_signed(const int8_t * input1_ptr,const int32x4_t & offset,const float32x4_t & scale)57 float32x4x4_t load_quantized_signed(const int8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
58 {
59     qasymm8x16_signed_t x = vld1q_s8(input1_ptr);
60     const float32x4x4_t out =
61     {
62         {
63             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
64             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
65             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
66             vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
67         }
68     };
69     return out;
70 }
71 
store_quantized(uint8_t * output_ptr,const uint32x4x4_t & out)72 void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out)
73 {
74     const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1])));
75     const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3])));
76     vst1q_u8(output_ptr, vcombine_u8(pa, pb));
77 }
78 
store_quantized(uint8_t * output_ptr,const int32x4x4_t & out)79 void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out)
80 {
81     const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
82     const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
83     vst1q_u8(output_ptr, vcombine_u8(pa, pb));
84 }
85 
store_quantized(uint8_t * output_ptr,const float32x4x4_t & rf,const float32x4_t & offset,const float32x4_t & invscale)86 void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
87 {
88     int32x4x4_t out =
89     {
90         {
91             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
92             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
93             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
94             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
95         }
96     };
97     store_quantized(output_ptr, out);
98 }
99 
store_quantized_signed(int8_t * output_ptr,const int32x4x4_t & out)100 void store_quantized_signed(int8_t *output_ptr, const int32x4x4_t &out)
101 {
102     const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
103     const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
104     vst1q_s8(output_ptr, vcombine_s8(pa, pb));
105 }
106 
store_quantized_signed(int8_t * output_ptr,const float32x4x4_t & rf,const float32x4_t & offset,const float32x4_t & invscale)107 void store_quantized_signed(int8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
108 {
109     int32x4x4_t out =
110     {
111         {
112             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
113             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
114             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
115             vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
116         }
117     };
118     store_quantized_signed(output_ptr, out);
119 }
120 
121 template <ArithmeticOperation op, typename ScalarType>
elementwise_arithm_op_scalar(const ScalarType & a,const ScalarType & b)122 inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b)
123 {
124     auto res = ScalarType(0);
125 
126     switch(op)
127     {
128         case ArithmeticOperation::MAX:
129             res = std::max(a, b);
130             break;
131         case ArithmeticOperation::MIN:
132             res = std::min(a, b);
133             break;
134         case ArithmeticOperation::SQUARED_DIFF:
135         {
136             res = (a - b) * (a - b);
137             break;
138         }
139         case ArithmeticOperation::PRELU:
140         {
141             res = (a > 0 ? a : a * b);
142             break;
143         }
144         case ArithmeticOperation::DIV:
145         {
146             res = a / b;
147             if(std::is_integral<ScalarType>::value)
148             {
149                 res = (b == 0) ? 0 : res;
150                 if(static_cast<int32_t>(a) % static_cast<int32_t>(b) != 0 && ((a < 0) != (b < 0)))
151                 {
152                     --res;
153                 }
154             }
155             break;
156         }
157         case ArithmeticOperation::POWER:
158         {
159             res = std::pow(a, b);
160             break;
161         }
162         default:
163             ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
164     }
165     return res;
166 }
167 
168 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_scalar(const float & a,const float & b,UniformQuantizationInfo qinfo)169 inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
170 {
171     return quantize_qasymm8(elementwise_arithm_op_scalar<op>(a, b), qinfo);
172 }
173 
174 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_signed_scalar(const float & a,const float & b,UniformQuantizationInfo qinfo)175 inline int8_t elementwise_arithm_op_quantized_signed_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
176 {
177     return quantize_qasymm8_signed(elementwise_arithm_op_scalar<op>(a, b), qinfo);
178 }
179 
180 template <ArithmeticOperation    op, typename VectorType>
elementwise_arithm_op(const typename VectorType::type & a,const typename VectorType::type & b)181 inline typename VectorType::type elementwise_arithm_op(const typename VectorType::type &a, const typename VectorType::type &b)
182 {
183     using vec_type    = typename VectorType::type;
184     using scalar_type = typename VectorType::scalar_type;
185     using tag_type    = typename VectorType::tag_type;
186 
187     vec_type res = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
188 
189     switch(op)
190     {
191         case ArithmeticOperation::MAX:
192             res = wrapper::vmax(a, b);
193             break;
194         case ArithmeticOperation::MIN:
195             res = wrapper::vmin(a, b);
196             break;
197         case ArithmeticOperation::SQUARED_DIFF:
198         {
199             const vec_type tmp = wrapper::vsub(a, b);
200             res                = wrapper::vmul(tmp, tmp);
201             break;
202         }
203         case ArithmeticOperation::PRELU:
204         {
205             const vec_type zero = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
206             const vec_type tmp  = wrapper::vmul(a, b);
207             const auto     gt   = wrapper::vcgt(a, zero);
208 
209             res = wrapper::vbsl(gt, a, tmp);
210             break;
211         }
212 
213         default:
214             ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
215     }
216 
217     return res;
218 }
219 
220 template <>
elementwise_arithm_op(const int32x4_t & a,const int32x4_t & b)221 inline int32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<int32_t, 4>>(const int32x4_t &a, const int32x4_t &b)
222 {
223     return vcvtq_s32_f32(vfloorq_f32(wrapper::vdiv(vcvtq_f32_s32(a), vcvtq_f32_s32(b))));
224 }
225 
226 template <>
elementwise_arithm_op(const float32x4_t & a,const float32x4_t & b)227 inline float32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
228 {
229     return wrapper::vdiv(a, b);
230 }
231 
232 template <>
elementwise_arithm_op(const float32x4_t & a,const float32x4_t & b)233 inline float32x4_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
234 {
235     return wrapper::vpow(a, b);
236 }
237 
238 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
239 template <>
elementwise_arithm_op(const float16x8_t & a,const float16x8_t & b)240 inline float16x8_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
241 {
242     return wrapper::vdiv(a, b);
243 }
244 
245 template <>
elementwise_arithm_op(const float16x8_t & a,const float16x8_t & b)246 inline float16x8_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
247 {
248     return wrapper::vpow(a, b);
249 }
250 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
251 
252 template <ArithmeticOperation op>
elementwise_arithm_op(const float32x4x4_t & a,const float32x4x4_t & b)253 inline float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b)
254 {
255     using neon_vector_float = wrapper::traits::neon_vector<float, 4>;
256     float32x4x4_t out =
257     {
258         {
259             elementwise_arithm_op<op, neon_vector_float>(a.val[0], b.val[0]),
260             elementwise_arithm_op<op, neon_vector_float>(a.val[1], b.val[1]),
261             elementwise_arithm_op<op, neon_vector_float>(a.val[2], b.val[2]),
262             elementwise_arithm_op<op, neon_vector_float>(a.val[3], b.val[3]),
263         }
264     };
265     return out;
266 }
267 
268 template <ArithmeticOperation    op, typename ScalarType, typename VectorType>
