1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 // Google Test - The Google C++ Testing and Mocking Framework
32 //
33 // This file tests the universal value printer.
34
35 #include <algorithm>
36 #include <cctype>
37 #include <cstdint>
38 #include <cstring>
39 #include <deque>
40 #include <forward_list>
41 #include <limits>
42 #include <list>
43 #include <map>
44 #include <memory>
45 #include <set>
46 #include <sstream>
47 #include <string>
48 #include <unordered_map>
49 #include <unordered_set>
50 #include <utility>
51 #include <vector>
52
53 #include "gtest/gtest-printers.h"
54 #include "gtest/gtest.h"
55
56 // Some user-defined types for testing the universal value printer.
57
58 // An anonymous enum type.
59 enum AnonymousEnum {
60 kAE1 = -1,
61 kAE2 = 1
62 };
63
64 // An enum without a user-defined printer.
65 enum EnumWithoutPrinter {
66 kEWP1 = -2,
67 kEWP2 = 42
68 };
69
70 // An enum with a << operator.
71 enum EnumWithStreaming {
72 kEWS1 = 10
73 };
74
operator <<(std::ostream & os,EnumWithStreaming e)75 std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
76 return os << (e == kEWS1 ? "kEWS1" : "invalid");
77 }
78
79 // An enum with a PrintTo() function.
80 enum EnumWithPrintTo {
81 kEWPT1 = 1
82 };
83
PrintTo(EnumWithPrintTo e,std::ostream * os)84 void PrintTo(EnumWithPrintTo e, std::ostream* os) {
85 *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
86 }
87
88 // A class implicitly convertible to BiggestInt.
89 class BiggestIntConvertible {
90 public:
operator ::testing::internal::BiggestInt() const91 operator ::testing::internal::BiggestInt() const { return 42; }
92 };
93
94 // A parent class with two child classes. The parent and one of the kids have
95 // stream operators.
96 class ParentClass {};
97 class ChildClassWithStreamOperator : public ParentClass {};
98 class ChildClassWithoutStreamOperator : public ParentClass {};
operator <<(std::ostream & os,const ParentClass &)99 static void operator<<(std::ostream& os, const ParentClass&) {
100 os << "ParentClass";
101 }
operator <<(std::ostream & os,const ChildClassWithStreamOperator &)102 static void operator<<(std::ostream& os, const ChildClassWithStreamOperator&) {
103 os << "ChildClassWithStreamOperator";
104 }
105
106 // A user-defined unprintable class template in the global namespace.
107 template <typename T>
108 class UnprintableTemplateInGlobal {
109 public:
UnprintableTemplateInGlobal()110 UnprintableTemplateInGlobal() : value_() {}
111 private:
112 T value_;
113 };
114
115 // A user-defined streamable type in the global namespace.
116 class StreamableInGlobal {
117 public:
~StreamableInGlobal()118 virtual ~StreamableInGlobal() {}
119 };
120
operator <<(::std::ostream & os,const StreamableInGlobal &)121 inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
122 os << "StreamableInGlobal";
123 }
124
operator <<(::std::ostream & os,const StreamableInGlobal *)125 void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
126 os << "StreamableInGlobal*";
127 }
128
129 namespace foo {
130
131 // A user-defined unprintable type in a user namespace.
132 class UnprintableInFoo {
133 public:
UnprintableInFoo()134 UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
z() const135 double z() const { return z_; }
136 private:
137 char xy_[8];
138 double z_;
139 };
140
141 // A user-defined printable type in a user-chosen namespace.
142 struct PrintableViaPrintTo {
PrintableViaPrintTofoo::PrintableViaPrintTo143 PrintableViaPrintTo() : value() {}
144 int value;
145 };
146
PrintTo(const PrintableViaPrintTo & x,::std::ostream * os)147 void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
148 *os << "PrintableViaPrintTo: " << x.value;
149 }
150
151 // A type with a user-defined << for printing its pointer.
152 struct PointerPrintable {
153 };
154
operator <<(::std::ostream & os,const PointerPrintable *)155 ::std::ostream& operator<<(::std::ostream& os,
156 const PointerPrintable* /* x */) {
157 return os << "PointerPrintable*";
158 }
159
160 // A user-defined printable class template in a user-chosen namespace.
161 template <typename T>
162 class PrintableViaPrintToTemplate {
163 public:
PrintableViaPrintToTemplate(const T & a_value)164 explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
165
value() const166 const T& value() const { return value_; }
167 private:
168 T value_;
169 };
170
171 template <typename T>
PrintTo(const PrintableViaPrintToTemplate<T> & x,::std::ostream * os)172 void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
173 *os << "PrintableViaPrintToTemplate: " << x.value();
174 }
175
176 // A user-defined streamable class template in a user namespace.
177 template <typename T>
178 class StreamableTemplateInFoo {
179 public:
StreamableTemplateInFoo()180 StreamableTemplateInFoo() : value_() {}
181
value() const182 const T& value() const { return value_; }
183 private:
184 T value_;
185 };
186
187 template <typename T>
operator <<(::std::ostream & os,const StreamableTemplateInFoo<T> & x)188 inline ::std::ostream& operator<<(::std::ostream& os,
189 const StreamableTemplateInFoo<T>& x) {
190 return os << "StreamableTemplateInFoo: " << x.value();
191 }
192
193 // A user-defined streamable type in a user namespace whose operator<< is
194 // templated on the type of the output stream.
195 struct TemplatedStreamableInFoo {};
196
197 template <typename OutputStream>
operator <<(OutputStream & os,const TemplatedStreamableInFoo &)198 OutputStream& operator<<(OutputStream& os,
199 const TemplatedStreamableInFoo& /*ts*/) {
200 os << "TemplatedStreamableInFoo";
201 return os;
202 }
203
204 // A user-defined streamable but recursively-defined container type in
205 // a user namespace, it mimics therefore std::filesystem::path or
206 // boost::filesystem::path.
207 class PathLike {
208 public:
209 struct iterator {
210 typedef PathLike value_type;
211
212 iterator& operator++();
213 PathLike& operator*();
214 };
215
216 using value_type = char;
217 using const_iterator = iterator;
218
PathLike()219 PathLike() {}
220
begin() const221 iterator begin() const { return iterator(); }
end() const222 iterator end() const { return iterator(); }
223
operator <<(::std::ostream & os,const PathLike &)224 friend ::std::ostream& operator<<(::std::ostream& os, const PathLike&) {
225 return os << "Streamable-PathLike";
226 }
227 };
228
229 } // namespace foo
230
231 namespace testing {
232 namespace {
233 template <typename T>
234 class Wrapper {
235 public:
Wrapper(T && value)236 explicit Wrapper(T&& value) : value_(std::forward<T>(value)) {}
237
value() const238 const T& value() const { return value_; }
239
240 private:
241 T value_;
242 };
243
244 } // namespace
245
246 namespace internal {
247 template <typename T>
248 class UniversalPrinter<Wrapper<T>> {
249 public:
Print(const Wrapper<T> & w,::std::ostream * os)250 static void Print(const Wrapper<T>& w, ::std::ostream* os) {
251 *os << "Wrapper(";
252 UniversalPrint(w.value(), os);
253 *os << ')';
254 }
255 };
256 } // namespace internal
257
258
259 namespace gtest_printers_test {
260
261 using ::std::deque;
262 using ::std::list;
263 using ::std::make_pair;
264 using ::std::map;
265 using ::std::multimap;
266 using ::std::multiset;
267 using ::std::pair;
268 using ::std::set;
269 using ::std::vector;
270 using ::testing::PrintToString;
271 using ::testing::internal::FormatForComparisonFailureMessage;
272 using ::testing::internal::ImplicitCast_;
273 using ::testing::internal::NativeArray;
274 using ::testing::internal::RelationToSourceReference;
275 using ::testing::internal::Strings;
276 using ::testing::internal::UniversalPrint;
277 using ::testing::internal::UniversalPrinter;
278 using ::testing::internal::UniversalTersePrint;
279 using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
280
281 // Prints a value to a string using the universal value printer. This
282 // is a helper for testing UniversalPrinter<T>::Print() for various types.
283 template <typename T>
Print(const T & value)284 std::string Print(const T& value) {
285 ::std::stringstream ss;
286 UniversalPrinter<T>::Print(value, &ss);
287 return ss.str();
288 }
289
290 // Prints a value passed by reference to a string, using the universal
291 // value printer. This is a helper for testing
292 // UniversalPrinter<T&>::Print() for various types.
293 template <typename T>
PrintByRef(const T & value)294 std::string PrintByRef(const T& value) {
295 ::std::stringstream ss;
296 UniversalPrinter<T&>::Print(value, &ss);
297 return ss.str();
298 }
299
300 // Tests printing various enum types.
301
TEST(PrintEnumTest,AnonymousEnum)302 TEST(PrintEnumTest, AnonymousEnum) {
303 EXPECT_EQ("-1", Print(kAE1));
304 EXPECT_EQ("1", Print(kAE2));
305 }
306
TEST(PrintEnumTest,EnumWithoutPrinter)307 TEST(PrintEnumTest, EnumWithoutPrinter) {
308 EXPECT_EQ("-2", Print(kEWP1));
309 EXPECT_EQ("42", Print(kEWP2));
310 }
311
TEST(PrintEnumTest,EnumWithStreaming)312 TEST(PrintEnumTest, EnumWithStreaming) {
313 EXPECT_EQ("kEWS1", Print(kEWS1));
314 EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
315 }
316
TEST(PrintEnumTest,EnumWithPrintTo)317 TEST(PrintEnumTest, EnumWithPrintTo) {
318 EXPECT_EQ("kEWPT1", Print(kEWPT1));
319 EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
320 }
321
322 // Tests printing a class implicitly convertible to BiggestInt.
