1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "method_verifier-inl.h"
18
19 #include <ostream>
20
21 #include "android-base/stringprintf.h"
22
23 #include "art_field-inl.h"
24 #include "art_method-inl.h"
25 #include "base/aborting.h"
26 #include "base/enums.h"
27 #include "base/leb128.h"
28 #include "base/indenter.h"
29 #include "base/logging.h" // For VLOG.
30 #include "base/mutex-inl.h"
31 #include "base/sdk_version.h"
32 #include "base/stl_util.h"
33 #include "base/systrace.h"
34 #include "base/time_utils.h"
35 #include "base/utils.h"
36 #include "class_linker.h"
37 #include "class_root-inl.h"
38 #include "dex/class_accessor-inl.h"
39 #include "dex/descriptors_names.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_exception_helpers.h"
42 #include "dex/dex_instruction-inl.h"
43 #include "dex/dex_instruction_utils.h"
44 #include "experimental_flags.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "handle_scope-inl.h"
47 #include "intern_table.h"
48 #include "mirror/class-inl.h"
49 #include "mirror/class.h"
50 #include "mirror/class_loader.h"
51 #include "mirror/dex_cache-inl.h"
52 #include "mirror/method_handle_impl.h"
53 #include "mirror/method_type.h"
54 #include "mirror/object-inl.h"
55 #include "mirror/object_array-inl.h"
56 #include "mirror/var_handle.h"
57 #include "obj_ptr-inl.h"
58 #include "reg_type-inl.h"
59 #include "register_line-inl.h"
60 #include "runtime.h"
61 #include "scoped_newline.h"
62 #include "scoped_thread_state_change-inl.h"
63 #include "stack.h"
64 #include "vdex_file.h"
65 #include "verifier/method_verifier.h"
66 #include "verifier_deps.h"
67
68 namespace art {
69 namespace verifier {
70
71 using android::base::StringPrintf;
72
73 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
74
PcToRegisterLineTable(ScopedArenaAllocator & allocator)75 PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& allocator)
76 : register_lines_(allocator.Adapter(kArenaAllocVerifier)) {}
77
Init(InstructionFlags * flags,uint32_t insns_size,uint16_t registers_size,ScopedArenaAllocator & allocator,RegTypeCache * reg_types,uint32_t interesting_dex_pc)78 void PcToRegisterLineTable::Init(InstructionFlags* flags,
79 uint32_t insns_size,
80 uint16_t registers_size,
81 ScopedArenaAllocator& allocator,
82 RegTypeCache* reg_types,
83 uint32_t interesting_dex_pc) {
84 DCHECK_GT(insns_size, 0U);
85 register_lines_.resize(insns_size);
86 for (uint32_t i = 0; i < insns_size; i++) {
87 if ((i == interesting_dex_pc) || flags[i].IsBranchTarget()) {
88 register_lines_[i].reset(RegisterLine::Create(registers_size, allocator, reg_types));
89 }
90 }
91 }
92
~PcToRegisterLineTable()93 PcToRegisterLineTable::~PcToRegisterLineTable() {}
94
95 namespace impl {
96 namespace {
97
98 enum class CheckAccess {
99 kNo,
100 kOnResolvedClass,
101 kYes,
102 };
103
104 enum class FieldAccessType {
105 kAccGet,
106 kAccPut
107 };
108
109 // Instruction types that are not marked as throwing (because they normally would not), but for
110 // historical reasons may do so. These instructions cannot be marked kThrow as that would introduce
111 // a general flow that is unwanted.
112 //
113 // Note: Not implemented as Instruction::Flags value as that set is full and we'd need to increase
114 // the struct size (making it a non-power-of-two) for a single element.
115 //
116 // Note: This should eventually be removed.
IsCompatThrow(Instruction::Code opcode)117 constexpr bool IsCompatThrow(Instruction::Code opcode) {
118 return opcode == Instruction::Code::RETURN_OBJECT || opcode == Instruction::Code::MOVE_EXCEPTION;
119 }
120
121 template <bool kVerifierDebug>
122 class MethodVerifier final : public ::art::verifier::MethodVerifier {
123 public:
IsInstanceConstructor() const124 bool IsInstanceConstructor() const {
125 return IsConstructor() && !IsStatic();
126 }
127
ResolveCheckedClass(dex::TypeIndex class_idx)128 const RegType& ResolveCheckedClass(dex::TypeIndex class_idx) override
129 REQUIRES_SHARED(Locks::mutator_lock_) {
130 DCHECK(!HasFailures());
131 const RegType& result = ResolveClass<CheckAccess::kYes>(class_idx);
132 DCHECK(!HasFailures());
133 return result;
134 }
135
136 void FindLocksAtDexPc() REQUIRES_SHARED(Locks::mutator_lock_);
137
138 private:
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,const DexFile * dex_file,const dex::CodeItem * code_item,uint32_t method_idx,bool can_load_classes,bool allow_thread_suspension,bool aot_mode,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,uint32_t access_flags,bool verify_to_dump,uint32_t api_level)139 MethodVerifier(Thread* self,
140 ClassLinker* class_linker,
141 ArenaPool* arena_pool,
142 VerifierDeps* verifier_deps,
143 const DexFile* dex_file,
144 const dex::CodeItem* code_item,
145 uint32_t method_idx,
146 bool can_load_classes,
147 bool allow_thread_suspension,
148 bool aot_mode,
149 Handle<mirror::DexCache> dex_cache,
150 Handle<mirror::ClassLoader> class_loader,
151 const dex::ClassDef& class_def,
152 uint32_t access_flags,
153 bool verify_to_dump,
154 uint32_t api_level) REQUIRES_SHARED(Locks::mutator_lock_)
155 : art::verifier::MethodVerifier(self,
156 class_linker,
157 arena_pool,
158 verifier_deps,
159 dex_file,
160 class_def,
161 code_item,
162 method_idx,
163 can_load_classes,
164 allow_thread_suspension,
165 aot_mode),
166 method_access_flags_(access_flags),
167 return_type_(nullptr),
168 dex_cache_(dex_cache),
169 class_loader_(class_loader),
170 declaring_class_(nullptr),
171 interesting_dex_pc_(-1),
172 monitor_enter_dex_pcs_(nullptr),
173 verify_to_dump_(verify_to_dump),
174 allow_thread_suspension_(allow_thread_suspension),
175 is_constructor_(false),
176 api_level_(api_level == 0 ? std::numeric_limits<uint32_t>::max() : api_level) {
177 }
178
UninstantiableError(const char * descriptor)179 void UninstantiableError(const char* descriptor) {
180 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
181 << "non-instantiable klass " << descriptor;
182 }
IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)183 static bool IsInstantiableOrPrimitive(ObjPtr<mirror::Class> klass)
184 REQUIRES_SHARED(Locks::mutator_lock_) {
185 return klass->IsInstantiable() || klass->IsPrimitive();
186 }
187
188 // Is the method being verified a constructor? See the comment on the field.
IsConstructor() const189 bool IsConstructor() const {
190 return is_constructor_;
191 }
192
193 // Is the method verified static?
IsStatic() const194 bool IsStatic() const {
195 return (method_access_flags_ & kAccStatic) != 0;
196 }
197
198 // Adds the given string to the beginning of the last failure message.
PrependToLastFailMessage(std::string prepend)199 void PrependToLastFailMessage(std::string prepend) {
200 size_t failure_num = failure_messages_.size();
201 DCHECK_NE(failure_num, 0U);
202 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
203 prepend += last_fail_message->str();
204 failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
205 delete last_fail_message;
206 }
207
208 // Adds the given string to the end of the last failure message.
AppendToLastFailMessage(const std::string & append)209 void AppendToLastFailMessage(const std::string& append) {
210 size_t failure_num = failure_messages_.size();
211 DCHECK_NE(failure_num, 0U);
212 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
213 (*last_fail_message) << append;
214 }
215
216 /*
217 * Compute the width of the instruction at each address in the instruction stream, and store it in
218 * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch
219 * table data, are not touched (so the caller should probably initialize "insn_flags" to zero).
220 *
221 * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set.
222 *
223 * Performs some static checks, notably:
224 * - opcode of first instruction begins at index 0
225 * - only documented instructions may appear
226 * - each instruction follows the last
227 * - last byte of last instruction is at (code_length-1)
228 *
229 * Logs an error and returns "false" on failure.
230 */
231 bool ComputeWidthsAndCountOps();
232
233 /*
234 * Set the "in try" flags for all instructions protected by "try" statements. Also sets the
235 * "branch target" flags for exception handlers.
236 *
237 * Call this after widths have been set in "insn_flags".
238 *
239 * Returns "false" if something in the exception table looks fishy, but we're expecting the
240 * exception table to be valid.
241 */
242 bool ScanTryCatchBlocks() REQUIRES_SHARED(Locks::mutator_lock_);
243
244 /*
245 * Perform static verification on all instructions in a method.
246 *
247 * Walks through instructions in a method calling VerifyInstruction on each.
248 */
249 template <bool kAllowRuntimeOnlyInstructions>
250 bool VerifyInstructions();
251
252 /*
253 * Perform static verification on an instruction.
254 *
255 * As a side effect, this sets the "branch target" flags in InsnFlags.
256 *
257 * "(CF)" items are handled during code-flow analysis.
258 *
259 * v3 4.10.1
260 * - target of each jump and branch instruction must be valid
261 * - targets of switch statements must be valid
262 * - operands referencing constant pool entries must be valid
263 * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid
264 * - (CF) operands of method invocation instructions must be valid
265 * - (CF) only invoke-direct can call a method starting with '<'
266 * - (CF) <clinit> must never be called explicitly
267 * - operands of instanceof, checkcast, new (and variants) must be valid
268 * - new-array[-type] limited to 255 dimensions
269 * - can't use "new" on an array class
270 * - (?) limit dimensions in multi-array creation
271 * - local variable load/store register values must be in valid range
272 *
273 * v3 4.11.1.2
274 * - branches must be within the bounds of the code array
275 * - targets of all control-flow instructions are the start of an instruction
276 * - register accesses fall within range of allocated registers
277 * - (N/A) access to constant pool must be of appropriate type
278 * - code does not end in the middle of an instruction
279 * - execution cannot fall off the end of the code
280 * - (earlier) for each exception handler, the "try" area must begin and
281 * end at the start of an instruction (end can be at the end of the code)
282 * - (earlier) for each exception handler, the handler must start at a valid
283 * instruction
284 */
285 template <bool kAllowRuntimeOnlyInstructions>
286 bool VerifyInstruction(const Instruction* inst, uint32_t code_offset);
287
288 /* Ensure that the register index is valid for this code item. */
CheckRegisterIndex(uint32_t idx)289 bool CheckRegisterIndex(uint32_t idx) {
290 if (UNLIKELY(idx >= code_item_accessor_.RegistersSize())) {
291 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
292 << code_item_accessor_.RegistersSize() << ")";
293 return false;
294 }
295 return true;
296 }
297
298 /* Ensure that the wide register index is valid for this code item. */
CheckWideRegisterIndex(uint32_t idx)299 bool CheckWideRegisterIndex(uint32_t idx) {
300 if (UNLIKELY(idx + 1 >= code_item_accessor_.RegistersSize())) {
301 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
302 << "+1 >= " << code_item_accessor_.RegistersSize() << ")";
303 return false;
304 }
305 return true;
306 }
307
308 // Perform static checks on an instruction referencing a CallSite. All we do here is ensure that
309 // the call site index is in the valid range.
CheckCallSiteIndex(uint32_t idx)310 bool CheckCallSiteIndex(uint32_t idx) {
311 uint32_t limit = dex_file_->NumCallSiteIds();
312 if (UNLIKELY(idx >= limit)) {
313 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad call site index " << idx << " (max "
314 << limit << ")";
315 return false;
316 }
317 return true;
318 }
319
320 // Perform static checks on a field Get or set instruction. All we do here is ensure that the
321 // field index is in the valid range.
CheckFieldIndex(uint32_t idx)322 bool CheckFieldIndex(uint32_t idx) {
323 if (UNLIKELY(idx >= dex_file_->GetHeader().field_ids_size_)) {
324 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
325 << dex_file_->GetHeader().field_ids_size_ << ")";
326 return false;
327 }
328 return true;
329 }
330
331 // Perform static checks on a method invocation instruction. All we do here is ensure that the
332 // method index is in the valid range.
CheckMethodIndex(uint32_t idx)333 bool CheckMethodIndex(uint32_t idx) {
334 if (UNLIKELY(idx >= dex_file_->GetHeader().method_ids_size_)) {
335 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
336 << dex_file_->GetHeader().method_ids_size_ << ")";
337 return false;
338 }
339 return true;
340 }
341
342 // Perform static checks on an instruction referencing a constant method handle. All we do here
343 // is ensure that the method index is in the valid range.
CheckMethodHandleIndex(uint32_t idx)344 bool CheckMethodHandleIndex(uint32_t idx) {
345 uint32_t limit = dex_file_->NumMethodHandles();
346 if (UNLIKELY(idx >= limit)) {
347 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method handle index " << idx << " (max "
348 << limit << ")";
349 return false;
350 }
351 return true;
352 }
353
354 // Perform static checks on a "new-instance" instruction. Specifically, make sure the class
355 // reference isn't for an array class.
356 bool CheckNewInstance(dex::TypeIndex idx);
357
358 // Perform static checks on a prototype indexing instruction. All we do here is ensure that the
359 // prototype index is in the valid range.
CheckPrototypeIndex(uint32_t idx)360 bool CheckPrototypeIndex(uint32_t idx) {
361 if (UNLIKELY(idx >= dex_file_->GetHeader().proto_ids_size_)) {
362 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad prototype index " << idx << " (max "
363 << dex_file_->GetHeader().proto_ids_size_ << ")";
364 return false;
365 }
366 return true;
367 }
368
369 /* Ensure that the string index is in the valid range. */
CheckStringIndex(uint32_t idx)370 bool CheckStringIndex(uint32_t idx) {
371 if (UNLIKELY(idx >= dex_file_->GetHeader().string_ids_size_)) {
372 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
373 << dex_file_->GetHeader().string_ids_size_ << ")";
374 return false;
375 }
376 return true;
377 }
378
379 // Perform static checks on an instruction that takes a class constant. Ensure that the class
380 // index is in the valid range.
CheckTypeIndex(dex::TypeIndex idx)381 bool CheckTypeIndex(dex::TypeIndex idx) {
382 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
383 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
384 << dex_file_->GetHeader().type_ids_size_ << ")";
385 return false;
386 }
387 return true;
388 }
389
390 // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't
391 // creating an array of arrays that causes the number of dimensions to exceed 255.
392 bool CheckNewArray(dex::TypeIndex idx);
393
394 // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction.
395 bool CheckArrayData(uint32_t cur_offset);
396
397 // Verify that the target of a branch instruction is valid. We don't expect code to jump directly
398 // into an exception handler, but it's valid to do so as long as the target isn't a
399 // "move-exception" instruction. We verify that in a later stage.
400 // The dex format forbids certain instructions from branching to themselves.
401 // Updates "insn_flags_", setting the "branch target" flag.
402 bool CheckBranchTarget(uint32_t cur_offset);
403
404 // Verify a switch table. "cur_offset" is the offset of the switch instruction.
405 // Updates "insn_flags_", setting the "branch target" flag.
406 bool CheckSwitchTargets(uint32_t cur_offset);
407
408 // Check the register indices used in a "vararg" instruction, such as invoke-virtual or
409 // filled-new-array.
410 // - vA holds word count (0-5), args[] have values.
411 // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that
412 // takes a double is done with consecutive registers. This requires parsing the target method
413 // signature, which we will be doing later on during the code flow analysis.
CheckVarArgRegs(uint32_t vA,uint32_t arg[])414 bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
415 uint16_t registers_size = code_item_accessor_.RegistersSize();
416 for (uint32_t idx = 0; idx < vA; idx++) {
417 if (UNLIKELY(arg[idx] >= registers_size)) {
418 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
419 << ") in non-range invoke (>= " << registers_size << ")";
420 return false;
421 }
422 }
423
424 return true;
425 }
426
427 // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range
428 // or filled-new-array/range.
429 // - vA holds word count, vC holds index of first reg.
CheckVarArgRangeRegs(uint32_t vA,uint32_t vC)430 bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
431 uint16_t registers_size = code_item_accessor_.RegistersSize();
432 // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
433 // integer overflow when adding them here.
434 if (UNLIKELY(vA + vC > registers_size)) {
435 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
436 << " in range invoke (> " << registers_size << ")";
437 return false;
438 }
439 return true;
440 }
441
442 // Checks the method matches the expectations required to be signature polymorphic.
443 bool CheckSignaturePolymorphicMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
444
445 // Checks the invoked receiver matches the expectations for signature polymorphic methods.
446 bool CheckSignaturePolymorphicReceiver(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
447
448 // Extract the relative offset from a branch instruction.
449 // Returns "false" on failure (e.g. this isn't a branch instruction).
450 bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
451 bool* selfOkay);
452
453 /* Perform detailed code-flow analysis on a single method. */
454 bool VerifyCodeFlow() REQUIRES_SHARED(Locks::mutator_lock_);
455
456 // Set the register types for the first instruction in the method based on the method signature.
457 // This has the side-effect of validating the signature.
458 bool SetTypesFromSignature() REQUIRES_SHARED(Locks::mutator_lock_);
459
460 /*
461 * Perform code flow on a method.
462 *
463 * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first
464 * instruction, process it (setting additional "changed" bits), and repeat until there are no
465 * more.
466 *
467 * v3 4.11.1.1
468 * - (N/A) operand stack is always the same size
469 * - operand stack [registers] contain the correct types of values
470 * - local variables [registers] contain the correct types of values
471 * - methods are invoked with the appropriate arguments
472 * - fields are assigned using values of appropriate types
473 * - opcodes have the correct type values in operand registers
474 * - there is never an uninitialized class instance in a local variable in code protected by an
475 * exception handler (operand stack is okay, because the operand stack is discarded when an
476 * exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of
477 * register typing]
478 *
479 * v3 4.11.1.2
480 * - execution cannot fall off the end of the code
481 *
482 * (We also do many of the items described in the "static checks" sections, because it's easier to
483 * do them here.)
484 *
485 * We need an array of RegType values, one per register, for every instruction. If the method uses
486 * monitor-enter, we need extra data for every register, and a stack for every "interesting"
487 * instruction. In theory this could become quite large -- up to several megabytes for a monster
488 * function.
489 *
490 * NOTE:
491 * The spec forbids backward branches when there's an uninitialized reference in a register. The
492 * idea is to prevent something like this:
493 * loop:
494 * move r1, r0
495 * new-instance r0, MyClass
496 * ...
497 * if-eq rN, loop // once
498 * initialize r0
499 *
500 * This leaves us with two different instances, both allocated by the same instruction, but only
501 * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around
502 * it by preventing backward branches. We achieve identical results without restricting code
503 * reordering by specifying that you can't execute the new-instance instruction if a register
504 * contains an uninitialized instance created by that same instruction.
505 */
506 template <bool kMonitorDexPCs>
507 bool CodeFlowVerifyMethod() REQUIRES_SHARED(Locks::mutator_lock_);
508
509 /*
510 * Perform verification for a single instruction.
511 *
512 * This requires fully decoding the instruction to determine the effect it has on registers.
513 *
514 * Finds zero or more following instructions and sets the "changed" flag if execution at that
515 * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target
516 * addresses. Does not set or clear any other flags in "insn_flags_".
517 */
518 bool CodeFlowVerifyInstruction(uint32_t* start_guess)
519 REQUIRES_SHARED(Locks::mutator_lock_);
520
521 // Perform verification of a new array instruction
522 void VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range)
523 REQUIRES_SHARED(Locks::mutator_lock_);
524
525 // Helper to perform verification on puts of primitive type.
526 void VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
527 const uint32_t vregA) REQUIRES_SHARED(Locks::mutator_lock_);
528
529 // Perform verification of an aget instruction. The destination register's type will be set to
530 // be that of component type of the array unless the array type is unknown, in which case a
531 // bottom type inferred from the type of instruction is used. is_primitive is false for an
532 // aget-object.
533 void VerifyAGet(const Instruction* inst, const RegType& insn_type,
534 bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
535
536 // Perform verification of an aput instruction.
537 void VerifyAPut(const Instruction* inst, const RegType& insn_type,
538 bool is_primitive) REQUIRES_SHARED(Locks::mutator_lock_);
539
540 // Lookup instance field and fail for resolution violations
541 ArtField* GetInstanceField(const RegType& obj_type, int field_idx)
542 REQUIRES_SHARED(Locks::mutator_lock_);
543
544 // Lookup static field and fail for resolution violations
545 ArtField* GetStaticField(int field_idx) REQUIRES_SHARED(Locks::mutator_lock_);
546
547 // Perform verification of an iget/sget/iput/sput instruction.
548 template <FieldAccessType kAccType>
549 void VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
550 bool is_primitive, bool is_static)
551 REQUIRES_SHARED(Locks::mutator_lock_);
552
553 // Resolves a class based on an index and, if C is kYes, performs access checks to ensure
554 // the referrer can access the resolved class.
555 template <CheckAccess C>
556 const RegType& ResolveClass(dex::TypeIndex class_idx)
557 REQUIRES_SHARED(Locks::mutator_lock_);
558
559 /*
560 * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler
561 * address, determine the Join of all exceptions that can land here. Fails if no matching
562 * exception handler can be found or if the Join of exception types fails.
563 */
564 const RegType& GetCaughtExceptionType()
565 REQUIRES_SHARED(Locks::mutator_lock_);
566
567 /*
568 * Resolves a method based on an index and performs access checks to ensure
569 * the referrer can access the resolved method.
570 * Does not throw exceptions.
571 */
572 ArtMethod* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type)
573 REQUIRES_SHARED(Locks::mutator_lock_);
574
575 /*
576 * Verify the arguments to a method. We're executing in "method", making
577 * a call to the method reference in vB.
578 *
579 * If this is a "direct" invoke, we allow calls to <init>. For calls to
580 * <init>, the first argument may be an uninitialized reference. Otherwise,
581 * calls to anything starting with '<' will be rejected, as will any
582 * uninitialized reference arguments.
583 *
584 * For non-static method calls, this will verify that the method call is
585 * appropriate for the "this" argument.
586 *
587 * The method reference is in vBBBB. The "is_range" parameter determines
588 * whether we use 0-4 "args" values or a range of registers defined by
589 * vAA and vCCCC.
590 *
591 * Widening conversions on integers and references are allowed, but
592 * narrowing conversions are not.
593 *
594 * Returns the resolved method on success, null on failure (with *failure
595 * set appropriately).
596 */
597 ArtMethod* VerifyInvocationArgs(const Instruction* inst, MethodType method_type, bool is_range)
598 REQUIRES_SHARED(Locks::mutator_lock_);
599
600 // Similar checks to the above, but on the proto. Will be used when the method cannot be
601 // resolved.
602 void VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, MethodType method_type,
603 bool is_range)
604 REQUIRES_SHARED(Locks::mutator_lock_);
605
606 template <class T>
607 ArtMethod* VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
608 MethodType method_type, bool is_range,
609 ArtMethod* res_method)
610 REQUIRES_SHARED(Locks::mutator_lock_);
611
612 /*
613 * Verify the arguments present for a call site. Returns "true" if all is well, "false" otherwise.
614 */
615 bool CheckCallSite(uint32_t call_site_idx);
616
617 /*
618 * Verify that the target instruction is not "move-exception". It's important that the only way
619 * to execute a move-exception is as the first instruction of an exception handler.
620 * Returns "true" if all is well, "false" if the target instruction is move-exception.
621 */
CheckNotMoveException(const uint16_t * insns,int insn_idx)622 bool CheckNotMoveException(const uint16_t* insns, int insn_idx) {
623 if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
624 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
625 return false;
626 }
627 return true;
628 }
629
630 /*
631 * Verify that the target instruction is not "move-result". It is important that we cannot
632 * branch to move-result instructions, but we have to make this a distinct check instead of
633 * adding it to CheckNotMoveException, because it is legal to continue into "move-result"
634 * instructions - as long as the previous instruction was an invoke, which is checked elsewhere.
635 */
CheckNotMoveResult(const uint16_t * insns,int insn_idx)636 bool CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
637 if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
638 ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
639 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
640 return false;
641 }
642 return true;
643 }
644
645 /*
646 * Verify that the target instruction is not "move-result" or "move-exception". This is to
647 * be used when checking branch and switch instructions, but not instructions that can
648 * continue.
649 */
CheckNotMoveExceptionOrMoveResult(const uint16_t * insns,int insn_idx)650 bool CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
651 return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
652 }
653
654 /*
655 * Control can transfer to "next_insn". Merge the registers from merge_line into the table at
656 * next_insn, and set the changed flag on the target address if any of the registers were changed.
657 * In the case of fall-through, update the merge line on a change as its the working line for the
658 * next instruction.
659 * Returns "false" if an error is encountered.
660 */
661 bool UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, bool update_merge_line)
662 REQUIRES_SHARED(Locks::mutator_lock_);
663
664 // Return the register type for the method.
665 const RegType& GetMethodReturnType() REQUIRES_SHARED(Locks::mutator_lock_);
666
667 // Get a type representing the declaring class of the method.
