1 /*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18
19 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
20
21 #undef LOG_TAG
22 #define LOG_TAG "PowerAdvisor"
23
24 #include <unistd.h>
25 #include <cinttypes>
26 #include <cstdint>
27 #include <optional>
28
29 #include <android-base/properties.h>
30 #include <utils/Log.h>
31 #include <utils/Mutex.h>
32 #include <utils/Trace.h>
33
34 #include <android/hardware/power/1.3/IPower.h>
35 #include <android/hardware/power/IPowerHintSession.h>
36 #include <android/hardware/power/WorkDuration.h>
37
38 #include <binder/IServiceManager.h>
39
40 #include "../SurfaceFlingerProperties.h"
41
42 #include "PowerAdvisor.h"
43 #include "SurfaceFlinger.h"
44
45 namespace android {
46 namespace Hwc2 {
47
48 PowerAdvisor::~PowerAdvisor() = default;
49
50 namespace impl {
51
52 namespace V1_0 = android::hardware::power::V1_0;
53 namespace V1_3 = android::hardware::power::V1_3;
54 using V1_3::PowerHint;
55
56 using android::hardware::power::Boost;
57 using android::hardware::power::IPower;
58 using android::hardware::power::IPowerHintSession;
59 using android::hardware::power::Mode;
60 using android::hardware::power::WorkDuration;
61
62 using scheduler::OneShotTimer;
63
64 PowerAdvisor::~PowerAdvisor() = default;
65
66 namespace {
getUpdateTimeout()67 std::chrono::milliseconds getUpdateTimeout() {
68 // Default to a timeout of 80ms if nothing else is specified
69 static std::chrono::milliseconds timeout =
70 std::chrono::milliseconds(sysprop::display_update_imminent_timeout_ms(80));
71 return timeout;
72 }
73
traceExpensiveRendering(bool enabled)74 void traceExpensiveRendering(bool enabled) {
75 if (enabled) {
76 ATRACE_ASYNC_BEGIN("ExpensiveRendering", 0);
77 } else {
78 ATRACE_ASYNC_END("ExpensiveRendering", 0);
79 }
80 }
81
82 } // namespace
83
PowerAdvisor(SurfaceFlinger & flinger)84 PowerAdvisor::PowerAdvisor(SurfaceFlinger& flinger) : mFlinger(flinger) {
85 if (getUpdateTimeout() > 0ms) {
86 mScreenUpdateTimer.emplace("UpdateImminentTimer", getUpdateTimeout(),
87 /* resetCallback */ nullptr,
88 /* timeoutCallback */
89 [this] {
90 while (true) {
91 auto timeSinceLastUpdate = std::chrono::nanoseconds(
92 systemTime() - mLastScreenUpdatedTime.load());
93 if (timeSinceLastUpdate >= getUpdateTimeout()) {
94 break;
95 }
96 // We may try to disable expensive rendering and allow
97 // for sending DISPLAY_UPDATE_IMMINENT hints too early if
98 // we idled very shortly after updating the screen, so
99 // make sure we wait enough time.
100 std::this_thread::sleep_for(getUpdateTimeout() -
101 timeSinceLastUpdate);
102 }
103 mSendUpdateImminent.store(true);
104 mFlinger.disableExpensiveRendering();
105 });
106 }
107 }
108
init()109 void PowerAdvisor::init() {
110 // Defer starting the screen update timer until SurfaceFlinger finishes construction.
111 if (mScreenUpdateTimer) {
112 mScreenUpdateTimer->start();
113 }
114 }
115
onBootFinished()116 void PowerAdvisor::onBootFinished() {
117 mBootFinished.store(true);
118 }
119
setExpensiveRenderingExpected(DisplayId displayId,bool expected)120 void PowerAdvisor::setExpensiveRenderingExpected(DisplayId displayId, bool expected) {
121 if (expected) {
122 mExpensiveDisplays.insert(displayId);
123 } else {
124 mExpensiveDisplays.erase(displayId);
125 }
126
127 const bool expectsExpensiveRendering = !mExpensiveDisplays.empty();
128 if (mNotifiedExpensiveRendering != expectsExpensiveRendering) {
129 std::lock_guard lock(mPowerHalMutex);
130 HalWrapper* const halWrapper = getPowerHal();
131 if (halWrapper == nullptr) {
132 return;
133 }
134
135 if (!halWrapper->setExpensiveRendering(expectsExpensiveRendering)) {
136 // The HAL has become unavailable; attempt to reconnect later
137 mReconnectPowerHal = true;
138 return;
139 }
140
141 mNotifiedExpensiveRendering = expectsExpensiveRendering;
142 }
143 }
144
notifyDisplayUpdateImminent()145 void PowerAdvisor::notifyDisplayUpdateImminent() {
146 // Only start sending this notification once the system has booted so we don't introduce an
147 // early-boot dependency on Power HAL
148 if (!mBootFinished.load()) {
149 return;
150 }
151
152 if (mSendUpdateImminent.exchange(false)) {
153 std::lock_guard lock(mPowerHalMutex);
154 HalWrapper* const halWrapper = getPowerHal();
155 if (halWrapper == nullptr) {
156 return;
157 }
158
159 if (!halWrapper->notifyDisplayUpdateImminent()) {
160 // The HAL has become unavailable; attempt to reconnect later
161 mReconnectPowerHal = true;
162 return;
163 }
164
165 if (mScreenUpdateTimer) {
166 mScreenUpdateTimer->reset();
167 } else {
168 // If we don't have a screen update timer, then we don't throttle power hal calls so
169 // flip this bit back to allow for calling into power hal again.