323
TEST(PrintClassTest,BiggestIntConvertible)324 TEST(PrintClassTest, BiggestIntConvertible) {
325 EXPECT_EQ("42", Print(BiggestIntConvertible()));
326 }
327
328 // Tests printing various char types.
329
330 // char.
TEST(PrintCharTest,PlainChar)331 TEST(PrintCharTest, PlainChar) {
332 EXPECT_EQ("'\\0'", Print('\0'));
333 EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
334 EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
335 EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
336 EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
337 EXPECT_EQ("'\\a' (7)", Print('\a'));
338 EXPECT_EQ("'\\b' (8)", Print('\b'));
339 EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
340 EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
341 EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
342 EXPECT_EQ("'\\t' (9)", Print('\t'));
343 EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
344 EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
345 EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
346 EXPECT_EQ("' ' (32, 0x20)", Print(' '));
347 EXPECT_EQ("'a' (97, 0x61)", Print('a'));
348 }
349
350 // signed char.
TEST(PrintCharTest,SignedChar)351 TEST(PrintCharTest, SignedChar) {
352 EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
353 EXPECT_EQ("'\\xCE' (-50)",
354 Print(static_cast<signed char>(-50)));
355 }
356
357 // unsigned char.
TEST(PrintCharTest,UnsignedChar)358 TEST(PrintCharTest, UnsignedChar) {
359 EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
360 EXPECT_EQ("'b' (98, 0x62)",
361 Print(static_cast<unsigned char>('b')));
362 }
363
TEST(PrintCharTest,Char16)364 TEST(PrintCharTest, Char16) {
365 EXPECT_EQ("U+0041", Print(u'A'));
366 }
367
TEST(PrintCharTest,Char32)368 TEST(PrintCharTest, Char32) {
369 EXPECT_EQ("U+0041", Print(U'A'));
370 }
371
372 #ifdef __cpp_char8_t
TEST(PrintCharTest,Char8)373 TEST(PrintCharTest, Char8) {
374 EXPECT_EQ("U+0041", Print(u8'A'));
375 }
376 #endif
377
378 // Tests printing other simple, built-in types.
379
380 // bool.
TEST(PrintBuiltInTypeTest,Bool)381 TEST(PrintBuiltInTypeTest, Bool) {
382 EXPECT_EQ("false", Print(false));
383 EXPECT_EQ("true", Print(true));
384 }
385
386 // wchar_t.
TEST(PrintBuiltInTypeTest,Wchar_t)387 TEST(PrintBuiltInTypeTest, Wchar_t) {
388 EXPECT_EQ("L'\\0'", Print(L'\0'));
389 EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
390 EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
391 EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
392 EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
393 EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
394 EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
395 EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
396 EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
397 EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
398 EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
399 EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
400 EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
401 EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
402 EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
403 EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
404 EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
405 EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
406 }
407
408 // Test that int64_t provides more storage than wchar_t.
TEST(PrintTypeSizeTest,Wchar_t)409 TEST(PrintTypeSizeTest, Wchar_t) {
410 EXPECT_LT(sizeof(wchar_t), sizeof(int64_t));
411 }
412
413 // Various integer types.
TEST(PrintBuiltInTypeTest,Integer)414 TEST(PrintBuiltInTypeTest, Integer) {
415 EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
416 EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
417 EXPECT_EQ("65535", Print(std::numeric_limits<uint16_t>::max())); // uint16
418 EXPECT_EQ("-32768", Print(std::numeric_limits<int16_t>::min())); // int16
419 EXPECT_EQ("4294967295",
420 Print(std::numeric_limits<uint32_t>::max())); // uint32
421 EXPECT_EQ("-2147483648",
422 Print(std::numeric_limits<int32_t>::min())); // int32
423 EXPECT_EQ("18446744073709551615",
424 Print(std::numeric_limits<uint64_t>::max())); // uint64
425 EXPECT_EQ("-9223372036854775808",
426 Print(std::numeric_limits<int64_t>::min())); // int64
427 #ifdef __cpp_char8_t
428 EXPECT_EQ("U+0000",
429 Print(std::numeric_limits<char8_t>::min())); // char8_t
430 EXPECT_EQ("U+00FF",
431 Print(std::numeric_limits<char8_t>::max())); // char8_t
432 #endif
433 EXPECT_EQ("U+0000",
434 Print(std::numeric_limits<char16_t>::min())); // char16_t
435 EXPECT_EQ("U+FFFF",
436 Print(std::numeric_limits<char16_t>::max())); // char16_t
437 EXPECT_EQ("U+0000",
438 Print(std::numeric_limits<char32_t>::min())); // char32_t
439 EXPECT_EQ("U+FFFFFFFF",
440 Print(std::numeric_limits<char32_t>::max())); // char32_t
441 }
442
443 // Size types.
TEST(PrintBuiltInTypeTest,Size_t)444 TEST(PrintBuiltInTypeTest, Size_t) {
445 EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
446 #if !GTEST_OS_WINDOWS
447 // Windows has no ssize_t type.
448 EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
449 #endif // !GTEST_OS_WINDOWS
450 }
451
452 // gcc/clang __{u,}int128_t values.
453 #if defined(__SIZEOF_INT128__)
TEST(PrintBuiltInTypeTest,Int128)454 TEST(PrintBuiltInTypeTest, Int128) {
455 // Small ones
456 EXPECT_EQ("0", Print(__int128_t{0}));
457 EXPECT_EQ("0", Print(__uint128_t{0}));
458 EXPECT_EQ("12345", Print(__int128_t{12345}));
459 EXPECT_EQ("12345", Print(__uint128_t{12345}));
460 EXPECT_EQ("-12345", Print(__int128_t{-12345}));
461
462 // Large ones
463 EXPECT_EQ("340282366920938463463374607431768211455", Print(~__uint128_t{}));
464 __int128_t max_128 = static_cast<__int128_t>(~__uint128_t{} / 2);
465 EXPECT_EQ("-170141183460469231731687303715884105728", Print(~max_128));
466 EXPECT_EQ("170141183460469231731687303715884105727", Print(max_128));
467 }
468 #endif // __SIZEOF_INT128__
469
470 // Floating-points.
TEST(PrintBuiltInTypeTest,FloatingPoints)471 TEST(PrintBuiltInTypeTest, FloatingPoints) {
472 EXPECT_EQ("1.5", Print(1.5f)); // float
473 EXPECT_EQ("-2.5", Print(-2.5)); // double
474 }
475
476 #if GTEST_HAS_RTTI
TEST(PrintBuiltInTypeTest,TypeInfo)477 TEST(PrintBuiltInTypeTest, TypeInfo) {
478 struct MyStruct {};
479 auto res = Print(typeid(MyStruct{}));
480 // We can't guarantee that we can demangle the name, but either name should
481 // contain the substring "MyStruct".
482 EXPECT_NE(res.find("MyStruct"), res.npos) << res;
483 }
484 #endif // GTEST_HAS_RTTI
485
486 // Since ::std::stringstream::operator<<(const void *) formats the pointer
487 // output differently with different compilers, we have to create the expected
488 // output first and use it as our expectation.
PrintPointer(const void * p)489 static std::string PrintPointer(const void* p) {
490 ::std::stringstream expected_result_stream;
491 expected_result_stream << p;
492 return expected_result_stream.str();
493 }
494
495 // Tests printing C strings.
496
497 // const char*.
TEST(PrintCStringTest,Const)498 TEST(PrintCStringTest, Const) {
499 const char* p = "World";
500 EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
501 }
502
503 // char*.
TEST(PrintCStringTest,NonConst)504 TEST(PrintCStringTest, NonConst) {
505 char p[] = "Hi";
506 EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
507 Print(static_cast<char*>(p)));
508 }
509
510 // NULL C string.
TEST(PrintCStringTest,Null)511 TEST(PrintCStringTest, Null) {
512 const char* p = nullptr;
513 EXPECT_EQ("NULL", Print(p));
514 }
515
516 // Tests that C strings are escaped properly.
TEST(PrintCStringTest,EscapesProperly)517 TEST(PrintCStringTest, EscapesProperly) {
518 const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
519 EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
520 "\\n\\r\\t\\v\\x7F\\xFF a\"",
521 Print(p));
522 }
523
524 #ifdef __cpp_char8_t
525 // const char8_t*.
TEST(PrintU8StringTest,Const)526 TEST(PrintU8StringTest, Const) {
527 const char8_t* p = u8"界";
528 EXPECT_EQ(PrintPointer(p) + " pointing to u8\"\\xE7\\x95\\x8C\"", Print(p));
529 }
530
531 // char8_t*.
TEST(PrintU8StringTest,NonConst)532 TEST(PrintU8StringTest, NonConst) {
533 char8_t p[] = u8"世";
534 EXPECT_EQ(PrintPointer(p) + " pointing to u8\"\\xE4\\xB8\\x96\"",
535 Print(static_cast<char8_t*>(p)));
536 }
537
538 // NULL u8 string.
TEST(PrintU8StringTest,Null)539 TEST(PrintU8StringTest, Null) {
540 const char8_t* p = nullptr;
541 EXPECT_EQ("NULL", Print(p));
542 }
543
544 // Tests that u8 strings are escaped properly.
