• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #include "NeonTransposeConvolution2dWorkload.hpp"
6 
7 #include "NeonWorkloadUtils.hpp"
8 
9 #include <Profiling.hpp>
10 
11 #include <armnn/Types.hpp>
12 #include <armnn/utility/PolymorphicDowncast.hpp>
13 
14 #include <aclCommon/ArmComputeTensorUtils.hpp>
15 
16 #include <backendsCommon/CpuTensorHandle.hpp>
17 
18 #include <neon/workloads/NeonWorkloadUtils.hpp>
19 
20 namespace armnn
21 {
22 
23 using namespace armcomputetensorutils;
24 
NeonTransposeConvolution2dWorkloadValidate(const TensorInfo & input,const TensorInfo & output,const TransposeConvolution2dDescriptor & descriptor,const TensorInfo & weights,const Optional<TensorInfo> & biases)25 arm_compute::Status NeonTransposeConvolution2dWorkloadValidate(const TensorInfo& input,
26                                                                const TensorInfo& output,
27                                                                const TransposeConvolution2dDescriptor& descriptor,
28                                                                const TensorInfo& weights,
29                                                                const Optional<TensorInfo>& biases)
30 {
31     const arm_compute::TensorInfo aclInputInfo   = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
32     const arm_compute::TensorInfo aclOutputInfo  = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
33     const arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.m_DataLayout);
34 
35     arm_compute::TensorInfo aclBiasesInfo;
36     arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr;
37 
38     if (descriptor.m_BiasEnabled)
39     {
40         ARMNN_ASSERT(biases.has_value());
41 
42         aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
43         optionalAclBiasesInfo = &aclBiasesInfo;
44     }
45 
46     arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor);
47 
48     return arm_compute::NEDeconvolutionLayer::validate(&aclInputInfo,
49                                                        &aclWeightsInfo,
50                                                        optionalAclBiasesInfo,
51                                                        &aclOutputInfo,
52                                                        layerInfo);
53 }
54 
NeonTransposeConvolution2dWorkload(const TransposeConvolution2dQueueDescriptor & descriptor,const WorkloadInfo & info,std::shared_ptr<arm_compute::MemoryManagerOnDemand> & memoryManager)55 NeonTransposeConvolution2dWorkload::NeonTransposeConvolution2dWorkload(
56     const TransposeConvolution2dQueueDescriptor& descriptor, const WorkloadInfo& info,
57     std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager)
58     : BaseWorkload<TransposeConvolution2dQueueDescriptor>(descriptor, info)
59 {
60     m_Data.ValidateInputsOutputs("NeonTransposeConvolution2dWorkload", 1, 1);
61 
62     arm_compute::ITensor& input  = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
63     arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
64 
65     arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
66     input.info()->set_data_layout(aclDataLayout);
67     output.info()->set_data_layout(aclDataLayout);
68 
69     m_KernelTensor = std::make_unique<arm_compute::Tensor>();
70     BuildArmComputeTensor(*m_KernelTensor, m_Data.m_Weight->GetTensorInfo(), m_Data.m_Parameters.m_DataLayout);
71 
72     if (m_Data.m_Parameters.m_BiasEnabled)
73     {
74         m_BiasTensor = std::make_unique<arm_compute::Tensor>();
75         BuildArmComputeTensor(*m_BiasTensor, m_Data.m_Bias->GetTensorInfo(), m_Data.m_Parameters.m_DataLayout);
76     }
77 
78     arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
79 
80     m_Layer = std::make_unique<arm_compute::NEDeconvolutionLayer>(memoryManager);
81     m_Layer->configure(&input, m_KernelTensor.get(), m_BiasTensor.get(), &output, padStrideInfo);
82 
83     ARMNN_ASSERT(m_Layer);
84 
85     InitializeArmComputeTensorData(*m_KernelTensor, m_Data.m_Weight);
86 
87     if (m_Data.m_Parameters.m_BiasEnabled)
88     {
89         InitializeArmComputeTensorData(*m_BiasTensor, m_Data.m_Bias);
90     }
91 
92     m_Layer->prepare();
93     FreeUnusedTensors();
94 }
95 
Execute() const96 void NeonTransposeConvolution2dWorkload::Execute() const
97 {
98     ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonTransposeConvolution2dWorkload_Execute");
99     m_Layer->run();
100 }
101 
FreeUnusedTensors()102 void NeonTransposeConvolution2dWorkload::FreeUnusedTensors()
103 {
104     FreeTensorIfUnused(m_KernelTensor);
105     FreeTensorIfUnused(m_BiasTensor);
106 }
107 
108 } // namespace armnn
109