170 mSendUpdateImminent.store(true);
171 }
172 }
173
174 if (mScreenUpdateTimer) {
175 mLastScreenUpdatedTime.store(systemTime());
176 }
177 }
178
179 // checks both if it supports and if it's enabled
usePowerHintSession()180 bool PowerAdvisor::usePowerHintSession() {
181 // uses cached value since the underlying support and flag are unlikely to change at runtime
182 return mPowerHintEnabled.value_or(false) && supportsPowerHintSession();
183 }
184
supportsPowerHintSession()185 bool PowerAdvisor::supportsPowerHintSession() {
186 // cache to avoid needing lock every time
187 if (!mSupportsPowerHint.has_value()) {
188 std::lock_guard lock(mPowerHalMutex);
189 HalWrapper* const halWrapper = getPowerHal();
190 mSupportsPowerHint = halWrapper && halWrapper->supportsPowerHintSession();
191 }
192 return *mSupportsPowerHint;
193 }
194
isPowerHintSessionRunning()195 bool PowerAdvisor::isPowerHintSessionRunning() {
196 return mPowerHintSessionRunning;
197 }
198
setTargetWorkDuration(int64_t targetDuration)199 void PowerAdvisor::setTargetWorkDuration(int64_t targetDuration) {
200 if (!usePowerHintSession()) {
201 ALOGV("Power hint session target duration cannot be set, skipping");
202 return;
203 }
204 {
205 std::lock_guard lock(mPowerHalMutex);
206 HalWrapper* const halWrapper = getPowerHal();
207 if (halWrapper != nullptr) {
208 halWrapper->setTargetWorkDuration(targetDuration);
209 }
210 }
211 }
212
sendActualWorkDuration()213 void PowerAdvisor::sendActualWorkDuration() {
214 if (!mBootFinished || !usePowerHintSession()) {
215 ALOGV("Actual work duration power hint cannot be sent, skipping");
216 return;
217 }
218 const std::optional<nsecs_t> actualDuration = estimateWorkDuration(false);
219 if (actualDuration.has_value()) {
220 std::lock_guard lock(mPowerHalMutex);
221 HalWrapper* const halWrapper = getPowerHal();
222 if (halWrapper != nullptr) {
223 halWrapper->sendActualWorkDuration(*actualDuration + kTargetSafetyMargin.count(),
224 systemTime());
225 }
226 }
227 }
228
sendPredictedWorkDuration()229 void PowerAdvisor::sendPredictedWorkDuration() {
230 if (!mBootFinished || !usePowerHintSession()) {
231 ALOGV("Actual work duration power hint cannot be sent, skipping");
232 return;
233 }
234
235 const std::optional<nsecs_t> predictedDuration = estimateWorkDuration(true);
236
237 if (predictedDuration.has_value()) {
238 std::lock_guard lock(mPowerHalMutex);
239 HalWrapper* const halWrapper = getPowerHal();
240 if (halWrapper != nullptr) {
241 halWrapper->sendActualWorkDuration(*predictedDuration + kTargetSafetyMargin.count(),
242 systemTime());
243 }
244 }
245 }
246
enablePowerHint(bool enabled)247 void PowerAdvisor::enablePowerHint(bool enabled) {
248 mPowerHintEnabled = enabled;
249 }
250
startPowerHintSession(const std::vector<int32_t> & threadIds)251 bool PowerAdvisor::startPowerHintSession(const std::vector<int32_t>& threadIds) {
252 if (!usePowerHintSession()) {
253 ALOGI("Power hint session cannot be started, skipping");
254 }
255 {
256 std::lock_guard lock(mPowerHalMutex);
257 HalWrapper* halWrapper = getPowerHal();
258 if (halWrapper != nullptr && usePowerHintSession()) {
259 halWrapper->setPowerHintSessionThreadIds(threadIds);
260 mPowerHintSessionRunning = halWrapper->startPowerHintSession();
261 }
262 }
263 return mPowerHintSessionRunning;
264 }
265
setGpuFenceTime(DisplayId displayId,std::unique_ptr<FenceTime> && fenceTime)266 void PowerAdvisor::setGpuFenceTime(DisplayId displayId, std::unique_ptr<FenceTime>&& fenceTime) {
267 DisplayTimingData& displayData = mDisplayTimingData[displayId];
268 if (displayData.gpuEndFenceTime) {
269 nsecs_t signalTime = displayData.gpuEndFenceTime->getSignalTime();
270 if (signalTime != Fence::SIGNAL_TIME_INVALID && signalTime != Fence::SIGNAL_TIME_PENDING) {
271 for (auto&& [_, otherDisplayData] : mDisplayTimingData) {
272 // If the previous display started before us but ended after we should have
273 // started, then it likely delayed our start time and we must compensate for that.
274 // Displays finishing earlier should have already made their way through this call
275 // and swapped their timing into "lastValid" from "latest", so we check that here.