GetDeclaringClass()668 const RegType& GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
669 if (declaring_class_ == nullptr) {
670 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
671 const char* descriptor
672 = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
673 declaring_class_ = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
674 }
675 return *declaring_class_;
676 }
677
CurrentInsnFlags()678 InstructionFlags* CurrentInsnFlags() {
679 return &GetModifiableInstructionFlags(work_insn_idx_);
680 }
681
682 const RegType& DetermineCat1Constant(int32_t value)
683 REQUIRES_SHARED(Locks::mutator_lock_);
684
685 // Try to create a register type from the given class. In case a precise type is requested, but
686 // the class is not instantiable, a soft error (of type NO_CLASS) will be enqueued and a
687 // non-precise reference will be returned.
688 // Note: we reuse NO_CLASS as this will throw an exception at runtime, when the failing class is
689 // actually touched.
FromClass(const char * descriptor,ObjPtr<mirror::Class> klass,bool precise)690 const RegType& FromClass(const char* descriptor, ObjPtr<mirror::Class> klass, bool precise)
691 REQUIRES_SHARED(Locks::mutator_lock_) {
692 DCHECK(klass != nullptr);
693 if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
694 Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
695 << "non-instantiable klass " << descriptor;
696 precise = false;
697 }
698 return reg_types_.FromClass(descriptor, klass, precise);
699 }
700
701 ALWAYS_INLINE bool FailOrAbort(bool condition, const char* error_msg, uint32_t work_insn_idx);
702
GetModifiableInstructionFlags(size_t index)703 ALWAYS_INLINE InstructionFlags& GetModifiableInstructionFlags(size_t index) {
704 return insn_flags_[index];
705 }
706
707 // Returns the method index of an invoke instruction.
GetMethodIdxOfInvoke(const Instruction * inst)708 uint16_t GetMethodIdxOfInvoke(const Instruction* inst)
709 REQUIRES_SHARED(Locks::mutator_lock_) {
710 return inst->VRegB();
711 }
712 // Returns the field index of a field access instruction.
GetFieldIdxOfFieldAccess(const Instruction * inst,bool is_static)713 uint16_t GetFieldIdxOfFieldAccess(const Instruction* inst, bool is_static)
714 REQUIRES_SHARED(Locks::mutator_lock_) {
715 if (is_static) {
716 return inst->VRegB_21c();
717 } else {
718 return inst->VRegC_22c();
719 }
720 }
721
722 // Run verification on the method. Returns true if verification completes and false if the input
723 // has an irrecoverable corruption.
724 bool Verify() override REQUIRES_SHARED(Locks::mutator_lock_);
725
726 // For app-compatibility, code after a runtime throw is treated as dead code
727 // for apps targeting <= S.
728 // Returns whether the current instruction was marked as throwing.
729 bool PotentiallyMarkRuntimeThrow() override;
730
731 // Dump the failures encountered by the verifier.
DumpFailures(std::ostream & os)732 std::ostream& DumpFailures(std::ostream& os) {
733 DCHECK_EQ(failures_.size(), failure_messages_.size());
734 for (const auto* stream : failure_messages_) {
735 os << stream->str() << "\n";
736 }
737 return os;
738 }
739
740 // Dump the state of the verifier, namely each instruction, what flags are set on it, register
741 // information
Dump(std::ostream & os)742 void Dump(std::ostream& os) REQUIRES_SHARED(Locks::mutator_lock_) {
743 VariableIndentationOutputStream vios(&os);
744 Dump(&vios);
745 }
746 void Dump(VariableIndentationOutputStream* vios) REQUIRES_SHARED(Locks::mutator_lock_);
747
748 bool HandleMoveException(const Instruction* inst) REQUIRES_SHARED(Locks::mutator_lock_);
749
750 const uint32_t method_access_flags_; // Method's access flags.
751 const RegType* return_type_; // Lazily computed return type of the method.
752 // The dex_cache for the declaring class of the method.
753 Handle<mirror::DexCache> dex_cache_ GUARDED_BY(Locks::mutator_lock_);
754 // The class loader for the declaring class of the method.
755 Handle<mirror::ClassLoader> class_loader_ GUARDED_BY(Locks::mutator_lock_);
756 const RegType* declaring_class_; // Lazily computed reg type of the method's declaring class.
757
758 // The dex PC of a FindLocksAtDexPc request, -1 otherwise.
759 uint32_t interesting_dex_pc_;
760 // The container into which FindLocksAtDexPc should write the registers containing held locks,
761 // null if we're not doing FindLocksAtDexPc.
762 std::vector<DexLockInfo>* monitor_enter_dex_pcs_;
763
764 // Indicates whether we verify to dump the info. In that case we accept quickened instructions
765 // even though we might detect to be a compiler. Should only be set when running
766 // VerifyMethodAndDump.
767 const bool verify_to_dump_;
768
769 // Whether or not we call AllowThreadSuspension periodically, we want a way to disable this for
770 // thread dumping checkpoints since we may get thread suspension at an inopportune time due to
771 // FindLocksAtDexPC, resulting in deadlocks.
772 const bool allow_thread_suspension_;
773
774 // Whether the method seems to be a constructor. Note that this field exists as we can't trust
775 // the flags in the dex file. Some older code does not mark methods named "<init>" and "<clinit>"
776 // correctly.
777 //
778 // Note: this flag is only valid once Verify() has started.
779 bool is_constructor_;
780
781 // API level, for dependent checks. Note: we do not use '0' for unset here, to simplify checks.
782 // Instead, unset level should correspond to max().
783 const uint32_t api_level_;
784
785 friend class ::art::verifier::MethodVerifier;
786
787 DISALLOW_COPY_AND_ASSIGN(MethodVerifier);
788 };
789
790 // Note: returns true on failure.
791 template <bool kVerifierDebug>
FailOrAbort(bool condition,const char * error_msg,uint32_t work_insn_idx)792 inline bool MethodVerifier<kVerifierDebug>::FailOrAbort(bool condition,
793 const char* error_msg,
794 uint32_t work_insn_idx) {
795 if (kIsDebugBuild) {
796 // In a debug build, abort if the error condition is wrong. Only warn if
797 // we are already aborting (as this verification is likely run to print
798 // lock information).
799 if (LIKELY(gAborting == 0)) {
800 DCHECK(condition) << error_msg << work_insn_idx << " "
801 << dex_file_->PrettyMethod(dex_method_idx_);
802 } else {
803 if (!condition) {
804 LOG(ERROR) << error_msg << work_insn_idx;
805 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
806 return true;
807 }
808 }
809 } else {
810 // In a non-debug build, just fail the class.
811 if (!condition) {
812 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
813 return true;
814 }
815 }
816
817 return false;
818 }
819
IsLargeMethod(const CodeItemDataAccessor & accessor)820 static bool IsLargeMethod(const CodeItemDataAccessor& accessor) {
821 if (!accessor.HasCodeItem()) {
822 return false;
823 }
824
825 uint16_t registers_size = accessor.RegistersSize();
826 uint32_t insns_size = accessor.InsnsSizeInCodeUnits();
827
828 return registers_size * insns_size > 4*1024*1024;
829 }
830
831 template <bool kVerifierDebug>
FindLocksAtDexPc()832 void MethodVerifier<kVerifierDebug>::FindLocksAtDexPc() {
833 CHECK(monitor_enter_dex_pcs_ != nullptr);
834 CHECK(code_item_accessor_.HasCodeItem()); // This only makes sense for methods with code.
835
836 // Quick check whether there are any monitor_enter instructions before verifying.
837 for (const DexInstructionPcPair& inst : code_item_accessor_) {
838 if (inst->Opcode() == Instruction::MONITOR_ENTER) {
839 // Strictly speaking, we ought to be able to get away with doing a subset of the full method
840 // verification. In practice, the phase we want relies on data structures set up by all the
841 // earlier passes, so we just run the full method verification and bail out early when we've
842 // got what we wanted.
843 Verify();
844 return;
845 }
846 }
847 }
848
849 template <bool kVerifierDebug>
Verify()850 bool MethodVerifier<kVerifierDebug>::Verify() {
851 // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
852 // the name.
853 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
854 const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
855 bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
856 bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
857 bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
858 // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
859 if ((method_access_flags_ & kAccConstructor) != 0) {
860 if (!constructor_by_name) {
861 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
862 << "method is marked as constructor, but not named accordingly";
863 return false;
864 }
865 is_constructor_ = true;
866 } else if (constructor_by_name) {
867 LOG(WARNING) << "Method " << dex_file_->PrettyMethod(dex_method_idx_)
868 << " not marked as constructor.";
869 is_constructor_ = true;
870 }
871 // If it's a constructor, check whether IsStatic() matches the name.
872 // This should have been rejected by the dex file verifier. Only do in debug build.
873 if (kIsDebugBuild) {
874 if (IsConstructor()) {
875 if (IsStatic() ^ static_constructor_by_name) {
876 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
877 << "constructor name doesn't match static flag";
878 return false;
879 }
880 }
881 }
882
883 // Methods may only have one of public/protected/private.
884 // This should have been rejected by the dex file verifier. Only do in debug build.
885 if (kIsDebugBuild) {
886 size_t access_mod_count =
887 (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
888 (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
889 (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
890 if (access_mod_count > 1) {
891 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
892 return false;
893 }
894 }
895
896 // If there aren't any instructions, make sure that's expected, then exit successfully.
897 if (!code_item_accessor_.HasCodeItem()) {
898 // Only native or abstract methods may not have code.
899 if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
900 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
901 return false;
902 }
903
904 // Test FastNative and CriticalNative annotations. We do this in the
905 // verifier for convenience.
906 if ((method_access_flags_ & kAccNative) != 0) {
907 // Fetch the flags from the annotations: the class linker hasn't processed
908 // them yet.
909 uint32_t native_access_flags = annotations::GetNativeMethodAnnotationAccessFlags(
910 *dex_file_, class_def_, dex_method_idx_);
911 if ((native_access_flags & kAccFastNative) != 0) {
912 if ((method_access_flags_ & kAccSynchronized) != 0) {
913 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "fast native methods cannot be synchronized";
914 return false;
915 }
916 }
917 if ((native_access_flags & kAccCriticalNative) != 0) {
918 if ((method_access_flags_ & kAccSynchronized) != 0) {
919 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods cannot be synchronized";
920 return false;
921 }
922 if ((method_access_flags_ & kAccStatic) == 0) {
923 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "critical native methods must be static";
924 return false;
925 }
926 const char* shorty = dex_file_->GetMethodShorty(method_id);
927 for (size_t i = 0, len = strlen(shorty); i < len; ++i) {
928 if (Primitive::GetType(shorty[i]) == Primitive::kPrimNot) {
929 Fail(VERIFY_ERROR_BAD_CLASS_HARD) <<
930 "critical native methods must not have references as arguments or return type";
931 return false;
932 }
933 }
934 }
935 }
936
937 // This should have been rejected by the dex file verifier. Only do in debug build.
938 // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
939 if (kIsDebugBuild) {
940 if ((method_access_flags_ & kAccAbstract) != 0) {
941 // Abstract methods are not allowed to have the following flags.
942 static constexpr uint32_t kForbidden =
943 kAccPrivate |
944 kAccStatic |
945 kAccFinal |
946 kAccNative |
947 kAccStrict |
948 kAccSynchronized;
949 if ((method_access_flags_ & kForbidden) != 0) {
950 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
951 << "method can't be abstract and private/static/final/native/strict/synchronized";
952 return false;
953 }
954 }
955 if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
956 // Interface methods must be public and abstract (if default methods are disabled).
957 uint32_t kRequired = kAccPublic;
958 if ((method_access_flags_ & kRequired) != kRequired) {
959 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
960 return false;
961 }
962 // In addition to the above, interface methods must not be protected.
963 static constexpr uint32_t kForbidden = kAccProtected;
964 if ((method_access_flags_ & kForbidden) != 0) {
965 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
966 return false;
967 }
968 }
969 // We also don't allow constructors to be abstract or native.
970 if (IsConstructor()) {
971 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
972 return false;
973 }
974 }
975 return true;
976 }
977
978 // This should have been rejected by the dex file verifier. Only do in debug build.
979 if (kIsDebugBuild) {
980 // When there's code, the method must not be native or abstract.
981 if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
982 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
983 return false;
984 }
985
986 if ((class_def_.GetJavaAccessFlags() & kAccInterface) != 0) {
987 // Interfaces may always have static initializers for their fields. If we are running with
988 // default methods enabled we also allow other public, static, non-final methods to have code.
989 // Otherwise that is the only type of method allowed.
990 if (!(IsConstructor() && IsStatic())) {
991 if (IsInstanceConstructor()) {
992 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
993 return false;
994 } else if (method_access_flags_ & kAccFinal) {
995 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
996 return false;
997 } else {
998 uint32_t access_flag_options = kAccPublic;
999 if (dex_file_->SupportsDefaultMethods()) {
1000 access_flag_options |= kAccPrivate;
1001 }
1002 if (!(method_access_flags_ & access_flag_options)) {
1003 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1004 << "interfaces may not have protected or package-private members";
1005 return false;
1006 }
1007 }
1008 }
1009 }
1010
1011 // Instance constructors must not be synchronized.
1012 if (IsInstanceConstructor()) {
1013 static constexpr uint32_t kForbidden = kAccSynchronized;
1014 if ((method_access_flags_ & kForbidden) != 0) {
1015 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
1016 return false;
1017 }
1018 }
1019 }
1020
1021 // Consistency-check of the register counts.
1022 // ins + locals = registers, so make sure that ins <= registers.
1023 if (code_item_accessor_.InsSize() > code_item_accessor_.RegistersSize()) {
1024 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins="
1025 << code_item_accessor_.InsSize()
1026 << " regs=" << code_item_accessor_.RegistersSize();
1027 return false;
1028 }
1029
1030 // Allocate and initialize an array to hold instruction data.
1031 insn_flags_.reset(allocator_.AllocArray<InstructionFlags>(
1032 code_item_accessor_.InsnsSizeInCodeUnits()));
1033 DCHECK(insn_flags_ != nullptr);
1034 std::uninitialized_fill_n(insn_flags_.get(),
1035 code_item_accessor_.InsnsSizeInCodeUnits(),
1036 InstructionFlags());
1037 // Run through the instructions and see if the width checks out.
1038 bool result = ComputeWidthsAndCountOps();
1039 bool allow_runtime_only_instructions = !IsAotMode() || verify_to_dump_;
1040 // Flag instructions guarded by a "try" block and check exception handlers.
1041 result = result && ScanTryCatchBlocks();
1042 // Perform static instruction verification.
1043 result = result && (allow_runtime_only_instructions
1044 ? VerifyInstructions<true>()
1045 : VerifyInstructions<false>());
1046 // Perform code-flow analysis and return.
1047 result = result && VerifyCodeFlow();
1048
1049 return result;
1050 }
1051
1052 template <bool kVerifierDebug>
ComputeWidthsAndCountOps()1053 bool MethodVerifier<kVerifierDebug>::ComputeWidthsAndCountOps() {
1054 // We can't assume the instruction is well formed, handle the case where calculating the size
1055 // goes past the end of the code item.
1056 SafeDexInstructionIterator it(code_item_accessor_.begin(), code_item_accessor_.end());
1057 for ( ; !it.IsErrorState() && it < code_item_accessor_.end(); ++it) {
1058 // In case the instruction goes past the end of the code item, make sure to not process it.
1059 SafeDexInstructionIterator next = it;
1060 ++next;
1061 if (next.IsErrorState()) {
1062 break;
1063 }
1064 GetModifiableInstructionFlags(it.DexPc()).SetIsOpcode();
1065 }
1066
1067 if (it != code_item_accessor_.end()) {
1068 const size_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1069 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
1070 << it.DexPc() << " vs. " << insns_size << ")";
1071 return false;
1072 }
1073 DCHECK(GetInstructionFlags(0).IsOpcode());
1074
1075 return true;
1076 }
1077
1078 template <bool kVerifierDebug>
ScanTryCatchBlocks()1079 bool MethodVerifier<kVerifierDebug>::ScanTryCatchBlocks() {
1080 const uint32_t tries_size = code_item_accessor_.TriesSize();
1081 if (tries_size == 0) {
1082 return true;
1083 }
1084 const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1085 for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
1086 const uint32_t start = try_item.start_addr_;
1087 const uint32_t end = start + try_item.insn_count_;
1088 if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1089 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1090 << " endAddr=" << end << " (size=" << insns_size << ")";
1091 return false;
1092 }
1093 if (!GetInstructionFlags(start).IsOpcode()) {
1094 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1095 << "'try' block starts inside an instruction (" << start << ")";
1096 return false;
1097 }
1098 DexInstructionIterator end_it(code_item_accessor_.Insns(), end);
1099 for (DexInstructionIterator it(code_item_accessor_.Insns(), start); it < end_it; ++it) {
1100 GetModifiableInstructionFlags(it.DexPc()).SetInTry();
1101 }
1102 }
1103 // Iterate over each of the handlers to verify target addresses.
1104 const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
1105 const uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1106 ClassLinker* linker = GetClassLinker();
1107 for (uint32_t idx = 0; idx < handlers_size; idx++) {
1108 CatchHandlerIterator iterator(handlers_ptr);
1109 for (; iterator.HasNext(); iterator.Next()) {
1110 uint32_t dex_pc = iterator.GetHandlerAddress();
1111 if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1112 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1113 << "exception handler starts at bad address (" << dex_pc << ")";
1114 return false;
1115 }
1116 if (!CheckNotMoveResult(code_item_accessor_.Insns(), dex_pc)) {
1117 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1118 << "exception handler begins with move-result* (" << dex_pc << ")";
1119 return false;
1120 }
1121 GetModifiableInstructionFlags(dex_pc).SetBranchTarget();
1122 // Ensure exception types are resolved so that they don't need resolution to be delivered,
1123 // unresolved exception types will be ignored by exception delivery
1124 if (iterator.GetHandlerTypeIndex().IsValid()) {
1125 ObjPtr<mirror::Class> exception_type =
1126 linker->ResolveType(iterator.GetHandlerTypeIndex(), dex_cache_, class_loader_);
1127 if (exception_type == nullptr) {
1128 DCHECK(self_->IsExceptionPending());
1129 self_->ClearException();
1130 }
1131 }
1132 }
1133 handlers_ptr = iterator.EndDataPointer();
1134 }
1135 return true;
1136 }
1137
1138 template <bool kVerifierDebug>
1139 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstructions()1140 bool MethodVerifier<kVerifierDebug>::VerifyInstructions() {
1141 // Flag the start of the method as a branch target.
1142 GetModifiableInstructionFlags(0).SetBranchTarget();
1143 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1144 const uint32_t dex_pc = inst.DexPc();
1145 if (!VerifyInstruction<kAllowRuntimeOnlyInstructions>(&inst.Inst(), dex_pc)) {
1146 DCHECK_NE(failures_.size(), 0U);
1147 return false;
1148 }
1149 // Flag some interesting instructions.
1150 if (inst->IsReturn()) {
1151 GetModifiableInstructionFlags(dex_pc).SetReturn();
1152 } else if (inst->Opcode() == Instruction::CHECK_CAST) {
1153 // The dex-to-dex compiler wants type information to elide check-casts.
1154 GetModifiableInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1155 }
1156 }
1157 return true;
1158 }
1159
1160 template <bool kVerifierDebug>
1161 template <bool kAllowRuntimeOnlyInstructions>
VerifyInstruction(const Instruction * inst,uint32_t code_offset)1162 bool MethodVerifier<kVerifierDebug>::VerifyInstruction(const Instruction* inst,
1163 uint32_t code_offset) {
1164 bool result = true;
1165 switch (inst->GetVerifyTypeArgumentA()) {
1166 case Instruction::kVerifyRegA:
1167 result = result && CheckRegisterIndex(inst->VRegA());
1168 break;
1169 case Instruction::kVerifyRegAWide:
1170 result = result && CheckWideRegisterIndex(inst->VRegA());
1171 break;
1172 }
1173 switch (inst->GetVerifyTypeArgumentB()) {
1174 case Instruction::kVerifyRegB:
1175 result = result && CheckRegisterIndex(inst->VRegB());
1176 break;
1177 case Instruction::kVerifyRegBField:
1178 result = result && CheckFieldIndex(inst->VRegB());
1179 break;
1180 case Instruction::kVerifyRegBMethod:
1181 result = result && CheckMethodIndex(inst->VRegB());
1182 break;
1183 case Instruction::kVerifyRegBNewInstance:
1184 result = result && CheckNewInstance(dex::TypeIndex(inst->VRegB()));
1185 break;
1186 case Instruction::kVerifyRegBString:
1187 result = result && CheckStringIndex(inst->VRegB());
1188 break;
1189 case Instruction::kVerifyRegBType:
1190 result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegB()));
1191 break;
1192 case Instruction::kVerifyRegBWide:
1193 result = result && CheckWideRegisterIndex(inst->VRegB());
1194 break;
1195 case Instruction::kVerifyRegBCallSite:
1196 result = result && CheckCallSiteIndex(inst->VRegB());
1197 break;
1198 case Instruction::kVerifyRegBMethodHandle:
1199 result = result && CheckMethodHandleIndex(inst->VRegB());
1200 break;
1201 case Instruction::kVerifyRegBPrototype:
1202 result = result && CheckPrototypeIndex(inst->VRegB());
1203 break;
1204 }
1205 switch (inst->GetVerifyTypeArgumentC()) {
1206 case Instruction::kVerifyRegC:
1207 result = result && CheckRegisterIndex(inst->VRegC());
1208 break;
1209 case Instruction::kVerifyRegCField:
1210 result = result && CheckFieldIndex(inst->VRegC());
1211 break;
1212 case Instruction::kVerifyRegCNewArray:
1213 result = result && CheckNewArray(dex::TypeIndex(inst->VRegC()));
1214 break;
1215 case Instruction::kVerifyRegCType:
1216 result = result && CheckTypeIndex(dex::TypeIndex(inst->VRegC()));
1217 break;
1218 case Instruction::kVerifyRegCWide:
1219 result = result && CheckWideRegisterIndex(inst->VRegC());
1220 break;
1221 }
1222 switch (inst->GetVerifyTypeArgumentH()) {
1223 case Instruction::kVerifyRegHPrototype:
1224 result = result && CheckPrototypeIndex(inst->VRegH());
1225 break;
1226 }
1227 switch (inst->GetVerifyExtraFlags()) {
1228 case Instruction::kVerifyArrayData:
1229 result = result && CheckArrayData(code_offset);
1230 break;
1231 case Instruction::kVerifyBranchTarget:
1232 result = result && CheckBranchTarget(code_offset);
1233 break;
1234 case Instruction::kVerifySwitchTargets:
1235 result = result && CheckSwitchTargets(code_offset);
1236 break;
1237 case Instruction::kVerifyVarArgNonZero:
1238 // Fall-through.
1239 case Instruction::kVerifyVarArg: {
1240 // Instructions that can actually return a negative value shouldn't have this flag.
1241 uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1242 if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1243 v_a > Instruction::kMaxVarArgRegs) {
1244 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1245 "non-range invoke";
1246 return false;
1247 }
1248
1249 uint32_t args[Instruction::kMaxVarArgRegs];
1250 inst->GetVarArgs(args);
1251 result = result && CheckVarArgRegs(v_a, args);
1252 break;
1253 }
1254 case Instruction::kVerifyVarArgRangeNonZero:
1255 // Fall-through.
1256 case Instruction::kVerifyVarArgRange:
1257 if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1258 inst->VRegA() <= 0) {
1259 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1260 "range invoke";
1261 return false;
1262 }
1263 result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1264 break;
1265 case Instruction::kVerifyError:
1266 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1267 result = false;
1268 break;
1269 }
1270 if (!kAllowRuntimeOnlyInstructions && inst->GetVerifyIsRuntimeOnly()) {
1271 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1272 result = false;
1273 }
1274 return result;
1275 }
1276
1277 template <bool kVerifierDebug>
CheckNewInstance(dex::TypeIndex idx)1278 inline bool MethodVerifier<kVerifierDebug>::CheckNewInstance(dex::TypeIndex idx) {
1279 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1280 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1281 << dex_file_->GetHeader().type_ids_size_ << ")";
1282 return false;
1283 }
1284 // We don't need the actual class, just a pointer to the class name.
1285 const char* descriptor = dex_file_->StringByTypeIdx(idx);
1286 if (UNLIKELY(descriptor[0] != 'L')) {
1287 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1288 return false;
1289 } else if (UNLIKELY(strcmp(descriptor, "Ljava/lang/Class;") == 0)) {
1290 // An unlikely new instance on Class is not allowed. Fall back to interpreter to ensure an
1291 // exception is thrown when this statement is executed (compiled code would not do that).