TEST(PrintU8StringTest,EscapesProperly)545 TEST(PrintU8StringTest, EscapesProperly) {
546 const char8_t* p = u8"'\"?\\\a\b\f\n\r\t\v\x7F\xFF hello 世界";
547 EXPECT_EQ(PrintPointer(p) +
548 " pointing to u8\"'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\x7F\\xFF "
549 "hello \\xE4\\xB8\\x96\\xE7\\x95\\x8C\"",
550 Print(p));
551 }
552 #endif
553
554 // const char16_t*.
TEST(PrintU16StringTest,Const)555 TEST(PrintU16StringTest, Const) {
556 const char16_t* p = u"界";
557 EXPECT_EQ(PrintPointer(p) + " pointing to u\"\\x754C\"", Print(p));
558 }
559
560 // char16_t*.
TEST(PrintU16StringTest,NonConst)561 TEST(PrintU16StringTest, NonConst) {
562 char16_t p[] = u"世";
563 EXPECT_EQ(PrintPointer(p) + " pointing to u\"\\x4E16\"",
564 Print(static_cast<char16_t*>(p)));
565 }
566
567 // NULL u16 string.
TEST(PrintU16StringTest,Null)568 TEST(PrintU16StringTest, Null) {
569 const char16_t* p = nullptr;
570 EXPECT_EQ("NULL", Print(p));
571 }
572
573 // Tests that u16 strings are escaped properly.
TEST(PrintU16StringTest,EscapesProperly)574 TEST(PrintU16StringTest, EscapesProperly) {
575 const char16_t* p = u"'\"?\\\a\b\f\n\r\t\v\x7F\xFF hello 世界";
576 EXPECT_EQ(PrintPointer(p) +
577 " pointing to u\"'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\x7F\\xFF "
578 "hello \\x4E16\\x754C\"",
579 Print(p));
580 }
581
582 // const char32_t*.
TEST(PrintU32StringTest,Const)583 TEST(PrintU32StringTest, Const) {
584 const char32_t* p = U"️";
585 EXPECT_EQ(PrintPointer(p) + " pointing to U\"\\x1F5FA\\xFE0F\"", Print(p));
586 }
587
588 // char32_t*.
TEST(PrintU32StringTest,NonConst)589 TEST(PrintU32StringTest, NonConst) {
590 char32_t p[] = U"";
591 EXPECT_EQ(PrintPointer(p) + " pointing to U\"\\x1F30C\"",
592 Print(static_cast<char32_t*>(p)));
593 }
594
595 // NULL u32 string.
TEST(PrintU32StringTest,Null)596 TEST(PrintU32StringTest, Null) {
597 const char32_t* p = nullptr;
598 EXPECT_EQ("NULL", Print(p));
599 }
600
601 // Tests that u32 strings are escaped properly.
TEST(PrintU32StringTest,EscapesProperly)602 TEST(PrintU32StringTest, EscapesProperly) {
603 const char32_t* p = U"'\"?\\\a\b\f\n\r\t\v\x7F\xFF hello ️";
604 EXPECT_EQ(PrintPointer(p) +
605 " pointing to U\"'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\x7F\\xFF "
606 "hello \\x1F5FA\\xFE0F\"",
607 Print(p));
608 }
609
610 // MSVC compiler can be configured to define whar_t as a typedef
611 // of unsigned short. Defining an overload for const wchar_t* in that case
612 // would cause pointers to unsigned shorts be printed as wide strings,
613 // possibly accessing more memory than intended and causing invalid
614 // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
615 // wchar_t is implemented as a native type.
616 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
617
618 // const wchar_t*.
TEST(PrintWideCStringTest,Const)619 TEST(PrintWideCStringTest, Const) {
620 const wchar_t* p = L"World";
621 EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
622 }
623
624 // wchar_t*.
TEST(PrintWideCStringTest,NonConst)625 TEST(PrintWideCStringTest, NonConst) {
626 wchar_t p[] = L"Hi";
627 EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
628 Print(static_cast<wchar_t*>(p)));
629 }
630
631 // NULL wide C string.
TEST(PrintWideCStringTest,Null)632 TEST(PrintWideCStringTest, Null) {
633 const wchar_t* p = nullptr;
634 EXPECT_EQ("NULL", Print(p));
635 }
636
637 // Tests that wide C strings are escaped properly.
TEST(PrintWideCStringTest,EscapesProperly)638 TEST(PrintWideCStringTest, EscapesProperly) {
639 const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
640 '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
641 EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
642 "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
643 Print(static_cast<const wchar_t*>(s)));
644 }
645 #endif // native wchar_t
646
647 // Tests printing pointers to other char types.
648
649 // signed char*.
TEST(PrintCharPointerTest,SignedChar)650 TEST(PrintCharPointerTest, SignedChar) {
651 signed char* p = reinterpret_cast<signed char*>(0x1234);
652 EXPECT_EQ(PrintPointer(p), Print(p));
653 p = nullptr;
654 EXPECT_EQ("NULL", Print(p));
655 }
656
657 // const signed char*.
TEST(PrintCharPointerTest,ConstSignedChar)658 TEST(PrintCharPointerTest, ConstSignedChar) {
659 signed char* p = reinterpret_cast<signed char*>(0x1234);
660 EXPECT_EQ(PrintPointer(p), Print(p));
661 p = nullptr;
662 EXPECT_EQ("NULL", Print(p));
663 }
664
665 // unsigned char*.
TEST(PrintCharPointerTest,UnsignedChar)666 TEST(PrintCharPointerTest, UnsignedChar) {
667 unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
668 EXPECT_EQ(PrintPointer(p), Print(p));
669 p = nullptr;
670 EXPECT_EQ("NULL", Print(p));
671 }
672
673 // const unsigned char*.
TEST(PrintCharPointerTest,ConstUnsignedChar)674 TEST(PrintCharPointerTest, ConstUnsignedChar) {
675 const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
676 EXPECT_EQ(PrintPointer(p), Print(p));
677 p = nullptr;
678 EXPECT_EQ("NULL", Print(p));
679 }
680
681 // Tests printing pointers to simple, built-in types.
682
683 // bool*.
TEST(PrintPointerToBuiltInTypeTest,Bool)684 TEST(PrintPointerToBuiltInTypeTest, Bool) {
685 bool* p = reinterpret_cast<bool*>(0xABCD);
686 EXPECT_EQ(PrintPointer(p), Print(p));
687 p = nullptr;
688 EXPECT_EQ("NULL", Print(p));
689 }
690
691 // void*.
TEST(PrintPointerToBuiltInTypeTest,Void)692 TEST(PrintPointerToBuiltInTypeTest, Void) {
693 void* p = reinterpret_cast<void*>(0xABCD);
694 EXPECT_EQ(PrintPointer(p), Print(p));
695 p = nullptr;
696 EXPECT_EQ("NULL", Print(p));
697 }
698
699 // const void*.
TEST(PrintPointerToBuiltInTypeTest,ConstVoid)700 TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
701 const void* p = reinterpret_cast<const void*>(0xABCD);
702 EXPECT_EQ(PrintPointer(p), Print(p));
703 p = nullptr;
704 EXPECT_EQ("NULL", Print(p));
705 }
706
707 // Tests printing pointers to pointers.
TEST(PrintPointerToPointerTest,IntPointerPointer)708 TEST(PrintPointerToPointerTest, IntPointerPointer) {
709 int** p = reinterpret_cast<int**>(0xABCD);
710 EXPECT_EQ(PrintPointer(p), Print(p));
711 p = nullptr;
712 EXPECT_EQ("NULL", Print(p));
713 }
714
715 // Tests printing (non-member) function pointers.
716
MyFunction(int)717 void MyFunction(int /* n */) {}
718
TEST(PrintPointerTest,NonMemberFunctionPointer)719 TEST(PrintPointerTest, NonMemberFunctionPointer) {
720 // We cannot directly cast &MyFunction to const void* because the
721 // standard disallows casting between pointers to functions and
722 // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
723 // this limitation.
724 EXPECT_EQ(
725 PrintPointer(reinterpret_cast<const void*>(
726 reinterpret_cast<internal::BiggestInt>(&MyFunction))),
727 Print(&MyFunction));
728 int (*p)(bool) = NULL; // NOLINT
729 EXPECT_EQ("NULL", Print(p));
730 }
731
732 // An assertion predicate determining whether a one string is a prefix for
733 // another.
734 template <typename StringType>
HasPrefix(const StringType & str,const StringType & prefix)735 AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
736 if (str.find(prefix, 0) == 0)
737 return AssertionSuccess();
738
739 const bool is_wide_string = sizeof(prefix[0]) > 1;
740 const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
741 return AssertionFailure()
742 << begin_string_quote << prefix << "\" is not a prefix of "
743 << begin_string_quote << str << "\"\n";
744 }
745
746 // Tests printing member variable pointers. Although they are called
747 // pointers, they don't point to a location in the address space.
748 // Their representation is implementation-defined. Thus they will be
749 // printed as raw bytes.
750
751 struct Foo {
752 public:
~Footesting::gtest_printers_test::Foo753 virtual ~Foo() {}
MyMethodtesting::gtest_printers_test::Foo754 int MyMethod(char x) { return x + 1; }
MyVirtualMethodtesting::gtest_printers_test::Foo755 virtual char MyVirtualMethod(int /* n */) { return 'a'; }
756
757 int value;
758 };
759
TEST(PrintPointerTest,MemberVariablePointer)760 TEST(PrintPointerTest, MemberVariablePointer) {
761 EXPECT_TRUE(HasPrefix(Print(&Foo::value),
762 Print(sizeof(&Foo::value)) + "-byte object "));
763 int Foo::*p = NULL; // NOLINT
764 EXPECT_TRUE(HasPrefix(Print(p),
765 Print(sizeof(p)) + "-byte object "));
766 }
767
768 // Tests printing member function pointers. Although they are called
769 // pointers, they don't point to a location in the address space.