276 if (!otherDisplayData.lastValidGpuStartTime.has_value()) continue;
277 if ((*otherDisplayData.lastValidGpuStartTime < *displayData.gpuStartTime) &&
278 (*otherDisplayData.lastValidGpuEndTime > *displayData.gpuStartTime)) {
279 displayData.lastValidGpuStartTime = *otherDisplayData.lastValidGpuEndTime;
280 break;
281 }
282 }
283 displayData.lastValidGpuStartTime = displayData.gpuStartTime;
284 displayData.lastValidGpuEndTime = signalTime;
285 }
286 }
287 displayData.gpuEndFenceTime = std::move(fenceTime);
288 displayData.gpuStartTime = systemTime();
289 }
290
setHwcValidateTiming(DisplayId displayId,nsecs_t validateStartTime,nsecs_t validateEndTime)291 void PowerAdvisor::setHwcValidateTiming(DisplayId displayId, nsecs_t validateStartTime,
292 nsecs_t validateEndTime) {
293 DisplayTimingData& displayData = mDisplayTimingData[displayId];
294 displayData.hwcValidateStartTime = validateStartTime;
295 displayData.hwcValidateEndTime = validateEndTime;
296 }
297
setHwcPresentTiming(DisplayId displayId,nsecs_t presentStartTime,nsecs_t presentEndTime)298 void PowerAdvisor::setHwcPresentTiming(DisplayId displayId, nsecs_t presentStartTime,
299 nsecs_t presentEndTime) {
300 DisplayTimingData& displayData = mDisplayTimingData[displayId];
301 displayData.hwcPresentStartTime = presentStartTime;
302 displayData.hwcPresentEndTime = presentEndTime;
303 }
304
setSkippedValidate(DisplayId displayId,bool skipped)305 void PowerAdvisor::setSkippedValidate(DisplayId displayId, bool skipped) {
306 mDisplayTimingData[displayId].skippedValidate = skipped;
307 }
308
setRequiresClientComposition(DisplayId displayId,bool requiresClientComposition)309 void PowerAdvisor::setRequiresClientComposition(DisplayId displayId,
310 bool requiresClientComposition) {
311 mDisplayTimingData[displayId].usedClientComposition = requiresClientComposition;
312 }
313
setExpectedPresentTime(nsecs_t expectedPresentTime)314 void PowerAdvisor::setExpectedPresentTime(nsecs_t expectedPresentTime) {
315 mExpectedPresentTimes.append(expectedPresentTime);
316 }
317
setSfPresentTiming(nsecs_t presentFenceTime,nsecs_t presentEndTime)318 void PowerAdvisor::setSfPresentTiming(nsecs_t presentFenceTime, nsecs_t presentEndTime) {
319 mLastSfPresentEndTime = presentEndTime;
320 mLastPresentFenceTime = presentFenceTime;
321 }
322
setFrameDelay(nsecs_t frameDelayDuration)323 void PowerAdvisor::setFrameDelay(nsecs_t frameDelayDuration) {
324 mFrameDelayDuration = frameDelayDuration;
325 }
326
setHwcPresentDelayedTime(DisplayId displayId,std::chrono::steady_clock::time_point earliestFrameStartTime)327 void PowerAdvisor::setHwcPresentDelayedTime(
328 DisplayId displayId, std::chrono::steady_clock::time_point earliestFrameStartTime) {
329 mDisplayTimingData[displayId].hwcPresentDelayedTime =
330 (earliestFrameStartTime - std::chrono::steady_clock::now()).count() + systemTime();
331 }
332
setCommitStart(nsecs_t commitStartTime)333 void PowerAdvisor::setCommitStart(nsecs_t commitStartTime) {
334 mCommitStartTimes.append(commitStartTime);
335 }
336
setCompositeEnd(nsecs_t compositeEnd)337 void PowerAdvisor::setCompositeEnd(nsecs_t compositeEnd) {
338 mLastPostcompDuration = compositeEnd - mLastSfPresentEndTime;
339 }
340
setDisplays(std::vector<DisplayId> & displayIds)341 void PowerAdvisor::setDisplays(std::vector<DisplayId>& displayIds) {
342 mDisplayIds = displayIds;
343 }
344
setTotalFrameTargetWorkDuration(nsecs_t targetDuration)345 void PowerAdvisor::setTotalFrameTargetWorkDuration(nsecs_t targetDuration) {
346 mTotalFrameTargetDuration = targetDuration;
347 }
348
getOrderedDisplayIds(std::optional<nsecs_t> DisplayTimingData::* sortBy)349 std::vector<DisplayId> PowerAdvisor::getOrderedDisplayIds(
350 std::optional<nsecs_t> DisplayTimingData::*sortBy) {
351 std::vector<DisplayId> sortedDisplays;
352 std::copy_if(mDisplayIds.begin(), mDisplayIds.end(), std::back_inserter(sortedDisplays),
353 [&](DisplayId id) {
354 return mDisplayTimingData.count(id) &&
355 (mDisplayTimingData[id].*sortBy).has_value();
356 });
357 std::sort(sortedDisplays.begin(), sortedDisplays.end(), [&](DisplayId idA, DisplayId idB) {
358 return *(mDisplayTimingData[idA].*sortBy) < *(mDisplayTimingData[idB].*sortBy);
359 });
360 return sortedDisplays;
361 }
362
estimateWorkDuration(bool earlyHint)363 std::optional<nsecs_t> PowerAdvisor::estimateWorkDuration(bool earlyHint) {
364 if (earlyHint && (!mExpectedPresentTimes.isFull() || !mCommitStartTimes.isFull())) {
365 return std::nullopt;
366 }
367
368 // Tracks when we finish presenting to hwc
369 nsecs_t estimatedEndTime = mCommitStartTimes[0];
370
371 // How long we spent this frame not doing anything, waiting for fences or vsync
372 nsecs_t idleDuration = 0;
373
374 // Most recent previous gpu end time in the current frame, probably from a prior display, used
375 // as the start time for the next gpu operation if it ran over time since it probably blocked
376 std::optional<nsecs_t> previousValidGpuEndTime;
377