1292 Fail(VERIFY_ERROR_INSTANTIATION);
1293 }
1294 return true;
1295 }
1296
1297 template <bool kVerifierDebug>
CheckNewArray(dex::TypeIndex idx)1298 bool MethodVerifier<kVerifierDebug>::CheckNewArray(dex::TypeIndex idx) {
1299 if (UNLIKELY(idx.index_ >= dex_file_->GetHeader().type_ids_size_)) {
1300 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx.index_ << " (max "
1301 << dex_file_->GetHeader().type_ids_size_ << ")";
1302 return false;
1303 }
1304 int bracket_count = 0;
1305 const char* descriptor = dex_file_->StringByTypeIdx(idx);
1306 const char* cp = descriptor;
1307 while (*cp++ == '[') {
1308 bracket_count++;
1309 }
1310 if (UNLIKELY(bracket_count == 0)) {
1311 /* The given class must be an array type. */
1312 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1313 << "can't new-array class '" << descriptor << "' (not an array)";
1314 return false;
1315 } else if (UNLIKELY(bracket_count > 255)) {
1316 /* It is illegal to create an array of more than 255 dimensions. */
1317 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1318 << "can't new-array class '" << descriptor << "' (exceeds limit)";
1319 return false;
1320 }
1321 return true;
1322 }
1323
1324 template <bool kVerifierDebug>
CheckArrayData(uint32_t cur_offset)1325 bool MethodVerifier<kVerifierDebug>::CheckArrayData(uint32_t cur_offset) {
1326 const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1327 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1328 const uint16_t* array_data;
1329 int32_t array_data_offset;
1330
1331 DCHECK_LT(cur_offset, insn_count);
1332 /* make sure the start of the array data table is in range */
1333 array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1334 if (UNLIKELY(static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1335 cur_offset + array_data_offset + 2 >= insn_count)) {
1336 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1337 << ", data offset " << array_data_offset
1338 << ", count " << insn_count;
1339 return false;
1340 }
1341 /* offset to array data table is a relative branch-style offset */
1342 array_data = insns + array_data_offset;
1343 // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1344 if (UNLIKELY(!IsAligned<4>(array_data))) {
1345 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1346 << ", data offset " << array_data_offset;
1347 return false;
1348 }
1349 // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1350 // traversing the code item linearly. It is an approximation for a by-spec padding value.
1351 if (UNLIKELY(!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode())) {
1352 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1353 << ", data offset " << array_data_offset
1354 << " not correctly visited, probably bad padding.";
1355 return false;
1356 }
1357
1358 uint32_t value_width = array_data[1];
1359 uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1360 uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1361 /* make sure the end of the switch is in range */
1362 if (UNLIKELY(cur_offset + array_data_offset + table_size > insn_count)) {
1363 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1364 << ", data offset " << array_data_offset << ", end "
1365 << cur_offset + array_data_offset + table_size
1366 << ", count " << insn_count;
1367 return false;
1368 }
1369 return true;
1370 }
1371
1372 template <bool kVerifierDebug>
CheckBranchTarget(uint32_t cur_offset)1373 bool MethodVerifier<kVerifierDebug>::CheckBranchTarget(uint32_t cur_offset) {
1374 int32_t offset;
1375 bool isConditional, selfOkay;
1376 if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1377 return false;
1378 }
1379 if (UNLIKELY(!selfOkay && offset == 0)) {
1380 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1381 << reinterpret_cast<void*>(cur_offset);
1382 return false;
1383 }
1384 // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1385 // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1386 if (UNLIKELY(((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset))) {
1387 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1388 << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1389 return false;
1390 }
1391 int32_t abs_offset = cur_offset + offset;
1392 if (UNLIKELY(abs_offset < 0 ||
1393 (uint32_t) abs_offset >= code_item_accessor_.InsnsSizeInCodeUnits() ||
1394 !GetInstructionFlags(abs_offset).IsOpcode())) {
1395 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1396 << reinterpret_cast<void*>(abs_offset) << ") at "
1397 << reinterpret_cast<void*>(cur_offset);
1398 return false;
1399 }
1400 GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1401 return true;
1402 }
1403
1404 template <bool kVerifierDebug>
GetBranchOffset(uint32_t cur_offset,int32_t * pOffset,bool * pConditional,bool * selfOkay)1405 bool MethodVerifier<kVerifierDebug>::GetBranchOffset(uint32_t cur_offset,
1406 int32_t* pOffset,
1407 bool* pConditional,
1408 bool* selfOkay) {
1409 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1410 *pConditional = false;
1411 *selfOkay = false;
1412 switch (*insns & 0xff) {
1413 case Instruction::GOTO:
1414 *pOffset = ((int16_t) *insns) >> 8;
1415 break;
1416 case Instruction::GOTO_32:
1417 *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1418 *selfOkay = true;
1419 break;
1420 case Instruction::GOTO_16:
1421 *pOffset = (int16_t) insns[1];
1422 break;
1423 case Instruction::IF_EQ:
1424 case Instruction::IF_NE:
1425 case Instruction::IF_LT:
1426 case Instruction::IF_GE:
1427 case Instruction::IF_GT:
1428 case Instruction::IF_LE:
1429 case Instruction::IF_EQZ:
1430 case Instruction::IF_NEZ:
1431 case Instruction::IF_LTZ:
1432 case Instruction::IF_GEZ:
1433 case Instruction::IF_GTZ:
1434 case Instruction::IF_LEZ:
1435 *pOffset = (int16_t) insns[1];
1436 *pConditional = true;
1437 break;
1438 default:
1439 return false;
1440 }
1441 return true;
1442 }
1443
1444 template <bool kVerifierDebug>
CheckSwitchTargets(uint32_t cur_offset)1445 bool MethodVerifier<kVerifierDebug>::CheckSwitchTargets(uint32_t cur_offset) {
1446 const uint32_t insn_count = code_item_accessor_.InsnsSizeInCodeUnits();
1447 DCHECK_LT(cur_offset, insn_count);
1448 const uint16_t* insns = code_item_accessor_.Insns() + cur_offset;
1449 /* make sure the start of the switch is in range */
1450 int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1451 if (UNLIKELY(static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1452 cur_offset + switch_offset + 2 > insn_count)) {
1453 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1454 << ", switch offset " << switch_offset
1455 << ", count " << insn_count;
1456 return false;
1457 }
1458 /* offset to switch table is a relative branch-style offset */
1459 const uint16_t* switch_insns = insns + switch_offset;
1460 // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1461 if (UNLIKELY(!IsAligned<4>(switch_insns))) {
1462 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1463 << ", switch offset " << switch_offset;
1464 return false;
1465 }
1466 // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1467 // traversing the code item linearly. It is an approximation for a by-spec padding value.
1468 if (UNLIKELY(!GetInstructionFlags(cur_offset + switch_offset).IsOpcode())) {
1469 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1470 << ", switch offset " << switch_offset
1471 << " not correctly visited, probably bad padding.";
1472 return false;
1473 }
1474
1475 bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1476
1477 uint32_t switch_count = switch_insns[1];
1478 int32_t targets_offset;
1479 uint16_t expected_signature;
1480 if (is_packed_switch) {
1481 /* 0=sig, 1=count, 2/3=firstKey */
1482 targets_offset = 4;
1483 expected_signature = Instruction::kPackedSwitchSignature;
1484 } else {
1485 /* 0=sig, 1=count, 2..count*2 = keys */
1486 targets_offset = 2 + 2 * switch_count;
1487 expected_signature = Instruction::kSparseSwitchSignature;
1488 }
1489 uint32_t table_size = targets_offset + switch_count * 2;
1490 if (UNLIKELY(switch_insns[0] != expected_signature)) {
1491 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1492 << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1493 switch_insns[0], expected_signature);
1494 return false;
1495 }
1496 /* make sure the end of the switch is in range */
1497 if (UNLIKELY(cur_offset + switch_offset + table_size > (uint32_t) insn_count)) {
1498 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1499 << ", switch offset " << switch_offset
1500 << ", end " << (cur_offset + switch_offset + table_size)
1501 << ", count " << insn_count;
1502 return false;
1503 }
1504
1505 constexpr int32_t keys_offset = 2;
1506 if (switch_count > 1) {
1507 if (is_packed_switch) {
1508 /* for a packed switch, verify that keys do not overflow int32 */
1509 int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1510 int32_t max_first_key =
1511 std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1512 if (UNLIKELY(first_key > max_first_key)) {
1513 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1514 << ", switch_count=" << switch_count;
1515 return false;
1516 }
1517 } else {
1518 /* for a sparse switch, verify the keys are in ascending order */
1519 int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1520 for (uint32_t targ = 1; targ < switch_count; targ++) {
1521 int32_t key =
1522 static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1523 static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1524 if (UNLIKELY(key <= last_key)) {
1525 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1526 << ", this=" << key;
1527 return false;
1528 }
1529 last_key = key;
1530 }
1531 }
1532 }
1533 /* verify each switch target */
1534 for (uint32_t targ = 0; targ < switch_count; targ++) {
1535 int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1536 static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1537 int32_t abs_offset = cur_offset + offset;
1538 if (UNLIKELY(abs_offset < 0 ||
1539 abs_offset >= static_cast<int32_t>(insn_count) ||
1540 !GetInstructionFlags(abs_offset).IsOpcode())) {
1541 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1542 << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1543 << reinterpret_cast<void*>(cur_offset)
1544 << "[" << targ << "]";
1545 return false;
1546 }
1547 GetModifiableInstructionFlags(abs_offset).SetBranchTarget();
1548 }
1549 return true;
1550 }
1551
1552 template <bool kVerifierDebug>
VerifyCodeFlow()1553 bool MethodVerifier<kVerifierDebug>::VerifyCodeFlow() {
1554 const uint16_t registers_size = code_item_accessor_.RegistersSize();
1555
1556 /* Create and initialize table holding register status */
1557 reg_table_.Init(insn_flags_.get(),
1558 code_item_accessor_.InsnsSizeInCodeUnits(),
1559 registers_size,
1560 allocator_,
1561 GetRegTypeCache(),
1562 interesting_dex_pc_);
1563
1564 work_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1565 saved_line_.reset(RegisterLine::Create(registers_size, allocator_, GetRegTypeCache()));
1566
1567 /* Initialize register types of method arguments. */
1568 if (!SetTypesFromSignature()) {
1569 DCHECK_NE(failures_.size(), 0U);
1570 std::string prepend("Bad signature in ");
1571 prepend += dex_file_->PrettyMethod(dex_method_idx_);
1572 PrependToLastFailMessage(prepend);
1573 return false;
1574 }
1575 // We may have a runtime failure here, clear.
1576 flags_.have_pending_runtime_throw_failure_ = false;
1577
1578 /* Perform code flow verification. */
1579 bool res = LIKELY(monitor_enter_dex_pcs_ == nullptr)
1580 ? CodeFlowVerifyMethod</*kMonitorDexPCs=*/ false>()
1581 : CodeFlowVerifyMethod</*kMonitorDexPCs=*/ true>();
1582 if (UNLIKELY(!res)) {
1583 DCHECK_NE(failures_.size(), 0U);
1584 return false;
1585 }
1586 return true;
1587 }
1588
1589 template <bool kVerifierDebug>
Dump(VariableIndentationOutputStream * vios)1590 void MethodVerifier<kVerifierDebug>::Dump(VariableIndentationOutputStream* vios) {
1591 if (!code_item_accessor_.HasCodeItem()) {
1592 vios->Stream() << "Native method\n";
1593 return;
1594 }
1595 {
1596 vios->Stream() << "Register Types:\n";
1597 ScopedIndentation indent1(vios);
1598 reg_types_.Dump(vios->Stream());
1599 }
1600 vios->Stream() << "Dumping instructions and register lines:\n";
1601 ScopedIndentation indent1(vios);
1602
1603 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1604 const size_t dex_pc = inst.DexPc();
1605
1606 // Might be asked to dump before the table is initialized.
1607 if (reg_table_.IsInitialized()) {
1608 RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1609 if (reg_line != nullptr) {
1610 vios->Stream() << reg_line->Dump(this) << "\n";
1611 }
1612 }
1613
1614 vios->Stream()
1615 << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1616 const bool kDumpHexOfInstruction = false;
1617 if (kDumpHexOfInstruction) {
1618 vios->Stream() << inst->DumpHex(5) << " ";
1619 }
1620 vios->Stream() << inst->DumpString(dex_file_) << "\n";
1621 }
1622 }
1623
IsPrimitiveDescriptor(char descriptor)1624 static bool IsPrimitiveDescriptor(char descriptor) {
1625 switch (descriptor) {
1626 case 'I':
1627 case 'C':
1628 case 'S':
1629 case 'B':
1630 case 'Z':
1631 case 'F':
1632 case 'D':
1633 case 'J':
1634 return true;
1635 default:
1636 return false;
1637 }
1638 }
1639
1640 template <bool kVerifierDebug>
SetTypesFromSignature()1641 bool MethodVerifier<kVerifierDebug>::SetTypesFromSignature() {
1642 RegisterLine* reg_line = reg_table_.GetLine(0);
1643
1644 // Should have been verified earlier.
1645 DCHECK_GE(code_item_accessor_.RegistersSize(), code_item_accessor_.InsSize());
1646
1647 uint32_t arg_start = code_item_accessor_.RegistersSize() - code_item_accessor_.InsSize();
1648 size_t expected_args = code_item_accessor_.InsSize(); /* long/double count as two */
1649
1650 // Include the "this" pointer.
1651 size_t cur_arg = 0;
1652 if (!IsStatic()) {
1653 if (expected_args == 0) {
1654 // Expect at least a receiver.
1655 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1656 return false;
1657 }
1658
1659 // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1660 // argument as uninitialized. This restricts field access until the superclass constructor is
1661 // called.
1662 const RegType& declaring_class = GetDeclaringClass();
1663 if (IsConstructor()) {
1664 if (declaring_class.IsJavaLangObject()) {
1665 // "this" is implicitly initialized.
1666 reg_line->SetThisInitialized();
1667 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, declaring_class);
1668 } else {
1669 reg_line->SetRegisterType<LockOp::kClear>(
1670 arg_start + cur_arg,
1671 reg_types_.UninitializedThisArgument(declaring_class));
1672 }
1673 } else {
1674 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, declaring_class);
1675 }
1676 cur_arg++;
1677 }
1678
1679 const dex::ProtoId& proto_id =
1680 dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1681 DexFileParameterIterator iterator(*dex_file_, proto_id);
1682
1683 for (; iterator.HasNext(); iterator.Next()) {
1684 const char* descriptor = iterator.GetDescriptor();
1685 if (descriptor == nullptr) {
1686 LOG(FATAL) << "Null descriptor";
1687 }
1688 if (cur_arg >= expected_args) {
1689 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1690 << " args, found more (" << descriptor << ")";
1691 return false;
1692 }
1693 switch (descriptor[0]) {
1694 case 'L':
1695 case '[':
1696 // We assume that reference arguments are initialized. The only way it could be otherwise
1697 // (assuming the caller was verified) is if the current method is <init>, but in that case
1698 // it's effectively considered initialized the instant we reach here (in the sense that we
1699 // can return without doing anything or call virtual methods).
1700 {
1701 // Note: don't check access. No error would be thrown for declaring or passing an
1702 // inaccessible class. Only actual accesses to fields or methods will.
1703 const RegType& reg_type = ResolveClass<CheckAccess::kNo>(iterator.GetTypeIdx());
1704 if (!reg_type.IsNonZeroReferenceTypes()) {
1705 DCHECK(HasFailures());
1706 return false;
1707 }
1708 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_type);
1709 }
1710 break;
1711 case 'Z':
1712 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Boolean());
1713 break;
1714 case 'C':
1715 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Char());
1716 break;
1717 case 'B':
1718 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Byte());
1719 break;
1720 case 'I':
1721 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Integer());
1722 break;
1723 case 'S':
1724 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Short());
1725 break;
1726 case 'F':
1727 reg_line->SetRegisterType<LockOp::kClear>(arg_start + cur_arg, reg_types_.Float());
1728 break;
1729 case 'J':
1730 case 'D': {
1731 if (cur_arg + 1 >= expected_args) {
1732 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1733 << " args, found more (" << descriptor << ")";
1734 return false;
1735 }
1736
1737 const RegType* lo_half;
1738 const RegType* hi_half;
1739 if (descriptor[0] == 'J') {
1740 lo_half = ®_types_.LongLo();
1741 hi_half = ®_types_.LongHi();
1742 } else {
1743 lo_half = ®_types_.DoubleLo();
1744 hi_half = ®_types_.DoubleHi();
1745 }
1746 reg_line->SetRegisterTypeWide(arg_start + cur_arg, *lo_half, *hi_half);
1747 cur_arg++;
1748 break;
1749 }
1750 default:
1751 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1752 << descriptor << "'";
1753 return false;
1754 }
1755 cur_arg++;
1756 }
1757 if (cur_arg != expected_args) {
1758 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1759 << " arguments, found " << cur_arg;
1760 return false;
1761 }
1762 const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1763 // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1764 // format. Only major difference from the method argument format is that 'V' is supported.
1765 bool result;
1766 if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1767 result = descriptor[1] == '\0';
1768 } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive
1769 size_t i = 0;
1770 do {
1771 i++;
1772 } while (descriptor[i] == '['); // process leading [
1773 if (descriptor[i] == 'L') { // object array
1774 do {
1775 i++; // find closing ;
1776 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1777 result = descriptor[i] == ';';
1778 } else { // primitive array
1779 result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1780 }
1781 } else if (descriptor[0] == 'L') {
1782 // could be more thorough here, but shouldn't be required
1783 size_t i = 0;
1784 do {
1785 i++;
1786 } while (descriptor[i] != ';' && descriptor[i] != '\0');
1787 result = descriptor[i] == ';';
1788 } else {
1789 result = false;
1790 }
1791 if (!result) {
1792 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1793 << descriptor << "'";
1794 }
1795 return result;
1796 }
1797
1798 COLD_ATTR
HandleMonitorDexPcsWorkLine(std::vector<::art::verifier::MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,RegisterLine * work_line)1799 void HandleMonitorDexPcsWorkLine(
1800 std::vector<::art::verifier::MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
1801 RegisterLine* work_line) {
1802 monitor_enter_dex_pcs->clear(); // The new work line is more accurate than the previous one.
1803
1804 std::map<uint32_t, ::art::verifier::MethodVerifier::DexLockInfo> depth_to_lock_info;
1805 auto collector = [&](uint32_t dex_reg, uint32_t depth) {
1806 auto insert_pair = depth_to_lock_info.emplace(
1807 depth, ::art::verifier::MethodVerifier::DexLockInfo(depth));
1808 auto it = insert_pair.first;
1809 auto set_insert_pair = it->second.dex_registers.insert(dex_reg);
1810 DCHECK(set_insert_pair.second);
1811 };
1812 work_line->IterateRegToLockDepths(collector);
1813 for (auto& pair : depth_to_lock_info) {
1814 monitor_enter_dex_pcs->push_back(pair.second);
1815 // Map depth to dex PC.
1816 monitor_enter_dex_pcs->back().dex_pc = work_line->GetMonitorEnterDexPc(pair.second.dex_pc);
1817 }
1818 }
1819
1820 template <bool kVerifierDebug>
1821 template <bool kMonitorDexPCs>
CodeFlowVerifyMethod()1822 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyMethod() {
1823 const uint16_t* insns = code_item_accessor_.Insns();
1824 const uint32_t insns_size = code_item_accessor_.InsnsSizeInCodeUnits();
1825
1826 /* Begin by marking the first instruction as "changed". */
1827 GetModifiableInstructionFlags(0).SetChanged();
1828 uint32_t start_guess = 0;
1829
1830 /* Continue until no instructions are marked "changed". */
1831 while (true) {
1832 if (allow_thread_suspension_) {
1833 self_->AllowThreadSuspension();
1834 }
1835 // Find the first marked one. Use "start_guess" as a way to find one quickly.
1836 uint32_t insn_idx = start_guess;
1837 for (; insn_idx < insns_size; insn_idx++) {
1838 if (GetInstructionFlags(insn_idx).IsChanged())
1839 break;
1840 }
1841 if (insn_idx == insns_size) {
1842 if (start_guess != 0) {
1843 /* try again, starting from the top */
1844 start_guess = 0;
1845 continue;
1846 } else {
1847 /* all flags are clear */
1848 break;
1849 }
1850 }
1851 // We carry the working set of registers from instruction to instruction. If this address can
1852 // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1853 // "changed" flags, we need to load the set of registers from the table.
1854 // Because we always prefer to continue on to the next instruction, we should never have a
1855 // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1856 // target.
1857 work_insn_idx_ = insn_idx;
1858 if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1859 work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1860 } else if (kIsDebugBuild) {
1861 /*
1862 * Consistency check: retrieve the stored register line (assuming
1863 * a full table) and make sure it actually matches.
1864 */
1865 RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1866 if (register_line != nullptr) {
1867 if (work_line_->CompareLine(register_line) != 0) {
1868 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
1869 LOG(FATAL_WITHOUT_ABORT) << info_messages_.str();
1870 LOG(FATAL) << "work_line diverged in " << dex_file_->PrettyMethod(dex_method_idx_)
1871 << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1872 << " work_line=" << work_line_->Dump(this) << "\n"
1873 << " expected=" << register_line->Dump(this);
1874 }
1875 }
1876 }
1877
1878 // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1879 // We want the state _before_ the instruction, for the case where the dex pc we're
1880 // interested in is itself a monitor-enter instruction (which is a likely place
1881 // for a thread to be suspended).
1882 if (kMonitorDexPCs && UNLIKELY(work_insn_idx_ == interesting_dex_pc_)) {
1883 HandleMonitorDexPcsWorkLine(monitor_enter_dex_pcs_, work_line_.get());
1884 }
1885
1886 if (!CodeFlowVerifyInstruction(&start_guess)) {
1887 std::string prepend(dex_file_->PrettyMethod(dex_method_idx_));
1888 prepend += " failed to verify: ";
1889 PrependToLastFailMessage(prepend);
1890 return false;
1891 }
1892 /* Clear "changed" and mark as visited. */
1893 GetModifiableInstructionFlags(insn_idx).SetVisited();
1894 GetModifiableInstructionFlags(insn_idx).ClearChanged();
1895 }
1896
1897 if (kVerifierDebug) {
1898 /*
1899 * Scan for dead code. There's nothing "evil" about dead code
1900 * (besides the wasted space), but it indicates a flaw somewhere
1901 * down the line, possibly in the verifier.
1902 *
1903 * If we've substituted "always throw" instructions into the stream,
1904 * we are almost certainly going to have some dead code.
1905 */
1906 int dead_start = -1;
1907
1908 for (const DexInstructionPcPair& inst : code_item_accessor_) {
1909 const uint32_t insn_idx = inst.DexPc();
1910 /*
1911 * Switch-statement data doesn't get "visited" by scanner. It
1912 * may or may not be preceded by a padding NOP (for alignment).
1913 */
1914 if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1915 insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1916 insns[insn_idx] == Instruction::kArrayDataSignature ||
1917 (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1918 (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1919 insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1920 insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1921 GetModifiableInstructionFlags(insn_idx).SetVisited();
1922 }
1923
1924 if (!GetInstructionFlags(insn_idx).IsVisited()) {
1925 if (dead_start < 0) {
1926 dead_start = insn_idx;
1927 }
1928 } else if (dead_start >= 0) {
1929 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1930 << "-" << reinterpret_cast<void*>(insn_idx - 1);
1931 dead_start = -1;
1932 }
1933 }
1934 if (dead_start >= 0) {
1935 LogVerifyInfo()
1936 << "dead code " << reinterpret_cast<void*>(dead_start)
1937 << "-" << reinterpret_cast<void*>(code_item_accessor_.InsnsSizeInCodeUnits() - 1);
1938 }
1939 // To dump the state of the verify after a method, do something like:
1940 // if (dex_file_->PrettyMethod(dex_method_idx_) ==
1941 // "boolean java.lang.String.equals(java.lang.Object)") {
1942 // LOG(INFO) << info_messages_.str();
1943 // }
1944 }
1945 return true;
1946 }
1947
1948 // Setup a register line for the given return instruction.
1949 template <bool kVerifierDebug>
AdjustReturnLine(MethodVerifier<kVerifierDebug> * verifier,const Instruction * ret_inst,RegisterLine * line)1950 static void AdjustReturnLine(MethodVerifier<kVerifierDebug>* verifier,
1951 const Instruction* ret_inst,
1952 RegisterLine* line) {
1953 Instruction::Code opcode = ret_inst->Opcode();
1954
1955 switch (opcode) {
1956 case Instruction::RETURN_VOID:
1957 if (verifier->IsInstanceConstructor()) {
1958 // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
1959 line->CheckConstructorReturn(verifier);
1960 }
1961 line->MarkAllRegistersAsConflicts(verifier);
1962 break;
1963
1964 case Instruction::RETURN:
1965 case Instruction::RETURN_OBJECT:
1966 line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
1967 break;
1968
1969 case Instruction::RETURN_WIDE:
1970 line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
1971 break;
1972
1973 default:
1974 LOG(FATAL) << "Unknown return opcode " << opcode;
1975 UNREACHABLE();
1976 }
1977 }
1978
1979 template <bool kVerifierDebug>
CodeFlowVerifyInstruction(uint32_t * start_guess)1980 bool MethodVerifier<kVerifierDebug>::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1981 /*
1982 * Once we finish decoding the instruction, we need to figure out where
1983 * we can go from here. There are three possible ways to transfer
1984 * control to another statement:
1985 *
1986 * (1) Continue to the next instruction. Applies to all but
1987 * unconditional branches, method returns, and exception throws.
1988 * (2) Branch to one or more possible locations. Applies to branches
1989 * and switch statements.
1990 * (3) Exception handlers. Applies to any instruction that can
1991 * throw an exception that is handled by an encompassing "try"
1992 * block.
1993 *
1994 * We can also return, in which case there is no successor instruction
1995 * from this point.
1996 *
1997 * The behavior can be determined from the opcode flags.
1998 */
1999 const uint16_t* insns = code_item_accessor_.Insns() + work_insn_idx_;
2000 const Instruction* inst = Instruction::At(insns);
2001 int opcode_flags = Instruction::FlagsOf(inst->Opcode());
2002
2003 int32_t branch_target = 0;
2004 bool just_set_result = false;
2005 if (kVerifierDebug) {
2006 // Generate processing back trace to debug verifier
2007 LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl
2008 << work_line_->Dump(this);
2009 }
2010
2011 /*
2012 * Make a copy of the previous register state. If the instruction
2013 * can throw an exception, we will copy/merge this into the "catch"
2014 * address rather than work_line, because we don't want the result
2015 * from the "successful" code path (e.g. a check-cast that "improves"
2016 * a type) to be visible to the exception handler.