elementwise_arithm_op_broadcast(const typename VectorType::type & a,const ScalarType & broadcast_value,const bool reorder)269 inline typename VectorType::type elementwise_arithm_op_broadcast(const typename VectorType::type &a, const ScalarType &broadcast_value, const bool reorder)
270 {
271     using tag_type = typename VectorType::tag_type;
272     using vec_type = typename VectorType::type;
273 
274     vec_type broadcast_vector = wrapper::vdup_n(broadcast_value, tag_type{});
275     return elementwise_arithm_op<op, VectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
276 }
277 
278 template <ComparisonOperation op, typename InputScalarType>
elementwise_comp_op_scalar(const InputScalarType & a,const InputScalarType & b)279 inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b)
280 {
281     bool res = false;
282 
283     switch(op)
284     {
285         case ComparisonOperation::Equal:
286             res = (a == b);
287             break;
288         case ComparisonOperation::NotEqual:
289             res = (a != b);
290             break;
291         case ComparisonOperation::Greater:
292             res = (a > b);
293             break;
294         case ComparisonOperation::GreaterEqual:
295             res = (a >= b);
296             break;
297         case ComparisonOperation::Less:
298             res = (a < b);
299             break;
300         case ComparisonOperation::LessEqual:
301             res = (a <= b);
302             break;
303         default:
304             ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
305     }
306     return res ? ~static_cast<uint8_t>(0) : static_cast<uint8_t>(0);
307 }
308 
309 template <ComparisonOperation op>
elementwise_comp_op_quantized_scalar(const float & a,const float & b,UniformQuantizationInfo qinfo)310 inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
311 {
312     ARM_COMPUTE_UNUSED(qinfo);
313     return elementwise_comp_op_scalar<op>(a, b);
314 }
315 
316 template <ComparisonOperation op, typename InputVectorType, typename OutputVectorType>
elementwise_comp_op(const InputVectorType & a,const InputVectorType & b)317 inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b)
318 {
319     OutputVectorType res = { 0, 0, 0, 0 };
320 
321     switch(op)
322     {
323         case ComparisonOperation::Equal:
324             res = wrapper::vceq(a, b);
325             break;
326         case ComparisonOperation::NotEqual:
327             res = wrapper::vnot(wrapper::vceq(a, b));
328             break;
329         case ComparisonOperation::Greater:
330             res = wrapper::vcgt(a, b);
331             break;
332         case ComparisonOperation::GreaterEqual:
333             res = wrapper::vcge(a, b);
334             break;
335         case ComparisonOperation::Less:
336             res = wrapper::vcgt(b, a);
337             break;
338         case ComparisonOperation::LessEqual:
339             res = wrapper::vcge(b, a);
340             break;
341         default:
342             ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
343     }
344 
345     return res;
346 }
347 
348 template <ComparisonOperation op>
elementwise_comp_op(const float32x4x4_t & a,const float32x4x4_t & b)349 inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b)
350 {
351     uint32x4x4_t out =
352     {
353         {
354             elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[0], b.val[0]),
355             elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[1], b.val[1]),
356             elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[2], b.val[2]),
357             elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[3], b.val[3])
358         }
359     };
360     return out;
361 }
362 
363 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType, typename OutputVectorType>
elementwise_comp_op_broadcast(const InputVectorType & a,const InputScalarType & broadcast_value,const bool reorder)364 inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder)
365 {
366     InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
367     return elementwise_comp_op<op, InputVectorType, OutputVectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
368 }
369 
370 template <ArithmeticOperation op, typename ScalarType, typename VectorType>
elementwise_arithm_op_loop(int window_start_x,int window_end_x,int window_step_x,const ScalarType * input1_ptr,const ScalarType * input2_ptr,ScalarType * output_ptr)371 inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x,
372                                       const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr)
373 {
374     int x = window_start_x;
375     for(; x <= (window_end_x - window_step_x); x += window_step_x)
376     {
377         const auto a = wrapper::vloadq(input1_ptr + x);
378         const auto b = wrapper::vloadq(input2_ptr + x);
379         wrapper::vstore(output_ptr + x, elementwise_arithm_op<op, VectorType>(a, b));
380     }
381     return x;
382 }
383 
384 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_loop(int window_start_x,int window_end_x,int window_step_x,const uint8_t * input1_ptr,const uint8_t * input2_ptr,uint8_t * output_ptr,int32x4_t voffset1,int32x4_t voffset2,float32x4_t vscale1,float32x4_t vscale2,float32x4_t voffseto,float32x4_t invvscaleo)385 inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
386                                                 const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
387                                                 int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
388                                                 float32x4_t voffseto, float32x4_t invvscaleo)
389 {
390     int x = window_start_x;
391     for(; x <= (window_end_x - window_step_x); x += window_step_x)
392     {
393         // Get inputs and compute output
394         const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
395         const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
396         const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
397         store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
398     }
399     return x;
400 }
401 
402 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_singed_loop(int window_start_x,int window_end_x,int window_step_x,const int8_t * input1_ptr,const int8_t * input2_ptr,int8_t * output_ptr,int32x4_t voffset1,int32x4_t voffset2,float32x4_t vscale1,float32x4_t vscale2,float32x4_t voffseto,float32x4_t invvscaleo)403 inline int elementwise_arithm_op_quantized_singed_loop(int window_start_x, int window_end_x, int window_step_x,
404                                                        const int8_t *input1_ptr, const int8_t *input2_ptr, int8_t *output_ptr,
405                                                        int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
406                                                        float32x4_t voffseto, float32x4_t invvscaleo)
407 {
408     int x = window_start_x;
409     for(; x <= (window_end_x - window_step_x); x += window_step_x)
410     {
411         // Get inputs and compute output
412         const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
413         const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
414         const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
415         store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
416     }
417     return x;
418 }
419 
420 template <ArithmeticOperation op, typename ScalarType, typename VectorType>
elementwise_arithm_op_broadcast_loop(int window_start_x,int window_end_x,int window_step_x,const ScalarType * non_broadcast_input_ptr,const ScalarType & broadcast_value,ScalarType * output_ptr,const bool reorder)421 inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
422                                                 const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder)
423 {
424     int x = window_start_x;
425     for(; x <= (window_end_x - window_step_x); x += window_step_x)
426     {
427         const auto a = wrapper::vloadq((non_broadcast_input_ptr + x));
428         wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast<op, ScalarType, VectorType>(a, broadcast_value, reorder));
429     }
430     return x;
431 }
432 
433 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_broadcast_loop(int window_start_x,int window_end_x,int window_step_x,const uint8_t * non_broadcast_input_ptr,float32x4x4_t broadcast_vector,uint8_t * output_ptr,int32x4_t voffset_non_broadcast,float32x4_t vscale_non_broadcast,float32x4_t voffseto,float32x4_t invvscaleo,bool reorder)434 inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