378 // The currently estimated gpu end time for the frame,
379 // used to accumulate gpu time as we iterate over the active displays
380 std::optional<nsecs_t> estimatedGpuEndTime;
381
382 // If we're predicting at the start of the frame, we use last frame as our reference point
383 // If we're predicting at the end of the frame, we use the current frame as a reference point
384 nsecs_t referenceFrameStartTime = (earlyHint ? mCommitStartTimes[-1] : mCommitStartTimes[0]);
385
386 // When the prior frame should be presenting to the display
387 // If we're predicting at the start of the frame, we use last frame's expected present time
388 // If we're predicting at the end of the frame, the present fence time is already known
389 nsecs_t lastFramePresentTime = (earlyHint ? mExpectedPresentTimes[-1] : mLastPresentFenceTime);
390
391 // The timing info for the previously calculated display, if there was one
392 std::optional<DisplayTimeline> previousDisplayReferenceTiming;
393 std::vector<DisplayId>&& displayIds =
394 getOrderedDisplayIds(&DisplayTimingData::hwcPresentStartTime);
395 DisplayTimeline referenceTiming, estimatedTiming;
396
397 // Iterate over the displays that use hwc in the same order they are presented
398 for (DisplayId displayId : displayIds) {
399 if (mDisplayTimingData.count(displayId) == 0) {
400 continue;
401 }
402
403 auto& displayData = mDisplayTimingData.at(displayId);
404
405 // mLastPresentFenceTime should always be the time of the reference frame, since it will be
406 // the previous frame's present fence if called at the start, and current frame's if called
407 // at the end
408 referenceTiming = displayData.calculateDisplayTimeline(mLastPresentFenceTime);
409
410 // If this is the first display, include the duration before hwc present starts
411 if (!previousDisplayReferenceTiming.has_value()) {
412 estimatedEndTime += referenceTiming.hwcPresentStartTime - referenceFrameStartTime;
413 } else { // Otherwise add the time since last display's hwc present finished
414 estimatedEndTime += referenceTiming.hwcPresentStartTime -
415 previousDisplayReferenceTiming->hwcPresentEndTime;
416 }
417
418 // Late hint can re-use reference timing here since it's estimating its own reference frame
419 estimatedTiming = earlyHint
420 ? referenceTiming.estimateTimelineFromReference(lastFramePresentTime,
421 estimatedEndTime)
422 : referenceTiming;
423
424 // Update predicted present finish time with this display's present time
425 estimatedEndTime = estimatedTiming.hwcPresentEndTime;
426
427 // Track how long we spent waiting for the fence, can be excluded from the timing estimate
428 idleDuration += estimatedTiming.probablyWaitsForPresentFence
429 ? lastFramePresentTime - estimatedTiming.presentFenceWaitStartTime
430 : 0;
431
432 // Track how long we spent waiting to present, can be excluded from the timing estimate
433 idleDuration += earlyHint ? 0 : referenceTiming.hwcPresentDelayDuration;
434
435 // Estimate the reference frame's gpu timing
436 auto gpuTiming = displayData.estimateGpuTiming(previousValidGpuEndTime);
437 if (gpuTiming.has_value()) {
438 previousValidGpuEndTime = gpuTiming->startTime + gpuTiming->duration;
439
440 // Estimate the prediction frame's gpu end time from the reference frame
441 estimatedGpuEndTime =
442 std::max(estimatedTiming.hwcPresentStartTime, estimatedGpuEndTime.value_or(0)) +
443 gpuTiming->duration;
444 }
445 previousDisplayReferenceTiming = referenceTiming;
446 }
447 ATRACE_INT64("Idle duration", idleDuration);
448
449 nsecs_t estimatedFlingerEndTime = earlyHint ? estimatedEndTime : mLastSfPresentEndTime;
450
451 // Don't count time spent idly waiting in the estimate as we could do more work in that time
452 estimatedEndTime -= idleDuration;
453 estimatedFlingerEndTime -= idleDuration;
454
455 // We finish the frame when both present and the gpu are done, so wait for the later of the two
456 // Also add the frame delay duration since the target did not move while we were delayed
457 nsecs_t totalDuration = mFrameDelayDuration +
458 std::max(estimatedEndTime, estimatedGpuEndTime.value_or(0)) - mCommitStartTimes[0];
459
460 // We finish SurfaceFlinger when post-composition finishes, so add that in here
461 nsecs_t flingerDuration =
462 estimatedFlingerEndTime + mLastPostcompDuration - mCommitStartTimes[0];
463
464 // Combine the two timings into a single normalized one
465 nsecs_t combinedDuration = combineTimingEstimates(totalDuration, flingerDuration);
466
467 return std::make_optional(combinedDuration);
468 }
469
combineTimingEstimates(nsecs_t totalDuration,nsecs_t flingerDuration)470 nsecs_t PowerAdvisor::combineTimingEstimates(nsecs_t totalDuration, nsecs_t flingerDuration) {
471 nsecs_t targetDuration;
472 {
473 std::lock_guard lock(mPowerHalMutex);
474 targetDuration = *getPowerHal()->getTargetWorkDuration();
475 }
476 if (!mTotalFrameTargetDuration.has_value()) return flingerDuration;
477
478 // Normalize total to the flinger target (vsync period) since that's how often we actually send
