• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrTriangulator_DEFINED
9 #define GrTriangulator_DEFINED
10 
11 #include "include/core/SkPath.h"
12 #include "include/core/SkPoint.h"
13 #include "include/private/SkColorData.h"
14 #include "src/core/SkArenaAlloc.h"
15 #include "src/gpu/GrColor.h"
16 
17 class GrEagerVertexAllocator;
18 struct SkRect;
19 
20 #define TRIANGULATOR_LOGGING 0
21 #define TRIANGULATOR_WIREFRAME 0
22 
23 /**
24  * Provides utility functions for converting paths to a collection of triangles.
25  */
26 class GrTriangulator {
27 public:
28     constexpr static int kArenaDefaultChunkSize = 16 * 1024;
29 
PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrEagerVertexAllocator * vertexAllocator,bool * isLinear)30     static int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
31                                GrEagerVertexAllocator* vertexAllocator, bool* isLinear) {
32         if (!path.isFinite()) {
33             return 0;
34         }
35         SkArenaAlloc alloc(kArenaDefaultChunkSize);
36         GrTriangulator triangulator(path, &alloc);
37         auto [ polys, success ] = triangulator.pathToPolys(tolerance, clipBounds, isLinear);
38         if (!success) {
39             return 0;
40         }
41         int count = triangulator.polysToTriangles(polys, vertexAllocator);
42         return count;
43     }
44 
45     // Enums used by GrTriangulator internals.
46     typedef enum { kLeft_Side, kRight_Side } Side;
47     enum class EdgeType { kInner, kOuter, kConnector };
48 
49     // Structs used by GrTriangulator internals.
50     struct Vertex;
51     struct VertexList;
52     struct Line;
53     struct Edge;
54     struct EdgeList;
55     struct MonotonePoly;
56     struct Poly;
57     struct Comparator;
58 
59 protected:
GrTriangulator(const SkPath & path,SkArenaAlloc * alloc)60     GrTriangulator(const SkPath& path, SkArenaAlloc* alloc) : fPath(path), fAlloc(alloc) {}
~GrTriangulator()61     virtual ~GrTriangulator() {}
62 
63     // There are six stages to the basic algorithm:
64     //
65     // 1) Linearize the path contours into piecewise linear segments:
66     void pathToContours(float tolerance, const SkRect& clipBounds, VertexList* contours,
67                         bool* isLinear) const;
68 
69     // 2) Build a mesh of edges connecting the vertices:
70     void contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
71                         const Comparator&);
72 
73     // 3) Sort the vertices in Y (and secondarily in X):
74     static void SortedMerge(VertexList* front, VertexList* back, VertexList* result,
75                             const Comparator&);
76     static void SortMesh(VertexList* vertices, const Comparator&);
77 
78     // 4) Simplify the mesh by inserting new vertices at intersecting edges:
79     enum class SimplifyResult {
80         kFailed,
81         kAlreadySimple,
82         kFoundSelfIntersection
83     };
84 
85     SimplifyResult SK_WARN_UNUSED_RESULT simplify(VertexList* mesh, const Comparator&);
86 
87     // 5) Tessellate the simplified mesh into monotone polygons:
88     virtual std::tuple<Poly*, bool> tessellate(const VertexList& vertices, const Comparator&);
89 
90     // 6) Triangulate the monotone polygons directly into a vertex buffer:
91     skgpu::VertexWriter polysToTriangles(Poly* polys,
92                                          SkPathFillType overrideFillType,
93                                          skgpu::VertexWriter data) const;
94 
95     // The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
96     // of vertices (and the necessity of inserting new vertices on intersection).
97     //
98     // Stages (4) and (5) use an active edge list -- a list of all edges for which the
99     // sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
100     // left-to-right based on the point where both edges are active (when both top vertices
101     // have been seen, so the "lower" top vertex of the two). If the top vertices are equal
102     // (shared), it's sorted based on the last point where both edges are active, so the
103     // "upper" bottom vertex.