435                                                           const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
436                                                           int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
437                                                           float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
438 {
439     int x = window_start_x;
440     for(; x <= (window_end_x - window_step_x); x += window_step_x)
441     {
442         const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
443         const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
444         store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
445     }
446     return x;
447 }
448 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_signed_broadcast_loop(int window_start_x,int window_end_x,int window_step_x,const int8_t * non_broadcast_input_ptr,float32x4x4_t broadcast_vector,int8_t * output_ptr,int32x4_t voffset_non_broadcast,float32x4_t vscale_non_broadcast,float32x4_t voffseto,float32x4_t invvscaleo,bool reorder)449 inline int elementwise_arithm_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
450                                                                  const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, int8_t *output_ptr,
451                                                                  int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
452                                                                  float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
453 {
454     int x = window_start_x;
455     for(; x <= (window_end_x - window_step_x); x += window_step_x)
456     {
457         const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
458         const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
459         store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
460     }
461     return x;
462 }
463 
464 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_8_loop(int window_start_x,int window_end_x,int window_step_x,const InputScalarType * input1_ptr,const InputScalarType * input2_ptr,uint8_t * output_ptr)465 inline int elementwise_comp_op_8_loop(int window_start_x, int window_end_x, int window_step_x,
466                                       const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
467 {
468     int x = window_start_x;
469     for(; x <= (window_end_x - window_step_x); x += window_step_x)
470     {
471         const auto a   = wrapper::vloadq(input1_ptr + x);
472         const auto b   = wrapper::vloadq(input2_ptr + x);
473         const auto res = elementwise_comp_op<op, InputVectorType, uint8x16_t>(a, b);
474         wrapper::vstore(output_ptr + x, res);
475     }
476     return x;
477 }
478 
479 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_16_loop(int window_start_x,int window_end_x,int window_step_x,const InputScalarType * input1_ptr,const InputScalarType * input2_ptr,uint8_t * output_ptr)480 inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x,
481                                        const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
482 {
483     int x = window_start_x;
484     for(; x <= (window_end_x - window_step_x); x += window_step_x)
485     {
486         const auto a   = wrapper::vloadq(input1_ptr + x);
487         const auto b   = wrapper::vloadq(input2_ptr + x);
488         const auto res = elementwise_comp_op<op, InputVectorType, uint16x8_t>(a, b);
489         wrapper::vstore(output_ptr + x, wrapper::vmovn(res));
490     }
491     return x;
492 }
493 
494 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_32_loop(int window_start_x,int window_end_x,int window_step_x,const InputScalarType * input1_ptr,const InputScalarType * input2_ptr,uint8_t * output_ptr)495 inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x,
496                                        const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
497 {
498     int x = window_start_x;
499     for(; x <= (window_end_x - window_step_x); x += window_step_x)
500     {
501         auto       a    = wrapper::vloadq(input1_ptr + x);
502         auto       b    = wrapper::vloadq(input2_ptr + x);
503         const auto res  = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
504         a               = wrapper::vloadq(input1_ptr + x + 4);
505         b               = wrapper::vloadq(input2_ptr + x + 4);
506         const auto res2 = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
507         wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2))));
508     }
509     if(x <= window_end_x - 4)
510     {
511         const auto a   = wrapper::vloadq(input1_ptr + x);
512         const auto b   = wrapper::vloadq(input2_ptr + x);
513         const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
514         for(int i = 0; i < 4; i++)
515         {
516             *(output_ptr + x + i) = wrapper::vgetlane(res, i);
517         }
518         x = +4;
519     }
520     return x;
521 }
522 
523 template <ComparisonOperation op>
elementwise_comp_op_quantized_loop(int window_start_x,int window_end_x,int window_step_x,const uint8_t * input1_ptr,const uint8_t * input2_ptr,uint8_t * output_ptr,int32x4_t voffset1,int32x4_t voffset2,float32x4_t vscale1,float32x4_t vscale2,float32x4_t voffseto,float32x4_t invvscaleo)524 inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
525                                               const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
526                                               int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
527                                               float32x4_t voffseto, float32x4_t invvscaleo)
528 {
529     ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
530     int x = window_start_x;
531     for(; x <= (window_end_x - window_step_x); x += window_step_x)
532     {
533         const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
534         const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
535         const uint32x4x4_t  rf = elementwise_comp_op<op>(af, bf);
536         store_quantized(output_ptr + x, rf);
537     }
538     return x;
539 }
540 
541 template <ComparisonOperation op>
elementwise_comp_op_quantized_signed_loop(int window_start_x,int window_end_x,int window_step_x,const int8_t * input1_ptr,const int8_t * input2_ptr,uint8_t * output_ptr,int32x4_t voffset1,int32x4_t voffset2,float32x4_t vscale1,float32x4_t vscale2,float32x4_t voffseto,float32x4_t invvscaleo)542 inline int elementwise_comp_op_quantized_signed_loop(int window_start_x, int window_end_x, int window_step_x,
543                                                      const int8_t *input1_ptr, const int8_t *input2_ptr, uint8_t *output_ptr,
544                                                      int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
545                                                      float32x4_t voffseto, float32x4_t invvscaleo)
546 {
547     ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
548     int x = window_start_x;
549     for(; x <= (window_end_x - window_step_x); x += window_step_x)
550     {
551         const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
552         const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
553         const uint32x4x4_t  rf = elementwise_comp_op<op>(af, bf);
554         store_quantized(output_ptr + x, rf);
555     }
556     return x;
557 }
558 
559 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_broadcast_8_loop(int window_start_x,int window_end_x,int window_step_x,const InputScalarType * non_broadcast_input_ptr,const InputScalarType & broadcast_value,uint8_t * output_ptr,const bool reorder)560 inline int elementwise_comp_op_broadcast_8_loop(int window_start_x, int window_end_x, int window_step_x,
561                                                 const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
562 {
563     int x = window_start_x;
564     for(; x <= (window_end_x - window_step_x); x += window_step_x)
565     {
566         const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint8x16_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
567         wrapper::vstore(output_ptr + x, a);
568     }
569     return x;
570 }
571 
572 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_broadcast_16_loop(int window_start_x,int window_end_x,int window_step_x,const InputScalarType * non_broadcast_input_ptr,const InputScalarType & broadcast_value,uint8_t * output_ptr,const bool reorder)573 inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x,