479 // hints
480 nsecs_t normalizedTotalDuration = (targetDuration * totalDuration) / *mTotalFrameTargetDuration;
481 return std::max(flingerDuration, normalizedTotalDuration);
482 }
483
estimateTimelineFromReference(nsecs_t fenceTime,nsecs_t displayStartTime)484 PowerAdvisor::DisplayTimeline PowerAdvisor::DisplayTimeline::estimateTimelineFromReference(
485 nsecs_t fenceTime, nsecs_t displayStartTime) {
486 DisplayTimeline estimated;
487 estimated.hwcPresentStartTime = displayStartTime;
488
489 // We don't predict waiting for vsync alignment yet
490 estimated.hwcPresentDelayDuration = 0;
491
492 // How long we expect to run before we start waiting for the fence
493 // For now just re-use last frame's post-present duration and assume it will not change much
494 // Excludes time spent waiting for vsync since that's not going to be consistent
495 estimated.presentFenceWaitStartTime = estimated.hwcPresentStartTime +
496 (presentFenceWaitStartTime - (hwcPresentStartTime + hwcPresentDelayDuration));
497 estimated.probablyWaitsForPresentFence = fenceTime > estimated.presentFenceWaitStartTime;
498 estimated.hwcPresentEndTime = postPresentFenceHwcPresentDuration +
499 (estimated.probablyWaitsForPresentFence ? fenceTime
500 : estimated.presentFenceWaitStartTime);
501 return estimated;
502 }
503
calculateDisplayTimeline(nsecs_t fenceTime)504 PowerAdvisor::DisplayTimeline PowerAdvisor::DisplayTimingData::calculateDisplayTimeline(
505 nsecs_t fenceTime) {
506 DisplayTimeline timeline;
507 // How long between calling hwc present and trying to wait on the fence
508 const nsecs_t fenceWaitStartDelay =
509 (skippedValidate ? kFenceWaitStartDelaySkippedValidate : kFenceWaitStartDelayValidated)
510 .count();
511
512 // Did our reference frame wait for an appropriate vsync before calling into hwc
513 const bool waitedOnHwcPresentTime = hwcPresentDelayedTime.has_value() &&
514 *hwcPresentDelayedTime > *hwcPresentStartTime &&
515 *hwcPresentDelayedTime < *hwcPresentEndTime;
516
517 // Use validate start here if we skipped it because we did validate + present together
518 timeline.hwcPresentStartTime = skippedValidate ? *hwcValidateStartTime : *hwcPresentStartTime;
519
520 // Use validate end here if we skipped it because we did validate + present together
521 timeline.hwcPresentEndTime = skippedValidate ? *hwcValidateEndTime : *hwcPresentEndTime;
522
523 // How long hwc present was delayed waiting for the next appropriate vsync
524 timeline.hwcPresentDelayDuration =
525 (waitedOnHwcPresentTime ? *hwcPresentDelayedTime - *hwcPresentStartTime : 0);
526 // When we started waiting for the present fence after calling into hwc present
527 timeline.presentFenceWaitStartTime =
528 timeline.hwcPresentStartTime + timeline.hwcPresentDelayDuration + fenceWaitStartDelay;
529 timeline.probablyWaitsForPresentFence = fenceTime > timeline.presentFenceWaitStartTime &&
530 fenceTime < timeline.hwcPresentEndTime;
531
532 // How long we ran after we finished waiting for the fence but before hwc present finished
533 timeline.postPresentFenceHwcPresentDuration = timeline.hwcPresentEndTime -
534 (timeline.probablyWaitsForPresentFence ? fenceTime
535 : timeline.presentFenceWaitStartTime);
536 return timeline;
537 }
538
estimateGpuTiming(std::optional<nsecs_t> previousEnd)539 std::optional<PowerAdvisor::GpuTimeline> PowerAdvisor::DisplayTimingData::estimateGpuTiming(
540 std::optional<nsecs_t> previousEnd) {
541 if (!(usedClientComposition && lastValidGpuStartTime.has_value() && gpuEndFenceTime)) {
542 return std::nullopt;
543 }
544 const nsecs_t latestGpuStartTime = std::max(previousEnd.value_or(0), *gpuStartTime);
545 const nsecs_t latestGpuEndTime = gpuEndFenceTime->getSignalTime();
546 nsecs_t gpuDuration = 0;
547 if (latestGpuEndTime != Fence::SIGNAL_TIME_INVALID &&
548 latestGpuEndTime != Fence::SIGNAL_TIME_PENDING) {
549 // If we know how long the most recent gpu duration was, use that
550 gpuDuration = latestGpuEndTime - latestGpuStartTime;
551 } else if (lastValidGpuEndTime.has_value()) {
552 // If we don't have the fence data, use the most recent information we do have
553 gpuDuration = *lastValidGpuEndTime - *lastValidGpuStartTime;
554 if (latestGpuEndTime == Fence::SIGNAL_TIME_PENDING) {
555 // If pending but went over the previous duration, use current time as the end
556 gpuDuration = std::max(gpuDuration, systemTime() - latestGpuStartTime);
557 }
558 }
559 return GpuTimeline{.duration = gpuDuration, .startTime = latestGpuStartTime};
560 }
561
562 class HidlPowerHalWrapper : public PowerAdvisor::HalWrapper {
563 public:
HidlPowerHalWrapper(sp<V1_3::IPower> powerHal)564 HidlPowerHalWrapper(sp<V1_3::IPower> powerHal) : mPowerHal(std::move(powerHal)) {}
565
566 ~HidlPowerHalWrapper() override = default;
567
connect()568 static std::unique_ptr<HalWrapper> connect() {
569 // Power HAL 1.3 is not guaranteed to be available, thus we need to query
570 // Power HAL 1.0 first and try to cast it to Power HAL 1.3.