2017 */
2018 if (((opcode_flags & Instruction::kThrow) != 0 || IsCompatThrow(inst->Opcode())) &&
2019 CurrentInsnFlags()->IsInTry()) {
2020 saved_line_->CopyFromLine(work_line_.get());
2021 } else if (kIsDebugBuild) {
2022 saved_line_->FillWithGarbage();
2023 }
2024 // Per-instruction flag, should not be set here.
2025 DCHECK(!flags_.have_pending_runtime_throw_failure_);
2026 bool exc_handler_unreachable = false;
2027
2028
2029 // We need to ensure the work line is consistent while performing validation. When we spot a
2030 // peephole pattern we compute a new line for either the fallthrough instruction or the
2031 // branch target.
2032 RegisterLineArenaUniquePtr branch_line;
2033 RegisterLineArenaUniquePtr fallthrough_line;
2034
2035 switch (inst->Opcode()) {
2036 case Instruction::NOP:
2037 /*
2038 * A "pure" NOP has no effect on anything. Data tables start with
2039 * a signature that looks like a NOP; if we see one of these in
2040 * the course of executing code then we have a problem.
2041 */
2042 if (inst->VRegA_10x() != 0) {
2043 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2044 }
2045 break;
2046
2047 case Instruction::MOVE:
2048 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2049 break;
2050 case Instruction::MOVE_FROM16:
2051 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2052 break;
2053 case Instruction::MOVE_16:
2054 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2055 break;
2056 case Instruction::MOVE_WIDE:
2057 work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2058 break;
2059 case Instruction::MOVE_WIDE_FROM16:
2060 work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2061 break;
2062 case Instruction::MOVE_WIDE_16:
2063 work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2064 break;
2065 case Instruction::MOVE_OBJECT:
2066 work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2067 break;
2068 case Instruction::MOVE_OBJECT_FROM16:
2069 work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2070 break;
2071 case Instruction::MOVE_OBJECT_16:
2072 work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2073 break;
2074
2075 /*
2076 * The move-result instructions copy data out of a "pseudo-register"
2077 * with the results from the last method invocation. In practice we
2078 * might want to hold the result in an actual CPU register, so the
2079 * Dalvik spec requires that these only appear immediately after an
2080 * invoke or filled-new-array.
2081 *
2082 * These calls invalidate the "result" register. (This is now
2083 * redundant with the reset done below, but it can make the debug info
2084 * easier to read in some cases.)
2085 */
2086 case Instruction::MOVE_RESULT:
2087 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2088 break;
2089 case Instruction::MOVE_RESULT_WIDE:
2090 work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2091 break;
2092 case Instruction::MOVE_RESULT_OBJECT:
2093 work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2094 break;
2095
2096 case Instruction::MOVE_EXCEPTION:
2097 if (!HandleMoveException(inst)) {
2098 exc_handler_unreachable = true;
2099 }
2100 break;
2101
2102 case Instruction::RETURN_VOID:
2103 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2104 if (!GetMethodReturnType().IsConflict()) {
2105 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2106 }
2107 }
2108 break;
2109 case Instruction::RETURN:
2110 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2111 /* check the method signature */
2112 const RegType& return_type = GetMethodReturnType();
2113 if (!return_type.IsCategory1Types()) {
2114 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2115 << return_type;
2116 } else {
2117 // Compilers may generate synthetic functions that write byte values into boolean fields.
2118 // Also, it may use integer values for boolean, byte, short, and character return types.
2119 const uint32_t vregA = inst->VRegA_11x();
2120 const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2121 bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2122 ((return_type.IsBoolean() || return_type.IsByte() ||
2123 return_type.IsShort() || return_type.IsChar()) &&
2124 src_type.IsInteger()));
2125 /* check the register contents */
2126 bool success =
2127 work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2128 if (!success) {
2129 AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2130 }
2131 }
2132 }
2133 break;
2134 case Instruction::RETURN_WIDE:
2135 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2136 /* check the method signature */
2137 const RegType& return_type = GetMethodReturnType();
2138 if (!return_type.IsCategory2Types()) {
2139 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2140 } else {
2141 /* check the register contents */
2142 const uint32_t vregA = inst->VRegA_11x();
2143 bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2144 if (!success) {
2145 AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2146 }
2147 }
2148 }
2149 break;
2150 case Instruction::RETURN_OBJECT:
2151 if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2152 const RegType& return_type = GetMethodReturnType();
2153 if (!return_type.IsReferenceTypes()) {
2154 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2155 } else {
2156 /* return_type is the *expected* return type, not register value */
2157 DCHECK(!return_type.IsZeroOrNull());
2158 DCHECK(!return_type.IsUninitializedReference());
2159 const uint32_t vregA = inst->VRegA_11x();
2160 const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2161 // Disallow returning undefined, conflict & uninitialized values and verify that the
2162 // reference in vAA is an instance of the "return_type."
2163 if (reg_type.IsUndefined()) {
2164 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2165 } else if (reg_type.IsConflict()) {
2166 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2167 } else if (reg_type.IsUninitializedTypes()) {
2168 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2169 << reg_type << "'";
2170 } else if (!reg_type.IsReferenceTypes()) {
2171 // We really do expect a reference here.
2172 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2173 << reg_type;
2174 } else if (!return_type.IsAssignableFrom(reg_type, this)) {
2175 if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2176 Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK)
2177 << " can't resolve returned type '" << return_type << "' or '" << reg_type << "'";
2178 } else {
2179 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2180 << "', but expected from declaration '" << return_type << "'";
2181 }
2182 }
2183 }
2184 }
2185 break;
2186
2187 /* could be boolean, int, float, or a null reference */
2188 case Instruction::CONST_4: {
2189 int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2190 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_11n(), DetermineCat1Constant(val));
2191 break;
2192 }
2193 case Instruction::CONST_16: {
2194 int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2195 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21s(), DetermineCat1Constant(val));
2196 break;
2197 }
2198 case Instruction::CONST: {
2199 int32_t val = inst->VRegB_31i();
2200 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_31i(), DetermineCat1Constant(val));
2201 break;
2202 }
2203 case Instruction::CONST_HIGH16: {
2204 int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2205 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21h(), DetermineCat1Constant(val));
2206 break;
2207 }
2208 /* could be long or double; resolved upon use */
2209 case Instruction::CONST_WIDE_16: {
2210 int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2211 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2212 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2213 work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
2214 break;
2215 }
2216 case Instruction::CONST_WIDE_32: {
2217 int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2218 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2219 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2220 work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
2221 break;
2222 }
2223 case Instruction::CONST_WIDE: {
2224 int64_t val = inst->VRegB_51l();
2225 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2226 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2227 work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
2228 break;
2229 }
2230 case Instruction::CONST_WIDE_HIGH16: {
2231 int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2232 const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2233 const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2234 work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
2235 break;
2236 }
2237 case Instruction::CONST_STRING:
2238 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21c(), reg_types_.JavaLangString());
2239 break;
2240 case Instruction::CONST_STRING_JUMBO:
2241 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_31c(), reg_types_.JavaLangString());
2242 break;
2243 case Instruction::CONST_CLASS: {
2244 // Get type from instruction if unresolved then we need an access check
2245 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2246 const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2247 // Register holds class, ie its type is class, on error it will hold Conflict.
2248 work_line_->SetRegisterType<LockOp::kClear>(
2249 inst->VRegA_21c(),
2250 res_type.IsConflict() ? res_type : reg_types_.JavaLangClass());
2251 break;
2252 }
2253 case Instruction::CONST_METHOD_HANDLE:
2254 work_line_->SetRegisterType<LockOp::kClear>(
2255 inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodHandle());
2256 break;
2257 case Instruction::CONST_METHOD_TYPE:
2258 work_line_->SetRegisterType<LockOp::kClear>(
2259 inst->VRegA_21c(), reg_types_.JavaLangInvokeMethodType());
2260 break;
2261 case Instruction::MONITOR_ENTER:
2262 work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2263 // Check whether the previous instruction is a move-object with vAA as a source, creating
2264 // untracked lock aliasing.
2265 if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2266 uint32_t prev_idx = work_insn_idx_ - 1;
2267 while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2268 prev_idx--;
2269 }
2270 const Instruction& prev_inst = code_item_accessor_.InstructionAt(prev_idx);
2271 switch (prev_inst.Opcode()) {
2272 case Instruction::MOVE_OBJECT:
2273 case Instruction::MOVE_OBJECT_16:
2274 case Instruction::MOVE_OBJECT_FROM16:
2275 if (prev_inst.VRegB() == inst->VRegA_11x()) {
2276 // Redo the copy. This won't change the register types, but update the lock status
2277 // for the aliased register.
2278 work_line_->CopyRegister1(this,
2279 prev_inst.VRegA(),
2280 prev_inst.VRegB(),
2281 kTypeCategoryRef);
2282 }
2283 break;
2284
2285 // Catch a case of register aliasing when two registers are linked to the same
2286 // java.lang.Class object via two consequent const-class instructions immediately
2287 // preceding monitor-enter called on one of those registers.
2288 case Instruction::CONST_CLASS: {
2289 // Get the second previous instruction.
2290 if (prev_idx == 0 || GetInstructionFlags(prev_idx).IsBranchTarget()) {
2291 break;
2292 }
2293 prev_idx--;
2294 while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2295 prev_idx--;
2296 }
2297 const Instruction& prev2_inst = code_item_accessor_.InstructionAt(prev_idx);
2298
2299 // Match the pattern "const-class; const-class; monitor-enter;"
2300 if (prev2_inst.Opcode() != Instruction::CONST_CLASS) {
2301 break;
2302 }
2303
2304 // Ensure both const-classes are called for the same type_idx.
2305 if (prev_inst.VRegB_21c() != prev2_inst.VRegB_21c()) {
2306 break;
2307 }
2308
2309 // Update the lock status for the aliased register.
2310 if (prev_inst.VRegA() == inst->VRegA_11x()) {
2311 work_line_->CopyRegister1(this,
2312 prev2_inst.VRegA(),
2313 inst->VRegA_11x(),
2314 kTypeCategoryRef);
2315 } else if (prev2_inst.VRegA() == inst->VRegA_11x()) {
2316 work_line_->CopyRegister1(this,
2317 prev_inst.VRegA(),
2318 inst->VRegA_11x(),
2319 kTypeCategoryRef);
2320 }
2321 break;
2322 }
2323
2324 default: // Other instruction types ignored.
2325 break;
2326 }
2327 }
2328 break;
2329 case Instruction::MONITOR_EXIT:
2330 /*
2331 * monitor-exit instructions are odd. They can throw exceptions,
2332 * but when they do they act as if they succeeded and the PC is
2333 * pointing to the following instruction. (This behavior goes back
2334 * to the need to handle asynchronous exceptions, a now-deprecated
2335 * feature that Dalvik doesn't support.)
2336 *
2337 * In practice we don't need to worry about this. The only
2338 * exceptions that can be thrown from monitor-exit are for a
2339 * null reference and -exit without a matching -enter. If the
2340 * structured locking checks are working, the former would have
2341 * failed on the -enter instruction, and the latter is impossible.
2342 *
2343 * This is fortunate, because issue 3221411 prevents us from
2344 * chasing the "can throw" path when monitor verification is
2345 * enabled. If we can fully verify the locking we can ignore
2346 * some catch blocks (which will show up as "dead" code when
2347 * we skip them here); if we can't, then the code path could be
2348 * "live" so we still need to check it.
2349 */
2350 opcode_flags &= ~Instruction::kThrow;
2351 work_line_->PopMonitor(this, inst->VRegA_11x());
2352 break;
2353 case Instruction::CHECK_CAST:
2354 case Instruction::INSTANCE_OF: {
2355 /*
2356 * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2357 * could be a "upcast" -- not expected, so we don't try to address it.)
2358 *
2359 * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2360 * dec_insn.vA when branching to a handler.
2361 */
2362 const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2363 const dex::TypeIndex type_idx((is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c());
2364 const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
2365 if (res_type.IsConflict()) {
2366 // If this is a primitive type, fail HARD.
2367 ObjPtr<mirror::Class> klass = GetClassLinker()->LookupResolvedType(
2368 type_idx, dex_cache_.Get(), class_loader_.Get());
2369 if (klass != nullptr && klass->IsPrimitive()) {
2370 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2371 << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
2372 << GetDeclaringClass();
2373 break;
2374 }
2375
2376 DCHECK_NE(failures_.size(), 0U);
2377 if (!is_checkcast) {
2378 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), reg_types_.Boolean());
2379 }
2380 break; // bad class
2381 }
2382 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2383 uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2384 const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2385 if (!res_type.IsNonZeroReferenceTypes()) {
2386 if (is_checkcast) {
2387 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2388 } else {
2389 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2390 }
2391 } else if (!orig_type.IsReferenceTypes()) {
2392 if (is_checkcast) {
2393 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2394 } else {
2395 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2396 }
2397 } else if (orig_type.IsUninitializedTypes()) {
2398 if (is_checkcast) {
2399 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2400 << orig_type_reg;
2401 } else {
2402 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2403 << orig_type_reg;
2404 }
2405 } else {
2406 if (is_checkcast) {
2407 work_line_->SetRegisterType<LockOp::kKeep>(inst->VRegA_21c(), res_type);
2408 } else {
2409 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), reg_types_.Boolean());
2410 }
2411 }
2412 break;
2413 }
2414 case Instruction::ARRAY_LENGTH: {
2415 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2416 if (res_type.IsReferenceTypes()) {
2417 if (!res_type.IsArrayTypes() && !res_type.IsZeroOrNull()) {
2418 // ie not an array or null
2419 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2420 } else {
2421 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_12x(), reg_types_.Integer());
2422 }
2423 } else {
2424 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2425 }
2426 break;
2427 }
2428 case Instruction::NEW_INSTANCE: {
2429 const RegType& res_type = ResolveClass<CheckAccess::kYes>(dex::TypeIndex(inst->VRegB_21c()));
2430 if (res_type.IsConflict()) {
2431 DCHECK_NE(failures_.size(), 0U);
2432 break; // bad class
2433 }
2434 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2435 // can't create an instance of an interface or abstract class */
2436 if (!res_type.IsInstantiableTypes()) {
2437 Fail(VERIFY_ERROR_INSTANTIATION)
2438 << "new-instance on primitive, interface or abstract class" << res_type;
2439 // Soft failure so carry on to set register type.
2440 }
2441 const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2442 // Any registers holding previous allocations from this address that have not yet been
2443 // initialized must be marked invalid.
2444 work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2445 // add the new uninitialized reference to the register state
2446 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_21c(), uninit_type);
2447 break;
2448 }
2449 case Instruction::NEW_ARRAY:
2450 VerifyNewArray(inst, false, false);
2451 break;
2452 case Instruction::FILLED_NEW_ARRAY:
2453 VerifyNewArray(inst, true, false);
2454 just_set_result = true; // Filled new array sets result register
2455 break;
2456 case Instruction::FILLED_NEW_ARRAY_RANGE:
2457 VerifyNewArray(inst, true, true);
2458 just_set_result = true; // Filled new array range sets result register
2459 break;
2460 case Instruction::CMPL_FLOAT:
2461 case Instruction::CMPG_FLOAT:
2462 if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2463 break;
2464 }
2465 if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2466 break;
2467 }
2468 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
2469 break;
2470 case Instruction::CMPL_DOUBLE:
2471 case Instruction::CMPG_DOUBLE:
2472 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2473 reg_types_.DoubleHi())) {
2474 break;
2475 }
2476 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2477 reg_types_.DoubleHi())) {
2478 break;
2479 }
2480 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
2481 break;
2482 case Instruction::CMP_LONG:
2483 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2484 reg_types_.LongHi())) {
2485 break;
2486 }
2487 if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2488 reg_types_.LongHi())) {
2489 break;
2490 }
2491 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Integer());
2492 break;
2493 case Instruction::THROW: {
2494 const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2495 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type, this)) {
2496 if (res_type.IsUninitializedTypes()) {
2497 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2498 } else if (!res_type.IsReferenceTypes()) {
2499 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2500 } else {
2501 Fail(res_type.IsUnresolvedTypes()
2502 ? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK : VERIFY_ERROR_BAD_CLASS_HARD)
2503 << "thrown class " << res_type << " not instanceof Throwable";
2504 }
2505 }
2506 break;
2507 }
2508 case Instruction::GOTO:
2509 case Instruction::GOTO_16:
2510 case Instruction::GOTO_32:
2511 /* no effect on or use of registers */
2512 break;
2513
2514 case Instruction::PACKED_SWITCH:
2515 case Instruction::SPARSE_SWITCH:
2516 /* verify that vAA is an integer, or can be converted to one */
2517 work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2518 break;
2519
2520 case Instruction::FILL_ARRAY_DATA: {
2521 /* Similar to the verification done for APUT */
2522 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2523 /* array_type can be null if the reg type is Zero */
2524 if (!array_type.IsZeroOrNull()) {
2525 if (!array_type.IsArrayTypes()) {
2526 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2527 << array_type;
2528 } else if (array_type.IsUnresolvedTypes()) {
2529 // If it's an unresolved array type, it must be non-primitive.
2530 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2531 << array_type;
2532 } else {
2533 const RegType& component_type = reg_types_.GetComponentType(array_type,
2534 class_loader_.Get());
2535 DCHECK(!component_type.IsConflict());
2536 if (component_type.IsNonZeroReferenceTypes()) {
2537 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2538 << component_type;
2539 } else {
2540 // Now verify if the element width in the table matches the element width declared in
2541 // the array
2542 const uint16_t* array_data =
2543 insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2544 if (array_data[0] != Instruction::kArrayDataSignature) {
2545 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2546 } else {
2547 size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2548 // Since we don't compress the data in Dex, expect to see equal width of data stored
2549 // in the table and expected from the array class.
2550 if (array_data[1] != elem_width) {
2551 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2552 << " vs " << elem_width << ")";
2553 }
2554 }
2555 }
2556 }
2557 }
2558 break;
2559 }
2560 case Instruction::IF_EQ:
2561 case Instruction::IF_NE: {
2562 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2563 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2564 bool mismatch = false;
2565 if (reg_type1.IsZeroOrNull()) { // zero then integral or reference expected
2566 mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2567 } else if (reg_type1.IsReferenceTypes()) { // both references?
2568 mismatch = !reg_type2.IsReferenceTypes();
2569 } else { // both integral?
2570 mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2571 }
2572 if (mismatch) {
2573 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2574 << reg_type2 << ") must both be references or integral";
2575 }
2576 break;
2577 }
2578 case Instruction::IF_LT:
2579 case Instruction::IF_GE:
2580 case Instruction::IF_GT:
2581 case Instruction::IF_LE: {
2582 const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2583 const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2584 if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2585 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2586 << reg_type2 << ") must be integral";
2587 }
2588 break;
2589 }
2590 case Instruction::IF_EQZ:
2591 case Instruction::IF_NEZ: {
2592 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2593 if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2594 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2595 << " unexpected as arg to if-eqz/if-nez";
2596 }
2597
2598 // Find previous instruction - its existence is a precondition to peephole optimization.
2599 if (UNLIKELY(0 == work_insn_idx_)) {
2600 break;
2601 }
2602 uint32_t instance_of_idx = work_insn_idx_ - 1;
2603 while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2604 instance_of_idx--;
2605 }
2606 // Dex index 0 must be an opcode.
2607 DCHECK(GetInstructionFlags(instance_of_idx).IsOpcode());
2608
2609 const Instruction& instance_of_inst = code_item_accessor_.InstructionAt(instance_of_idx);
2610
2611 /* Check for peep-hole pattern of:
2612 * ...;
2613 * instance-of vX, vY, T;
2614 * ifXXX vX, label ;
2615 * ...;
2616 * label:
2617 * ...;
2618 * and sharpen the type of vY to be type T.
2619 * Note, this pattern can't be if:
2620 * - if there are other branches to this branch,
2621 * - when vX == vY.
2622 */
2623 if (!CurrentInsnFlags()->IsBranchTarget() &&
2624 (Instruction::INSTANCE_OF == instance_of_inst.Opcode()) &&
2625 (inst->VRegA_21t() == instance_of_inst.VRegA_22c()) &&
2626 (instance_of_inst.VRegA_22c() != instance_of_inst.VRegB_22c())) {
2627 // Check the type of the instance-of is different than that of registers type, as if they
2628 // are the same there is no work to be done here. Check that the conversion is not to or
2629 // from an unresolved type as type information is imprecise. If the instance-of is to an
2630 // interface then ignore the type information as interfaces can only be treated as Objects
2631 // and we don't want to disallow field and other operations on the object. If the value
2632 // being instance-of checked against is known null (zero) then allow the optimization as
2633 // we didn't have type information. If the merge of the instance-of type with the original
2634 // type is assignable to the original then allow optimization. This check is performed to
2635 // ensure that subsequent merges don't lose type information - such as becoming an
2636 // interface from a class that would lose information relevant to field checks.
2637 //
2638 // Note: do not do an access check. This may mark this with a runtime throw that actually
2639 // happens at the instanceof, not the branch (and branches aren't flagged to throw).
2640 const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst.VRegB_22c());
2641 const RegType& cast_type = ResolveClass<CheckAccess::kNo>(
2642 dex::TypeIndex(instance_of_inst.VRegC_22c()));
2643
2644 if (!orig_type.Equals(cast_type) &&
2645 !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2646 cast_type.HasClass() && // Could be conflict type, make sure it has a class.
2647 !cast_type.GetClass()->IsInterface() &&
2648 (orig_type.IsZeroOrNull() ||
2649 orig_type.IsStrictlyAssignableFrom(
2650 cast_type.Merge(orig_type, ®_types_, this), this))) {
2651 RegisterLine* update_line = RegisterLine::Create(code_item_accessor_.RegistersSize(),
2652 allocator_,
2653 GetRegTypeCache());
2654 if (inst->Opcode() == Instruction::IF_EQZ) {
2655 fallthrough_line.reset(update_line);
2656 } else {
2657 branch_line.reset(update_line);
2658 }
2659 update_line->CopyFromLine(work_line_.get());
2660 update_line->SetRegisterType<LockOp::kKeep>(instance_of_inst.VRegB_22c(), cast_type);
2661 if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2662 // See if instance-of was preceded by a move-object operation, common due to the small
2663 // register encoding space of instance-of, and propagate type information to the source
2664 // of the move-object.
2665 // Note: this is only valid if the move source was not clobbered.