574                                                  const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
575 {
576     int x = window_start_x;
577     for(; x <= (window_end_x - window_step_x); x += window_step_x)
578     {
579         const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint16x8_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
580         wrapper::vstore(output_ptr + x, wrapper::vmovn(a));
581     }
582     return x;
583 }
584 
585 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_broadcast_32_loop(int window_start_x,int window_end_x,int window_step_x,const InputScalarType * non_broadcast_input_ptr,const InputScalarType & broadcast_value,uint8_t * output_ptr,const bool reorder)586 inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x,
587                                                  const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
588 {
589     int x = window_start_x;
590     for(; x <= (window_end_x - window_step_x); x += window_step_x)
591     {
592         const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder);
593         const auto b = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder);
594         wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b))));
595     }
596     if(x <= window_end_x - 4)
597     {
598         const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
599         for(int i = 0; i < 4; i++)
600         {
601             *(output_ptr + x + i) = wrapper::vgetlane(a, i);
602         }
603         x = +4;
604     }
605     return x;
606 }
607 
608 template <ComparisonOperation op>
elementwise_comp_op_quantized_broadcast_loop(int window_start_x,int window_end_x,int window_step_x,const uint8_t * non_broadcast_input_ptr,float32x4x4_t broadcast_vector,uint8_t * output_ptr,int32x4_t voffset_non_broadcast,float32x4_t vscale_non_broadcast,float32x4_t voffseto,float32x4_t invvscaleo,bool reorder)609 inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
610                                                         const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
611                                                         int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
612                                                         float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
613 {
614     ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
615     int x = window_start_x;
616     for(; x <= (window_end_x - window_step_x); x += window_step_x)
617     {
618         const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
619         const uint32x4x4_t  rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
620         store_quantized(output_ptr + x, rf);
621     }
622     return x;
623 }
624 
625 template <ComparisonOperation op>
elementwise_comp_op_quantized_signed_broadcast_loop(int window_start_x,int window_end_x,int window_step_x,const int8_t * non_broadcast_input_ptr,float32x4x4_t broadcast_vector,uint8_t * output_ptr,int32x4_t voffset_non_broadcast,float32x4_t vscale_non_broadcast,float32x4_t voffseto,float32x4_t invvscaleo,bool reorder)626 inline int elementwise_comp_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
627                                                                const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
628                                                                int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
629                                                                float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
630 {
631     ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
632     int x = window_start_x;
633     for(; x <= (window_end_x - window_step_x); x += window_step_x)
634     {
635         const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
636         const uint32x4x4_t  rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
637         store_quantized(output_ptr + x, rf);
638     }
639     return x;
640 }
641 
642 template <typename InputScalarType, typename OutputScalarType, typename InputVectorType>
elementwise_op(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window,OutputScalarType (* scalar_func)(const InputScalarType &,const InputScalarType &),int (* broadcast_func)(int,int,int,const InputScalarType *,const InputScalarType &,OutputScalarType *,const bool),int (* neon_func)(int,int,int,const InputScalarType *,const InputScalarType *,OutputScalarType *))643 void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
644                     OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &),
645                     int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool),
646                     int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *))
647 {
648     // Create input windows
649     Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
650     Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
651 
652     // Clear X Dimension on execution window as we handle manually
653     Window win = window;
654     win.set(Window::DimX, Window::Dimension(0, 1, 1));
655 
656     const int  window_step_x         = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
657     const auto window_start_x        = static_cast<int>(window.x().start());
658     const auto window_end_x          = static_cast<int>(window.x().end());
659     const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
660 
661     if(is_broadcast_across_x)
662     {
663         const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
664         Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
665         Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
666         const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
667         const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
668 
669         // Clear X Dimension on execution window as we handle manually
670         non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
671 
672         Iterator broadcast_input(broadcast_tensor, broadcast_win);
673         Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
674         Iterator output(out, win);
675 
676         execute_window_loop(win, [&](const Coordinates &)
677         {
678             auto                  output_ptr              = reinterpret_cast<OutputScalarType *>(output.ptr());
679             const auto            non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
680             const InputScalarType broadcast_value         = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
681 
682             int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2);
683             for(; x < window_end_x; ++x)
684             {
685                 const auto a      = *(non_broadcast_input_ptr + x);
686                 *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value);
687             }
688         },
689         broadcast_input, non_broadcast_input, output);
690     }
691     else
692     {
693         // Clear X Dimension on execution window as we handle manually
694         input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
695         input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
696 
697         Iterator input1(in1, input1_win);
698         Iterator input2(in2, input2_win);
699         Iterator output(out, win);
700 
701         execute_window_loop(win, [&](const Coordinates &)
702         {
703             auto       output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
704             const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
705             const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
706 
707             int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr);
708             for(; x < window_end_x; ++x)
709             {
710                 const auto a      = *(input1_ptr + x);
711                 const auto b      = *(input2_ptr + x);
712                 *(output_ptr + x) = (*scalar_func)(a, b);
713             }
714         },
715         input1, input2, output);
716     }
717 }
718 
elementwise_op_quantized(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window,uint8_t (* scalar_func)(const float &,const float &,UniformQuantizationInfo),int (* broadcast_func)(int,int,int,const uint8_t *,float32x4x4_t,uint8_t *,int32x4_t,float32x4_t,float32x4_t,float32x4_t,const bool),int (* neon_func)(int,int,int,const uint8_t *,const uint8_t *,uint8_t *,int32x4_t,int32x4_t,float32x4_t,float32x4_t,float32x4_t,float32x4_t))719 void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
720                               uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