571 sp<V1_3::IPower> powerHal = nullptr;
572 sp<V1_0::IPower> powerHal_1_0 = V1_0::IPower::getService();
573 if (powerHal_1_0 != nullptr) {
574 // Try to cast to Power HAL 1.3
575 powerHal = V1_3::IPower::castFrom(powerHal_1_0);
576 if (powerHal == nullptr) {
577 ALOGW("No Power HAL 1.3 service in system, disabling PowerAdvisor");
578 } else {
579 ALOGI("Loaded Power HAL 1.3 service");
580 }
581 } else {
582 ALOGW("No Power HAL found, disabling PowerAdvisor");
583 }
584
585 if (powerHal == nullptr) {
586 return nullptr;
587 }
588
589 return std::make_unique<HidlPowerHalWrapper>(std::move(powerHal));
590 }
591
setExpensiveRendering(bool enabled)592 bool setExpensiveRendering(bool enabled) override {
593 ALOGV("HIDL setExpensiveRendering %s", enabled ? "T" : "F");
594 auto ret = mPowerHal->powerHintAsync_1_3(PowerHint::EXPENSIVE_RENDERING, enabled);
595 if (ret.isOk()) {
596 traceExpensiveRendering(enabled);
597 }
598 return ret.isOk();
599 }
600
notifyDisplayUpdateImminent()601 bool notifyDisplayUpdateImminent() override {
602 // Power HAL 1.x doesn't have a notification for this
603 ALOGV("HIDL notifyUpdateImminent received but can't send");
604 return true;
605 }
606
supportsPowerHintSession()607 bool supportsPowerHintSession() override { return false; }
608
isPowerHintSessionRunning()609 bool isPowerHintSessionRunning() override { return false; }
610
restartPowerHintSession()611 void restartPowerHintSession() override {}
612
setPowerHintSessionThreadIds(const std::vector<int32_t> &)613 void setPowerHintSessionThreadIds(const std::vector<int32_t>&) override {}
614
startPowerHintSession()615 bool startPowerHintSession() override { return false; }
616
setTargetWorkDuration(int64_t)617 void setTargetWorkDuration(int64_t) override {}
618
sendActualWorkDuration(int64_t,nsecs_t)619 void sendActualWorkDuration(int64_t, nsecs_t) override {}
620
shouldReconnectHAL()621 bool shouldReconnectHAL() override { return false; }
622
getPowerHintSessionThreadIds()623 std::vector<int32_t> getPowerHintSessionThreadIds() override { return std::vector<int32_t>{}; }
624
getTargetWorkDuration()625 std::optional<int64_t> getTargetWorkDuration() override { return std::nullopt; }
626
627 private:
628 const sp<V1_3::IPower> mPowerHal = nullptr;
629 };
630
AidlPowerHalWrapper(sp<IPower> powerHal)631 AidlPowerHalWrapper::AidlPowerHalWrapper(sp<IPower> powerHal) : mPowerHal(std::move(powerHal)) {
632 auto ret = mPowerHal->isModeSupported(Mode::EXPENSIVE_RENDERING, &mHasExpensiveRendering);
633 if (!ret.isOk()) {
634 mHasExpensiveRendering = false;
635 }
636
637 ret = mPowerHal->isBoostSupported(Boost::DISPLAY_UPDATE_IMMINENT, &mHasDisplayUpdateImminent);
638 if (!ret.isOk()) {
639 mHasDisplayUpdateImminent = false;
640 }
641
642 mSupportsPowerHint = checkPowerHintSessionSupported();
643
644 // Currently set to 0 to disable rate limiter by default
645 mAllowedActualDeviation = base::GetIntProperty<nsecs_t>("debug.sf.allowed_actual_deviation", 0);
646 }
647
~AidlPowerHalWrapper()648 AidlPowerHalWrapper::~AidlPowerHalWrapper() {
649 if (mPowerHintSession != nullptr) {
650 mPowerHintSession->close();
651 mPowerHintSession = nullptr;
652 }
653 }
654
connect()655 std::unique_ptr<PowerAdvisor::HalWrapper> AidlPowerHalWrapper::connect() {
656 // This only waits if the service is actually declared
657 sp<IPower> powerHal = waitForVintfService<IPower>();
658 if (powerHal == nullptr) {
659 return nullptr;
660 }
661 ALOGI("Loaded AIDL Power HAL service");
662
663 return std::make_unique<AidlPowerHalWrapper>(std::move(powerHal));
664 }
665
setExpensiveRendering(bool enabled)666 bool AidlPowerHalWrapper::setExpensiveRendering(bool enabled) {
667 ALOGV("AIDL setExpensiveRendering %s", enabled ? "T" : "F");
668 if (!mHasExpensiveRendering) {
669 ALOGV("Skipped sending EXPENSIVE_RENDERING because HAL doesn't support it");
670 return true;
671 }
672
673 auto ret = mPowerHal->setMode(Mode::EXPENSIVE_RENDERING, enabled);
674 if (ret.isOk()) {
675 traceExpensiveRendering(enabled);
676 }
677 return ret.isOk();
678 }
679
notifyDisplayUpdateImminent()680 bool AidlPowerHalWrapper::notifyDisplayUpdateImminent() {
681 ALOGV("AIDL notifyDisplayUpdateImminent");
682 if (!mHasDisplayUpdateImminent) {