2666 uint32_t move_idx = instance_of_idx - 1;
2667 while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2668 move_idx--;
2669 }
2670 DCHECK(GetInstructionFlags(move_idx).IsOpcode());
2671 auto maybe_update_fn = [&instance_of_inst, update_line, &cast_type](
2672 uint16_t move_src,
2673 uint16_t move_trg)
2674 REQUIRES_SHARED(Locks::mutator_lock_) {
2675 if (move_trg == instance_of_inst.VRegB_22c() &&
2676 move_src != instance_of_inst.VRegA_22c()) {
2677 update_line->SetRegisterType<LockOp::kKeep>(move_src, cast_type);
2678 }
2679 };
2680 const Instruction& move_inst = code_item_accessor_.InstructionAt(move_idx);
2681 switch (move_inst.Opcode()) {
2682 case Instruction::MOVE_OBJECT:
2683 maybe_update_fn(move_inst.VRegB_12x(), move_inst.VRegA_12x());
2684 break;
2685 case Instruction::MOVE_OBJECT_FROM16:
2686 maybe_update_fn(move_inst.VRegB_22x(), move_inst.VRegA_22x());
2687 break;
2688 case Instruction::MOVE_OBJECT_16:
2689 maybe_update_fn(move_inst.VRegB_32x(), move_inst.VRegA_32x());
2690 break;
2691 default:
2692 break;
2693 }
2694 }
2695 }
2696 }
2697
2698 break;
2699 }
2700 case Instruction::IF_LTZ:
2701 case Instruction::IF_GEZ:
2702 case Instruction::IF_GTZ:
2703 case Instruction::IF_LEZ: {
2704 const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2705 if (!reg_type.IsIntegralTypes()) {
2706 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2707 << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2708 }
2709 break;
2710 }
2711 case Instruction::AGET_BOOLEAN:
2712 VerifyAGet(inst, reg_types_.Boolean(), true);
2713 break;
2714 case Instruction::AGET_BYTE:
2715 VerifyAGet(inst, reg_types_.Byte(), true);
2716 break;
2717 case Instruction::AGET_CHAR:
2718 VerifyAGet(inst, reg_types_.Char(), true);
2719 break;
2720 case Instruction::AGET_SHORT:
2721 VerifyAGet(inst, reg_types_.Short(), true);
2722 break;
2723 case Instruction::AGET:
2724 VerifyAGet(inst, reg_types_.Integer(), true);
2725 break;
2726 case Instruction::AGET_WIDE:
2727 VerifyAGet(inst, reg_types_.LongLo(), true);
2728 break;
2729 case Instruction::AGET_OBJECT:
2730 VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2731 break;
2732
2733 case Instruction::APUT_BOOLEAN:
2734 VerifyAPut(inst, reg_types_.Boolean(), true);
2735 break;
2736 case Instruction::APUT_BYTE:
2737 VerifyAPut(inst, reg_types_.Byte(), true);
2738 break;
2739 case Instruction::APUT_CHAR:
2740 VerifyAPut(inst, reg_types_.Char(), true);
2741 break;
2742 case Instruction::APUT_SHORT:
2743 VerifyAPut(inst, reg_types_.Short(), true);
2744 break;
2745 case Instruction::APUT:
2746 VerifyAPut(inst, reg_types_.Integer(), true);
2747 break;
2748 case Instruction::APUT_WIDE:
2749 VerifyAPut(inst, reg_types_.LongLo(), true);
2750 break;
2751 case Instruction::APUT_OBJECT:
2752 VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2753 break;
2754
2755 case Instruction::IGET_BOOLEAN:
2756 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2757 break;
2758 case Instruction::IGET_BYTE:
2759 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2760 break;
2761 case Instruction::IGET_CHAR:
2762 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2763 break;
2764 case Instruction::IGET_SHORT:
2765 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2766 break;
2767 case Instruction::IGET:
2768 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2769 break;
2770 case Instruction::IGET_WIDE:
2771 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2772 break;
2773 case Instruction::IGET_OBJECT:
2774 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2775 false);
2776 break;
2777
2778 case Instruction::IPUT_BOOLEAN:
2779 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2780 break;
2781 case Instruction::IPUT_BYTE:
2782 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2783 break;
2784 case Instruction::IPUT_CHAR:
2785 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2786 break;
2787 case Instruction::IPUT_SHORT:
2788 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2789 break;
2790 case Instruction::IPUT:
2791 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2792 break;
2793 case Instruction::IPUT_WIDE:
2794 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2795 break;
2796 case Instruction::IPUT_OBJECT:
2797 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2798 false);
2799 break;
2800
2801 case Instruction::SGET_BOOLEAN:
2802 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2803 break;
2804 case Instruction::SGET_BYTE:
2805 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2806 break;
2807 case Instruction::SGET_CHAR:
2808 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2809 break;
2810 case Instruction::SGET_SHORT:
2811 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2812 break;
2813 case Instruction::SGET:
2814 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2815 break;
2816 case Instruction::SGET_WIDE:
2817 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2818 break;
2819 case Instruction::SGET_OBJECT:
2820 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2821 true);
2822 break;
2823
2824 case Instruction::SPUT_BOOLEAN:
2825 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2826 break;
2827 case Instruction::SPUT_BYTE:
2828 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2829 break;
2830 case Instruction::SPUT_CHAR:
2831 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2832 break;
2833 case Instruction::SPUT_SHORT:
2834 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2835 break;
2836 case Instruction::SPUT:
2837 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2838 break;
2839 case Instruction::SPUT_WIDE:
2840 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2841 break;
2842 case Instruction::SPUT_OBJECT:
2843 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2844 true);
2845 break;
2846
2847 case Instruction::INVOKE_VIRTUAL:
2848 case Instruction::INVOKE_VIRTUAL_RANGE:
2849 case Instruction::INVOKE_SUPER:
2850 case Instruction::INVOKE_SUPER_RANGE: {
2851 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2852 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2853 bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2854 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2855 MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2856 ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2857 const RegType* return_type = nullptr;
2858 if (called_method != nullptr) {
2859 ObjPtr<mirror::Class> return_type_class = can_load_classes_
2860 ? called_method->ResolveReturnType()
2861 : called_method->LookupResolvedReturnType();
2862 if (return_type_class != nullptr) {
2863 return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2864 return_type_class,
2865 return_type_class->CannotBeAssignedFromOtherTypes());
2866 } else {
2867 DCHECK_IMPLIES(can_load_classes_, self_->IsExceptionPending());
2868 self_->ClearException();
2869 }
2870 }
2871 if (return_type == nullptr) {
2872 uint32_t method_idx = GetMethodIdxOfInvoke(inst);
2873 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2874 dex::TypeIndex return_type_idx =
2875 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2876 const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2877 return_type = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
2878 }
2879 if (!return_type->IsLowHalf()) {
2880 work_line_->SetResultRegisterType(this, *return_type);
2881 } else {
2882 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
2883 }
2884 just_set_result = true;
2885 break;
2886 }
2887 case Instruction::INVOKE_DIRECT:
2888 case Instruction::INVOKE_DIRECT_RANGE: {
2889 bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2890 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2891 const char* return_type_descriptor;
2892 bool is_constructor;
2893 const RegType* return_type = nullptr;
2894 if (called_method == nullptr) {
2895 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2896 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2897 is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2898 dex::TypeIndex return_type_idx =
2899 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2900 return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2901 } else {
2902 is_constructor = called_method->IsConstructor();
2903 return_type_descriptor = called_method->GetReturnTypeDescriptor();
2904 ObjPtr<mirror::Class> return_type_class = can_load_classes_
2905 ? called_method->ResolveReturnType()
2906 : called_method->LookupResolvedReturnType();
2907 if (return_type_class != nullptr) {
2908 return_type = &FromClass(return_type_descriptor,
2909 return_type_class,
2910 return_type_class->CannotBeAssignedFromOtherTypes());
2911 } else {
2912 DCHECK_IMPLIES(can_load_classes_, self_->IsExceptionPending());
2913 self_->ClearException();
2914 }
2915 }
2916 if (is_constructor) {
2917 /*
2918 * Some additional checks when calling a constructor. We know from the invocation arg check
2919 * that the "this" argument is an instance of called_method->klass. Now we further restrict
2920 * that to require that called_method->klass is the same as this->klass or this->super,
2921 * allowing the latter only if the "this" argument is the same as the "this" argument to
2922 * this method (which implies that we're in a constructor ourselves).
2923 */
2924 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
2925 if (this_type.IsConflict()) // failure.
2926 break;
2927
2928 /* no null refs allowed (?) */
2929 if (this_type.IsZeroOrNull()) {
2930 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2931 break;
2932 }
2933
2934 /* must be in same class or in superclass */
2935 // const RegType& this_super_klass = this_type.GetSuperClass(®_types_);
2936 // TODO: re-enable constructor type verification
2937 // if (this_super_klass.IsConflict()) {
2938 // Unknown super class, fail so we re-check at runtime.
2939 // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2940 // break;
2941 // }
2942
2943 /* arg must be an uninitialized reference */
2944 if (!this_type.IsUninitializedTypes()) {
2945 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2946 << this_type;
2947 break;
2948 }
2949
2950 /*
2951 * Replace the uninitialized reference with an initialized one. We need to do this for all
2952 * registers that have the same object instance in them, not just the "this" register.
2953 */
2954 work_line_->MarkRefsAsInitialized(this, this_type);
2955 }
2956 if (return_type == nullptr) {
2957 return_type = ®_types_.FromDescriptor(class_loader_.Get(),
2958 return_type_descriptor,
2959 false);
2960 }
2961 if (!return_type->IsLowHalf()) {
2962 work_line_->SetResultRegisterType(this, *return_type);
2963 } else {
2964 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_));
2965 }
2966 just_set_result = true;
2967 break;
2968 }
2969 case Instruction::INVOKE_STATIC:
2970 case Instruction::INVOKE_STATIC_RANGE: {
2971 bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2972 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
2973 const char* descriptor;
2974 if (called_method == nullptr) {
2975 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2976 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2977 dex::TypeIndex return_type_idx =
2978 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2979 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2980 } else {
2981 descriptor = called_method->GetReturnTypeDescriptor();
2982 }
2983 const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
2984 descriptor,
2985 false);
2986 if (!return_type.IsLowHalf()) {
2987 work_line_->SetResultRegisterType(this, return_type);
2988 } else {
2989 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
2990 }
2991 just_set_result = true;
2992 }
2993 break;
2994 case Instruction::INVOKE_INTERFACE:
2995 case Instruction::INVOKE_INTERFACE_RANGE: {
2996 bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2997 ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
2998 if (abs_method != nullptr) {
2999 ObjPtr<mirror::Class> called_interface = abs_method->GetDeclaringClass();
3000 if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
3001 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
3002 << abs_method->PrettyMethod() << "'";
3003 break;
3004 }
3005 }
3006 /* Get the type of the "this" arg, which should either be a sub-interface of called
3007 * interface or Object (see comments in RegType::JoinClass).
3008 */
3009 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
3010 if (this_type.IsZeroOrNull()) {
3011 /* null pointer always passes (and always fails at runtime) */
3012 } else {
3013 if (this_type.IsUninitializedTypes()) {
3014 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
3015 << this_type;
3016 break;
3017 }
3018 // In the past we have tried to assert that "called_interface" is assignable
3019 // from "this_type.GetClass()", however, as we do an imprecise Join
3020 // (RegType::JoinClass) we don't have full information on what interfaces are
3021 // implemented by "this_type". For example, two classes may implement the same
3022 // interfaces and have a common parent that doesn't implement the interface. The
3023 // join will set "this_type" to the parent class and a test that this implements
3024 // the interface will incorrectly fail.
3025 }
3026 /*
3027 * We don't have an object instance, so we can't find the concrete method. However, all of
3028 * the type information is in the abstract method, so we're good.
3029 */
3030 const char* descriptor;
3031 if (abs_method == nullptr) {
3032 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3033 const dex::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3034 dex::TypeIndex return_type_idx =
3035 dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3036 descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3037 } else {
3038 descriptor = abs_method->GetReturnTypeDescriptor();
3039 }
3040 const RegType& return_type = reg_types_.FromDescriptor(class_loader_.Get(),
3041 descriptor,
3042 false);
3043 if (!return_type.IsLowHalf()) {
3044 work_line_->SetResultRegisterType(this, return_type);
3045 } else {
3046 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3047 }
3048 just_set_result = true;
3049 break;
3050 }
3051 case Instruction::INVOKE_POLYMORPHIC:
3052 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
3053 bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
3054 ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_POLYMORPHIC, is_range);
3055 if (called_method == nullptr) {
3056 // Convert potential soft failures in VerifyInvocationArgs() to hard errors.
3057 if (failure_messages_.size() > 0) {
3058 std::string message = failure_messages_.back()->str();
3059 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << message;
3060 } else {
3061 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-polymorphic verification failure.";
3062 }
3063 break;
3064 }
3065 if (!CheckSignaturePolymorphicMethod(called_method) ||
3066 !CheckSignaturePolymorphicReceiver(inst)) {
3067 DCHECK(HasFailures());
3068 break;
3069 }
3070 const uint16_t vRegH = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();
3071 const dex::ProtoIndex proto_idx(vRegH);
3072 const char* return_descriptor =
3073 dex_file_->GetReturnTypeDescriptor(dex_file_->GetProtoId(proto_idx));
3074 const RegType& return_type =
3075 reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3076 if (!return_type.IsLowHalf()) {
3077 work_line_->SetResultRegisterType(this, return_type);
3078 } else {
3079 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3080 }
3081 just_set_result = true;
3082 break;
3083 }
3084 case Instruction::INVOKE_CUSTOM:
3085 case Instruction::INVOKE_CUSTOM_RANGE: {
3086 // Verify registers based on method_type in the call site.
3087 bool is_range = (inst->Opcode() == Instruction::INVOKE_CUSTOM_RANGE);
3088
3089 // Step 1. Check the call site that produces the method handle for invocation
3090 const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3091 if (!CheckCallSite(call_site_idx)) {
3092 DCHECK(HasFailures());
3093 break;
3094 }
3095
3096 // Step 2. Check the register arguments correspond to the expected arguments for the
3097 // method handle produced by step 1. The dex file verifier has checked ranges for
3098 // the first three arguments and CheckCallSite has checked the method handle type.
3099 const dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
3100 const dex::ProtoId& proto_id = dex_file_->GetProtoId(proto_idx);
3101 DexFileParameterIterator param_it(*dex_file_, proto_id);
3102 // Treat method as static as it has yet to be determined.
3103 VerifyInvocationArgsFromIterator(¶m_it, inst, METHOD_STATIC, is_range, nullptr);
3104 const char* return_descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
3105
3106 // Step 3. Propagate return type information
3107 const RegType& return_type =
3108 reg_types_.FromDescriptor(class_loader_.Get(), return_descriptor, false);
3109 if (!return_type.IsLowHalf()) {
3110 work_line_->SetResultRegisterType(this, return_type);
3111 } else {
3112 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_));
3113 }
3114 just_set_result = true;
3115 break;
3116 }
3117 case Instruction::NEG_INT:
3118 case Instruction::NOT_INT:
3119 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3120 break;
3121 case Instruction::NEG_LONG:
3122 case Instruction::NOT_LONG:
3123 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3124 reg_types_.LongLo(), reg_types_.LongHi());
3125 break;
3126 case Instruction::NEG_FLOAT:
3127 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3128 break;
3129 case Instruction::NEG_DOUBLE:
3130 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3131 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3132 break;
3133 case Instruction::INT_TO_LONG:
3134 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3135 reg_types_.Integer());
3136 break;
3137 case Instruction::INT_TO_FLOAT:
3138 work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3139 break;
3140 case Instruction::INT_TO_DOUBLE:
3141 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3142 reg_types_.Integer());
3143 break;
3144 case Instruction::LONG_TO_INT:
3145 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3146 reg_types_.LongLo(), reg_types_.LongHi());
3147 break;
3148 case Instruction::LONG_TO_FLOAT:
3149 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3150 reg_types_.LongLo(), reg_types_.LongHi());
3151 break;
3152 case Instruction::LONG_TO_DOUBLE:
3153 work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3154 reg_types_.LongLo(), reg_types_.LongHi());
3155 break;
3156 case Instruction::FLOAT_TO_INT:
3157 work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3158 break;
3159 case Instruction::FLOAT_TO_LONG:
3160 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3161 reg_types_.Float());
3162 break;
3163 case Instruction::FLOAT_TO_DOUBLE:
3164 work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3165 reg_types_.Float());
3166 break;
3167 case Instruction::DOUBLE_TO_INT:
3168 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3169 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3170 break;
3171 case Instruction::DOUBLE_TO_LONG:
3172 work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3173 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3174 break;
3175 case Instruction::DOUBLE_TO_FLOAT:
3176 work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3177 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3178 break;
3179 case Instruction::INT_TO_BYTE:
3180 work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3181 break;
3182 case Instruction::INT_TO_CHAR:
3183 work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3184 break;
3185 case Instruction::INT_TO_SHORT:
3186 work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3187 break;
3188
3189 case Instruction::ADD_INT:
3190 case Instruction::SUB_INT:
3191 case Instruction::MUL_INT:
3192 case Instruction::REM_INT:
3193 case Instruction::DIV_INT:
3194 case Instruction::SHL_INT:
3195 case Instruction::SHR_INT:
3196 case Instruction::USHR_INT:
3197 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3198 reg_types_.Integer(), false);
3199 break;
3200 case Instruction::AND_INT:
3201 case Instruction::OR_INT:
3202 case Instruction::XOR_INT:
3203 work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3204 reg_types_.Integer(), true);
3205 break;
3206 case Instruction::ADD_LONG:
3207 case Instruction::SUB_LONG:
3208 case Instruction::MUL_LONG:
3209 case Instruction::DIV_LONG:
3210 case Instruction::REM_LONG:
3211 case Instruction::AND_LONG:
3212 case Instruction::OR_LONG:
3213 case Instruction::XOR_LONG:
3214 work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3215 reg_types_.LongLo(), reg_types_.LongHi(),
3216 reg_types_.LongLo(), reg_types_.LongHi());
3217 break;
3218 case Instruction::SHL_LONG:
3219 case Instruction::SHR_LONG:
3220 case Instruction::USHR_LONG:
3221 /* shift distance is Int, making these different from other binary operations */
3222 work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3223 reg_types_.Integer());
3224 break;
3225 case Instruction::ADD_FLOAT:
3226 case Instruction::SUB_FLOAT:
3227 case Instruction::MUL_FLOAT:
3228 case Instruction::DIV_FLOAT:
3229 case Instruction::REM_FLOAT:
3230 work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3231 reg_types_.Float(), false);
3232 break;
3233 case Instruction::ADD_DOUBLE:
3234 case Instruction::SUB_DOUBLE:
3235 case Instruction::MUL_DOUBLE:
3236 case Instruction::DIV_DOUBLE:
3237 case Instruction::REM_DOUBLE:
3238 work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3239 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3240 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3241 break;
3242 case Instruction::ADD_INT_2ADDR:
3243 case Instruction::SUB_INT_2ADDR:
3244 case Instruction::MUL_INT_2ADDR:
3245 case Instruction::REM_INT_2ADDR:
3246 case Instruction::SHL_INT_2ADDR:
3247 case Instruction::SHR_INT_2ADDR:
3248 case Instruction::USHR_INT_2ADDR:
3249 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3250 reg_types_.Integer(), false);
3251 break;
3252 case Instruction::AND_INT_2ADDR:
3253 case Instruction::OR_INT_2ADDR:
3254 case Instruction::XOR_INT_2ADDR:
3255 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3256 reg_types_.Integer(), true);
3257 break;
3258 case Instruction::DIV_INT_2ADDR:
3259 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3260 reg_types_.Integer(), false);
3261 break;
3262 case Instruction::ADD_LONG_2ADDR:
3263 case Instruction::SUB_LONG_2ADDR:
3264 case Instruction::MUL_LONG_2ADDR:
3265 case Instruction::DIV_LONG_2ADDR:
3266 case Instruction::REM_LONG_2ADDR:
3267 case Instruction::AND_LONG_2ADDR:
3268 case Instruction::OR_LONG_2ADDR:
3269 case Instruction::XOR_LONG_2ADDR:
3270 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3271 reg_types_.LongLo(), reg_types_.LongHi(),
3272 reg_types_.LongLo(), reg_types_.LongHi());
3273 break;
3274 case Instruction::SHL_LONG_2ADDR:
3275 case Instruction::SHR_LONG_2ADDR:
3276 case Instruction::USHR_LONG_2ADDR:
3277 work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3278 reg_types_.Integer());
3279 break;
3280 case Instruction::ADD_FLOAT_2ADDR:
3281 case Instruction::SUB_FLOAT_2ADDR:
3282 case Instruction::MUL_FLOAT_2ADDR:
3283 case Instruction::DIV_FLOAT_2ADDR:
3284 case Instruction::REM_FLOAT_2ADDR:
3285 work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3286 reg_types_.Float(), false);
3287 break;
3288 case Instruction::ADD_DOUBLE_2ADDR:
3289 case Instruction::SUB_DOUBLE_2ADDR:
3290 case Instruction::MUL_DOUBLE_2ADDR:
3291 case Instruction::DIV_DOUBLE_2ADDR:
3292 case Instruction::REM_DOUBLE_2ADDR:
3293 work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3294 reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3295 reg_types_.DoubleLo(), reg_types_.DoubleHi());
3296 break;
3297 case Instruction::ADD_INT_LIT16:
3298 case Instruction::RSUB_INT_LIT16:
3299 case Instruction::MUL_INT_LIT16:
3300 case Instruction::DIV_INT_LIT16:
3301 case Instruction::REM_INT_LIT16:
3302 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3303 true);
3304 break;
3305 case Instruction::AND_INT_LIT16:
3306 case Instruction::OR_INT_LIT16:
3307 case Instruction::XOR_INT_LIT16:
3308 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3309 true);
3310 break;
3311 case Instruction::ADD_INT_LIT8:
3312 case Instruction::RSUB_INT_LIT8:
3313 case Instruction::MUL_INT_LIT8:
3314 case Instruction::DIV_INT_LIT8:
3315 case Instruction::REM_INT_LIT8:
3316 case Instruction::SHL_INT_LIT8:
3317 case Instruction::SHR_INT_LIT8:
3318 case Instruction::USHR_INT_LIT8:
3319 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3320 false);
3321 break;
3322 case Instruction::AND_INT_LIT8:
3323 case Instruction::OR_INT_LIT8:
3324 case Instruction::XOR_INT_LIT8:
3325 work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3326 false);
3327 break;
3328
3329 /* These should never appear during verification. */
3330 case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3331 case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9:
3332 case Instruction::UNUSED_73:
3333 case Instruction::UNUSED_79:
3334 case Instruction::UNUSED_7A:
3335 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3336 break;
3337
3338 /*
3339 * DO NOT add a "default" clause here. Without it the compiler will
3340 * complain if an instruction is missing (which is desirable).
3341 */
3342 } // end - switch (dec_insn.opcode)
3343
3344 if (flags_.have_pending_hard_failure_) {
3345 if (IsAotMode()) {
3346 /* When AOT compiling, check that the last failure is a hard failure */
3347 if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3348 LOG(ERROR) << "Pending failures:";
3349 for (auto& error : failures_) {
3350 LOG(ERROR) << error;
3351 }
3352 for (auto& error_msg : failure_messages_) {
3353 LOG(ERROR) << error_msg->str();
3354 }
3355 LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3356 }
3357 }
3358 /* immediate failure, reject class */
3359 info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3360 return false;
3361 } else if (flags_.have_pending_runtime_throw_failure_) {
3362 LogVerifyInfo() << "Elevating opcode flags from " << opcode_flags << " to Throw";
3363 /* checking interpreter will throw, mark following code as unreachable */
3364 opcode_flags = Instruction::kThrow;
3365 // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3366 // instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3367 // very end.
3368 }
3369 /*
3370 * If we didn't just set the result register, clear it out. This ensures that you can only use
3371 * "move-result" immediately after the result is set. (We could check this statically, but it's
3372 * not expensive and it makes our debugging output cleaner.)
3373 */
3374 if (!just_set_result) {
3375 work_line_->SetResultTypeToUnknown(GetRegTypeCache());
3376 }
3377
3378 /*
3379 * Handle "branch". Tag the branch target.
3380 *
3381 * NOTE: instructions like Instruction::EQZ provide information about the
3382 * state of the register when the branch is taken or not taken. For example,
3383 * somebody could get a reference field, check it for zero, and if the
3384 * branch is taken immediately store that register in a boolean field
3385 * since the value is known to be zero. We do not currently account for
3386 * that, and will reject the code.
3387 *
3388 * TODO: avoid re-fetching the branch target
3389 */
3390 if ((opcode_flags & Instruction::kBranch) != 0) {
3391 bool isConditional, selfOkay;
3392 if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3393 /* should never happen after static verification */
3394 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3395 return false;
3396 }
3397 DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3398 if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(),
3399 work_insn_idx_ + branch_target)) {
3400 return false;
3401 }
3402 /* update branch target, set "changed" if appropriate */
3403 if (nullptr != branch_line) {
3404 if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3405 return false;
3406 }
3407 } else {
3408 if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3409 return false;
3410 }
3411 }
3412 }
3413
3414 /*
3415 * Handle "switch". Tag all possible branch targets.
3416 *
3417 * We've already verified that the table is structurally sound, so we
3418 * just need to walk through and tag the targets.
3419 */
3420 if ((opcode_flags & Instruction::kSwitch) != 0) {
3421 int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3422 const uint16_t* switch_insns = insns + offset_to_switch;
3423 int switch_count = switch_insns[1];
3424 int offset_to_targets, targ;
3425
3426 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3427 /* 0 = sig, 1 = count, 2/3 = first key */
3428 offset_to_targets = 4;
3429 } else {
3430 /* 0 = sig, 1 = count, 2..count * 2 = keys */
3431 DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3432 offset_to_targets = 2 + 2 * switch_count;
3433 }
3434
3435 /* verify each switch target */
3436 for (targ = 0; targ < switch_count; targ++) {
3437 int offset;
3438 uint32_t abs_offset;
3439
3440 /* offsets are 32-bit, and only partly endian-swapped */
3441 offset = switch_insns[offset_to_targets + targ * 2] |
3442 (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3443 abs_offset = work_insn_idx_ + offset;
3444 DCHECK_LT(abs_offset, code_item_accessor_.InsnsSizeInCodeUnits());
3445 if (!CheckNotMoveExceptionOrMoveResult(code_item_accessor_.Insns(), abs_offset)) {
3446 return false;
3447 }
3448 if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3449 return false;
3450 }
3451 }
3452 }
3453
3454 /*
3455 * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3456 * "try" block when they throw, control transfers out of the method.)
3457 */
3458 if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3459 bool has_catch_all_handler = false;
3460 const dex::TryItem* try_item = code_item_accessor_.FindTryItem(work_insn_idx_);
3461 CHECK(try_item != nullptr);
3462 CatchHandlerIterator iterator(code_item_accessor_, *try_item);
3463
3464 // Need the linker to try and resolve the handled class to check if it's Throwable.
3465 ClassLinker* linker = GetClassLinker();
3466
3467 for (; iterator.HasNext(); iterator.Next()) {
3468 dex::TypeIndex handler_type_idx = iterator.GetHandlerTypeIndex();
3469 if (!handler_type_idx.IsValid()) {
3470 has_catch_all_handler = true;
3471 } else {
3472 // It is also a catch-all if it is java.lang.Throwable.
3473 ObjPtr<mirror::Class> klass =
3474 linker->ResolveType(handler_type_idx, dex_cache_, class_loader_);
3475 if (klass != nullptr) {
3476 if (klass == GetClassRoot<mirror::Throwable>()) {
3477 has_catch_all_handler = true;
3478 }
3479 } else {
3480 // Clear exception.
3481 DCHECK(self_->IsExceptionPending());
3482 self_->ClearException();
3483 }
3484 }
3485 /*
3486 * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3487 * "work_regs", because at runtime the exception will be thrown before the instruction
3488 * modifies any registers.
3489 */
3490 if (kVerifierDebug) {
3491 LogVerifyInfo() << "Updating exception handler 0x"
3492 << std::hex << iterator.GetHandlerAddress();
3493 }
3494 if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3495 return false;
3496 }
3497 }
3498
3499 /*
3500 * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3501 * instruction. This does apply to monitor-exit because of async exception handling.