721                               int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
722                                                     float32x4_t, float32x4_t, const bool),
723                               int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *,
724                                                int32x4_t, int32x4_t, float32x4_t, float32x4_t,
725                                                float32x4_t, float32x4_t))
726 {
727     // Create input windows
728     Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
729     Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
730 
731     // Clear X Dimension on execution window as we handle manually
732     Window win = window;
733     win.set(Window::DimX, Window::Dimension(0, 1, 1));
734 
735     const int  window_step_x         = 16;
736     const auto window_start_x        = static_cast<int>(window.x().start());
737     const auto window_end_x          = static_cast<int>(window.x().end());
738     const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
739 
740     const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
741 
742     // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero)
743     const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset + 0.5f);
744     const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);
745 
746     if(is_broadcast_across_x)
747     {
748         // Select the broadcast input on the X axis
749         const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
750         Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
751         Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
752         const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
753         const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
754 
755         const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
756         const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
757 
758         const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
759         const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);
760 
761         // Clear X Dimension on execution window as we handle manually
762         non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
763 
764         Iterator broadcast_input(broadcast_tensor, broadcast_win);
765         Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
766         Iterator output(out, win);
767 
768         execute_window_loop(win, [&](const Coordinates &)
769         {
770             const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
771             const auto output_ptr              = reinterpret_cast<uint8_t *>(output.ptr());
772 
773             const uint8_t       broadcast_value  = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
774             const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_u8(broadcast_value), broadcast_qinfo);
775 
776             int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
777                                       voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
778             for(; x < window_end_x; ++x)
779             {
780                 const float afs   = dequantize_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
781                 const float bfs   = dequantize_qasymm8(broadcast_value, broadcast_qinfo);
782                 *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
783             }
784         },
785         broadcast_input, non_broadcast_input, output);
786     }
787     else
788     {
789         const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
790         const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();
791 
792         // Input1 quantization info
793         const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
794         const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);
795 
796         // Input2 quantization info
797         const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
798         const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);
799 
800         // Clear X Dimension on execution window as we handle manually
801         input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
802         input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
803 
804         Iterator input1(in1, input1_win);
805         Iterator input2(in2, input2_win);
806         Iterator output(out, win);
807 
808         execute_window_loop(win, [&](const Coordinates &)
809         {
810             const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
811             const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
812             const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
813 
814             int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
815                                  vscale1, vscale2, voffseto, invvscaleo);
816             for(; x < window_end_x; ++x)
817             {
818                 const float afs   = dequantize_qasymm8(*(input1_ptr + x), input1_qinfo);
819                 const float bfs   = dequantize_qasymm8(*(input2_ptr + x), input2_qinfo);
820                 *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
821             }
822         },
823         input1, input2, output);
824     }
825 }
826 
elementwise_comp_quantized_signed(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window,uint8_t (* scalar_func)(const float &,const float &,UniformQuantizationInfo),int (* broadcast_func)(int,int,int,const int8_t *,float32x4x4_t,uint8_t *,int32x4_t,float32x4_t,float32x4_t,float32x4_t,const bool),int (* neon_func)(int,int,int,const int8_t *,const int8_t *,uint8_t *,int32x4_t,int32x4_t,float32x4_t,float32x4_t,float32x4_t,float32x4_t))827 void elementwise_comp_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
828                                        uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
829                                        int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
830                                                              float32x4_t, float32x4_t, const bool),
831                                        int (*neon_func)(int, int, int, const int8_t *, const int8_t *, uint8_t *,
832                                                         int32x4_t, int32x4_t, float32x4_t, float32x4_t,
833                                                         float32x4_t, float32x4_t))
834 {
835     // Create input windows
836     Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
837     Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
838 
839     // Clear X Dimension on execution window as we handle manually
840     Window win = window;
841     win.set(Window::DimX, Window::Dimension(0, 1, 1));
842 
843     const int  window_step_x         = 16;
844     const auto window_start_x        = static_cast<int>(window.x().start());
845     const auto window_end_x          = static_cast<int>(window.x().end());
846     const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
847 
848     const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
849 
850     const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset);
851     const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);
852 
853     if(is_broadcast_across_x)
854     {
855         // Select the broadcast input on the X axis
856         const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
857         Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
858         Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
859         const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
860         const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
861 
862         const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
863         const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
864 
865         const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
866         const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);
867 
868         // Clear X Dimension on execution window as we handle manually
869         non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
870 
871         Iterator broadcast_input(broadcast_tensor, broadcast_win);
872         Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
873         Iterator output(out, win);
874 
875         execute_window_loop(win, [&](const Coordinates &)
876         {
877             const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
878             const auto output_ptr              = reinterpret_cast<uint8_t *>(output.ptr());
