1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <memory>
24 #include <random>
25 #include <string>
26
27 #include "android-base/stringprintf.h"
28 #include "android-base/strings.h"
29 #include "android-base/unique_fd.h"
30 #include "arch/instruction_set.h"
31 #include "art_field-inl.h"
32 #include "art_method-inl.h"
33 #include "base/array_ref.h"
34 #include "base/bit_memory_region.h"
35 #include "base/callee_save_type.h"
36 #include "base/enums.h"
37 #include "base/file_utils.h"
38 #include "base/globals.h"
39 #include "base/macros.h"
40 #include "base/memfd.h"
41 #include "base/os.h"
42 #include "base/scoped_flock.h"
43 #include "base/stl_util.h"
44 #include "base/string_view_cpp20.h"
45 #include "base/systrace.h"
46 #include "base/time_utils.h"
47 #include "base/utils.h"
48 #include "class_root-inl.h"
49 #include "dex/art_dex_file_loader.h"
50 #include "dex/dex_file_loader.h"
51 #include "exec_utils.h"
52 #include "gc/accounting/space_bitmap-inl.h"
53 #include "gc/task_processor.h"
54 #include "image-inl.h"
55 #include "image.h"
56 #include "intern_table-inl.h"
57 #include "mirror/class-inl.h"
58 #include "mirror/executable-inl.h"
59 #include "mirror/object-inl.h"
60 #include "mirror/object-refvisitor-inl.h"
61 #include "mirror/var_handle.h"
62 #include "oat.h"
63 #include "oat_file.h"
64 #include "profile/profile_compilation_info.h"
65 #include "runtime.h"
66 #include "space-inl.h"
67
68 namespace art {
69 namespace gc {
70 namespace space {
71
72 using android::base::Join;
73 using android::base::StringAppendF;
74 using android::base::StringPrintf;
75
76 // We do not allow the boot image and extensions to take more than 1GiB. They are
77 // supposed to be much smaller and allocating more that this would likely fail anyway.
78 static constexpr size_t kMaxTotalImageReservationSize = 1 * GB;
79
80 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
81
ImageSpace(const std::string & image_filename,const char * image_location,const std::vector<std::string> & profile_files,MemMap && mem_map,accounting::ContinuousSpaceBitmap && live_bitmap,uint8_t * end)82 ImageSpace::ImageSpace(const std::string& image_filename,
83 const char* image_location,
84 const std::vector<std::string>& profile_files,
85 MemMap&& mem_map,
86 accounting::ContinuousSpaceBitmap&& live_bitmap,
87 uint8_t* end)
88 : MemMapSpace(image_filename,
89 std::move(mem_map),
90 mem_map.Begin(),
91 end,
92 end,
93 kGcRetentionPolicyNeverCollect),
94 live_bitmap_(std::move(live_bitmap)),
95 oat_file_non_owned_(nullptr),
96 image_location_(image_location),
97 profile_files_(profile_files) {
98 DCHECK(live_bitmap_.IsValid());
99 }
100
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)101 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
102 CHECK_ALIGNED(min_delta, kPageSize);
103 CHECK_ALIGNED(max_delta, kPageSize);
104 CHECK_LT(min_delta, max_delta);
105
106 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
107 if (r % 2 == 0) {
108 r = RoundUp(r, kPageSize);
109 } else {
110 r = RoundDown(r, kPageSize);
111 }
112 CHECK_LE(min_delta, r);
113 CHECK_GE(max_delta, r);
114 CHECK_ALIGNED(r, kPageSize);
115 return r;
116 }
117
ChooseRelocationOffsetDelta()118 static int32_t ChooseRelocationOffsetDelta() {
119 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
120 }
121
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename)122 static bool FindImageFilenameImpl(const char* image_location,
123 const InstructionSet image_isa,
124 bool* has_system,
125 std::string* system_filename) {
126 *has_system = false;
127
128 // image_location = /system/framework/boot.art
129 // system_image_location = /system/framework/<image_isa>/boot.art
130 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
131 if (OS::FileExists(system_image_filename.c_str())) {
132 *system_filename = system_image_filename;
133 *has_system = true;
134 }
135
136 return *has_system;
137 }
138
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system)139 bool ImageSpace::FindImageFilename(const char* image_location,
140 const InstructionSet image_isa,
141 std::string* system_filename,
142 bool* has_system) {
143 return FindImageFilenameImpl(image_location,
144 image_isa,
145 has_system,
146 system_filename);
147 }
148
ReadSpecificImageHeader(File * image_file,const char * file_description,ImageHeader * image_header,std::string * error_msg)149 static bool ReadSpecificImageHeader(File* image_file,
150 const char* file_description,
151 /*out*/ImageHeader* image_header,
152 /*out*/std::string* error_msg) {
153 if (!image_file->PreadFully(image_header, sizeof(ImageHeader), /*offset=*/ 0)) {
154 *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description);
155 return false;
156 }
157 if (!image_header->IsValid()) {
158 *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description);
159 return false;
160 }
161 return true;
162 }
163
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header,std::string * error_msg)164 static bool ReadSpecificImageHeader(const char* filename,