770 // Their representation is implementation-defined. Thus they will be
771 // printed as raw bytes.
TEST(PrintPointerTest,MemberFunctionPointer)772 TEST(PrintPointerTest, MemberFunctionPointer) {
773 EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
774 Print(sizeof(&Foo::MyMethod)) + "-byte object "));
775 EXPECT_TRUE(
776 HasPrefix(Print(&Foo::MyVirtualMethod),
777 Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
778 int (Foo::*p)(char) = NULL; // NOLINT
779 EXPECT_TRUE(HasPrefix(Print(p),
780 Print(sizeof(p)) + "-byte object "));
781 }
782
783 // Tests printing C arrays.
784
785 // The difference between this and Print() is that it ensures that the
786 // argument is a reference to an array.
787 template <typename T, size_t N>
PrintArrayHelper(T (& a)[N])788 std::string PrintArrayHelper(T (&a)[N]) {
789 return Print(a);
790 }
791
792 // One-dimensional array.
TEST(PrintArrayTest,OneDimensionalArray)793 TEST(PrintArrayTest, OneDimensionalArray) {
794 int a[5] = { 1, 2, 3, 4, 5 };
795 EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
796 }
797
798 // Two-dimensional array.
TEST(PrintArrayTest,TwoDimensionalArray)799 TEST(PrintArrayTest, TwoDimensionalArray) {
800 int a[2][5] = {
801 { 1, 2, 3, 4, 5 },
802 { 6, 7, 8, 9, 0 }
803 };
804 EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
805 }
806
807 // Array of const elements.
TEST(PrintArrayTest,ConstArray)808 TEST(PrintArrayTest, ConstArray) {
809 const bool a[1] = { false };
810 EXPECT_EQ("{ false }", PrintArrayHelper(a));
811 }
812
813 // char array without terminating NUL.
TEST(PrintArrayTest,CharArrayWithNoTerminatingNul)814 TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
815 // Array a contains '\0' in the middle and doesn't end with '\0'.
816 char a[] = { 'H', '\0', 'i' };
817 EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
818 }
819
820 // char array with terminating NUL.
TEST(PrintArrayTest,CharArrayWithTerminatingNul)821 TEST(PrintArrayTest, CharArrayWithTerminatingNul) {
822 const char a[] = "\0Hi";
823 EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
824 }
825
826 #ifdef __cpp_char8_t
827 // char_t array without terminating NUL.
TEST(PrintArrayTest,Char8ArrayWithNoTerminatingNul)828 TEST(PrintArrayTest, Char8ArrayWithNoTerminatingNul) {
829 // Array a contains '\0' in the middle and doesn't end with '\0'.
830 const char8_t a[] = {u8'H', u8'\0', u8'i'};
831 EXPECT_EQ("u8\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
832 }
833
834 // char8_t array with terminating NUL.
835 TEST(PrintArrayTest, Char8ArrayWithTerminatingNul) {
836 const char8_t a[] = u8"\0世界";
837 EXPECT_EQ(
838 "u8\"\\0\\xE4\\xB8\\x96\\xE7\\x95\\x8C\"",
839 PrintArrayHelper(a));
840 }
841 #endif
842
843 // const char16_t array without terminating NUL.
844 TEST(PrintArrayTest, Char16ArrayWithNoTerminatingNul) {
845 // Array a contains '\0' in the middle and doesn't end with '\0'.
846 const char16_t a[] = {u'こ', u'\0', u'ん', u'に', u'ち', u'は'};
847 EXPECT_EQ("u\"\\x3053\\0\\x3093\\x306B\\x3061\\x306F\" (no terminating NUL)",
848 PrintArrayHelper(a));
849 }
850
851 // char16_t array with terminating NUL.
852 TEST(PrintArrayTest, Char16ArrayWithTerminatingNul) {
853 const char16_t a[] = u"\0こんにちは";
854 EXPECT_EQ("u\"\\0\\x3053\\x3093\\x306B\\x3061\\x306F\"", PrintArrayHelper(a));
855 }
856
857 // char32_t array without terminating NUL.
858 TEST(PrintArrayTest, Char32ArrayWithNoTerminatingNul) {
859 // Array a contains '\0' in the middle and doesn't end with '\0'.
860 const char32_t a[] = {U'', U'\0', U''};
861 EXPECT_EQ("U\"\\x1F44B\\0\\x1F30C\" (no terminating NUL)",
862 PrintArrayHelper(a));
863 }
864
865 // char32_t array with terminating NUL.
866 TEST(PrintArrayTest, Char32ArrayWithTerminatingNul) {
867 const char32_t a[] = U"\0";
868 EXPECT_EQ("U\"\\0\\x1F44B\\x1F30C\"", PrintArrayHelper(a));
869 }
870
871 // wchar_t array without terminating NUL.
872 TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
873 // Array a contains '\0' in the middle and doesn't end with '\0'.
874 const wchar_t a[] = {L'H', L'\0', L'i'};
875 EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
876 }
877
878 // wchar_t array with terminating NUL.
879 TEST(PrintArrayTest, WCharArrayWithTerminatingNul) {
880 const wchar_t a[] = L"\0Hi";
881 EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
882 }
883
884 // Array of objects.
885 TEST(PrintArrayTest, ObjectArray) {
886 std::string a[3] = {"Hi", "Hello", "Ni hao"};
887 EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
888 }
889
890 // Array with many elements.
891 TEST(PrintArrayTest, BigArray) {
892 int a[100] = { 1, 2, 3 };
893 EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
894 PrintArrayHelper(a));
895 }
896
897 // Tests printing ::string and ::std::string.
898
899 // ::std::string.
900 TEST(PrintStringTest, StringInStdNamespace) {
901 const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
902 const ::std::string str(s, sizeof(s));
903 EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
904 Print(str));
905 }
906
907 TEST(PrintStringTest, StringAmbiguousHex) {
908 // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
909 // '\x6', '\x6B', or '\x6BA'.
910
911 // a hex escaping sequence following by a decimal digit
912 EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
913 // a hex escaping sequence following by a hex digit (lower-case)
914 EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
915 // a hex escaping sequence following by a hex digit (upper-case)
916 EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
917 // a hex escaping sequence following by a non-xdigit
918 EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
919 }
920
921 // Tests printing ::std::wstring.
922 #if GTEST_HAS_STD_WSTRING
923 // ::std::wstring.
924 TEST(PrintWideStringTest, StringInStdNamespace) {
925 const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
926 const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
927 EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
928 "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
929 Print(str));
930 }
931
932 TEST(PrintWideStringTest, StringAmbiguousHex) {
933 // same for wide strings.
934 EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
935 EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
936 Print(::std::wstring(L"mm\x6" L"bananas")));
937 EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
938 Print(::std::wstring(L"NOM\x6" L"BANANA")));
939 EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
940 }
941 #endif // GTEST_HAS_STD_WSTRING
942
943 #ifdef __cpp_char8_t
944 TEST(PrintStringTest, U8String) {
945 std::u8string str = u8"Hello, 世界";
946 EXPECT_EQ(str, str); // Verify EXPECT_EQ compiles with this type.
947 EXPECT_EQ("u8\"Hello, \\xE4\\xB8\\x96\\xE7\\x95\\x8C\"", Print(str));
948 }
949 #endif
950
951 TEST(PrintStringTest, U16String) {
952 std::u16string str = u"Hello, 世界";
953 EXPECT_EQ(str, str); // Verify EXPECT_EQ compiles with this type.
954 EXPECT_EQ("u\"Hello, \\x4E16\\x754C\"", Print(str));
955 }
956
957 TEST(PrintStringTest, U32String) {
958 std::u32string str = U"Hello, ️";
959 EXPECT_EQ(str, str); // Verify EXPECT_EQ compiles with this type
960 EXPECT_EQ("U\"Hello, \\x1F5FA\\xFE0F\"", Print(str));
961 }
962
963 // Tests printing types that support generic streaming (i.e. streaming
964 // to std::basic_ostream<Char, CharTraits> for any valid Char and
965 // CharTraits types).
966
967 // Tests printing a non-template type that supports generic streaming.
968
969 class AllowsGenericStreaming {};
970
971 template <typename Char, typename CharTraits>
972 std::basic_ostream<Char, CharTraits>& operator<<(
973 std::basic_ostream<Char, CharTraits>& os,
974 const AllowsGenericStreaming& /* a */) {
975 return os << "AllowsGenericStreaming";
976 }
977
978 TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
979 AllowsGenericStreaming a;
980 EXPECT_EQ("AllowsGenericStreaming", Print(a));
981 }
982
983 // Tests printing a template type that supports generic streaming.
984
985 template <typename T>
986 class AllowsGenericStreamingTemplate {};
987
988 template <typename Char, typename CharTraits, typename T>
989 std::basic_ostream<Char, CharTraits>& operator<<(
990 std::basic_ostream<Char, CharTraits>& os,
991 const AllowsGenericStreamingTemplate<T>& /* a */) {
992 return os << "AllowsGenericStreamingTemplate";
993 }
994
995 TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
996 AllowsGenericStreamingTemplate<int> a;
997 EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
998 }
999
1000 // Tests printing a type that supports generic streaming and can be
1001 // implicitly converted to another printable type.