104     //
105     // The most complex step is the simplification (4). It's based on the Bentley-Ottman
106     // line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
107     // not exact and may violate the mesh topology or active edge list ordering. We
108     // accommodate this by adjusting the topology of the mesh and AEL to match the intersection
109     // points. This occurs in two ways:
110     //
111     // A) Intersections may cause a shortened edge to no longer be ordered with respect to its
112     //    neighbouring edges at the top or bottom vertex. This is handled by merging the
113     //    edges (mergeCollinearVertices()).
114     // B) Intersections may cause an edge to violate the left-to-right ordering of the
115     //    active edge list. This is handled by detecting potential violations and rewinding
116     //    the active edge list to the vertex before they occur (rewind() during merging,
117     //    rewind_if_necessary() during splitting).
118     //
119     // The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
120     // Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
121     // currently uses a linked list for the active edge list, rather than a 2-3 tree as the
122     // paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
123     // become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
124     // insertions and removals was greater than the cost of infrequent O(N) lookups with the
125     // linked list implementation. With the latter, all removals are O(1), and most insertions
126     // are O(1), since we know the adjacent edge in the active edge list based on the topology.
127     // Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
128     // frequent. There may be other data structures worth investigating, however.
129     //
130     // Note that the orientation of the line sweep algorithms is determined by the aspect ratio of
131     // the path bounds. When the path is taller than it is wide, we sort vertices based on
132     // increasing Y coordinate, and secondarily by increasing X coordinate. When the path is wider
133     // than it is tall, we sort by increasing X coordinate, but secondarily by *decreasing* Y
134     // coordinate. This is so that the "left" and "right" orientation in the code remains correct
135     // (edges to the left are increasing in Y; edges to the right are decreasing in Y). That is, the
136     // setting rotates 90 degrees counterclockwise, rather that transposing.
137 
138     // Additional helpers and driver functions.
139     skgpu::VertexWriter emitMonotonePoly(const MonotonePoly*, skgpu::VertexWriter data) const;
140     skgpu::VertexWriter emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding,
141                                      skgpu::VertexWriter data) const;
142     skgpu::VertexWriter emitPoly(const Poly*, skgpu::VertexWriter data) const;
143 
144     Poly* makePoly(Poly** head, Vertex* v, int winding) const;
145     void appendPointToContour(const SkPoint& p, VertexList* contour) const;
146     void appendQuadraticToContour(const SkPoint[3], SkScalar toleranceSqd,
147                                   VertexList* contour) const;
148     void generateCubicPoints(const SkPoint&, const SkPoint&, const SkPoint&, const SkPoint&,
149                              SkScalar tolSqd, VertexList* contour, int pointsLeft) const;
150     bool applyFillType(int winding) const;
151     MonotonePoly* allocateMonotonePoly(Edge* edge, Side side, int winding);
152     Edge* allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type);
153     Edge* makeEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator&);
154     void setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
155                 const Comparator&) const;
156     void setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
157                    const Comparator&) const;
158     void mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
159                          const Comparator&) const;
160     void mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current,
161                          const Comparator&) const;
162     Edge* makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType, const Comparator&,
163                              int windingScale = 1);
164     void mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh, const Comparator&) const;
165     static void FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right);
166     void mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
167                              const Comparator&) const;
168     bool splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
169                    const Comparator&);
170     bool intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
171                            const Comparator&);
172     Vertex* makeSortedVertex(const SkPoint&, uint8_t alpha, VertexList* mesh, Vertex* reference,
173                              const Comparator&) const;
174     void computeBisector(Edge* edge1, Edge* edge2, Vertex*) const;
175     bool checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current,
176                               VertexList* mesh, const Comparator&);
177     void sanitizeContours(VertexList* contours, int contourCnt) const;
178     bool mergeCoincidentVertices(VertexList* mesh, const Comparator&) const;
179     void buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
180                     const Comparator&);
181     std::tuple<Poly*, bool> contoursToPolys(VertexList* contours, int contourCnt);
182     std::tuple<Poly*, bool> pathToPolys(float tolerance, const SkRect& clipBounds,
183                       bool* isLinear);
184     static int64_t CountPoints(Poly* polys, SkPathFillType overrideFillType);
185     int polysToTriangles(Poly*, GrEagerVertexAllocator*) const;
186 
187     // FIXME: fPath should be plumbed through function parameters instead.