879 
880             const int8_t        broadcast_value  = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
881             const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);
882 
883             int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
884                                       voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
885             for(; x < window_end_x; ++x)
886             {
887                 const float afs   = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
888                 const float bfs   = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
889                 *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
890             }
891         },
892         broadcast_input, non_broadcast_input, output);
893     }
894     else
895     {
896         const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
897         const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();
898 
899         // Input1 quantization info
900         const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
901         const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);
902 
903         // Input2 quantization info
904         const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
905         const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);
906 
907         // Clear X Dimension on execution window as we handle manually
908         input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
909         input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
910 
911         Iterator input1(in1, input1_win);
912         Iterator input2(in2, input2_win);
913         Iterator output(out, win);
914 
915         execute_window_loop(win, [&](const Coordinates &)
916         {
917             const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
918             const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
919             const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
920 
921             int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
922                                  vscale1, vscale2, voffseto, invvscaleo);
923             for(; x < window_end_x; ++x)
924             {
925                 const float afs   = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
926                 const float bfs   = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
927                 *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
928             }
929         },
930         input1, input2, output);
931     }
932 }
933 
elementwise_op_quantized_signed(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window,int8_t (* scalar_func)(const float &,const float &,UniformQuantizationInfo),int (* broadcast_func)(int,int,int,const int8_t *,float32x4x4_t,int8_t *,int32x4_t,float32x4_t,float32x4_t,float32x4_t,const bool),int (* neon_func)(int,int,int,const int8_t *,const int8_t *,int8_t *,int32x4_t,int32x4_t,float32x4_t,float32x4_t,float32x4_t,float32x4_t))934 void elementwise_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
935                                      int8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
936                                      int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, int8_t *, int32x4_t, float32x4_t,
937                                                            float32x4_t, float32x4_t, const bool),
938                                      int (*neon_func)(int, int, int, const int8_t *, const int8_t *, int8_t *,
939                                                       int32x4_t, int32x4_t, float32x4_t, float32x4_t,
940                                                       float32x4_t, float32x4_t))
941 {
942     // Create input windows
943     Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
944     Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
945 
946     // Clear X Dimension on execution window as we handle manually
947     Window win = window;
948     win.set(Window::DimX, Window::Dimension(0, 1, 1));
949 
950     const int  window_step_x         = 16;
951     const auto window_start_x        = static_cast<int>(window.x().start());
952     const auto window_end_x          = static_cast<int>(window.x().end());
953     const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
954 
955     const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
956 
957     const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset);
958     const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);
959 
960     if(is_broadcast_across_x)
961     {
962         // Select the broadcast input on the X axis
963         const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
964         Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
965         Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
966         const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
967         const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
968 
969         const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
970         const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
971 
972         const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
973         const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);
974 
975         // Clear X Dimension on execution window as we handle manually
976         non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
977 
978         Iterator broadcast_input(broadcast_tensor, broadcast_win);
979         Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
980         Iterator output(out, win);
981 
982         execute_window_loop(win, [&](const Coordinates &)
983         {
984             const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
985             const auto output_ptr              = reinterpret_cast<int8_t *>(output.ptr());
986 
987             const int8_t        broadcast_value  = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
988             const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);
989 
990             int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
991                                       voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
992             for(; x < window_end_x; ++x)
993             {
994                 const float afs   = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
995                 const float bfs   = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
996                 *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
997             }
998         },
999         broadcast_input, non_broadcast_input, output);
1000     }
1001     else
1002     {
1003         const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
1004         const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();
1005 
1006         // Input1 quantization info
1007         const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
1008         const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);
1009 
1010         // Input2 quantization info
1011         const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
1012         const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);
1013 
1014         // Clear X Dimension on execution window as we handle manually
1015         input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
1016         input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
1017 
1018         Iterator input1(in1, input1_win);
1019         Iterator input2(in2, input2_win);
1020         Iterator output(out, win);
1021 
1022         execute_window_loop(win, [&](const Coordinates &)
1023         {
1024             const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
1025             const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
1026             const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());
1027 
1028             int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
1029                                  vscale1, vscale2, voffseto, invvscaleo);
1030             for(; x < window_end_x; ++x)
1031             {
1032                 const float afs   = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
1033                 const float bfs   = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
1034                 *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
1035             }
1036         },
1037         input1, input2, output);
1038     }
1039 }
1040 