1002
1003 template <typename T>
1004 class AllowsGenericStreamingAndImplicitConversionTemplate {
1005 public:
operator bool() const1006 operator bool() const { return false; }
1007 };
1008
1009 template <typename Char, typename CharTraits, typename T>
1010 std::basic_ostream<Char, CharTraits>& operator<<(
1011 std::basic_ostream<Char, CharTraits>& os,
1012 const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
1013 return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
1014 }
1015
1016 TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
1017 AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
1018 EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
1019 }
1020
1021 #if GTEST_INTERNAL_HAS_STRING_VIEW
1022
1023 // Tests printing internal::StringView.
1024
1025 TEST(PrintStringViewTest, SimpleStringView) {
1026 const internal::StringView sp = "Hello";
1027 EXPECT_EQ("\"Hello\"", Print(sp));
1028 }
1029
1030 TEST(PrintStringViewTest, UnprintableCharacters) {
1031 const char str[] = "NUL (\0) and \r\t";
1032 const internal::StringView sp(str, sizeof(str) - 1);
1033 EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
1034 }
1035
1036 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
1037
1038 // Tests printing STL containers.
1039
1040 TEST(PrintStlContainerTest, EmptyDeque) {
1041 deque<char> empty;
1042 EXPECT_EQ("{}", Print(empty));
1043 }
1044
1045 TEST(PrintStlContainerTest, NonEmptyDeque) {
1046 deque<int> non_empty;
1047 non_empty.push_back(1);
1048 non_empty.push_back(3);
1049 EXPECT_EQ("{ 1, 3 }", Print(non_empty));
1050 }
1051
1052
1053 TEST(PrintStlContainerTest, OneElementHashMap) {
1054 ::std::unordered_map<int, char> map1;
1055 map1[1] = 'a';
1056 EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
1057 }
1058
1059 TEST(PrintStlContainerTest, HashMultiMap) {
1060 ::std::unordered_multimap<int, bool> map1;
1061 map1.insert(make_pair(5, true));
1062 map1.insert(make_pair(5, false));
1063
1064 // Elements of hash_multimap can be printed in any order.
1065 const std::string result = Print(map1);
1066 EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
1067 result == "{ (5, false), (5, true) }")
1068 << " where Print(map1) returns \"" << result << "\".";
1069 }
1070
1071
1072
1073 TEST(PrintStlContainerTest, HashSet) {
1074 ::std::unordered_set<int> set1;
1075 set1.insert(1);
1076 EXPECT_EQ("{ 1 }", Print(set1));
1077 }
1078
1079 TEST(PrintStlContainerTest, HashMultiSet) {
1080 const int kSize = 5;
1081 int a[kSize] = { 1, 1, 2, 5, 1 };
1082 ::std::unordered_multiset<int> set1(a, a + kSize);
1083
1084 // Elements of hash_multiset can be printed in any order.
1085 const std::string result = Print(set1);
1086 const std::string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
1087
1088 // Verifies the result matches the expected pattern; also extracts
1089 // the numbers in the result.
1090 ASSERT_EQ(expected_pattern.length(), result.length());
1091 std::vector<int> numbers;
1092 for (size_t i = 0; i != result.length(); i++) {
1093 if (expected_pattern[i] == 'd') {
1094 ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
1095 numbers.push_back(result[i] - '0');
1096 } else {
1097 EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
1098 << result;
1099 }
1100 }
1101
1102 // Makes sure the result contains the right numbers.
1103 std::sort(numbers.begin(), numbers.end());
1104 std::sort(a, a + kSize);
1105 EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
1106 }
1107
1108
1109 TEST(PrintStlContainerTest, List) {
1110 const std::string a[] = {"hello", "world"};
1111 const list<std::string> strings(a, a + 2);
1112 EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
1113 }
1114
1115 TEST(PrintStlContainerTest, Map) {
1116 map<int, bool> map1;
1117 map1[1] = true;
1118 map1[5] = false;
1119 map1[3] = true;
1120 EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
1121 }
1122
1123 TEST(PrintStlContainerTest, MultiMap) {
1124 multimap<bool, int> map1;
1125 // The make_pair template function would deduce the type as
1126 // pair<bool, int> here, and since the key part in a multimap has to
1127 // be constant, without a templated ctor in the pair class (as in
1128 // libCstd on Solaris), make_pair call would fail to compile as no
1129 // implicit conversion is found. Thus explicit typename is used
1130 // here instead.
1131 map1.insert(pair<const bool, int>(true, 0));
1132 map1.insert(pair<const bool, int>(true, 1));
1133 map1.insert(pair<const bool, int>(false, 2));
1134 EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
1135 }
1136
1137 TEST(PrintStlContainerTest, Set) {
1138 const unsigned int a[] = { 3, 0, 5 };
1139 set<unsigned int> set1(a, a + 3);
1140 EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
1141 }
1142
1143 TEST(PrintStlContainerTest, MultiSet) {
1144 const int a[] = { 1, 1, 2, 5, 1 };
1145 multiset<int> set1(a, a + 5);
1146 EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
1147 }
1148
1149
1150 TEST(PrintStlContainerTest, SinglyLinkedList) {
1151 int a[] = { 9, 2, 8 };
1152 const std::forward_list<int> ints(a, a + 3);
1153 EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
1154 }
1155
1156 TEST(PrintStlContainerTest, Pair) {
1157 pair<const bool, int> p(true, 5);
1158 EXPECT_EQ("(true, 5)", Print(p));
1159 }
1160
1161 TEST(PrintStlContainerTest, Vector) {
1162 vector<int> v;
1163 v.push_back(1);
1164 v.push_back(2);
1165 EXPECT_EQ("{ 1, 2 }", Print(v));
1166 }
1167
1168 TEST(PrintStlContainerTest, LongSequence) {
1169 const int a[100] = { 1, 2, 3 };
1170 const vector<int> v(a, a + 100);
1171 EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
1172 "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
1173 }
1174
1175 TEST(PrintStlContainerTest, NestedContainer) {
1176 const int a1[] = { 1, 2 };
1177 const int a2[] = { 3, 4, 5 };
1178 const list<int> l1(a1, a1 + 2);
1179 const list<int> l2(a2, a2 + 3);
1180
1181 vector<list<int> > v;
1182 v.push_back(l1);
1183 v.push_back(l2);
1184 EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
1185 }
1186
1187 TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
1188 const int a[3] = { 1, 2, 3 };
1189 NativeArray<int> b(a, 3, RelationToSourceReference());
1190 EXPECT_EQ("{ 1, 2, 3 }", Print(b));
1191 }
1192
1193 TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
1194 const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
1195 NativeArray<int[3]> b(a, 2, RelationToSourceReference());
1196 EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
1197 }
1198
1199 // Tests that a class named iterator isn't treated as a container.
1200
1201 struct iterator {
1202 char x;
1203 };
1204
1205 TEST(PrintStlContainerTest, Iterator) {
1206 iterator it = {};
1207 EXPECT_EQ("1-byte object <00>", Print(it));
1208 }
1209
1210 // Tests that a class named const_iterator isn't treated as a container.
1211
1212 struct const_iterator {
1213 char x;
1214 };
1215
1216 TEST(PrintStlContainerTest, ConstIterator) {
1217 const_iterator it = {};
1218 EXPECT_EQ("1-byte object <00>", Print(it));
1219 }
1220
1221 // Tests printing ::std::tuples.
1222
1223 // Tuples of various arities.
1224 TEST(PrintStdTupleTest, VariousSizes) {
1225 ::std::tuple<> t0;
1226 EXPECT_EQ("()", Print(t0));
1227
1228 ::std::tuple<int> t1(5);
1229 EXPECT_EQ("(5)", Print(t1));
1230
1231 ::std::tuple<char, bool> t2('a', true);
1232 EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
1233
1234 ::std::tuple<bool, int, int> t3(false, 2, 3);
1235 EXPECT_EQ("(false, 2, 3)", Print(t3));
1236
1237 ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
1238 EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1239
1240 const char* const str = "8";
1241 ::std::tuple<bool, char, short, int32_t, int64_t, float, double, // NOLINT
1242 const char*, void*, std::string>
1243 t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str, // NOLINT
1244 nullptr, "10");
1245 EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1246 " pointing to \"8\", NULL, \"10\")",
1247 Print(t10));
1248 }
1249
1250 // Nested tuples.
1251 TEST(PrintStdTupleTest, NestedTuple) {
1252 ::std::tuple< ::std::tuple<int, bool>, char> nested(
1253 ::std::make_tuple(5, true), 'a');
1254 EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1255 }
1256
1257 TEST(PrintNullptrT, Basic) {
1258 EXPECT_EQ("(nullptr)", Print(nullptr));
1259 }
1260
1261 TEST(PrintReferenceWrapper, Printable) {
1262 int x = 5;
1263 EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::ref(x)));
1264 EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::cref(x)));
1265 }
1266
1267 TEST(PrintReferenceWrapper, Unprintable) {
1268 ::foo::UnprintableInFoo up;
1269 EXPECT_EQ(
1270 "@" + PrintPointer(&up) +
1271 " 16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1272 Print(std::ref(up)));
1273 EXPECT_EQ(
1274 "@" + PrintPointer(&up) +
1275 " 16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1276 Print(std::cref(up)));
1277 }
1278
1279 // Tests printing user-defined unprintable types.
1280
1281 // Unprintable types in the global namespace.
1282 TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
1283 EXPECT_EQ("1-byte object <00>",
1284 Print(UnprintableTemplateInGlobal<char>()));
1285 }
1286
1287 // Unprintable types in a user namespace.