165 /*out*/ImageHeader* image_header,
166 /*out*/std::string* error_msg) {
167 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
168 if (image_file.get() == nullptr) {
169 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename);
170 return false;
171 }
172 return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg);
173 }
174
ReadSpecificImageHeader(const char * filename,std::string * error_msg)175 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
176 std::string* error_msg) {
177 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
178 if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) {
179 return nullptr;
180 }
181 return hdr;
182 }
183
VerifyImageAllocations()184 void ImageSpace::VerifyImageAllocations() {
185 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
186 while (current < End()) {
187 CHECK_ALIGNED(current, kObjectAlignment);
188 auto* obj = reinterpret_cast<mirror::Object*>(current);
189 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
190 CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf();
191 if (kUseBakerReadBarrier) {
192 obj->AssertReadBarrierState();
193 }
194 current += RoundUp(obj->SizeOf(), kObjectAlignment);
195 }
196 }
197
198 // Helper class for relocating from one range of memory to another.
199 class RelocationRange {
200 public:
201 RelocationRange() = default;
202 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)203 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
204 : source_(source),
205 dest_(dest),
206 length_(length) {}
207
InSource(uintptr_t address) const208 bool InSource(uintptr_t address) const {
209 return address - source_ < length_;
210 }
211
InDest(const void * dest) const212 bool InDest(const void* dest) const {
213 return InDest(reinterpret_cast<uintptr_t>(dest));
214 }
215
InDest(uintptr_t address) const216 bool InDest(uintptr_t address) const {
217 return address - dest_ < length_;
218 }
219
220 // Translate a source address to the destination space.
ToDest(uintptr_t address) const221 uintptr_t ToDest(uintptr_t address) const {
222 DCHECK(InSource(address));
223 return address + Delta();
224 }
225
226 template <typename T>
ToDest(T * src) const227 T* ToDest(T* src) const {
228 return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src)));
229 }
230
231 // Returns the delta between the dest from the source.
Delta() const232 uintptr_t Delta() const {
233 return dest_ - source_;
234 }
235
Source() const236 uintptr_t Source() const {
237 return source_;
238 }
239
Dest() const240 uintptr_t Dest() const {
241 return dest_;
242 }
243
Length() const244 uintptr_t Length() const {
245 return length_;
246 }
247
248 private:
249 const uintptr_t source_;
250 const uintptr_t dest_;
251 const uintptr_t length_;
252 };
253
operator <<(std::ostream & os,const RelocationRange & reloc)254 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
255 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
256 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
257 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
258 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
259 }
260
261 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
262 class ImageSpace::PatchObjectVisitor final {
263 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)264 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
265 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
266
VisitClass(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> class_class)267 void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class)
268 REQUIRES_SHARED(Locks::mutator_lock_) {
269 // A mirror::Class object consists of
270 // - instance fields inherited from j.l.Object,
271 // - instance fields inherited from j.l.Class,
272 // - embedded tables (vtable, interface method table),
273 // - static fields of the class itself.
274 // The reference fields are at the start of each field section (this is how the
275 // ClassLinker orders fields; except when that would create a gap between superclass
276 // fields and the first reference of the subclass due to alignment, it can be filled
277 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
278
279 DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment);
280 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
281 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
282 // This should be the only reference field in j.l.Object and we assert that below.
283 DCHECK_EQ(class_class,
284 heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>()));
285 klass->SetFieldObjectWithoutWriteBarrier<
286 /*kTransactionActive=*/ false,
287 /*kCheckTransaction=*/ true,
288 kVerifyNone>(mirror::Object::ClassOffset(), class_class);
289 // Then patch the reference instance fields described by j.l.Class.class.
290 // Use the sizeof(Object) to determine where these reference fields start;
291 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
292 // after patching but the j.l.Class may not have been patched yet.