683 ALOGV("Skipped sending DISPLAY_UPDATE_IMMINENT because HAL doesn't support it");
684 return true;
685 }
686
687 auto ret = mPowerHal->setBoost(Boost::DISPLAY_UPDATE_IMMINENT, 0);
688 return ret.isOk();
689 }
690
691 // Only version 2+ of the aidl supports power hint sessions, hidl has no support
supportsPowerHintSession()692 bool AidlPowerHalWrapper::supportsPowerHintSession() {
693 return mSupportsPowerHint;
694 }
695
checkPowerHintSessionSupported()696 bool AidlPowerHalWrapper::checkPowerHintSessionSupported() {
697 int64_t unused;
698 // Try to get preferred rate to determine if hint sessions are supported
699 // We check for isOk not EX_UNSUPPORTED_OPERATION to lump together errors
700 return mPowerHal->getHintSessionPreferredRate(&unused).isOk();
701 }
702
isPowerHintSessionRunning()703 bool AidlPowerHalWrapper::isPowerHintSessionRunning() {
704 return mPowerHintSession != nullptr;
705 }
706
closePowerHintSession()707 void AidlPowerHalWrapper::closePowerHintSession() {
708 if (mPowerHintSession != nullptr) {
709 mPowerHintSession->close();
710 mPowerHintSession = nullptr;
711 }
712 }
713
restartPowerHintSession()714 void AidlPowerHalWrapper::restartPowerHintSession() {
715 closePowerHintSession();
716 startPowerHintSession();
717 }
718
setPowerHintSessionThreadIds(const std::vector<int32_t> & threadIds)719 void AidlPowerHalWrapper::setPowerHintSessionThreadIds(const std::vector<int32_t>& threadIds) {
720 if (threadIds != mPowerHintThreadIds) {
721 mPowerHintThreadIds = threadIds;
722 if (isPowerHintSessionRunning()) {
723 restartPowerHintSession();
724 }
725 }
726 }
727
startPowerHintSession()728 bool AidlPowerHalWrapper::startPowerHintSession() {
729 if (mPowerHintSession != nullptr || mPowerHintThreadIds.empty()) {
730 ALOGV("Cannot start power hint session, skipping");
731 return false;
732 }
733 auto ret =
734 mPowerHal->createHintSession(getpid(), static_cast<int32_t>(getuid()),
735 mPowerHintThreadIds, mTargetDuration, &mPowerHintSession);
736 if (!ret.isOk()) {
737 ALOGW("Failed to start power hint session with error: %s",
738 ret.exceptionToString(ret.exceptionCode()).c_str());
739 } else {
740 mLastTargetDurationSent = mTargetDuration;
741 }
742 return isPowerHintSessionRunning();
743 }
744
setTargetWorkDuration(int64_t targetDuration)745 void AidlPowerHalWrapper::setTargetWorkDuration(int64_t targetDuration) {
746 ATRACE_CALL();
747 mTargetDuration = targetDuration;
748 if (sTraceHintSessionData) ATRACE_INT64("Time target", targetDuration);
749 if (isPowerHintSessionRunning() && (targetDuration != mLastTargetDurationSent)) {
750 ALOGV("Sending target time: %" PRId64 "ns", targetDuration);
751 mLastTargetDurationSent = targetDuration;
752 auto ret = mPowerHintSession->updateTargetWorkDuration(targetDuration);
753 if (!ret.isOk()) {
754 ALOGW("Failed to set power hint target work duration with error: %s",
755 ret.exceptionMessage().c_str());
756 mShouldReconnectHal = true;
757 }
758 }
759 }
760
shouldReportActualDurations()761 bool AidlPowerHalWrapper::shouldReportActualDurations() {
762 // Report if we have never reported before or are approaching a stale session
763 if (!mLastActualDurationSent.has_value() ||
764 (systemTime() - mLastActualReportTimestamp) > kStaleTimeout.count()) {
765 return true;
766 }
767
768 if (!mActualDuration.has_value()) {
769 return false;
770 }
771 // Report if the change in actual duration exceeds the threshold
772 return abs(*mActualDuration - *mLastActualDurationSent) > mAllowedActualDeviation;
773 }
774
sendActualWorkDuration(int64_t actualDuration,nsecs_t timestamp)775 void AidlPowerHalWrapper::sendActualWorkDuration(int64_t actualDuration, nsecs_t timestamp) {
776 ATRACE_CALL();
777
778 if (actualDuration < 0 || !isPowerHintSessionRunning()) {
779 ALOGV("Failed to send actual work duration, skipping");
780 return;
781 }
782 const nsecs_t reportedDuration = actualDuration;
783
784 mActualDuration = reportedDuration;
785 WorkDuration duration;
786 duration.durationNanos = reportedDuration;
787 duration.timeStampNanos = timestamp;
788 mPowerHintQueue.push_back(duration);
789
790 if (sTraceHintSessionData) {
791 ATRACE_INT64("Measured duration", actualDuration);