3502 */
3503 if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3504 /*
3505 * The state in work_line reflects the post-execution state. If the current instruction is a
3506 * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3507 * it will do so before grabbing the lock).
3508 */
3509 if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3510 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3511 << "expected to be within a catch-all for an instruction where a monitor is held";
3512 return false;
3513 }
3514 }
3515 }
3516
3517 /* Handle "continue". Tag the next consecutive instruction.
3518 * Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3519 * because it changes work_line_ when performing peephole optimization
3520 * and this change should not be used in those cases.
3521 */
3522 if ((opcode_flags & Instruction::kContinue) != 0 && !exc_handler_unreachable) {
3523 DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3524 uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3525 if (next_insn_idx >= code_item_accessor_.InsnsSizeInCodeUnits()) {
3526 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3527 return false;
3528 }
3529 // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3530 // next instruction isn't one.
3531 if (!CheckNotMoveException(code_item_accessor_.Insns(), next_insn_idx)) {
3532 return false;
3533 }
3534 if (nullptr != fallthrough_line) {
3535 // Make workline consistent with fallthrough computed from peephole optimization.
3536 work_line_->CopyFromLine(fallthrough_line.get());
3537 }
3538 if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3539 // For returns we only care about the operand to the return, all other registers are dead.
3540 const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn_idx);
3541 AdjustReturnLine(this, ret_inst, work_line_.get());
3542 }
3543 RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3544 if (next_line != nullptr) {
3545 // Merge registers into what we have for the next instruction, and set the "changed" flag if
3546 // needed. If the merge changes the state of the registers then the work line will be
3547 // updated.
3548 if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3549 return false;
3550 }
3551 } else {
3552 /*
3553 * We're not recording register data for the next instruction, so we don't know what the
3554 * prior state was. We have to assume that something has changed and re-evaluate it.
3555 */
3556 GetModifiableInstructionFlags(next_insn_idx).SetChanged();
3557 }
3558 }
3559
3560 /* If we're returning from the method, make sure monitor stack is empty. */
3561 if ((opcode_flags & Instruction::kReturn) != 0) {
3562 work_line_->VerifyMonitorStackEmpty(this);
3563 }
3564
3565 /*
3566 * Update start_guess. Advance to the next instruction of that's
3567 * possible, otherwise use the branch target if one was found. If
3568 * neither of those exists we're in a return or throw; leave start_guess
3569 * alone and let the caller sort it out.
3570 */
3571 if ((opcode_flags & Instruction::kContinue) != 0) {
3572 DCHECK_EQ(&code_item_accessor_.InstructionAt(work_insn_idx_), inst);
3573 *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3574 } else if ((opcode_flags & Instruction::kBranch) != 0) {
3575 /* we're still okay if branch_target is zero */
3576 *start_guess = work_insn_idx_ + branch_target;
3577 }
3578
3579 DCHECK_LT(*start_guess, code_item_accessor_.InsnsSizeInCodeUnits());
3580 DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3581
3582 if (flags_.have_pending_runtime_throw_failure_) {
3583 Fail(VERIFY_ERROR_RUNTIME_THROW, /* pending_exc= */ false);
3584 // Reset the pending_runtime_throw flag now.
3585 flags_.have_pending_runtime_throw_failure_ = false;
3586 }
3587
3588 return true;
3589 } // NOLINT(readability/fn_size)
3590
3591 template <bool kVerifierDebug>
3592 template <CheckAccess C>
ResolveClass(dex::TypeIndex class_idx)3593 const RegType& MethodVerifier<kVerifierDebug>::ResolveClass(dex::TypeIndex class_idx) {
3594 ClassLinker* linker = GetClassLinker();
3595 ObjPtr<mirror::Class> klass = can_load_classes_
3596 ? linker->ResolveType(class_idx, dex_cache_, class_loader_)
3597 : linker->LookupResolvedType(class_idx, dex_cache_.Get(), class_loader_.Get());
3598 if (can_load_classes_ && klass == nullptr) {
3599 DCHECK(self_->IsExceptionPending());
3600 self_->ClearException();
3601 }
3602 const RegType* result = nullptr;
3603 if (klass != nullptr) {
3604 bool precise = klass->CannotBeAssignedFromOtherTypes();
3605 if (precise && !IsInstantiableOrPrimitive(klass)) {
3606 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3607 UninstantiableError(descriptor);
3608 precise = false;
3609 }
3610 result = reg_types_.FindClass(klass, precise);
3611 if (result == nullptr) {
3612 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3613 result = reg_types_.InsertClass(descriptor, klass, precise);
3614 }
3615 } else {
3616 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3617 result = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
3618 }
3619 DCHECK(result != nullptr);
3620 if (result->IsConflict()) {
3621 const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3622 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "accessing broken descriptor '" << descriptor
3623 << "' in " << GetDeclaringClass();
3624 return *result;
3625 }
3626
3627 // If requested, check if access is allowed. Unresolved types are included in this check, as the
3628 // interpreter only tests whether access is allowed when a class is not pre-verified and runs in
3629 // the access-checks interpreter. If result is primitive, skip the access check.
3630 //
3631 // Note: we do this for unresolved classes to trigger re-verification at runtime.
3632 if (C != CheckAccess::kNo &&
3633 result->IsNonZeroReferenceTypes() &&
3634 ((C == CheckAccess::kYes && IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP))
3635 || !result->IsUnresolvedTypes())) {
3636 const RegType& referrer = GetDeclaringClass();
3637 if ((IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP) || !referrer.IsUnresolvedTypes()) &&
3638 !referrer.CanAccess(*result)) {
3639 if (IsAotMode()) {
3640 Fail(VERIFY_ERROR_ACCESS_CLASS);
3641 VLOG(verifier)
3642 << "(possibly) illegal class access: '" << referrer << "' -> '" << *result << "'";
3643 } else {
3644 Fail(VERIFY_ERROR_ACCESS_CLASS)
3645 << "(possibly) illegal class access: '" << referrer << "' -> '" << *result << "'";
3646 }
3647 }
3648 }
3649 return *result;
3650 }
3651
3652 template <bool kVerifierDebug>
HandleMoveException(const Instruction * inst)3653 bool MethodVerifier<kVerifierDebug>::HandleMoveException(const Instruction* inst) {
3654 // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
3655 // where one entrypoint to the catch block is not actually an exception path.
3656 if (work_insn_idx_ == 0) {
3657 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
3658 return true;
3659 }
3660 /*
3661 * This statement can only appear as the first instruction in an exception handler. We verify
3662 * that as part of extracting the exception type from the catch block list.
3663 */
3664 auto caught_exc_type_fn = [&]() REQUIRES_SHARED(Locks::mutator_lock_) ->
3665 std::pair<bool, const RegType*> {
3666 const RegType* common_super = nullptr;
3667 if (code_item_accessor_.TriesSize() != 0) {
3668 const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
3669 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3670 const RegType* unresolved = nullptr;
3671 for (uint32_t i = 0; i < handlers_size; i++) {
3672 CatchHandlerIterator iterator(handlers_ptr);
3673 for (; iterator.HasNext(); iterator.Next()) {
3674 if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3675 if (!iterator.GetHandlerTypeIndex().IsValid()) {
3676 common_super = ®_types_.JavaLangThrowable(false);
3677 } else {
3678 // Do access checks only on resolved exception classes.
3679 const RegType& exception =
3680 ResolveClass<CheckAccess::kOnResolvedClass>(iterator.GetHandlerTypeIndex());
3681 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception, this)) {
3682 DCHECK(!exception.IsUninitializedTypes()); // Comes from dex, shouldn't be uninit.
3683 if (exception.IsUnresolvedTypes()) {
3684 if (unresolved == nullptr) {
3685 unresolved = &exception;
3686 } else {
3687 unresolved = &unresolved->SafeMerge(exception, ®_types_, this);
3688 }
3689 } else {
3690 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-throwable class "
3691 << exception;
3692 return std::make_pair(true, ®_types_.Conflict());
3693 }
3694 } else if (common_super == nullptr) {
3695 common_super = &exception;
3696 } else if (common_super->Equals(exception)) {
3697 // odd case, but nothing to do
3698 } else {
3699 common_super = &common_super->Merge(exception, ®_types_, this);
3700 if (FailOrAbort(reg_types_.JavaLangThrowable(false).IsAssignableFrom(
3701 *common_super, this),
3702 "java.lang.Throwable is not assignable-from common_super at ",
3703 work_insn_idx_)) {
3704 break;
3705 }
3706 }
3707 }
3708 }
3709 }
3710 handlers_ptr = iterator.EndDataPointer();
3711 }
3712 if (unresolved != nullptr) {
3713 // Soft-fail, but do not handle this with a synthetic throw.
3714 Fail(VERIFY_ERROR_UNRESOLVED_TYPE_CHECK, /*pending_exc=*/ false)
3715 << "Unresolved catch handler";
3716 bool should_continue = true;
3717 if (common_super != nullptr) {
3718 unresolved = &unresolved->Merge(*common_super, ®_types_, this);
3719 } else {
3720 should_continue = !PotentiallyMarkRuntimeThrow();
3721 }
3722 return std::make_pair(should_continue, unresolved);
3723 }
3724 }
3725 if (common_super == nullptr) {
3726 /* No catch block */
3727 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to find exception handler";
3728 return std::make_pair(true, ®_types_.Conflict());
3729 }
3730 return std::make_pair(true, common_super);
3731 };
3732 auto result = caught_exc_type_fn();
3733 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_11x(), *result.second);
3734 return result.first;
3735 }
3736
3737 template <bool kVerifierDebug>
ResolveMethodAndCheckAccess(uint32_t dex_method_idx,MethodType method_type)3738 ArtMethod* MethodVerifier<kVerifierDebug>::ResolveMethodAndCheckAccess(
3739 uint32_t dex_method_idx, MethodType method_type) {
3740 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3741 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(method_id.class_idx_);
3742 if (klass_type.IsConflict()) {
3743 std::string append(" in attempt to access method ");
3744 append += dex_file_->GetMethodName(method_id);
3745 AppendToLastFailMessage(append);
3746 return nullptr;
3747 }
3748 if (klass_type.IsUnresolvedTypes()) {
3749 return nullptr; // Can't resolve Class so no more to do here
3750 }
3751 ObjPtr<mirror::Class> klass = klass_type.GetClass();
3752 const RegType& referrer = GetDeclaringClass();
3753 ClassLinker* class_linker = GetClassLinker();
3754
3755 ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3756 if (res_method == nullptr) {
3757 res_method = class_linker->FindResolvedMethod(
3758 klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3759 }
3760
3761 bool must_fail = false;
3762 // This is traditional and helps with screwy bytecode. It will tell you that, yes, a method
3763 // exists, but that it's called incorrectly. This significantly helps debugging, as locally it's
3764 // hard to see the differences.
3765 // If we don't have res_method here we must fail. Just use this bool to make sure of that with a
3766 // DCHECK.
3767 if (res_method == nullptr) {
3768 must_fail = true;
3769 // Try to find the method also with the other type for better error reporting below
3770 // but do not store such bogus lookup result in the DexCache or VerifierDeps.
3771 res_method = class_linker->FindIncompatibleMethod(
3772 klass, dex_cache_.Get(), class_loader_.Get(), dex_method_idx);
3773 }
3774
3775 if (res_method == nullptr) {
3776 Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3777 << klass->PrettyDescriptor() << "."
3778 << dex_file_->GetMethodName(method_id) << " "
3779 << dex_file_->GetMethodSignature(method_id);
3780 return nullptr;
3781 }
3782
3783 // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3784 // enforce them here.
3785 if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3786 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3787 << res_method->PrettyMethod();
3788 return nullptr;
3789 }
3790 // Disallow any calls to class initializers.
3791 if (res_method->IsClassInitializer()) {
3792 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3793 << res_method->PrettyMethod();
3794 return nullptr;
3795 }
3796
3797 // Check that interface methods are static or match interface classes.
3798 // We only allow statics if we don't have default methods enabled.
3799 //
3800 // Note: this check must be after the initializer check, as those are required to fail a class,
3801 // while this check implies an IncompatibleClassChangeError.
3802 if (klass->IsInterface()) {
3803 // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3804 // default methods are supported for the dex file), or invoke-static.
3805 if (method_type != METHOD_INTERFACE &&
3806 method_type != METHOD_STATIC &&
3807 (!dex_file_->SupportsDefaultMethods() ||
3808 method_type != METHOD_DIRECT) &&
3809 method_type != METHOD_SUPER) {
3810 Fail(VERIFY_ERROR_CLASS_CHANGE)
3811 << "non-interface method " << dex_file_->PrettyMethod(dex_method_idx)
3812 << " is in an interface class " << klass->PrettyClass();
3813 return nullptr;
3814 }
3815 } else {
3816 if (method_type == METHOD_INTERFACE) {
3817 Fail(VERIFY_ERROR_CLASS_CHANGE)
3818 << "interface method " << dex_file_->PrettyMethod(dex_method_idx)
3819 << " is in a non-interface class " << klass->PrettyClass();
3820 return nullptr;
3821 }
3822 }
3823
3824 // Check specifically for non-public object methods being provided for interface dispatch. This
3825 // can occur if we failed to find a method with FindInterfaceMethod but later find one with
3826 // FindClassMethod for error message use.
3827 if (method_type == METHOD_INTERFACE &&
3828 res_method->GetDeclaringClass()->IsObjectClass() &&
3829 !res_method->IsPublic()) {
3830 Fail(VERIFY_ERROR_NO_METHOD) << "invoke-interface " << klass->PrettyDescriptor() << "."
3831 << dex_file_->GetMethodName(method_id) << " "
3832 << dex_file_->GetMethodSignature(method_id) << " resolved to "
3833 << "non-public object method " << res_method->PrettyMethod() << " "
3834 << "but non-public Object methods are excluded from interface "
3835 << "method resolution.";
3836 return nullptr;
3837 }
3838 // Check if access is allowed.
3839 if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3840 Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call "
3841 << res_method->PrettyMethod()
3842 << " from " << referrer << ")";
3843 return res_method;
3844 }
3845 // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3846 if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3847 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3848 << res_method->PrettyMethod();
3849 return nullptr;
3850 }
3851 // See if the method type implied by the invoke instruction matches the access flags for the
3852 // target method. The flags for METHOD_POLYMORPHIC are based on there being precisely two
3853 // signature polymorphic methods supported by the run-time which are native methods with variable
3854 // arguments.
3855 if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3856 (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3857 ((method_type == METHOD_SUPER ||
3858 method_type == METHOD_VIRTUAL ||
3859 method_type == METHOD_INTERFACE) && res_method->IsDirect()) ||
3860 ((method_type == METHOD_POLYMORPHIC) &&
3861 (!res_method->IsNative() || !res_method->IsVarargs()))) {
3862 Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3863 "type of " << res_method->PrettyMethod();
3864 return nullptr;
3865 }
3866 // Make sure we weren't expecting to fail.
3867 DCHECK(!must_fail) << "invoke type (" << method_type << ")"
3868 << klass->PrettyDescriptor() << "."
3869 << dex_file_->GetMethodName(method_id) << " "
3870 << dex_file_->GetMethodSignature(method_id) << " unexpectedly resolved to "
3871 << res_method->PrettyMethod() << " without error. Initially this method was "
3872 << "not found so we were expecting to fail for some reason.";
3873 return res_method;
3874 }
3875
3876 template <bool kVerifierDebug>
3877 template <class T>
VerifyInvocationArgsFromIterator(T * it,const Instruction * inst,MethodType method_type,bool is_range,ArtMethod * res_method)3878 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgsFromIterator(
3879 T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3880 DCHECK_EQ(!is_range, inst->HasVarArgs());
3881
3882 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3883 // match the call to the signature. Also, we might be calling through an abstract method
3884 // definition (which doesn't have register count values).
3885 const size_t expected_args = inst->VRegA();
3886 /* caught by static verifier */
3887 DCHECK(is_range || expected_args <= 5);
3888
3889 if (expected_args > code_item_accessor_.OutsSize()) {
3890 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3891 << ") exceeds outsSize ("
3892 << code_item_accessor_.OutsSize() << ")";
3893 return nullptr;
3894 }
3895
3896 /*
3897 * Check the "this" argument, which must be an instance of the class that declared the method.
3898 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3899 * rigorous check here (which is okay since we have to do it at runtime).
3900 */
3901 if (method_type != METHOD_STATIC) {
3902 const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst);
3903 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed.
3904 CHECK(flags_.have_pending_hard_failure_);
3905 return nullptr;
3906 }
3907 bool is_init = false;
3908 if (actual_arg_type.IsUninitializedTypes()) {
3909 if (res_method != nullptr) {
3910 if (!res_method->IsConstructor()) {
3911 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3912 return nullptr;
3913 }
3914 } else {
3915 // Check whether the name of the called method is "<init>"
3916 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
3917 if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3918 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3919 return nullptr;
3920 }
3921 }
3922 is_init = true;
3923 }
3924 const RegType& adjusted_type = is_init
3925 ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
3926 : actual_arg_type;
3927 if (method_type != METHOD_INTERFACE && !adjusted_type.IsZeroOrNull()) {
3928 const RegType* res_method_class;
3929 // Miranda methods have the declaring interface as their declaring class, not the abstract
3930 // class. It would be wrong to use this for the type check (interface type checks are
3931 // postponed to runtime).
3932 if (res_method != nullptr && !res_method->IsMiranda()) {
3933 ObjPtr<mirror::Class> klass = res_method->GetDeclaringClass();
3934 std::string temp;
3935 res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3936 klass->CannotBeAssignedFromOtherTypes());
3937 } else {
3938 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
3939 const dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3940 res_method_class = ®_types_.FromDescriptor(
3941 class_loader_.Get(),
3942 dex_file_->StringByTypeIdx(class_idx),
3943 false);
3944 }
3945 if (!res_method_class->IsAssignableFrom(adjusted_type, this)) {
3946 Fail(adjusted_type.IsUnresolvedTypes()
3947 ? VERIFY_ERROR_UNRESOLVED_TYPE_CHECK
3948 : VERIFY_ERROR_BAD_CLASS_HARD)
3949 << "'this' argument '" << actual_arg_type << "' not instance of '"
3950 << *res_method_class << "'";
3951 // Continue on soft failures. We need to find possible hard failures to avoid problems in
3952 // the compiler.
3953 if (flags_.have_pending_hard_failure_) {
3954 return nullptr;
3955 }
3956 }
3957 }
3958 }
3959
3960 uint32_t arg[5];
3961 if (!is_range) {
3962 inst->GetVarArgs(arg);
3963 }
3964 uint32_t sig_registers = (method_type == METHOD_STATIC) ? 0 : 1;
3965 for ( ; it->HasNext(); it->Next()) {
3966 if (sig_registers >= expected_args) {
3967 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3968 " argument registers, method signature has " << sig_registers + 1 << " or more";
3969 return nullptr;
3970 }
3971
3972 const char* param_descriptor = it->GetDescriptor();
3973
3974 if (param_descriptor == nullptr) {
3975 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3976 "component";
3977 return nullptr;
3978 }
3979
3980 const RegType& reg_type = reg_types_.FromDescriptor(class_loader_.Get(),
3981 param_descriptor,
3982 false);
3983 uint32_t get_reg = is_range ? inst->VRegC() + static_cast<uint32_t>(sig_registers) :
3984 arg[sig_registers];
3985 if (reg_type.IsIntegralTypes()) {
3986 const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3987 if (!src_type.IsIntegralTypes()) {
3988 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3989 << " but expected " << reg_type;
3990 return nullptr;
3991 }
3992 } else {
3993 if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3994 // Continue on soft failures. We need to find possible hard failures to avoid problems in
3995 // the compiler.
3996 if (flags_.have_pending_hard_failure_) {
3997 return nullptr;
3998 }
3999 } else if (reg_type.IsLongOrDoubleTypes()) {
4000 // Check that registers are consecutive (for non-range invokes). Invokes are the only
4001 // instructions not specifying register pairs by the first component, but require them
4002 // nonetheless. Only check when there's an actual register in the parameters. If there's
4003 // none, this will fail below.
4004 if (!is_range && sig_registers + 1 < expected_args) {
4005 uint32_t second_reg = arg[sig_registers + 1];
4006 if (second_reg != get_reg + 1) {
4007 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
4008 "at index " << sig_registers << " is not a pair: " << get_reg << " + "
4009 << second_reg << ".";
4010 return nullptr;
4011 }
4012 }
4013 }
4014 }
4015 sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1;
4016 }
4017 if (expected_args != sig_registers) {
4018 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4019 " argument registers, method signature has " << sig_registers;
4020 return nullptr;
4021 }
4022 return res_method;
4023 }
4024
4025 template <bool kVerifierDebug>
VerifyInvocationArgsUnresolvedMethod(const Instruction * inst,MethodType method_type,bool is_range)4026 void MethodVerifier<kVerifierDebug>::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4027 MethodType method_type,
4028 bool is_range) {
4029 // As the method may not have been resolved, make this static check against what we expect.
4030 // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4031 // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4032 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4033 DexFileParameterIterator it(*dex_file_,
4034 dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4035 VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, nullptr);
4036 }
4037
4038 template <bool kVerifierDebug>
CheckCallSite(uint32_t call_site_idx)4039 bool MethodVerifier<kVerifierDebug>::CheckCallSite(uint32_t call_site_idx) {
4040 if (call_site_idx >= dex_file_->NumCallSiteIds()) {
4041 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Bad call site id #" << call_site_idx
4042 << " >= " << dex_file_->NumCallSiteIds();
4043 return false;
4044 }
4045
4046 CallSiteArrayValueIterator it(*dex_file_, dex_file_->GetCallSiteId(call_site_idx));
4047 // Check essential arguments are provided. The dex file verifier has verified indices of the
4048 // main values (method handle, name, method_type).
4049 static const size_t kRequiredArguments = 3;
4050 if (it.Size() < kRequiredArguments) {
4051 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4052 << " has too few arguments: "
4053 << it.Size() << " < " << kRequiredArguments;
4054 return false;
4055 }
4056
4057 std::pair<const EncodedArrayValueIterator::ValueType, size_t> type_and_max[kRequiredArguments] =
4058 { { EncodedArrayValueIterator::ValueType::kMethodHandle, dex_file_->NumMethodHandles() },
4059 { EncodedArrayValueIterator::ValueType::kString, dex_file_->NumStringIds() },
4060 { EncodedArrayValueIterator::ValueType::kMethodType, dex_file_->NumProtoIds() }
4061 };
4062 uint32_t index[kRequiredArguments];
4063
4064 // Check arguments have expected types and are within permitted ranges.
4065 for (size_t i = 0; i < kRequiredArguments; ++i) {
4066 if (it.GetValueType() != type_and_max[i].first) {
4067 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4068 << " argument " << i << " has wrong type "
4069 << it.GetValueType() << "!=" << type_and_max[i].first;
4070 return false;
4071 }
4072 index[i] = static_cast<uint32_t>(it.GetJavaValue().i);
4073 if (index[i] >= type_and_max[i].second) {
4074 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site id #" << call_site_idx
4075 << " argument " << i << " bad index "
4076 << index[i] << " >= " << type_and_max[i].second;
4077 return false;
4078 }
4079 it.Next();
4080 }
4081
4082 // Check method handle kind is valid.
4083 const dex::MethodHandleItem& mh = dex_file_->GetMethodHandle(index[0]);
4084 if (mh.method_handle_type_ != static_cast<uint16_t>(DexFile::MethodHandleType::kInvokeStatic)) {
4085 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Call site #" << call_site_idx
4086 << " argument 0 method handle type is not InvokeStatic: "
4087 << mh.method_handle_type_;
4088 return false;
4089 }
4090 return true;
4091 }
4092
4093 class MethodParamListDescriptorIterator {
4094 public:
MethodParamListDescriptorIterator(ArtMethod * res_method)4095 explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4096 res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4097 params_size_(params_ == nullptr ? 0 : params_->Size()) {
4098 }
4099
HasNext()4100 bool HasNext() {
4101 return pos_ < params_size_;
4102 }
4103
Next()4104 void Next() {
4105 ++pos_;
4106 }
4107
GetDescriptor()4108 const char* GetDescriptor() REQUIRES_SHARED(Locks::mutator_lock_) {
4109 return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4110 }
4111
4112 private:
4113 ArtMethod* res_method_;
4114 size_t pos_;
4115 const dex::TypeList* params_;
4116 const size_t params_size_;
4117 };
4118
4119 template <bool kVerifierDebug>
VerifyInvocationArgs(const Instruction * inst,MethodType method_type,bool is_range)4120 ArtMethod* MethodVerifier<kVerifierDebug>::VerifyInvocationArgs(
4121 const Instruction* inst, MethodType method_type, bool is_range) {
4122 // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4123 // we're making.
4124 const uint32_t method_idx = GetMethodIdxOfInvoke(inst);
4125 ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4126 if (res_method == nullptr) { // error or class is unresolved
4127 // Check what we can statically.
4128 if (!flags_.have_pending_hard_failure_) {
4129 VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4130 }
4131 return nullptr;
4132 }
4133
4134 // If we're using invoke-super(method), make sure that the executing method's class' superclass
4135 // has a vtable entry for the target method. Or the target is on a interface.
4136 if (method_type == METHOD_SUPER) {
4137 dex::TypeIndex class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4138 const RegType& reference_type = reg_types_.FromDescriptor(
4139 class_loader_.Get(),
4140 dex_file_->StringByTypeIdx(class_idx),
4141 false);
4142 if (reference_type.IsUnresolvedTypes()) {
4143 // We cannot differentiate on whether this is a class change error or just
4144 // a missing method. This will be handled at runtime.