293 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
294 DCHECK_NE(num_reference_instance_fields, 0u);
295 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
296 MemberOffset instance_field_offset(sizeof(mirror::Object));
297 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
298 PatchReferenceField(klass, instance_field_offset);
299 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
300 "Heap reference sizes equality check.");
301 instance_field_offset =
302 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
303 }
304 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
305 // we can get a reference to j.l.Object.class and assert that it has only one
306 // reference instance field (the `klass_` patched above).
307 if (kIsDebugBuild && klass == class_class) {
308 ObjPtr<mirror::Class> object_class =
309 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
310 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
311 }
312 // Then patch static fields.
313 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
314 if (num_reference_static_fields != 0u) {
315 MemberOffset static_field_offset =
316 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
317 for (size_t i = 0; i != num_reference_static_fields; ++i) {
318 PatchReferenceField(klass, static_field_offset);
319 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
320 "Heap reference sizes equality check.");
321 static_field_offset =
322 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
323 }
324 }
325 // Then patch native pointers.
326 klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this);
327 }
328
329 template <typename T>
operator ()(T * ptr,void ** dest_addr ATTRIBUTE_UNUSED) const330 T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
331 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
332 }
333
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)334 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
335 REQUIRES_SHARED(Locks::mutator_lock_) {
336 // Fully patch the pointer array, including the `klass_` field.
337 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
338
339 int32_t length = pointer_array->GetLength<kVerifyNone>();
340 for (int32_t i = 0; i != length; ++i) {
341 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
342 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
343 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
344 }
345 }
346
VisitObject(mirror::Object * object)347 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
348 // Visit all reference fields.
349 object->VisitReferences</*kVisitNativeRoots=*/ false,
350 kVerifyNone,
351 kWithoutReadBarrier>(*this, *this);
352 // This function should not be called for classes.
353 DCHECK(!object->IsClass<kVerifyNone>());
354 }
355
356 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const357 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
358 MemberOffset field_offset,
359 bool is_static)
360 const REQUIRES_SHARED(Locks::mutator_lock_) {
361 DCHECK(!is_static);
362 PatchReferenceField(object, field_offset);
363 }
364 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const365 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
366 REQUIRES_SHARED(Locks::mutator_lock_) {
367 DCHECK(klass->IsTypeOfReferenceClass());
368 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
369 }
370 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const371 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
372 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const373 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
374
375 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const376 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
377 REQUIRES_SHARED(Locks::mutator_lock_) {
378 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
379 T* old_value = root->template Read<kWithoutReadBarrier>();
380 DCHECK(kMayBeNull || old_value != nullptr);
381 if (!kMayBeNull || old_value != nullptr) {
382 *root = GcRoot<T>(heap_visitor_(old_value));
383 }
384 }
385
386 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const387 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
388 if (kPointerSize == PointerSize::k64) {
389 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
390 T* old_value = reinterpret_cast64<T*>(*raw_entry);
391 DCHECK(kMayBeNull || old_value != nullptr);
392 if (!kMayBeNull || old_value != nullptr) {
393 T* new_value = native_visitor_(old_value);
394 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
395 }
396 } else {
397 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
398 T* old_value = reinterpret_cast32<T*>(*raw_entry);
399 DCHECK(kMayBeNull || old_value != nullptr);
400 if (!kMayBeNull || old_value != nullptr) {
401 T* new_value = native_visitor_(old_value);
402 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
403 }
404 }
405 }
406
407 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const408 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
409 REQUIRES_SHARED(Locks::mutator_lock_) {
410 ObjPtr<mirror::Object> old_value =
411 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
412 DCHECK(kMayBeNull || old_value != nullptr);
413 if (!kMayBeNull || old_value != nullptr) {
414 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
415 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
416 /*kCheckTransaction=*/ true,
417 kVerifyNone>(offset, new_value);
418 }
419 }
420
421 private:
422 // Heap objects visitor.
423 HeapVisitor heap_visitor_;
424
425 // Native objects visitor.