188     const SkPath fPath;
189     SkArenaAlloc* const fAlloc;
190     int fNumMonotonePolys = 0;
191     int fNumEdges = 0;
192 
193     // Internal control knobs.
194     bool fRoundVerticesToQuarterPixel = false;
195     bool fEmitCoverage = false;
196     bool fPreserveCollinearVertices = false;
197     bool fCollectBreadcrumbTriangles = false;
198 
199     // The breadcrumb triangles serve as a glue that erases T-junctions between a path's outer
200     // curves and its inner polygon triangulation. Drawing a path's outer curves, breadcrumb
201     // triangles, and inner polygon triangulation all together into the stencil buffer has the same
202     // identical rasterized effect as stenciling a classic Redbook fan.
203     //
204     // The breadcrumb triangles track all the edge splits that led from the original inner polygon
205     // edges to the final triangulation. Every time an edge splits, we emit a razor-thin breadcrumb
206     // triangle consisting of the edge's original endpoints and the split point. (We also add
207     // supplemental breadcrumb triangles to areas where abs(winding) > 1.)
208     //
209     //                a
210     //               /
211     //              /
212     //             /
213     //            x  <- Edge splits at x. New breadcrumb triangle is: [a, b, x].
214     //           /
215     //          /
216     //         b
217     //
218     // The opposite-direction shared edges between the triangulation and breadcrumb triangles should
219     // all cancel out, leaving just the set of edges from the original polygon.
220     class BreadcrumbTriangleList {
221     public:
222         struct Node {
NodeNode223             Node(SkPoint a, SkPoint b, SkPoint c) : fPts{a, b, c} {}
224             SkPoint fPts[3];
225             Node* fNext = nullptr;
226         };
head()227         const Node* head() const { return fHead; }
count()228         int count() const { return fCount; }
229 
append(SkArenaAlloc * alloc,SkPoint a,SkPoint b,SkPoint c,int winding)230         void append(SkArenaAlloc* alloc, SkPoint a, SkPoint b, SkPoint c, int winding) {
231             if (a == b || a == c || b == c || winding == 0) {
232                 return;
233             }
234             if (winding < 0) {
235                 std::swap(a, b);
236                 winding = -winding;
237             }
238             for (int i = 0; i < winding; ++i) {
239                 SkASSERT(fTail && !(*fTail));
240                 *fTail = alloc->make<Node>(a, b, c);
241                 fTail = &(*fTail)->fNext;
242             }
243             fCount += winding;
244         }
245 
concat(BreadcrumbTriangleList && list)246         void concat(BreadcrumbTriangleList&& list) {
247             SkASSERT(fTail && !(*fTail));
248             if (list.fHead) {
249                 *fTail = list.fHead;
250                 fTail = list.fTail;
251                 fCount += list.fCount;
252                 list.fHead = nullptr;
253                 list.fTail = &list.fHead;
254                 list.fCount = 0;
255             }
256         }
257 
258     private:
259         Node* fHead = nullptr;
260         Node** fTail = &fHead;
261         int fCount = 0;
262     };
263 
264     mutable BreadcrumbTriangleList fBreadcrumbList;
265 };
266 
267 /**
268  * Vertices are used in three ways: first, the path contours are converted into a
269  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
270  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
271  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
272  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
273  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
274  * an individual Vertex from the path mesh may belong to multiple
275  * MonotonePolys, so the original Vertices cannot be re-used.
276  */
277 
278 struct GrTriangulator::Vertex {
VertexVertex279   Vertex(const SkPoint& point, uint8_t alpha)
280     : fPoint(point), fPrev(nullptr), fNext(nullptr)
281     , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
282     , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
283     , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr)
284     , fPartner(nullptr)
285     , fAlpha(alpha)
286     , fSynthetic(false)
287 #if TRIANGULATOR_LOGGING
288     , fID (-1.0f)
289 #endif
290     {}
291     SkPoint fPoint;               // Vertex position
292     Vertex* fPrev;                // Linked list of contours, then Y-sorted vertices.
293     Vertex* fNext;                // "
294     Edge*   fFirstEdgeAbove;      // Linked list of edges above this vertex.
295     Edge*   fLastEdgeAbove;       // "
296     Edge*   fFirstEdgeBelow;      // Linked list of edges below this vertex.
297     Edge*   fLastEdgeBelow;       // "
298     Edge*   fLeftEnclosingEdge;   // Nearest edge in the AEL left of this vertex.
299     Edge*   fRightEnclosingEdge;  // Nearest edge in the AEL right of this vertex.
300     Vertex* fPartner;             // Corresponding inner or outer vertex (for AA).
301     uint8_t fAlpha;
302     bool    fSynthetic;           // Is this a synthetic vertex?