1288 TEST(PrintUnprintableTypeTest, InUserNamespace) {
1289 EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1290 Print(::foo::UnprintableInFoo()));
1291 }
1292
1293 // Unprintable types are that too big to be printed completely.
1294
1295 struct Big {
Bigtesting::gtest_printers_test::TEST::Big1296 Big() { memset(array, 0, sizeof(array)); }
1297 char array[257];
1298 };
1299
1300 TEST(PrintUnpritableTypeTest, BigObject) {
1301 EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
1302 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1303 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1304 "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
1305 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1306 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1307 "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
1308 Print(Big()));
1309 }
1310
1311 // Tests printing user-defined streamable types.
1312
1313 // Streamable types in the global namespace.
1314 TEST(PrintStreamableTypeTest, InGlobalNamespace) {
1315 StreamableInGlobal x;
1316 EXPECT_EQ("StreamableInGlobal", Print(x));
1317 EXPECT_EQ("StreamableInGlobal*", Print(&x));
1318 }
1319
1320 // Printable template types in a user namespace.
1321 TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
1322 EXPECT_EQ("StreamableTemplateInFoo: 0",
1323 Print(::foo::StreamableTemplateInFoo<int>()));
1324 }
1325
1326 TEST(PrintStreamableTypeTest, TypeInUserNamespaceWithTemplatedStreamOperator) {
1327 EXPECT_EQ("TemplatedStreamableInFoo",
1328 Print(::foo::TemplatedStreamableInFoo()));
1329 }
1330
1331 TEST(PrintStreamableTypeTest, SubclassUsesSuperclassStreamOperator) {
1332 ParentClass parent;
1333 ChildClassWithStreamOperator child_stream;
1334 ChildClassWithoutStreamOperator child_no_stream;
1335 EXPECT_EQ("ParentClass", Print(parent));
1336 EXPECT_EQ("ChildClassWithStreamOperator", Print(child_stream));
1337 EXPECT_EQ("ParentClass", Print(child_no_stream));
1338 }
1339
1340 // Tests printing a user-defined recursive container type that has a <<
1341 // operator.
1342 TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) {
1343 ::foo::PathLike x;
1344 EXPECT_EQ("Streamable-PathLike", Print(x));
1345 const ::foo::PathLike cx;
1346 EXPECT_EQ("Streamable-PathLike", Print(cx));
1347 }
1348
1349 // Tests printing user-defined types that have a PrintTo() function.
1350 TEST(PrintPrintableTypeTest, InUserNamespace) {
1351 EXPECT_EQ("PrintableViaPrintTo: 0",
1352 Print(::foo::PrintableViaPrintTo()));
1353 }
1354
1355 // Tests printing a pointer to a user-defined type that has a <<
1356 // operator for its pointer.
1357 TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
1358 ::foo::PointerPrintable x;
1359 EXPECT_EQ("PointerPrintable*", Print(&x));
1360 }
1361
1362 // Tests printing user-defined class template that have a PrintTo() function.
1363 TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
1364 EXPECT_EQ("PrintableViaPrintToTemplate: 5",
1365 Print(::foo::PrintableViaPrintToTemplate<int>(5)));
1366 }
1367
1368 // Tests that the universal printer prints both the address and the
1369 // value of a reference.
1370 TEST(PrintReferenceTest, PrintsAddressAndValue) {
1371 int n = 5;
1372 EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
1373
1374 int a[2][3] = {
1375 { 0, 1, 2 },
1376 { 3, 4, 5 }
1377 };
1378 EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
1379 PrintByRef(a));
1380
1381 const ::foo::UnprintableInFoo x;
1382 EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
1383 "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1384 PrintByRef(x));
1385 }
1386
1387 // Tests that the universal printer prints a function pointer passed by
1388 // reference.
1389 TEST(PrintReferenceTest, HandlesFunctionPointer) {
1390 void (*fp)(int n) = &MyFunction;
1391 const std::string fp_pointer_string =
1392 PrintPointer(reinterpret_cast<const void*>(&fp));
1393 // We cannot directly cast &MyFunction to const void* because the
1394 // standard disallows casting between pointers to functions and
1395 // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
1396 // this limitation.
1397 const std::string fp_string = PrintPointer(reinterpret_cast<const void*>(
1398 reinterpret_cast<internal::BiggestInt>(fp)));
1399 EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
1400 PrintByRef(fp));
1401 }
1402
1403 // Tests that the universal printer prints a member function pointer
1404 // passed by reference.
1405 TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
1406 int (Foo::*p)(char ch) = &Foo::MyMethod;
1407 EXPECT_TRUE(HasPrefix(
1408 PrintByRef(p),
1409 "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
1410 Print(sizeof(p)) + "-byte object "));
1411
1412 char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
1413 EXPECT_TRUE(HasPrefix(
1414 PrintByRef(p2),
1415 "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
1416 Print(sizeof(p2)) + "-byte object "));
1417 }
1418
1419 // Tests that the universal printer prints a member variable pointer
1420 // passed by reference.
1421 TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
1422 int Foo::*p = &Foo::value; // NOLINT
1423 EXPECT_TRUE(HasPrefix(
1424 PrintByRef(p),
1425 "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
1426 }
1427
1428 // Tests that FormatForComparisonFailureMessage(), which is used to print
1429 // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
1430 // fails, formats the operand in the desired way.
1431
1432 // scalar
1433 TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
1434 EXPECT_STREQ("123",
1435 FormatForComparisonFailureMessage(123, 124).c_str());
1436 }
1437
1438 // non-char pointer
1439 TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
1440 int n = 0;
1441 EXPECT_EQ(PrintPointer(&n),
1442 FormatForComparisonFailureMessage(&n, &n).c_str());
1443 }
1444
1445 // non-char array
1446 TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
1447 // In expression 'array == x', 'array' is compared by pointer.
1448 // Therefore we want to print an array operand as a pointer.
1449 int n[] = { 1, 2, 3 };
1450 EXPECT_EQ(PrintPointer(n),
1451 FormatForComparisonFailureMessage(n, n).c_str());
1452 }
1453
1454 // Tests formatting a char pointer when it's compared with another pointer.
1455 // In this case we want to print it as a raw pointer, as the comparison is by
1456 // pointer.
1457
1458 // char pointer vs pointer
1459 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
1460 // In expression 'p == x', where 'p' and 'x' are (const or not) char
1461 // pointers, the operands are compared by pointer. Therefore we
1462 // want to print 'p' as a pointer instead of a C string (we don't
1463 // even know if it's supposed to point to a valid C string).
1464
1465 // const char*
1466 const char* s = "hello";
1467 EXPECT_EQ(PrintPointer(s),
1468 FormatForComparisonFailureMessage(s, s).c_str());
1469
1470 // char*
1471 char ch = 'a';
1472 EXPECT_EQ(PrintPointer(&ch),
1473 FormatForComparisonFailureMessage(&ch, &ch).c_str());
1474 }
1475
1476 // wchar_t pointer vs pointer
1477 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
1478 // In expression 'p == x', where 'p' and 'x' are (const or not) char
1479 // pointers, the operands are compared by pointer. Therefore we
1480 // want to print 'p' as a pointer instead of a wide C string (we don't
1481 // even know if it's supposed to point to a valid wide C string).
1482
1483 // const wchar_t*
1484 const wchar_t* s = L"hello";
1485 EXPECT_EQ(PrintPointer(s),
1486 FormatForComparisonFailureMessage(s, s).c_str());
1487
1488 // wchar_t*
1489 wchar_t ch = L'a';
1490 EXPECT_EQ(PrintPointer(&ch),
1491 FormatForComparisonFailureMessage(&ch, &ch).c_str());
1492 }
1493
1494 // Tests formatting a char pointer when it's compared to a string object.
1495 // In this case we want to print the char pointer as a C string.
1496
1497 // char pointer vs std::string
1498 TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
1499 const char* s = "hello \"world";
1500 EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
1501 FormatForComparisonFailureMessage(s, ::std::string()).c_str());
1502
1503 // char*
1504 char str[] = "hi\1";
1505 char* p = str;
1506 EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
1507 FormatForComparisonFailureMessage(p, ::std::string()).c_str());
1508 }
1509
1510 #if GTEST_HAS_STD_WSTRING
1511 // wchar_t pointer vs std::wstring
1512 TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
1513 const wchar_t* s = L"hi \"world";
1514 EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
1515 FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
1516
1517 // wchar_t*
1518 wchar_t str[] = L"hi\1";
1519 wchar_t* p = str;
1520 EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
1521 FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
1522 }
1523 #endif
1524
1525 // Tests formatting a char array when it's compared with a pointer or array.
1526 // In this case we want to print the array as a row pointer, as the comparison
1527 // is by pointer.
1528
1529 // char array vs pointer
1530 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
1531 char str[] = "hi \"world\"";
1532 char* p = nullptr;
1533 EXPECT_EQ(PrintPointer(str),
1534 FormatForComparisonFailureMessage(str, p).c_str());
1535 }
1536
1537 // char array vs char array
1538 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
1539 const char str[] = "hi \"world\"";
1540 EXPECT_EQ(PrintPointer(str),
1541 FormatForComparisonFailureMessage(str, str).c_str());
1542 }
1543
1544 // wchar_t array vs pointer
1545 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
1546 wchar_t str[] = L"hi \"world\"";
1547 wchar_t* p = nullptr;
1548 EXPECT_EQ(PrintPointer(str),
1549 FormatForComparisonFailureMessage(str, p).c_str());
1550 }
1551
1552 // wchar_t array vs wchar_t array
1553 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
1554 const wchar_t str[] = L"hi \"world\"";
1555 EXPECT_EQ(PrintPointer(str),
1556 FormatForComparisonFailureMessage(str, str).c_str());
1557 }
1558
1559 // Tests formatting a char array when it's compared with a string object.