792 ATRACE_INT64("Target error term", actualDuration - mTargetDuration);
793
794 ATRACE_INT64("Reported duration", reportedDuration);
795 ATRACE_INT64("Reported target", mLastTargetDurationSent);
796 ATRACE_INT64("Reported target error term", reportedDuration - mLastTargetDurationSent);
797 }
798
799 ALOGV("Sending actual work duration of: %" PRId64 " on reported target: %" PRId64
800 " with error: %" PRId64,
801 reportedDuration, mLastTargetDurationSent, reportedDuration - mLastTargetDurationSent);
802
803 // This rate limiter queues similar duration reports to the powerhal into
804 // batches to avoid excessive binder calls. The criteria to send a given batch
805 // are outlined in shouldReportActualDurationsNow()
806 if (shouldReportActualDurations()) {
807 ALOGV("Sending hint update batch");
808 mLastActualReportTimestamp = systemTime();
809 auto ret = mPowerHintSession->reportActualWorkDuration(mPowerHintQueue);
810 if (!ret.isOk()) {
811 ALOGW("Failed to report actual work durations with error: %s",
812 ret.exceptionMessage().c_str());
813 mShouldReconnectHal = true;
814 }
815 mPowerHintQueue.clear();
816 // We save the actual duration here for rate limiting
817 mLastActualDurationSent = actualDuration;
818 }
819 }
820
shouldReconnectHAL()821 bool AidlPowerHalWrapper::shouldReconnectHAL() {
822 return mShouldReconnectHal;
823 }
824
getPowerHintSessionThreadIds()825 std::vector<int32_t> AidlPowerHalWrapper::getPowerHintSessionThreadIds() {
826 return mPowerHintThreadIds;
827 }
828
getTargetWorkDuration()829 std::optional<int64_t> AidlPowerHalWrapper::getTargetWorkDuration() {
830 return mTargetDuration;
831 }
832
setAllowedActualDeviation(nsecs_t allowedDeviation)833 void AidlPowerHalWrapper::setAllowedActualDeviation(nsecs_t allowedDeviation) {
834 mAllowedActualDeviation = allowedDeviation;
835 }
836
837 const bool AidlPowerHalWrapper::sTraceHintSessionData =
838 base::GetBoolProperty(std::string("debug.sf.trace_hint_sessions"), false);
839
getPowerHal()840 PowerAdvisor::HalWrapper* PowerAdvisor::getPowerHal() {
841 if (!mHasHal) {
842 return nullptr;
843 }
844
845 // Grab old hint session values before we destroy any existing wrapper
846 std::vector<int32_t> oldPowerHintSessionThreadIds;
847 std::optional<int64_t> oldTargetWorkDuration;
848
849 if (mHalWrapper != nullptr) {
850 oldPowerHintSessionThreadIds = mHalWrapper->getPowerHintSessionThreadIds();
851 oldTargetWorkDuration = mHalWrapper->getTargetWorkDuration();
852 }
853
854 // If we used to have a HAL, but it stopped responding, attempt to reconnect
855 if (mReconnectPowerHal) {
856 mHalWrapper = nullptr;
857 mReconnectPowerHal = false;
858 }
859
860 if (mHalWrapper != nullptr) {
861 auto wrapper = mHalWrapper.get();
862 // If the wrapper is fine, return it, but if it indicates a reconnect, remake it
863 if (!wrapper->shouldReconnectHAL()) {
864 return wrapper;
865 }
866 ALOGD("Reconnecting Power HAL");
867 mHalWrapper = nullptr;
868 }
869
870 // At this point, we know for sure there is no running session
871 mPowerHintSessionRunning = false;
872
873 // First attempt to connect to the AIDL Power HAL
874 mHalWrapper = AidlPowerHalWrapper::connect();
875
876 // If that didn't succeed, attempt to connect to the HIDL Power HAL
877 if (mHalWrapper == nullptr) {
878 mHalWrapper = HidlPowerHalWrapper::connect();
879 } else {
880 ALOGD("Successfully connecting AIDL Power HAL");
881 // If AIDL, pass on any existing hint session values
882 mHalWrapper->setPowerHintSessionThreadIds(oldPowerHintSessionThreadIds);
883 // Only set duration and start if duration is defined
884 if (oldTargetWorkDuration.has_value()) {
885 mHalWrapper->setTargetWorkDuration(*oldTargetWorkDuration);
886 // Only start if possible to run and both threadids and duration are defined
887 if (usePowerHintSession() && !oldPowerHintSessionThreadIds.empty()) {
888 mPowerHintSessionRunning = mHalWrapper->startPowerHintSession();
889 }
890 }
891 }
892
893 // If we make it to this point and still don't have a HAL, it's unlikely we
894 // will, so stop trying
895 if (mHalWrapper == nullptr) {
896 mHasHal = false;
897 }
898
899 return mHalWrapper.get();
900 }
901
902 } // namespace impl
903 } // namespace Hwc2
904 } // namespace android
905