1041 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_8(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1042 void elementwise_comp_op_8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1043 {
1044     elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
1045                                                               &elementwise_comp_op_scalar<op, InputScalarType>,
1046                                                               &elementwise_comp_op_broadcast_8_loop<op, InputScalarType, InputVectorType>,
1047                                                               &elementwise_comp_op_8_loop<op, InputScalarType, InputVectorType>);
1048 }
1049 
1050 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_16(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1051 void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1052 {
1053     elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
1054                                                               &elementwise_comp_op_scalar<op, InputScalarType>,
1055                                                               &elementwise_comp_op_broadcast_16_loop<op, InputScalarType, InputVectorType>,
1056                                                               &elementwise_comp_op_16_loop<op, InputScalarType, InputVectorType>);
1057 }
1058 
1059 template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
elementwise_comp_op_32(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1060 void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1061 {
1062     elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
1063                                                               &elementwise_comp_op_scalar<op, InputScalarType>,
1064                                                               &elementwise_comp_op_broadcast_32_loop<op, InputScalarType, InputVectorType>,
1065                                                               &elementwise_comp_op_32_loop<op, InputScalarType, InputVectorType>);
1066 }
1067 
1068 template <ArithmeticOperation op, typename VectorType>
elementwise_arithm_op(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1069 void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1070 {
1071     using scalar_type = typename VectorType::scalar_type;
1072 
1073     elementwise_op<scalar_type, scalar_type, VectorType>(in1, in2, out, window,
1074                                                          &elementwise_arithm_op_scalar<op, scalar_type>,
1075                                                          &elementwise_arithm_op_broadcast_loop<op, scalar_type, VectorType>,
1076                                                          &elementwise_arithm_op_loop<op, scalar_type, VectorType>);
1077 }
1078 
1079 template <ArithmeticOperation op>
elementwise_arithm_op_quantized(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1080 void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1081 {
1082     elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar<op>,
1083                              &elementwise_arithm_op_quantized_broadcast_loop<op>,
1084                              &elementwise_arithm_op_quantized_loop<op>);
1085 }
1086 template <ArithmeticOperation op>
elementwise_arithm_op_quantized_signed(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1087 void elementwise_arithm_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1088 {
1089     elementwise_op_quantized_signed(in1, in2, out, window, &elementwise_arithm_op_quantized_signed_scalar<op>,
1090                                     &elementwise_arithm_op_quantized_signed_broadcast_loop<op>,
1091                                     &elementwise_arithm_op_quantized_singed_loop<op>);
1092 }
1093 
1094 template <ComparisonOperation op>
elementwise_comp_op_quantized(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1095 void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1096 {
1097     elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
1098                              &elementwise_comp_op_quantized_broadcast_loop<op>,
1099                              &elementwise_comp_op_quantized_loop<op>);
1100 }
1101 
1102 template <ComparisonOperation op>
elementwise_comp_op_quantized_signed(const ITensor * in1,const ITensor * in2,ITensor * out,const Window & window)1103 void elementwise_comp_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
1104 {
1105     elementwise_comp_quantized_signed(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
1106                                       &elementwise_comp_op_quantized_signed_broadcast_loop<op>,
1107                                       &elementwise_comp_op_quantized_signed_loop<op>);
1108 }
1109 
1110 std::function<void(const ITensor *, const ITensor *, ITensor *, const Window &)>
configure_func(const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output,std::map<std::string,NEElementwiseOperationKernel::ElementwiseFunction * > map_function)1111 configure_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output,
1112                std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function)
1113 {
1114     std::string function_to_call("op_");
1115     function_to_call += string_from_data_type(input1->data_type()) + "_";
1116     function_to_call += string_from_data_type(input2->data_type()) + "_";
1117     function_to_call += string_from_data_type(output->data_type());
1118 
1119     auto it = map_function.find(function_to_call);
1120 
1121     if(it != map_function.end())
1122     {
1123         auto func = it->second;
1124         return [func](const ITensor * input1, const ITensor * input2, ITensor * output, const Window & window)
1125         {
1126             func(input1, input2, output, window);
1127         };
1128     }
1129     return nullptr;
1130 }
1131 
1132 template <ArithmeticOperation op>
1133 std::function<void(const ITensor *, const ITensor *, ITensor *, const Window &)>
configure_arithm_func(const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1134 configure_arithm_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1135 {
1136     static std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function =
1137     {
1138         { "op_F32_F32_F32", &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<float, 4>> },
1139         { "op_S16_S16_S16", &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<int16_t, 8>> },
1140         { "op_S32_S32_S32", &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<int32_t, 4>> },
1141         { "op_QASYMM8_QASYMM8_QASYMM8", &elementwise_arithm_op_quantized<op> },
1142         { "op_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED", &elementwise_arithm_op_quantized_signed<op> }
1143     };
1144 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
1145     map_function["op_F16_F16_F16"] = &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<float16_t, 8>>;
1146 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
1147 
1148     return configure_func(input1, input2, output, map_function);
1149 }
1150 
1151 template <ComparisonOperation op>
1152 std::function<void(const ITensor *input1, const ITensor *input2, ITensor *output, const Window &window)>
configure_comp_func(const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1153 configure_comp_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1154 {
1155     static std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function =
1156     {
1157         { "op_U8_U8_U8", &elementwise_comp_op_8<op, uint8_t, uint8x16_t> },
1158         { "op_F32_F32_U8", &elementwise_comp_op_32<op, float, float32x4_t> },
1159         { "op_S16_S16_U8", &elementwise_comp_op_16<op, int16_t, int16x8_t> },
1160         { "op_S32_S32_U8", &elementwise_comp_op_32<op, int32_t, int32x4_t> },
1161         { "op_QASYMM8_SIGNED_QASYMM8_SIGNED_U8", &elementwise_comp_op_quantized_signed<op> },
1162         { "op_QASYMM8_QASYMM8_U8", &elementwise_comp_op_quantized<op> }
1163     };
1164 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
1165     map_function["op_F16_F16_U8"] = &elementwise_comp_op_16<op, float16_t, float16x8_t>;
1166 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
1167 
1168     return configure_func(input1, input2, output, map_function);
1169 }
1170 } // namespace
1171 
NEElementwiseOperationKernel()1172 NEElementwiseOperationKernel::NEElementwiseOperationKernel()
1173     : _function(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr)
1174 {
1175 }
1176 
validate_arguments_common(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)1177 Status NEElementwiseOperationKernel::validate_arguments_common(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
1178 {