303 #if TRIANGULATOR_LOGGING
304     float   fID;                  // Identifier used for logging.
305 #endif
isConnectedVertex306     bool isConnected() const { return this->fFirstEdgeAbove || this->fFirstEdgeBelow; }
307 };
308 
309 struct GrTriangulator::VertexList {
VertexListVertexList310     VertexList() : fHead(nullptr), fTail(nullptr) {}
VertexListVertexList311     VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {}
312     Vertex* fHead;
313     Vertex* fTail;
314     void insert(Vertex* v, Vertex* prev, Vertex* next);
appendVertexList315     void append(Vertex* v) { insert(v, fTail, nullptr); }
appendVertexList316     void append(const VertexList& list) {
317         if (!list.fHead) {
318             return;
319         }
320         if (fTail) {
321             fTail->fNext = list.fHead;
322             list.fHead->fPrev = fTail;
323         } else {
324             fHead = list.fHead;
325         }
326         fTail = list.fTail;
327     }
prependVertexList328     void prepend(Vertex* v) { insert(v, nullptr, fHead); }
329     void remove(Vertex* v);
closeVertexList330     void close() {
331         if (fHead && fTail) {
332             fTail->fNext = fHead;
333             fHead->fPrev = fTail;
334         }
335     }
336 #if TRIANGULATOR_LOGGING
337     void dump() const;
338 #endif
339 };
340 
341 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line.
342 struct GrTriangulator::Line {
LineLine343     Line(double a, double b, double c) : fA(a), fB(b), fC(c) {}
LineLine344     Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {}
LineLine345     Line(const SkPoint& p, const SkPoint& q)
346         : fA(static_cast<double>(q.fY) - p.fY)      // a = dY
347         , fB(static_cast<double>(p.fX) - q.fX)      // b = -dX
348         , fC(static_cast<double>(p.fY) * q.fX -     // c = cross(q, p)
349              static_cast<double>(p.fX) * q.fY) {}
distLine350     double dist(const SkPoint& p) const { return fA * p.fX + fB * p.fY + fC; }
351     Line operator*(double v) const { return Line(fA * v, fB * v, fC * v); }
magSqLine352     double magSq() const { return fA * fA + fB * fB; }
normalizeLine353     void normalize() {
354         double len = sqrt(this->magSq());
355         if (len == 0.0) {
356             return;
357         }
358         double scale = 1.0f / len;
359         fA *= scale;
360         fB *= scale;
361         fC *= scale;
362     }
nearParallelLine363     bool nearParallel(const Line& o) const {
364         return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001;
365     }
366 
367     // Compute the intersection of two (infinite) Lines.
368     bool intersect(const Line& other, SkPoint* point) const;
369     double fA, fB, fC;
370 };
371 
372 /**
373  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
374  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
375  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
376  * point). For speed, that case is only tested by the callers that require it (e.g.,
377  * rewind_if_necessary()). Edges also handle checking for intersection with other edges.
378  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
379  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
380  * a lot faster in the "not found" case.
381  *
382  * The coefficients of the line equation stored in double precision to avoid catastrophic
383  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
384  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
385  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
386  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
387  * this file).