1560 // In this case we want to print the array as a C string.
1561
1562 // char array vs std::string
1563 TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
1564 const char str[] = "hi \"world\"";
1565 EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
1566 FormatForComparisonFailureMessage(str, ::std::string()).c_str());
1567 }
1568
1569 #if GTEST_HAS_STD_WSTRING
1570 // wchar_t array vs std::wstring
1571 TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
1572 const wchar_t str[] = L"hi \"w\0rld\"";
1573 EXPECT_STREQ(
1574 "L\"hi \\\"w\"", // The content should be escaped.
1575 // Embedded NUL terminates the string.
1576 FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
1577 }
1578 #endif
1579
1580 // Useful for testing PrintToString(). We cannot use EXPECT_EQ()
1581 // there as its implementation uses PrintToString(). The caller must
1582 // ensure that 'value' has no side effect.
1583 #define EXPECT_PRINT_TO_STRING_(value, expected_string) \
1584 EXPECT_TRUE(PrintToString(value) == (expected_string)) \
1585 << " where " #value " prints as " << (PrintToString(value))
1586
1587 TEST(PrintToStringTest, WorksForScalar) {
1588 EXPECT_PRINT_TO_STRING_(123, "123");
1589 }
1590
1591 TEST(PrintToStringTest, WorksForPointerToConstChar) {
1592 const char* p = "hello";
1593 EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1594 }
1595
1596 TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
1597 char s[] = "hello";
1598 char* p = s;
1599 EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1600 }
1601
1602 TEST(PrintToStringTest, EscapesForPointerToConstChar) {
1603 const char* p = "hello\n";
1604 EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
1605 }
1606
1607 TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
1608 char s[] = "hello\1";
1609 char* p = s;
1610 EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
1611 }
1612
1613 TEST(PrintToStringTest, WorksForArray) {
1614 int n[3] = { 1, 2, 3 };
1615 EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
1616 }
1617
1618 TEST(PrintToStringTest, WorksForCharArray) {
1619 char s[] = "hello";
1620 EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
1621 }
1622
1623 TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
1624 const char str_with_nul[] = "hello\0 world";
1625 EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
1626
1627 char mutable_str_with_nul[] = "hello\0 world";
1628 EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
1629 }
1630
1631 TEST(PrintToStringTest, ContainsNonLatin) {
1632 // Sanity test with valid UTF-8. Prints both in hex and as text.
1633 std::string non_ascii_str = ::std::string("오전 4:30");
1634 EXPECT_PRINT_TO_STRING_(non_ascii_str,
1635 "\"\\xEC\\x98\\xA4\\xEC\\xA0\\x84 4:30\"\n"
1636 " As Text: \"오전 4:30\"");
1637 non_ascii_str = ::std::string("From ä — ẑ");
1638 EXPECT_PRINT_TO_STRING_(non_ascii_str,
1639 "\"From \\xC3\\xA4 \\xE2\\x80\\x94 \\xE1\\xBA\\x91\""
1640 "\n As Text: \"From ä — ẑ\"");
1641 }
1642
1643 TEST(IsValidUTF8Test, IllFormedUTF8) {
1644 // The following test strings are ill-formed UTF-8 and are printed
1645 // as hex only (or ASCII, in case of ASCII bytes) because IsValidUTF8() is
1646 // expected to fail, thus output does not contain "As Text:".
1647
1648 static const char *const kTestdata[][2] = {
1649 // 2-byte lead byte followed by a single-byte character.
1650 {"\xC3\x74", "\"\\xC3t\""},
1651 // Valid 2-byte character followed by an orphan trail byte.
1652 {"\xC3\x84\xA4", "\"\\xC3\\x84\\xA4\""},
1653 // Lead byte without trail byte.
1654 {"abc\xC3", "\"abc\\xC3\""},
1655 // 3-byte lead byte, single-byte character, orphan trail byte.
1656 {"x\xE2\x70\x94", "\"x\\xE2p\\x94\""},
1657 // Truncated 3-byte character.
1658 {"\xE2\x80", "\"\\xE2\\x80\""},
1659 // Truncated 3-byte character followed by valid 2-byte char.
1660 {"\xE2\x80\xC3\x84", "\"\\xE2\\x80\\xC3\\x84\""},
1661 // Truncated 3-byte character followed by a single-byte character.
1662 {"\xE2\x80\x7A", "\"\\xE2\\x80z\""},
1663 // 3-byte lead byte followed by valid 3-byte character.
1664 {"\xE2\xE2\x80\x94", "\"\\xE2\\xE2\\x80\\x94\""},
1665 // 4-byte lead byte followed by valid 3-byte character.
1666 {"\xF0\xE2\x80\x94", "\"\\xF0\\xE2\\x80\\x94\""},
1667 // Truncated 4-byte character.
1668 {"\xF0\xE2\x80", "\"\\xF0\\xE2\\x80\""},
1669 // Invalid UTF-8 byte sequences embedded in other chars.
1670 {"abc\xE2\x80\x94\xC3\x74xyc", "\"abc\\xE2\\x80\\x94\\xC3txyc\""},
1671 {"abc\xC3\x84\xE2\x80\xC3\x84xyz",
1672 "\"abc\\xC3\\x84\\xE2\\x80\\xC3\\x84xyz\""},
1673 // Non-shortest UTF-8 byte sequences are also ill-formed.
1674 // The classics: xC0, xC1 lead byte.
1675 {"\xC0\x80", "\"\\xC0\\x80\""},
1676 {"\xC1\x81", "\"\\xC1\\x81\""},
1677 // Non-shortest sequences.
1678 {"\xE0\x80\x80", "\"\\xE0\\x80\\x80\""},
1679 {"\xf0\x80\x80\x80", "\"\\xF0\\x80\\x80\\x80\""},
1680 // Last valid code point before surrogate range, should be printed as text,
1681 // too.
1682 {"\xED\x9F\xBF", "\"\\xED\\x9F\\xBF\"\n As Text: \"\""},
1683 // Start of surrogate lead. Surrogates are not printed as text.
1684 {"\xED\xA0\x80", "\"\\xED\\xA0\\x80\""},
1685 // Last non-private surrogate lead.
1686 {"\xED\xAD\xBF", "\"\\xED\\xAD\\xBF\""},
1687 // First private-use surrogate lead.
1688 {"\xED\xAE\x80", "\"\\xED\\xAE\\x80\""},
1689 // Last private-use surrogate lead.
1690 {"\xED\xAF\xBF", "\"\\xED\\xAF\\xBF\""},
1691 // Mid-point of surrogate trail.
1692 {"\xED\xB3\xBF", "\"\\xED\\xB3\\xBF\""},
1693 // First valid code point after surrogate range, should be printed as text,
1694 // too.