1179     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
1180     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
1181 
1182     const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
1183 
1184     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
1185 
1186     // Validate in case of configured output
1187     if(output.total_size() > 0)
1188     {
1189         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
1190                                         "Wrong shape for output");
1191     }
1192 
1193     return Status{};
1194 }
1195 
configure_common(const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1196 void NEElementwiseOperationKernel::configure_common(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1197 {
1198     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
1199 
1200     // Configure kernel window
1201     const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
1202     const TensorShape &out_shape    = broadcast_pair.first;
1203     const ValidRegion &valid_region = broadcast_pair.second;
1204 
1205     // Auto initialize output if not initialized
1206     auto_init_if_empty(*output, out_shape, 1, input1->data_type());
1207 
1208     Window win = calculate_max_window(valid_region);
1209 
1210     INEKernel::configure(win);
1211 }
1212 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)1213 void NEElementwiseOperationKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
1214 {
1215     ARM_COMPUTE_UNUSED(info, window);
1216     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
1217     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
1218     ARM_COMPUTE_ERROR_ON(_function == nullptr);
1219     _function(tensors.get_const_tensor(TensorType::ACL_SRC_0),
1220               tensors.get_const_tensor(TensorType::ACL_SRC_1),
1221               tensors.get_tensor(TensorType::ACL_DST), window);
1222 }
1223 
1224 /** Arithmetic operators (min, max, squared_diff) */
configure(ArithmeticOperation op,const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1225 void NEArithmeticOperationKernel::configure(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1226 {
1227     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
1228     configure_common(input1, input2, output);
1229     switch(op)
1230     {
1231         case ArithmeticOperation::MAX:
1232             _function = configure_arithm_func<ArithmeticOperation::MAX>(input1, input2, output);
1233             break;
1234         case ArithmeticOperation::MIN:
1235             _function = configure_arithm_func<ArithmeticOperation::MIN>(input1, input2, output);
1236             break;
1237         case ArithmeticOperation::SQUARED_DIFF:
1238             _function = configure_arithm_func<ArithmeticOperation::SQUARED_DIFF>(input1, input2, output);
1239             break;
1240         case ArithmeticOperation::PRELU:
1241             _function = configure_arithm_func<ArithmeticOperation::PRELU>(input1, input2, output);
1242             break;
1243         default:
1244             ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
1245     }
1246 }
1247 
validate_arguments(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)1248 Status NEArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
1249 {
1250     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
1251     // Validate in case of configured output
1252     if(output.total_size() > 0)
1253     {
1254         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
1255     }
1256     return validate_arguments_common(input1, input2, output);
1257 }
1258 
validate(ArithmeticOperation op,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output)1259 Status NEArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
1260 {
1261     ARM_COMPUTE_UNUSED(op);
1262     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
1263     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
1264     return Status{};
1265 }
1266 
1267 /** The division operator */
1268 
configure(const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1269 void NEDivisionOperationKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1270 {
1271     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
1272     configure_common(input1, input2, output);
1273     _function = configure_arithm_func<ArithmeticOperation::DIV>(input1, input2, output);
1274 }
1275 
validate_arguments(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)1276 Status NEDivisionOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
1277 {
1278     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::S32, DataType::F16, DataType::F32);
1279     return NEArithmeticOperationKernel::validate_arguments(input1, input2, output);
1280 }
1281 
validate(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output)1282 Status NEDivisionOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
1283 {
1284     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
1285     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
1286     return Status{};
1287 }
1288 
1289 /** The power operator */
configure(const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1290 void NEPowerOperationKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1291 {
1292     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
1293     configure_common(input1, input2, output);
1294     _function = configure_arithm_func<ArithmeticOperation::POWER>(input1, input2, output);
1295 }
1296 
validate_arguments(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)1297 Status NEPowerOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
1298 {
1299     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32);
1300     return NEArithmeticOperationKernel::validate_arguments(input1, input2, output);
1301 }
1302 
validate(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output)1303 Status NEPowerOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
1304 {
1305     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
1306     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
1307     return Status{};
1308 }
1309 
1310 /** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */
configure(ComparisonOperation op,const ITensorInfo * input1,const ITensorInfo * input2,ITensorInfo * output)1311 void NEComparisonOperationKernel::configure(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
1312 {
1313     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
1314     configure_common(input1, input2, output);
1315     switch(op)
1316     {
1317         case ComparisonOperation::Equal:
1318             _function = configure_comp_func<ComparisonOperation::Equal>(input1, input2, output);
1319             break;
1320         case ComparisonOperation::NotEqual:
1321             _function = configure_comp_func<ComparisonOperation::NotEqual>(input1, input2, output);
1322             break;
1323         case ComparisonOperation::Greater:
1324             _function = configure_comp_func<ComparisonOperation::Greater>(input1, input2, output);
1325             break;
1326         case ComparisonOperation::GreaterEqual:
1327             _function = configure_comp_func<ComparisonOperation::GreaterEqual>(input1, input2, output);
1328             break;
1329         case ComparisonOperation::Less:
1330             _function = configure_comp_func<ComparisonOperation::Less>(input1, input2, output);
1331             break;
1332         case ComparisonOperation::LessEqual:
1333             _function = configure_comp_func<ComparisonOperation::LessEqual>(input1, input2, output);
1334             break;
1335         default:
1336             ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
1337     }
1338 }
1339 
validate_arguments(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)1340 Status NEComparisonOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
1341 {
1342     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
1343     // Validate in case of configured output
1344     if(output.total_size() > 0)
1345     {
1346         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8);
1347     }
1348     return validate_arguments_common(input1, input2, output);
1349 }
1350 
validate(ComparisonOperation op,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output)1351 Status NEComparisonOperationKernel::validate(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
1352 {
1353     ARM_COMPUTE_UNUSED(op);
1354     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
1355     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
1356     return Status{};
1357 }
1358 } // namespace arm_compute
1359