388  */
389 
390 struct GrTriangulator::Edge {
EdgeEdge391     Edge(Vertex* top, Vertex* bottom, int winding, EdgeType type)
392         : fWinding(winding)
393         , fTop(top)
394         , fBottom(bottom)
395         , fType(type)
396         , fLeft(nullptr)
397         , fRight(nullptr)
398         , fPrevEdgeAbove(nullptr)
399         , fNextEdgeAbove(nullptr)
400         , fPrevEdgeBelow(nullptr)
401         , fNextEdgeBelow(nullptr)
402         , fLeftPoly(nullptr)
403         , fRightPoly(nullptr)
404         , fLeftPolyPrev(nullptr)
405         , fLeftPolyNext(nullptr)
406         , fRightPolyPrev(nullptr)
407         , fRightPolyNext(nullptr)
408         , fUsedInLeftPoly(false)
409         , fUsedInRightPoly(false)
410         , fLine(top, bottom) {
411         }
412     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
413     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
414     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
415     EdgeType fType;
416     Edge*    fLeft;             // The linked list of edges in the active edge list.
417     Edge*    fRight;            // "
418     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
419     Edge*    fNextEdgeAbove;    // "
420     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
421     Edge*    fNextEdgeBelow;    // "
422     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
423     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
424     Edge*    fLeftPolyPrev;
425     Edge*    fLeftPolyNext;
426     Edge*    fRightPolyPrev;
427     Edge*    fRightPolyNext;
428     bool     fUsedInLeftPoly;
429     bool     fUsedInRightPoly;
430     Line     fLine;
431 
distEdge432     double dist(const SkPoint& p) const {
433         // Coerce points coincident with the vertices to have dist = 0, since converting from
434         // a double intersection point back to float storage might construct a point that's no
435         // longer on the ideal line.
436         return (p == fTop->fPoint || p == fBottom->fPoint) ? 0.0 : fLine.dist(p);
437     }
isRightOfEdge438     bool isRightOf(Vertex* v) const { return this->dist(v->fPoint) < 0.0; }
isLeftOfEdge439     bool isLeftOf(Vertex* v) const { return this->dist(v->fPoint) > 0.0; }
recomputeEdge440     void recompute() { fLine = Line(fTop, fBottom); }
441     void insertAbove(Vertex*, const Comparator&);
442     void insertBelow(Vertex*, const Comparator&);
443     void disconnect();
444     bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const;
445 };
446 
447 struct GrTriangulator::EdgeList {
EdgeListEdgeList448     EdgeList() : fHead(nullptr), fTail(nullptr) {}
449     Edge* fHead;
450     Edge* fTail;
451     void insert(Edge* edge, Edge* prev, Edge* next);
452     void insert(Edge* edge, Edge* prev);
appendEdgeList453     void append(Edge* e) { insert(e, fTail, nullptr); }
454     void remove(Edge* edge);
removeAllEdgeList455     void removeAll() {
456         while (fHead) {
457             this->remove(fHead);
458         }
459     }
closeEdgeList460     void close() {
461         if (fHead && fTail) {
462             fTail->fRight = fHead;
463             fHead->fLeft = fTail;
464         }
465     }
containsEdgeList466     bool contains(Edge* edge) const { return edge->fLeft || edge->fRight || fHead == edge; }
467 };
468 
469 struct GrTriangulator::MonotonePoly {
MonotonePolyMonotonePoly470     MonotonePoly(Edge* edge, Side side, int winding)
471         : fSide(side)
472         , fFirstEdge(nullptr)
473         , fLastEdge(nullptr)
474         , fPrev(nullptr)
475         , fNext(nullptr)
476         , fWinding(winding) {
477         this->addEdge(edge);
478     }
479     Side          fSide;
480     Edge*         fFirstEdge;
481     Edge*         fLastEdge;
482     MonotonePoly* fPrev;
483     MonotonePoly* fNext;
484     int fWinding;
485     void addEdge(Edge*);
486 };
487 
488 struct GrTriangulator::Poly {
489     Poly(Vertex* v, int winding);
490 
491     Poly* addEdge(Edge* e, Side side, GrTriangulator*);
lastVertexPoly492     Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; }
493     Vertex* fFirstVertex;
494     int fWinding;
495     MonotonePoly* fHead;
496     MonotonePoly* fTail;
497     Poly* fNext;
498     Poly* fPartner;
499     int fCount;
500 #if TRIANGULATOR_LOGGING
501     int fID;
502 #endif
503 };
504 
505 struct GrTriangulator::Comparator {
506     enum class Direction { kVertical, kHorizontal };
ComparatorComparator507     Comparator(Direction direction) : fDirection(direction) {}
508     bool sweep_lt(const SkPoint& a, const SkPoint& b) const;
509     Direction fDirection;
510 };
511 
512 #endif
513