4145 Fail(VERIFY_ERROR_NO_METHOD) << "Unable to find referenced class from invoke-super";
4146 return nullptr;
4147 }
4148 if (reference_type.GetClass()->IsInterface()) {
4149 if (!GetDeclaringClass().HasClass()) {
4150 Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4151 << "interface invoke-super";
4152 return nullptr;
4153 } else if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this)) {
4154 Fail(VERIFY_ERROR_CLASS_CHANGE)
4155 << "invoke-super in " << mirror::Class::PrettyClass(GetDeclaringClass().GetClass())
4156 << " in method "
4157 << dex_file_->PrettyMethod(dex_method_idx_) << " to method "
4158 << dex_file_->PrettyMethod(method_idx) << " references "
4159 << "non-super-interface type " << mirror::Class::PrettyClass(reference_type.GetClass());
4160 return nullptr;
4161 }
4162 } else {
4163 const RegType& super = GetDeclaringClass().GetSuperClass(®_types_);
4164 if (super.IsUnresolvedTypes()) {
4165 Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4166 << dex_file_->PrettyMethod(dex_method_idx_)
4167 << " to super " << res_method->PrettyMethod();
4168 return nullptr;
4169 }
4170 if (!reference_type.IsStrictlyAssignableFrom(GetDeclaringClass(), this) ||
4171 (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4172 Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4173 << dex_file_->PrettyMethod(dex_method_idx_)
4174 << " to super " << super
4175 << "." << res_method->GetName()
4176 << res_method->GetSignature();
4177 return nullptr;
4178 }
4179 }
4180 }
4181
4182 if (UNLIKELY(method_type == METHOD_POLYMORPHIC)) {
4183 // Process the signature of the calling site that is invoking the method handle.
4184 dex::ProtoIndex proto_idx(inst->VRegH());
4185 DexFileParameterIterator it(*dex_file_, dex_file_->GetProtoId(proto_idx));
4186 return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4187 } else {
4188 // Process the target method's signature.
4189 MethodParamListDescriptorIterator it(res_method);
4190 return VerifyInvocationArgsFromIterator(&it, inst, method_type, is_range, res_method);
4191 }
4192 }
4193
4194 template <bool kVerifierDebug>
CheckSignaturePolymorphicMethod(ArtMethod * method)4195 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicMethod(ArtMethod* method) {
4196 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
4197 const char* method_name = method->GetName();
4198
4199 const char* expected_return_descriptor;
4200 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4201 if (klass == GetClassRoot<mirror::MethodHandle>(class_roots)) {
4202 expected_return_descriptor = mirror::MethodHandle::GetReturnTypeDescriptor(method_name);
4203 } else if (klass == GetClassRoot<mirror::VarHandle>(class_roots)) {
4204 expected_return_descriptor = mirror::VarHandle::GetReturnTypeDescriptor(method_name);
4205 } else {
4206 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4207 << "Signature polymorphic method in unsuppported class: " << klass->PrettyDescriptor();
4208 return false;
4209 }
4210
4211 if (expected_return_descriptor == nullptr) {
4212 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4213 << "Signature polymorphic method name invalid: " << method_name;
4214 return false;
4215 }
4216
4217 const dex::TypeList* types = method->GetParameterTypeList();
4218 if (types->Size() != 1) {
4219 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4220 << "Signature polymorphic method has too many arguments " << types->Size() << " != 1";
4221 return false;
4222 }
4223
4224 const dex::TypeIndex argument_type_index = types->GetTypeItem(0).type_idx_;
4225 const char* argument_descriptor = method->GetTypeDescriptorFromTypeIdx(argument_type_index);
4226 if (strcmp(argument_descriptor, "[Ljava/lang/Object;") != 0) {
4227 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4228 << "Signature polymorphic method has unexpected argument type: " << argument_descriptor;
4229 return false;
4230 }
4231
4232 const char* return_descriptor = method->GetReturnTypeDescriptor();
4233 if (strcmp(return_descriptor, expected_return_descriptor) != 0) {
4234 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4235 << "Signature polymorphic method has unexpected return type: " << return_descriptor
4236 << " != " << expected_return_descriptor;
4237 return false;
4238 }
4239
4240 return true;
4241 }
4242
4243 template <bool kVerifierDebug>
CheckSignaturePolymorphicReceiver(const Instruction * inst)4244 bool MethodVerifier<kVerifierDebug>::CheckSignaturePolymorphicReceiver(const Instruction* inst) {
4245 const RegType& this_type = work_line_->GetInvocationThis(this, inst);
4246 if (this_type.IsZeroOrNull()) {
4247 /* null pointer always passes (and always fails at run time) */
4248 return true;
4249 } else if (!this_type.IsNonZeroReferenceTypes()) {
4250 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4251 << "invoke-polymorphic receiver is not a reference: "
4252 << this_type;
4253 return false;
4254 } else if (this_type.IsUninitializedReference()) {
4255 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4256 << "invoke-polymorphic receiver is uninitialized: "
4257 << this_type;
4258 return false;
4259 } else if (!this_type.HasClass()) {
4260 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4261 << "invoke-polymorphic receiver has no class: "
4262 << this_type;
4263 return false;
4264 } else {
4265 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = GetClassLinker()->GetClassRoots();
4266 if (!this_type.GetClass()->IsSubClass(GetClassRoot<mirror::MethodHandle>(class_roots)) &&
4267 !this_type.GetClass()->IsSubClass(GetClassRoot<mirror::VarHandle>(class_roots))) {
4268 Fail(VERIFY_ERROR_BAD_CLASS_HARD)
4269 << "invoke-polymorphic receiver is not a subclass of MethodHandle or VarHandle: "
4270 << this_type;
4271 return false;
4272 }
4273 }
4274 return true;
4275 }
4276
4277 template <bool kVerifierDebug>
VerifyNewArray(const Instruction * inst,bool is_filled,bool is_range)4278 void MethodVerifier<kVerifierDebug>::VerifyNewArray(const Instruction* inst,
4279 bool is_filled,
4280 bool is_range) {
4281 dex::TypeIndex type_idx;
4282 if (!is_filled) {
4283 DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4284 type_idx = dex::TypeIndex(inst->VRegC_22c());
4285 } else if (!is_range) {
4286 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4287 type_idx = dex::TypeIndex(inst->VRegB_35c());
4288 } else {
4289 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4290 type_idx = dex::TypeIndex(inst->VRegB_3rc());
4291 }
4292 const RegType& res_type = ResolveClass<CheckAccess::kYes>(type_idx);
4293 if (res_type.IsConflict()) { // bad class
4294 DCHECK_NE(failures_.size(), 0U);
4295 } else {
4296 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4297 if (!res_type.IsArrayTypes()) {
4298 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4299 } else if (!is_filled) {
4300 /* make sure "size" register is valid type */
4301 work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4302 /* set register type to array class */
4303 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4304 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_22c(), precise_type);
4305 } else {
4306 DCHECK(!res_type.IsUnresolvedMergedReference());
4307 // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4308 // the list and fail. It's legal, if silly, for arg_count to be zero.
4309 const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_.Get());
4310 uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4311 uint32_t arg[5];
4312 if (!is_range) {
4313 inst->GetVarArgs(arg);
4314 }
4315 for (size_t ui = 0; ui < arg_count; ui++) {
4316 uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4317 if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
4318 work_line_->SetResultRegisterType(this, reg_types_.Conflict());
4319 return;
4320 }
4321 }
4322 // filled-array result goes into "result" register
4323 const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4324 work_line_->SetResultRegisterType(this, precise_type);
4325 }
4326 }
4327 }
4328
4329 template <bool kVerifierDebug>
VerifyAGet(const Instruction * inst,const RegType & insn_type,bool is_primitive)4330 void MethodVerifier<kVerifierDebug>::VerifyAGet(const Instruction* inst,
4331 const RegType& insn_type,
4332 bool is_primitive) {
4333 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4334 if (!index_type.IsArrayIndexTypes()) {
4335 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4336 } else {
4337 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4338 if (array_type.IsZeroOrNull()) {
4339 // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4340 // instruction type.
4341 if (!is_primitive) {
4342 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), reg_types_.Null());
4343 } else if (insn_type.IsInteger()) {
4344 // Pick a non-zero constant (to distinguish with null) that can fit in any primitive.
4345 // We cannot use 'insn_type' as it could be a float array or an int array.
4346 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), DetermineCat1Constant(1));
4347 } else if (insn_type.IsCategory1Types()) {
4348 // Category 1
4349 // The 'insn_type' is exactly the type we need.
4350 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), insn_type);
4351 } else {
4352 // Category 2
4353 work_line_->SetRegisterTypeWide(inst->VRegA_23x(),
4354 reg_types_.FromCat2ConstLo(0, false),
4355 reg_types_.FromCat2ConstHi(0, false));
4356 }
4357 } else if (!array_type.IsArrayTypes()) {
4358 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4359 } else if (array_type.IsUnresolvedMergedReference()) {
4360 // Unresolved array types must be reference array types.
4361 if (is_primitive) {
4362 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4363 << " source for category 1 aget";
4364 } else {
4365 Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4366 << " because of missing class";
4367 // Approximate with java.lang.Object[].
4368 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(),
4369 reg_types_.JavaLangObject(false));
4370 }
4371 } else {
4372 /* verify the class */
4373 const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4374 if (!component_type.IsReferenceTypes() && !is_primitive) {
4375 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4376 << " source for aget-object";
4377 } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4378 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4379 << " source for category 1 aget";
4380 } else if (is_primitive && !insn_type.Equals(component_type) &&
4381 !((insn_type.IsInteger() && component_type.IsFloat()) ||
4382 (insn_type.IsLong() && component_type.IsDouble()))) {
4383 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4384 << " incompatible with aget of type " << insn_type;
4385 } else {
4386 // Use knowledge of the field type which is stronger than the type inferred from the
4387 // instruction, which can't differentiate object types and ints from floats, longs from
4388 // doubles.
4389 if (!component_type.IsLowHalf()) {
4390 work_line_->SetRegisterType<LockOp::kClear>(inst->VRegA_23x(), component_type);
4391 } else {
4392 work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
4393 component_type.HighHalf(®_types_));
4394 }
4395 }
4396 }
4397 }
4398 }
4399
4400 template <bool kVerifierDebug>
VerifyPrimitivePut(const RegType & target_type,const RegType & insn_type,const uint32_t vregA)4401 void MethodVerifier<kVerifierDebug>::VerifyPrimitivePut(const RegType& target_type,
4402 const RegType& insn_type,
4403 const uint32_t vregA) {
4404 // Primitive assignability rules are weaker than regular assignability rules.
4405 bool instruction_compatible;
4406 bool value_compatible;
4407 const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4408 if (target_type.IsIntegralTypes()) {
4409 instruction_compatible = target_type.Equals(insn_type);
4410 value_compatible = value_type.IsIntegralTypes();
4411 } else if (target_type.IsFloat()) {
4412 instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int
4413 value_compatible = value_type.IsFloatTypes();
4414 } else if (target_type.IsLong()) {
4415 instruction_compatible = insn_type.IsLong();
4416 // Additional register check: this is not checked statically (as part of VerifyInstructions),
4417 // as target_type depends on the resolved type of the field.
4418 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4419 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4420 value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4421 } else {
4422 value_compatible = false;
4423 }
4424 } else if (target_type.IsDouble()) {
4425 instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long
4426 // Additional register check: this is not checked statically (as part of VerifyInstructions),
4427 // as target_type depends on the resolved type of the field.
4428 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4429 const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4430 value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4431 } else {
4432 value_compatible = false;
4433 }
4434 } else {
4435 instruction_compatible = false; // reference with primitive store
4436 value_compatible = false; // unused
4437 }
4438 if (!instruction_compatible) {
4439 // This is a global failure rather than a class change failure as the instructions and
4440 // the descriptors for the type should have been consistent within the same file at
4441 // compile time.
4442 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4443 << "' but expected type '" << target_type << "'";
4444 return;
4445 }
4446 if (!value_compatible) {
4447 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4448 << " of type " << value_type << " but expected " << target_type << " for put";
4449 return;
4450 }
4451 }
4452
4453 template <bool kVerifierDebug>
VerifyAPut(const Instruction * inst,const RegType & insn_type,bool is_primitive)4454 void MethodVerifier<kVerifierDebug>::VerifyAPut(const Instruction* inst,
4455 const RegType& insn_type,
4456 bool is_primitive) {
4457 const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4458 if (!index_type.IsArrayIndexTypes()) {
4459 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4460 } else {
4461 const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4462 if (array_type.IsZeroOrNull()) {
4463 // Null array type; this code path will fail at runtime.
4464 // Still check that the given value matches the instruction's type.
4465 // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4466 // and fits multiple register types.
4467 const RegType* modified_reg_type = &insn_type;
4468 if ((modified_reg_type == ®_types_.Integer()) ||
4469 (modified_reg_type == ®_types_.LongLo())) {
4470 // May be integer or float | long or double. Overwrite insn_type accordingly.
4471 const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4472 if (modified_reg_type == ®_types_.Integer()) {
4473 if (&value_type == ®_types_.Float()) {
4474 modified_reg_type = &value_type;
4475 }
4476 } else {
4477 if (&value_type == ®_types_.DoubleLo()) {
4478 modified_reg_type = &value_type;
4479 }
4480 }
4481 }
4482 work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4483 } else if (!array_type.IsArrayTypes()) {
4484 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4485 } else if (array_type.IsUnresolvedMergedReference()) {
4486 // Unresolved array types must be reference array types.
4487 if (is_primitive) {
4488 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4489 << "' but unresolved type '" << array_type << "'";
4490 } else {
4491 Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4492 << " because of missing class";
4493 }
4494 } else {
4495 const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_.Get());
4496 const uint32_t vregA = inst->VRegA_23x();
4497 if (is_primitive) {
4498 VerifyPrimitivePut(component_type, insn_type, vregA);
4499 } else {
4500 if (!component_type.IsReferenceTypes()) {
4501 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4502 << " source for aput-object";
4503 } else {
4504 // The instruction agrees with the type of array, confirm the value to be stored does too
4505 // Note: we use the instruction type (rather than the component type) for aput-object as
4506 // incompatible classes will be caught at runtime as an array store exception
4507 work_line_->VerifyRegisterType(this, vregA, insn_type);
4508 }
4509 }
4510 }
4511 }
4512 }
4513
4514 template <bool kVerifierDebug>
GetStaticField(int field_idx)4515 ArtField* MethodVerifier<kVerifierDebug>::GetStaticField(int field_idx) {
4516 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4517 // Check access to class
4518 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4519 if (klass_type.IsConflict()) { // bad class
4520 AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4521 field_idx, dex_file_->GetFieldName(field_id),
4522 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4523 return nullptr;
4524 }
4525 if (klass_type.IsUnresolvedTypes()) {
4526 // Accessibility checks depend on resolved fields.
4527 DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4528 !failures_.empty() ||
4529 IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4530
4531 return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime.
4532 }
4533 ClassLinker* class_linker = GetClassLinker();
4534 ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4535
4536 if (field == nullptr) {
4537 VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4538 << dex_file_->GetFieldName(field_id) << ") in "
4539 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4540 DCHECK(self_->IsExceptionPending());
4541 self_->ClearException();
4542 return nullptr;
4543 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4544 field->GetAccessFlags())) {
4545 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << field->PrettyField()
4546 << " from " << GetDeclaringClass();
4547 return nullptr;
4548 } else if (!field->IsStatic()) {
4549 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField() << " to be static";
4550 return nullptr;
4551 }
4552 return field;
4553 }
4554
4555 template <bool kVerifierDebug>
GetInstanceField(const RegType & obj_type,int field_idx)4556 ArtField* MethodVerifier<kVerifierDebug>::GetInstanceField(const RegType& obj_type, int field_idx) {
4557 if (!obj_type.IsZeroOrNull() && !obj_type.IsReferenceTypes()) {
4558 // Trying to read a field from something that isn't a reference.
4559 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4560 << "non-reference type " << obj_type;
4561 return nullptr;
4562 }
4563 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4564 // Check access to class.
4565 const RegType& klass_type = ResolveClass<CheckAccess::kYes>(field_id.class_idx_);
4566 if (klass_type.IsConflict()) {
4567 AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4568 field_idx, dex_file_->GetFieldName(field_id),
4569 dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4570 return nullptr;
4571 }
4572 if (klass_type.IsUnresolvedTypes()) {
4573 // Accessibility checks depend on resolved fields.
4574 DCHECK(klass_type.Equals(GetDeclaringClass()) ||
4575 !failures_.empty() ||
4576 IsSdkVersionSetAndLessThan(api_level_, SdkVersion::kP));
4577
4578 return nullptr; // Can't resolve Class so no more to do here
4579 }
4580 ClassLinker* class_linker = GetClassLinker();
4581 ArtField* field = class_linker->ResolveFieldJLS(field_idx, dex_cache_, class_loader_);
4582
4583 if (field == nullptr) {
4584 VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4585 << dex_file_->GetFieldName(field_id) << ") in "
4586 << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4587 DCHECK(self_->IsExceptionPending());
4588 self_->ClearException();
4589 return nullptr;
4590 } else if (obj_type.IsZeroOrNull()) {
4591 // Cannot infer and check type, however, access will cause null pointer exception.
4592 // Fall through into a few last soft failure checks below.
4593 } else {
4594 std::string temp;
4595 ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
4596 const RegType& field_klass =
4597 FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4598 if (obj_type.IsUninitializedTypes()) {
4599 // Field accesses through uninitialized references are only allowable for constructors where
4600 // the field is declared in this class.
4601 // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4602 // appear in constructors.
4603 if (!obj_type.IsUninitializedThisReference() ||
4604 !IsConstructor() ||
4605 !field_klass.Equals(GetDeclaringClass())) {
4606 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << field->PrettyField()
4607 << " of a not fully initialized object within the context"
4608 << " of " << dex_file_->PrettyMethod(dex_method_idx_);
4609 return nullptr;
4610 }
4611 } else if (!field_klass.IsAssignableFrom(obj_type, this)) {
4612 // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4613 // of C1. For resolution to occur the declared class of the field must be compatible with
4614 // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4615 VerifyError type;
4616 bool is_aot = IsAotMode();
4617 if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4618 // Compiler & unresolved types involved, retry at runtime.
4619 type = VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK;
4620 } else {
4621 // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4622 // and still missing classes. This is a hard failure.
4623 type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4624 }
4625 Fail(type) << "cannot access instance field " << field->PrettyField()
4626 << " from object of type " << obj_type;
4627 return nullptr;
4628 }
4629 }
4630
4631 // Few last soft failure checks.
4632 if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4633 field->GetAccessFlags())) {
4634 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << field->PrettyField()
4635 << " from " << GetDeclaringClass();
4636 return nullptr;
4637 } else if (field->IsStatic()) {
4638 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << field->PrettyField()
4639 << " to not be static";
4640 return nullptr;
4641 }
4642
4643 return field;
4644 }
4645
4646 template <bool kVerifierDebug>
4647 template <FieldAccessType kAccType>
VerifyISFieldAccess(const Instruction * inst,const RegType & insn_type,bool is_primitive,bool is_static)4648 void MethodVerifier<kVerifierDebug>::VerifyISFieldAccess(const Instruction* inst,
4649 const RegType& insn_type,
4650 bool is_primitive,
4651 bool is_static) {
4652 uint32_t field_idx = GetFieldIdxOfFieldAccess(inst, is_static);
4653 ArtField* field;
4654 if (is_static) {
4655 field = GetStaticField(field_idx);
4656 } else {
4657 const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4658
4659 // One is not allowed to access fields on uninitialized references, except to write to
4660 // fields in the constructor (before calling another constructor).
4661 // GetInstanceField does an assignability check which will fail for uninitialized types.
4662 // We thus modify the type if the uninitialized reference is a "this" reference (this also
4663 // checks at the same time that we're verifying a constructor).
4664 bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4665 (object_type.IsUninitializedThisReference() ||
4666 object_type.IsUnresolvedAndUninitializedThisReference());
4667 const RegType& adjusted_type = should_adjust
4668 ? GetRegTypeCache()->FromUninitialized(object_type)
4669 : object_type;
4670 field = GetInstanceField(adjusted_type, field_idx);
4671 if (UNLIKELY(flags_.have_pending_hard_failure_)) {
4672 return;
4673 }
4674 if (should_adjust) {
4675 bool illegal_field_access = false;
4676 if (field == nullptr) {
4677 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4678 if (field_id.class_idx_ != GetClassDef().class_idx_) {
4679 illegal_field_access = true;
4680 } else {
4681 ClassAccessor accessor(*dex_file_, GetClassDef());
4682 illegal_field_access = (accessor.GetInstanceFields().end() ==
4683 std::find_if(accessor.GetInstanceFields().begin(),
4684 accessor.GetInstanceFields().end(),
4685 [field_idx] (const ClassAccessor::Field& f) {
4686 return f.GetIndex() == field_idx;
4687 }));
4688 }
4689 } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4690 illegal_field_access = true;
4691 }
4692 if (illegal_field_access) {
4693 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field "
4694 << dex_file_->PrettyField(field_idx)
4695 << " of a not fully initialized "
4696 << "object within the context of "
4697 << dex_file_->PrettyMethod(dex_method_idx_);
4698 return;
4699 }
4700 }
4701 }
4702 const RegType* field_type = nullptr;
4703 if (field != nullptr) {
4704 if (kAccType == FieldAccessType::kAccPut) {
4705 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4706 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << field->PrettyField()
4707 << " from other class " << GetDeclaringClass();
4708 // Keep hunting for possible hard fails.
4709 }
4710 }
4711
4712 ObjPtr<mirror::Class> field_type_class =
4713 can_load_classes_ ? field->ResolveType() : field->LookupResolvedType();
4714 if (field_type_class != nullptr) {
4715 field_type = &FromClass(field->GetTypeDescriptor(),
4716 field_type_class,
4717 field_type_class->CannotBeAssignedFromOtherTypes());
4718 } else {
4719 DCHECK_IMPLIES(can_load_classes_, self_->IsExceptionPending());
4720 self_->ClearException();
4721 }
4722 } else if (IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kP)) {
4723 // If we don't have the field (it seems we failed resolution) and this is a PUT, we need to
4724 // redo verification at runtime as the field may be final, unless the field id shows it's in
4725 // the same class.
4726 //
4727 // For simplicity, it is OK to not distinguish compile-time vs runtime, and post this an
4728 // ACCESS_FIELD failure at runtime. This has the same effect as NO_FIELD - punting the class
4729 // to the access-checks interpreter.
4730 //
4731 // Note: see b/34966607. This and above may be changed in the future.
4732 if (kAccType == FieldAccessType::kAccPut) {
4733 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4734 const char* field_class_descriptor = dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4735 const RegType* field_class_type = ®_types_.FromDescriptor(class_loader_.Get(),
4736 field_class_descriptor,
4737 false);
4738 if (!field_class_type->Equals(GetDeclaringClass())) {
4739 Fail(VERIFY_ERROR_ACCESS_FIELD) << "could not check field put for final field modify of "
4740 << field_class_descriptor
4741 << "."
4742 << dex_file_->GetFieldName(field_id)
4743 << " from other class "
4744 << GetDeclaringClass();
4745 }
4746 }
4747 }
4748 if (field_type == nullptr) {
4749 const dex::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4750 const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4751 field_type = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
4752 }
4753 DCHECK(field_type != nullptr);
4754 const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4755 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4756 "Unexpected third access type");
4757 if (kAccType == FieldAccessType::kAccPut) {
4758 // sput or iput.
4759 if (is_primitive) {
4760 VerifyPrimitivePut(*field_type, insn_type, vregA);
4761 } else {
4762 DCHECK(insn_type.IsJavaLangObject());
4763 if (!insn_type.IsAssignableFrom(*field_type, this)) {
4764 DCHECK(!field_type->IsReferenceTypes());
4765 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4766 << " to be compatible with type '" << insn_type
4767 << "' but found type '" << *field_type
4768 << "' in put-object";
4769 return;
4770 }
4771 work_line_->VerifyRegisterType(this, vregA, *field_type);
4772 }
4773 } else if (kAccType == FieldAccessType::kAccGet) {
4774 // sget or iget.
4775 if (is_primitive) {
4776 if (field_type->Equals(insn_type) ||
4777 (field_type->IsFloat() && insn_type.IsInteger()) ||
4778 (field_type->IsDouble() && insn_type.IsLong())) {
4779 // expected that read is of the correct primitive type or that int reads are reading
4780 // floats or long reads are reading doubles
4781 } else {
4782 // This is a global failure rather than a class change failure as the instructions and
4783 // the descriptors for the type should have been consistent within the same file at
4784 // compile time
4785 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4786 << " to be of type '" << insn_type
4787 << "' but found type '" << *field_type << "' in get";
4788 return;
4789 }
4790 } else {
4791 DCHECK(insn_type.IsJavaLangObject());
4792 if (!insn_type.IsAssignableFrom(*field_type, this)) {
4793 DCHECK(!field_type->IsReferenceTypes());
4794 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << ArtField::PrettyField(field)
4795 << " to be compatible with type '" << insn_type
4796 << "' but found type '" << *field_type
4797 << "' in get-object";
4798 return;
4799 }
4800 }
4801 if (!field_type->IsLowHalf()) {
4802 work_line_->SetRegisterType<LockOp::kClear>(vregA, *field_type);
4803 } else {
4804 work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(®_types_));
4805 }
4806 } else {
4807 LOG(FATAL) << "Unexpected case.";
4808 }
4809 }
4810
4811 template <bool kVerifierDebug>
UpdateRegisters(uint32_t next_insn,RegisterLine * merge_line,bool update_merge_line)4812 bool MethodVerifier<kVerifierDebug>::UpdateRegisters(uint32_t next_insn,
4813 RegisterLine* merge_line,
4814 bool update_merge_line) {
4815 bool changed = true;
4816 RegisterLine* target_line = reg_table_.GetLine(next_insn);
4817 if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
4818 /*
4819 * We haven't processed this instruction before, and we haven't touched the registers here, so
4820 * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4821 * only way a register can transition out of "unknown", so this is not just an optimization.)