1695 {"\xEE\x80\x80", "\"\\xEE\\x80\\x80\"\n As Text: \"\""}
1696 };
1697
1698 for (int i = 0; i < int(sizeof(kTestdata)/sizeof(kTestdata[0])); ++i) {
1699 EXPECT_PRINT_TO_STRING_(kTestdata[i][0], kTestdata[i][1]);
1700 }
1701 }
1702
1703 #undef EXPECT_PRINT_TO_STRING_
1704
1705 TEST(UniversalTersePrintTest, WorksForNonReference) {
1706 ::std::stringstream ss;
1707 UniversalTersePrint(123, &ss);
1708 EXPECT_EQ("123", ss.str());
1709 }
1710
1711 TEST(UniversalTersePrintTest, WorksForReference) {
1712 const int& n = 123;
1713 ::std::stringstream ss;
1714 UniversalTersePrint(n, &ss);
1715 EXPECT_EQ("123", ss.str());
1716 }
1717
1718 TEST(UniversalTersePrintTest, WorksForCString) {
1719 const char* s1 = "abc";
1720 ::std::stringstream ss1;
1721 UniversalTersePrint(s1, &ss1);
1722 EXPECT_EQ("\"abc\"", ss1.str());
1723
1724 char* s2 = const_cast<char*>(s1);
1725 ::std::stringstream ss2;
1726 UniversalTersePrint(s2, &ss2);
1727 EXPECT_EQ("\"abc\"", ss2.str());
1728
1729 const char* s3 = nullptr;
1730 ::std::stringstream ss3;
1731 UniversalTersePrint(s3, &ss3);
1732 EXPECT_EQ("NULL", ss3.str());
1733 }
1734
1735 TEST(UniversalPrintTest, WorksForNonReference) {
1736 ::std::stringstream ss;
1737 UniversalPrint(123, &ss);
1738 EXPECT_EQ("123", ss.str());
1739 }
1740
1741 TEST(UniversalPrintTest, WorksForReference) {
1742 const int& n = 123;
1743 ::std::stringstream ss;
1744 UniversalPrint(n, &ss);
1745 EXPECT_EQ("123", ss.str());
1746 }
1747
1748 TEST(UniversalPrintTest, WorksForPairWithConst) {
1749 std::pair<const Wrapper<std::string>, int> p(Wrapper<std::string>("abc"), 1);
1750 ::std::stringstream ss;
1751 UniversalPrint(p, &ss);
1752 EXPECT_EQ("(Wrapper(\"abc\"), 1)", ss.str());
1753 }
1754
1755 TEST(UniversalPrintTest, WorksForCString) {
1756 const char* s1 = "abc";
1757 ::std::stringstream ss1;
1758 UniversalPrint(s1, &ss1);
1759 EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str()));
1760
1761 char* s2 = const_cast<char*>(s1);
1762 ::std::stringstream ss2;
1763 UniversalPrint(s2, &ss2);
1764 EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str()));
1765
1766 const char* s3 = nullptr;
1767 ::std::stringstream ss3;
1768 UniversalPrint(s3, &ss3);
1769 EXPECT_EQ("NULL", ss3.str());
1770 }
1771
1772 TEST(UniversalPrintTest, WorksForCharArray) {
1773 const char str[] = "\"Line\0 1\"\nLine 2";
1774 ::std::stringstream ss1;
1775 UniversalPrint(str, &ss1);
1776 EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
1777
1778 const char mutable_str[] = "\"Line\0 1\"\nLine 2";
1779 ::std::stringstream ss2;
1780 UniversalPrint(mutable_str, &ss2);
1781 EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
1782 }
1783
1784 TEST(UniversalPrintTest, IncompleteType) {
1785 struct Incomplete;
1786 char some_object = 0;
1787 EXPECT_EQ("(incomplete type)",
1788 PrintToString(reinterpret_cast<Incomplete&>(some_object)));
1789 }
1790
1791 TEST(UniversalPrintTest, SmartPointers) {
1792 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<int>()));
1793 std::unique_ptr<int> p(new int(17));
1794 EXPECT_EQ("(ptr = " + PrintPointer(p.get()) + ", value = 17)",
1795 PrintToString(p));
1796 std::unique_ptr<int[]> p2(new int[2]);
1797 EXPECT_EQ("(" + PrintPointer(p2.get()) + ")", PrintToString(p2));
1798
1799 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<int>()));
1800 std::shared_ptr<int> p3(new int(1979));
1801 EXPECT_EQ("(ptr = " + PrintPointer(p3.get()) + ", value = 1979)",
1802 PrintToString(p3));
1803 #if __cpp_lib_shared_ptr_arrays >= 201611L
1804 std::shared_ptr<int[]> p4(new int[2]);
1805 EXPECT_EQ("(" + PrintPointer(p4.get()) + ")", PrintToString(p4));
1806 #endif
1807
1808 // modifiers
1809 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<int>()));
1810 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<const int>()));
1811 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<volatile int>()));
1812 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<volatile const int>()));
1813 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<int[]>()));
1814 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<const int[]>()));
1815 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<volatile int[]>()));
1816 EXPECT_EQ("(nullptr)",
1817 PrintToString(std::unique_ptr<volatile const int[]>()));
1818 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<int>()));
1819 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<const int>()));
1820 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<volatile int>()));
1821 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<volatile const int>()));
1822 #if __cpp_lib_shared_ptr_arrays >= 201611L
1823 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<int[]>()));
1824 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<const int[]>()));
1825 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<volatile int[]>()));
1826 EXPECT_EQ("(nullptr)",
1827 PrintToString(std::shared_ptr<volatile const int[]>()));
1828 #endif
1829
1830 // void
1831 EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<void, void (*)(void*)>(
1832 nullptr, nullptr)));
1833 EXPECT_EQ("(" + PrintPointer(p.get()) + ")",
1834 PrintToString(
__anon61a3771f0602(void*) 1835 std::unique_ptr<void, void (*)(void*)>(p.get(), [](void*) {})));
1836 EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<void>()));
1837 EXPECT_EQ("(" + PrintPointer(p.get()) + ")",
__anon61a3771f0702(void*) 1838 PrintToString(std::shared_ptr<void>(p.get(), [](void*) {})));
1839 }
1840
1841 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
1842 Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
1843 EXPECT_EQ(0u, result.size());
1844 }
1845
1846 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
1847 Strings result = UniversalTersePrintTupleFieldsToStrings(
1848 ::std::make_tuple(1));
1849 ASSERT_EQ(1u, result.size());
1850 EXPECT_EQ("1", result[0]);
1851 }
1852
1853 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
1854 Strings result = UniversalTersePrintTupleFieldsToStrings(
1855 ::std::make_tuple(1, 'a'));
1856 ASSERT_EQ(2u, result.size());
1857 EXPECT_EQ("1", result[0]);
1858 EXPECT_EQ("'a' (97, 0x61)", result[1]);
1859 }
1860
1861 TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
1862 const int n = 1;
1863 Strings result = UniversalTersePrintTupleFieldsToStrings(
1864 ::std::tuple<const int&, const char*>(n, "a"));
1865 ASSERT_EQ(2u, result.size());
1866 EXPECT_EQ("1", result[0]);
1867 EXPECT_EQ("\"a\"", result[1]);
1868 }
1869
1870 #if GTEST_INTERNAL_HAS_ANY
1871 class PrintAnyTest : public ::testing::Test {
1872 protected:
1873 template <typename T>
ExpectedTypeName()1874 static std::string ExpectedTypeName() {
1875 #if GTEST_HAS_RTTI
1876 return internal::GetTypeName<T>();
1877 #else
1878 return "<unknown_type>";
1879 #endif // GTEST_HAS_RTTI
1880 }
1881 };
1882
1883 TEST_F(PrintAnyTest, Empty) {
1884 internal::Any any;
1885 EXPECT_EQ("no value", PrintToString(any));
1886 }
1887
1888 TEST_F(PrintAnyTest, NonEmpty) {
1889 internal::Any any;
1890 constexpr int val1 = 10;
1891 const std::string val2 = "content";
1892
1893 any = val1;
1894 EXPECT_EQ("value of type " + ExpectedTypeName<int>(), PrintToString(any));
1895
1896 any = val2;
1897 EXPECT_EQ("value of type " + ExpectedTypeName<std::string>(),
1898 PrintToString(any));
1899 }
1900 #endif // GTEST_INTERNAL_HAS_ANY
1901
1902 #if GTEST_INTERNAL_HAS_OPTIONAL
1903 TEST(PrintOptionalTest, Basic) {
1904 EXPECT_EQ("(nullopt)", PrintToString(internal::Nullopt()));
1905 internal::Optional<int> value;
1906 EXPECT_EQ("(nullopt)", PrintToString(value));
1907 value = {7};
1908 EXPECT_EQ("(7)", PrintToString(value));
1909 EXPECT_EQ("(1.1)", PrintToString(internal::Optional<double>{1.1}));
1910 EXPECT_EQ("(\"A\")", PrintToString(internal::Optional<std::string>{"A"}));
1911 }
1912 #endif // GTEST_INTERNAL_HAS_OPTIONAL
1913
1914 #if GTEST_INTERNAL_HAS_VARIANT
1915 struct NonPrintable {
1916 unsigned char contents = 17;
1917 };
1918
1919 TEST(PrintOneofTest, Basic) {
1920 using Type = internal::Variant<int, StreamableInGlobal, NonPrintable>;
1921 EXPECT_EQ("('int(index = 0)' with value 7)", PrintToString(Type(7)));
1922 EXPECT_EQ("('StreamableInGlobal(index = 1)' with value StreamableInGlobal)",
1923 PrintToString(Type(StreamableInGlobal{})));
1924 EXPECT_EQ(
1925 "('testing::gtest_printers_test::NonPrintable(index = 2)' with value "
1926 "1-byte object <11>)",
1927 PrintToString(Type(NonPrintable{})));
1928 }
1929 #endif // GTEST_INTERNAL_HAS_VARIANT
1930 namespace {
1931 class string_ref;
1932
1933 /**
1934 * This is a synthetic pointer to a fixed size string.
1935 */
1936 class string_ptr {
1937 public:
string_ptr(const char * data,size_t size)1938 string_ptr(const char* data, size_t size) : data_(data), size_(size) {}
1939
operator ++()1940 string_ptr& operator++() noexcept {
1941 data_ += size_;
1942 return *this;
1943 }
1944
1945 string_ref operator*() const noexcept;
1946
1947 private:
1948 const char* data_;
1949 size_t size_;
1950 };
1951
1952 /**
1953 * This is a synthetic reference of a fixed size string.
1954 */
1955 class string_ref {
1956 public:
string_ref(const char * data,size_t size)1957 string_ref(const char* data, size_t size) : data_(data), size_(size) {}
1958
operator &() const1959 string_ptr operator&() const noexcept { return {data_, size_}; } // NOLINT
1960
operator ==(const char * s) const1961 bool operator==(const char* s) const noexcept {
1962 if (size_ > 0 && data_[size_ - 1] != 0) {
1963 return std::string(data_, size_) == std::string(s);
1964 } else {
1965 return std::string(data_) == std::string(s);
1966 }
1967 }
1968
1969 private:
1970 const char* data_;
1971 size_t size_;
1972 };
1973
operator *() const1974 string_ref string_ptr::operator*() const noexcept { return {data_, size_}; }
1975
TEST(string_ref,compare)1976 TEST(string_ref, compare) {
1977 const char* s = "alex\0davidjohn\0";
1978 string_ptr ptr(s, 5);
1979 EXPECT_EQ(*ptr, "alex");
1980 EXPECT_TRUE(*ptr == "alex");
1981 ++ptr;
1982 EXPECT_EQ(*ptr, "david");
1983 EXPECT_TRUE(*ptr == "david");
1984 ++ptr;
1985 EXPECT_EQ(*ptr, "john");
1986 }
1987
1988 } // namespace
1989
1990 } // namespace gtest_printers_test
1991 } // namespace testing
1992