4822 */
4823 target_line->CopyFromLine(merge_line);
4824 if (GetInstructionFlags(next_insn).IsReturn()) {
4825 // Verify that the monitor stack is empty on return.
4826 merge_line->VerifyMonitorStackEmpty(this);
4827
4828 // For returns we only care about the operand to the return, all other registers are dead.
4829 // Initialize them as conflicts so they don't add to GC and deoptimization information.
4830 const Instruction* ret_inst = &code_item_accessor_.InstructionAt(next_insn);
4831 AdjustReturnLine(this, ret_inst, target_line);
4832 // Directly bail if a hard failure was found.
4833 if (flags_.have_pending_hard_failure_) {
4834 return false;
4835 }
4836 }
4837 } else {
4838 RegisterLineArenaUniquePtr copy;
4839 if (kVerifierDebug) {
4840 copy.reset(RegisterLine::Create(target_line->NumRegs(), allocator_, GetRegTypeCache()));
4841 copy->CopyFromLine(target_line);
4842 }
4843 changed = target_line->MergeRegisters(this, merge_line);
4844 if (flags_.have_pending_hard_failure_) {
4845 return false;
4846 }
4847 if (kVerifierDebug && changed) {
4848 LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4849 << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4850 << copy->Dump(this) << " MERGE\n"
4851 << merge_line->Dump(this) << " ==\n"
4852 << target_line->Dump(this);
4853 }
4854 if (update_merge_line && changed) {
4855 merge_line->CopyFromLine(target_line);
4856 }
4857 }
4858 if (changed) {
4859 GetModifiableInstructionFlags(next_insn).SetChanged();
4860 }
4861 return true;
4862 }
4863
4864 template <bool kVerifierDebug>
GetMethodReturnType()4865 const RegType& MethodVerifier<kVerifierDebug>::GetMethodReturnType() {
4866 if (return_type_ == nullptr) {
4867 const dex::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4868 const dex::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4869 dex::TypeIndex return_type_idx = proto_id.return_type_idx_;
4870 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4871 return_type_ = ®_types_.FromDescriptor(class_loader_.Get(), descriptor, false);
4872 }
4873 return *return_type_;
4874 }
4875
4876 template <bool kVerifierDebug>
DetermineCat1Constant(int32_t value)4877 const RegType& MethodVerifier<kVerifierDebug>::DetermineCat1Constant(int32_t value) {
4878 // Imprecise constant type.
4879 if (value < -32768) {
4880 return reg_types_.IntConstant();
4881 } else if (value < -128) {
4882 return reg_types_.ShortConstant();
4883 } else if (value < 0) {
4884 return reg_types_.ByteConstant();
4885 } else if (value == 0) {
4886 return reg_types_.Zero();
4887 } else if (value == 1) {
4888 return reg_types_.One();
4889 } else if (value < 128) {
4890 return reg_types_.PosByteConstant();
4891 } else if (value < 32768) {
4892 return reg_types_.PosShortConstant();
4893 } else if (value < 65536) {
4894 return reg_types_.CharConstant();
4895 } else {
4896 return reg_types_.IntConstant();
4897 }
4898 }
4899
4900 template <bool kVerifierDebug>
PotentiallyMarkRuntimeThrow()4901 bool MethodVerifier<kVerifierDebug>::PotentiallyMarkRuntimeThrow() {
4902 if (IsAotMode() || IsSdkVersionSetAndAtLeast(api_level_, SdkVersion::kT)) {
4903 return false;
4904 }
4905 // Compatibility mode: we treat the following code unreachable and the verifier
4906 // will not analyze it.
4907 // The verifier may fail before we touch any instruction, for the signature of a method. So
4908 // add a check.
4909 if (work_insn_idx_ < dex::kDexNoIndex) {
4910 const Instruction& inst = code_item_accessor_.InstructionAt(work_insn_idx_);
4911 Instruction::Code opcode = inst.Opcode();
4912 if (opcode == Instruction::MOVE_EXCEPTION) {
4913 // This is an unreachable handler. The instruction doesn't throw, but we
4914 // mark the method as having a pending runtime throw failure so that
4915 // the compiler does not try to compile it.
4916 Fail(VERIFY_ERROR_RUNTIME_THROW, /* pending_exc= */ false);
4917 return true;
4918 }
4919 // How to handle runtime failures for instructions that are not flagged kThrow.
4920 if ((Instruction::FlagsOf(opcode) & Instruction::kThrow) == 0 &&
4921 !impl::IsCompatThrow(opcode) &&
4922 GetInstructionFlags(work_insn_idx_).IsInTry()) {
4923 if (Runtime::Current()->IsVerifierMissingKThrowFatal()) {
4924 LOG(FATAL) << "Unexpected throw: " << std::hex << work_insn_idx_ << " " << opcode;
4925 UNREACHABLE();
4926 }
4927 // We need to save the work_line if the instruction wasn't throwing before. Otherwise
4928 // we'll try to merge garbage.
4929 // Note: this assumes that Fail is called before we do any work_line modifications.
4930 saved_line_->CopyFromLine(work_line_.get());
4931 }
4932 }
4933 flags_.have_pending_runtime_throw_failure_ = true;
4934 return true;
4935 }
4936
4937 } // namespace
4938 } // namespace impl
4939
MethodVerifier(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,const DexFile * dex_file,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t dex_method_idx,bool can_load_classes,bool allow_thread_suspension,bool aot_mode)4940 MethodVerifier::MethodVerifier(Thread* self,
4941 ClassLinker* class_linker,
4942 ArenaPool* arena_pool,
4943 VerifierDeps* verifier_deps,
4944 const DexFile* dex_file,
4945 const dex::ClassDef& class_def,
4946 const dex::CodeItem* code_item,
4947 uint32_t dex_method_idx,
4948 bool can_load_classes,
4949 bool allow_thread_suspension,
4950 bool aot_mode)
4951 : self_(self),
4952 arena_stack_(arena_pool),
4953 allocator_(&arena_stack_),
4954 reg_types_(class_linker, can_load_classes, allocator_, allow_thread_suspension),
4955 reg_table_(allocator_),
4956 work_insn_idx_(dex::kDexNoIndex),
4957 dex_method_idx_(dex_method_idx),
4958 dex_file_(dex_file),
4959 class_def_(class_def),
4960 code_item_accessor_(*dex_file, code_item),
4961 // TODO: make it designated initialization when we compile as C++20.
4962 flags_({false, false, aot_mode}),
4963 encountered_failure_types_(0),
4964 can_load_classes_(can_load_classes),
4965 class_linker_(class_linker),
4966 verifier_deps_(verifier_deps),
4967 link_(nullptr) {
4968 self->PushVerifier(this);
4969 }
4970
~MethodVerifier()4971 MethodVerifier::~MethodVerifier() {
4972 Thread::Current()->PopVerifier(this);
4973 STLDeleteElements(&failure_messages_);
4974 }
4975
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_access_flags,HardFailLogMode log_level,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)4976 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
4977 ClassLinker* class_linker,
4978 ArenaPool* arena_pool,
4979 VerifierDeps* verifier_deps,
4980 uint32_t method_idx,
4981 const DexFile* dex_file,
4982 Handle<mirror::DexCache> dex_cache,
4983 Handle<mirror::ClassLoader> class_loader,
4984 const dex::ClassDef& class_def,
4985 const dex::CodeItem* code_item,
4986 uint32_t method_access_flags,
4987 HardFailLogMode log_level,
4988 uint32_t api_level,
4989 bool aot_mode,
4990 std::string* hard_failure_msg) {
4991 if (VLOG_IS_ON(verifier_debug)) {
4992 return VerifyMethod<true>(self,
4993 class_linker,
4994 arena_pool,
4995 verifier_deps,
4996 method_idx,
4997 dex_file,
4998 dex_cache,
4999 class_loader,
5000 class_def,
5001 code_item,
5002 method_access_flags,
5003 log_level,
5004 api_level,
5005 aot_mode,
5006 hard_failure_msg);
5007 } else {
5008 return VerifyMethod<false>(self,
5009 class_linker,
5010 arena_pool,
5011 verifier_deps,
5012 method_idx,
5013 dex_file,
5014 dex_cache,
5015 class_loader,
5016 class_def,
5017 code_item,
5018 method_access_flags,
5019 log_level,
5020 api_level,
5021 aot_mode,
5022 hard_failure_msg);
5023 }
5024 }
5025
5026 // Return whether the runtime knows how to execute a method without needing to
5027 // re-verify it at runtime (and therefore save on first use of the class).
5028 // The AOT/JIT compiled code is not affected.
CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types)5029 static inline bool CanRuntimeHandleVerificationFailure(uint32_t encountered_failure_types) {
5030 constexpr uint32_t unresolved_mask =
5031 verifier::VerifyError::VERIFY_ERROR_UNRESOLVED_TYPE_CHECK |
5032 verifier::VerifyError::VERIFY_ERROR_NO_CLASS |
5033 verifier::VerifyError::VERIFY_ERROR_CLASS_CHANGE |
5034 verifier::VerifyError::VERIFY_ERROR_INSTANTIATION |
5035 verifier::VerifyError::VERIFY_ERROR_ACCESS_CLASS |
5036 verifier::VerifyError::VERIFY_ERROR_ACCESS_FIELD |
5037 verifier::VerifyError::VERIFY_ERROR_NO_METHOD |
5038 verifier::VerifyError::VERIFY_ERROR_ACCESS_METHOD |
5039 verifier::VerifyError::VERIFY_ERROR_RUNTIME_THROW;
5040 return (encountered_failure_types & (~unresolved_mask)) == 0;
5041 }
5042
5043 template <bool kVerifierDebug>
VerifyMethod(Thread * self,ClassLinker * class_linker,ArenaPool * arena_pool,VerifierDeps * verifier_deps,uint32_t method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_access_flags,HardFailLogMode log_level,uint32_t api_level,bool aot_mode,std::string * hard_failure_msg)5044 MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
5045 ClassLinker* class_linker,
5046 ArenaPool* arena_pool,
5047 VerifierDeps* verifier_deps,
5048 uint32_t method_idx,
5049 const DexFile* dex_file,
5050 Handle<mirror::DexCache> dex_cache,
5051 Handle<mirror::ClassLoader> class_loader,
5052 const dex::ClassDef& class_def,
5053 const dex::CodeItem* code_item,
5054 uint32_t method_access_flags,
5055 HardFailLogMode log_level,
5056 uint32_t api_level,
5057 bool aot_mode,
5058 std::string* hard_failure_msg) {
5059 MethodVerifier::FailureData result;
5060 uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
5061
5062 impl::MethodVerifier<kVerifierDebug> verifier(self,
5063 class_linker,
5064 arena_pool,
5065 verifier_deps,
5066 dex_file,
5067 code_item,
5068 method_idx,
5069 /* can_load_classes= */ true,
5070 /* allow_thread_suspension= */ true,
5071 aot_mode,
5072 dex_cache,
5073 class_loader,
5074 class_def,
5075 method_access_flags,
5076 /* verify to dump */ false,
5077 api_level);
5078 if (verifier.Verify()) {
5079 // Verification completed, however failures may be pending that didn't cause the verification
5080 // to hard fail.
5081 CHECK(!verifier.flags_.have_pending_hard_failure_);
5082
5083 if (verifier.failures_.size() != 0) {
5084 if (VLOG_IS_ON(verifier)) {
5085 verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
5086 << dex_file->PrettyMethod(method_idx) << "\n");
5087 }
5088 if (kVerifierDebug) {
5089 LOG(INFO) << verifier.info_messages_.str();
5090 verifier.Dump(LOG_STREAM(INFO));
5091 }
5092 if (CanRuntimeHandleVerificationFailure(verifier.encountered_failure_types_)) {
5093 if (verifier.encountered_failure_types_ & VERIFY_ERROR_UNRESOLVED_TYPE_CHECK) {
5094 result.kind = FailureKind::kTypeChecksFailure;
5095 } else {
5096 result.kind = FailureKind::kAccessChecksFailure;
5097 }
5098 } else {
5099 result.kind = FailureKind::kSoftFailure;
5100 }
5101 }
5102 } else {
5103 // Bad method data.
5104 CHECK_NE(verifier.failures_.size(), 0U);
5105 CHECK(verifier.flags_.have_pending_hard_failure_);
5106 if (VLOG_IS_ON(verifier)) {
5107 log_level = std::max(HardFailLogMode::kLogVerbose, log_level);
5108 }
5109 if (log_level >= HardFailLogMode::kLogVerbose) {
5110 LogSeverity severity;
5111 switch (log_level) {
5112 case HardFailLogMode::kLogVerbose:
5113 severity = LogSeverity::VERBOSE;
5114 break;
5115 case HardFailLogMode::kLogWarning:
5116 severity = LogSeverity::WARNING;
5117 break;
5118 case HardFailLogMode::kLogInternalFatal:
5119 severity = LogSeverity::FATAL_WITHOUT_ABORT;
5120 break;
5121 default:
5122 LOG(FATAL) << "Unsupported log-level " << static_cast<uint32_t>(log_level);
5123 UNREACHABLE();
5124 }
5125 verifier.DumpFailures(LOG_STREAM(severity) << "Verification error in "
5126 << dex_file->PrettyMethod(method_idx)
5127 << "\n");
5128 }
5129 if (hard_failure_msg != nullptr) {
5130 CHECK(!verifier.failure_messages_.empty());
5131 *hard_failure_msg =
5132 verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
5133 }
5134 result.kind = FailureKind::kHardFailure;
5135
5136 if (kVerifierDebug || VLOG_IS_ON(verifier)) {
5137 LOG(ERROR) << verifier.info_messages_.str();
5138 verifier.Dump(LOG_STREAM(ERROR));
5139 }
5140 // Under verifier-debug, dump the complete log into the error message.
5141 if (kVerifierDebug && hard_failure_msg != nullptr) {
5142 hard_failure_msg->append("\n");
5143 hard_failure_msg->append(verifier.info_messages_.str());
5144 hard_failure_msg->append("\n");
5145 std::ostringstream oss;
5146 verifier.Dump(oss);
5147 hard_failure_msg->append(oss.str());
5148 }
5149 }
5150 if (kTimeVerifyMethod) {
5151 uint64_t duration_ns = NanoTime() - start_ns;
5152 if (duration_ns > MsToNs(Runtime::Current()->GetVerifierLoggingThresholdMs())) {
5153 double bytecodes_per_second =
5154 verifier.code_item_accessor_.InsnsSizeInCodeUnits() / (duration_ns * 1e-9);
5155 LOG(WARNING) << "Verification of " << dex_file->PrettyMethod(method_idx)
5156 << " took " << PrettyDuration(duration_ns)
5157 << (impl::IsLargeMethod(verifier.CodeItem()) ? " (large method)" : "")
5158 << " (" << StringPrintf("%.2f", bytecodes_per_second) << " bytecodes/s)"
5159 << " (" << verifier.allocator_.ApproximatePeakBytes()
5160 << "B approximate peak alloc)";
5161 }
5162 }
5163 result.types = verifier.encountered_failure_types_;
5164 return result;
5165 }
5166
CalculateVerificationInfo(Thread * self,ArtMethod * method,uint32_t dex_pc)5167 MethodVerifier* MethodVerifier::CalculateVerificationInfo(
5168 Thread* self,
5169 ArtMethod* method,
5170 uint32_t dex_pc) {
5171 StackHandleScope<2> hs(self);
5172 Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
5173 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method->GetClassLoader()));
5174 std::unique_ptr<impl::MethodVerifier<false>> verifier(
5175 new impl::MethodVerifier<false>(self,
5176 Runtime::Current()->GetClassLinker(),
5177 Runtime::Current()->GetArenaPool(),
5178 /* verifier_deps= */ nullptr,
5179 method->GetDexFile(),
5180 method->GetCodeItem(),
5181 method->GetDexMethodIndex(),
5182 /* can_load_classes= */ false,
5183 /* allow_thread_suspension= */ false,
5184 Runtime::Current()->IsAotCompiler(),
5185 dex_cache,
5186 class_loader,
5187 *method->GetDeclaringClass()->GetClassDef(),
5188 method->GetAccessFlags(),
5189 /* verify_to_dump= */ false,
5190 // Just use the verifier at the current skd-version.
5191 // This might affect what soft-verifier errors are reported.
5192 // Callers can then filter out relevant errors if needed.
5193 Runtime::Current()->GetTargetSdkVersion()));
5194 verifier->interesting_dex_pc_ = dex_pc;
5195 verifier->Verify();
5196 if (VLOG_IS_ON(verifier)) {
5197 verifier->DumpFailures(VLOG_STREAM(verifier));
5198 VLOG(verifier) << verifier->info_messages_.str();
5199 verifier->Dump(VLOG_STREAM(verifier));
5200 }
5201 if (verifier->flags_.have_pending_hard_failure_) {
5202 return nullptr;
5203 } else {
5204 return verifier.release();
5205 }
5206 }
5207
VerifyMethodAndDump(Thread * self,VariableIndentationOutputStream * vios,uint32_t dex_method_idx,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_access_flags,uint32_t api_level)5208 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
5209 VariableIndentationOutputStream* vios,
5210 uint32_t dex_method_idx,
5211 const DexFile* dex_file,
5212 Handle<mirror::DexCache> dex_cache,
5213 Handle<mirror::ClassLoader> class_loader,
5214 const dex::ClassDef& class_def,
5215 const dex::CodeItem* code_item,
5216 uint32_t method_access_flags,
5217 uint32_t api_level) {
5218 impl::MethodVerifier<false>* verifier = new impl::MethodVerifier<false>(
5219 self,
5220 Runtime::Current()->GetClassLinker(),
5221 Runtime::Current()->GetArenaPool(),
5222 /* verifier_deps= */ nullptr,
5223 dex_file,
5224 code_item,
5225 dex_method_idx,
5226 /* can_load_classes= */ true,
5227 /* allow_thread_suspension= */ true,
5228 Runtime::Current()->IsAotCompiler(),
5229 dex_cache,
5230 class_loader,
5231 class_def,
5232 method_access_flags,
5233 /* verify_to_dump= */ true,
5234 api_level);
5235 verifier->Verify();
5236 verifier->DumpFailures(vios->Stream());
5237 vios->Stream() << verifier->info_messages_.str();
5238 // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
5239 // and querying any info is dangerous/can abort.
5240 if (verifier->flags_.have_pending_hard_failure_) {
5241 delete verifier;
5242 return nullptr;
5243 } else {
5244 verifier->Dump(vios);
5245 return verifier;
5246 }
5247 }
5248
FindLocksAtDexPc(ArtMethod * m,uint32_t dex_pc,std::vector<MethodVerifier::DexLockInfo> * monitor_enter_dex_pcs,uint32_t api_level)5249 void MethodVerifier::FindLocksAtDexPc(
5250 ArtMethod* m,
5251 uint32_t dex_pc,
5252 std::vector<MethodVerifier::DexLockInfo>* monitor_enter_dex_pcs,
5253 uint32_t api_level) {
5254 StackHandleScope<2> hs(Thread::Current());
5255 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
5256 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
5257 impl::MethodVerifier<false> verifier(hs.Self(),
5258 Runtime::Current()->GetClassLinker(),
5259 Runtime::Current()->GetArenaPool(),
5260 /* verifier_deps= */ nullptr,
5261 m->GetDexFile(),
5262 m->GetCodeItem(),
5263 m->GetDexMethodIndex(),
5264 /* can_load_classes= */ false,
5265 /* allow_thread_suspension= */ false,
5266 Runtime::Current()->IsAotCompiler(),
5267 dex_cache,
5268 class_loader,
5269 m->GetClassDef(),
5270 m->GetAccessFlags(),
5271 /* verify_to_dump= */ false,
5272 api_level);
5273 verifier.interesting_dex_pc_ = dex_pc;
5274 verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
5275 verifier.FindLocksAtDexPc();
5276 }
5277
CreateVerifier(Thread * self,VerifierDeps * verifier_deps,const DexFile * dex_file,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,const dex::ClassDef & class_def,const dex::CodeItem * code_item,uint32_t method_idx,uint32_t access_flags,bool can_load_classes,bool verify_to_dump,bool allow_thread_suspension,uint32_t api_level)5278 MethodVerifier* MethodVerifier::CreateVerifier(Thread* self,
5279 VerifierDeps* verifier_deps,
5280 const DexFile* dex_file,
5281 Handle<mirror::DexCache> dex_cache,
5282 Handle<mirror::ClassLoader> class_loader,
5283 const dex::ClassDef& class_def,
5284 const dex::CodeItem* code_item,
5285 uint32_t method_idx,
5286 uint32_t access_flags,
5287 bool can_load_classes,
5288 bool verify_to_dump,
5289 bool allow_thread_suspension,
5290 uint32_t api_level) {
5291 return new impl::MethodVerifier<false>(self,
5292 Runtime::Current()->GetClassLinker(),
5293 Runtime::Current()->GetArenaPool(),
5294 verifier_deps,
5295 dex_file,
5296 code_item,
5297 method_idx,
5298 can_load_classes,
5299 allow_thread_suspension,
5300 Runtime::Current()->IsAotCompiler(),
5301 dex_cache,
5302 class_loader,
5303 class_def,
5304 access_flags,
5305 verify_to_dump,
5306 api_level);
5307 }
5308
Init(ClassLinker * class_linker)5309 void MethodVerifier::Init(ClassLinker* class_linker) {
5310 art::verifier::RegTypeCache::Init(class_linker);
5311 }
5312
Shutdown()5313 void MethodVerifier::Shutdown() {
5314 verifier::RegTypeCache::ShutDown();
5315 }
5316
VisitStaticRoots(RootVisitor * visitor)5317 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
5318 RegTypeCache::VisitStaticRoots(visitor);
5319 }
5320
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)5321 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
5322 reg_types_.VisitRoots(visitor, root_info);
5323 }
5324
Fail(VerifyError error,bool pending_exc)5325 std::ostream& MethodVerifier::Fail(VerifyError error, bool pending_exc) {
5326 // Mark the error type as encountered.
5327 encountered_failure_types_ |= static_cast<uint32_t>(error);
5328
5329 if (pending_exc) {
5330 switch (error) {
5331 case VERIFY_ERROR_NO_CLASS:
5332 case VERIFY_ERROR_UNRESOLVED_TYPE_CHECK:
5333 case VERIFY_ERROR_NO_METHOD:
5334 case VERIFY_ERROR_ACCESS_CLASS:
5335 case VERIFY_ERROR_ACCESS_FIELD:
5336 case VERIFY_ERROR_ACCESS_METHOD:
5337 case VERIFY_ERROR_INSTANTIATION:
5338 case VERIFY_ERROR_CLASS_CHANGE: {
5339 PotentiallyMarkRuntimeThrow();
5340 break;
5341 }
5342
5343 case VERIFY_ERROR_LOCKING:
5344 PotentiallyMarkRuntimeThrow();
5345 // This will be reported to the runtime as a soft failure.
5346 break;
5347
5348 // Hard verification failures at compile time will still fail at runtime, so the class is
5349 // marked as rejected to prevent it from being compiled.
5350 case VERIFY_ERROR_BAD_CLASS_HARD: {
5351 flags_.have_pending_hard_failure_ = true;
5352 break;
5353 }
5354
5355 case VERIFY_ERROR_RUNTIME_THROW: {
5356 LOG(FATAL) << "UNREACHABLE";
5357 }
5358 }
5359 } else if (kIsDebugBuild) {
5360 CHECK_NE(error, VERIFY_ERROR_BAD_CLASS_HARD);
5361 }
5362
5363 failures_.push_back(error);
5364 std::string location(StringPrintf("%s: [0x%X] ", dex_file_->PrettyMethod(dex_method_idx_).c_str(),
5365 work_insn_idx_));
5366 std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
5367 failure_messages_.push_back(failure_message);
5368 return *failure_message;
5369 }
5370
LogVerifyInfo()5371 ScopedNewLine MethodVerifier::LogVerifyInfo() {
5372 ScopedNewLine ret{info_messages_};
5373 ret << "VFY: " << dex_file_->PrettyMethod(dex_method_idx_)
5374 << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
5375 return ret;
5376 }
5377
FailureKindMax(FailureKind fk1,FailureKind fk2)5378 static FailureKind FailureKindMax(FailureKind fk1, FailureKind fk2) {
5379 static_assert(FailureKind::kNoFailure < FailureKind::kSoftFailure
5380 && FailureKind::kSoftFailure < FailureKind::kHardFailure,
5381 "Unexpected FailureKind order");
5382 return std::max(fk1, fk2);
5383 }
5384
Merge(const MethodVerifier::FailureData & fd)5385 void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
5386 kind = FailureKindMax(kind, fd.kind);
5387 types |= fd.types;
5388 }
5389
5390 } // namespace verifier
5391 } // namespace art
5392