426 NativeVisitor native_visitor_;
427 };
428
429 template <typename ReferenceVisitor>
430 class ImageSpace::ClassTableVisitor final {
431 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)432 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
433 : reference_visitor_(reference_visitor) {}
434
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const435 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
436 REQUIRES_SHARED(Locks::mutator_lock_) {
437 DCHECK(root->AsMirrorPtr() != nullptr);
438 root->Assign(reference_visitor_(root->AsMirrorPtr()));
439 }
440
441 private:
442 ReferenceVisitor reference_visitor_;
443 };
444
445 class ImageSpace::RemapInternedStringsVisitor {
446 public:
RemapInternedStringsVisitor(const SafeMap<mirror::String *,mirror::String * > & intern_remap)447 explicit RemapInternedStringsVisitor(
448 const SafeMap<mirror::String*, mirror::String*>& intern_remap)
449 REQUIRES_SHARED(Locks::mutator_lock_)
450 : intern_remap_(intern_remap),
451 string_class_(GetStringClass()) {}
452
453 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static ATTRIBUTE_UNUSED) const454 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
455 MemberOffset field_offset,
456 bool is_static ATTRIBUTE_UNUSED)
457 const REQUIRES_SHARED(Locks::mutator_lock_) {
458 ObjPtr<mirror::Object> old_value =
459 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset);
460 if (old_value != nullptr &&
461 old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) {
462 auto it = intern_remap_.find(old_value->AsString().Ptr());
463 if (it != intern_remap_.end()) {
464 mirror::String* new_value = it->second;
465 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
466 /*kCheckTransaction=*/ true,
467 kVerifyNone>(field_offset, new_value);
468 }
469 }
470 }
471 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const472 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
473 REQUIRES_SHARED(Locks::mutator_lock_) {
474 DCHECK(klass->IsTypeOfReferenceClass());
475 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
476 }
477 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const478 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
479 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const480 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
481
482 private:
GetStringClass()483 mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
484 DCHECK(!intern_remap_.empty());
485 return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>();
486 }
487
488 const SafeMap<mirror::String*, mirror::String*>& intern_remap_;
489 mirror::Class* const string_class_;
490 };
491
492 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
493 // nested class), but not declare functions in the header.
494 class ImageSpace::Loader {
495 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)496 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
497 const char* image_location,
498 const OatFile* oat_file,
499 ArrayRef<ImageSpace* const> boot_image_spaces,
500 /*out*/std::string* error_msg)
501 REQUIRES_SHARED(Locks::mutator_lock_) {
502 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
503
504 std::unique_ptr<ImageSpace> space = Init(image_filename,
505 image_location,
506 &logger,
507 /*image_reservation=*/ nullptr,
508 error_msg);
509 if (space != nullptr) {
510 space->oat_file_non_owned_ = oat_file;
511 const ImageHeader& image_header = space->GetImageHeader();
512
513 // Check the oat file checksum.
514 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
515 const uint32_t image_oat_checksum = image_header.GetOatChecksum();
516 if (oat_checksum != image_oat_checksum) {
517 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
518 oat_checksum,
519 image_oat_checksum,
520 image_filename);
521 return nullptr;
522 }
523 size_t boot_image_space_dependencies;
524 if (!ValidateBootImageChecksum(image_filename,
525 image_header,
526 oat_file,
527 boot_image_spaces,
528 &boot_image_space_dependencies,
529 error_msg)) {
530 DCHECK(!error_msg->empty());
531 return nullptr;
532 }
533
534 uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(), kPageSize);
535 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
536 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
537 return nullptr;
538 }
539
540 {
541 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
542 const PointerSize pointer_size = image_header.GetPointerSize();
543 uint32_t boot_image_begin =
544 reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin());
545 bool result;
546 if (pointer_size == PointerSize::k64) {
547 result = RelocateInPlace<PointerSize::k64>(boot_image_begin,
548 space->GetMemMap()->Begin(),
549 space->GetLiveBitmap(),
550 oat_file,
551 error_msg);
552 } else {
553 result = RelocateInPlace<PointerSize::k32>(boot_image_begin,
554 space->GetMemMap()->Begin(),
555 space->GetLiveBitmap(),
556 oat_file,
557 error_msg);
558 }
559 if (!result) {
560 return nullptr;
561 }
562 }
563
564 DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size());
565 if (boot_image_space_dependencies != boot_image_spaces.size()) {
566 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger);
567 // There shall be no duplicates with boot image spaces this app image depends on.
568 ArrayRef<ImageSpace* const> old_spaces =
569 boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies);
570 SafeMap<mirror::String*, mirror::String*> intern_remap;
571 RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap);
572 if (!intern_remap.empty()) {
573 RemapInternedStringDuplicates(intern_remap, space.get());
574 }
575 }
576
577 const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader();
578 static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u);
579 for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) {
580 ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i);
581 CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method))
582 << method;
583 }
584
585 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
586 }
587 if (VLOG_IS_ON(image)) {
588 logger.Dump(LOG_STREAM(INFO));
589 }
590 return space;
591 }
592
Init(const char * image_filename,const char * image_location,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)593 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
594 const char* image_location,
595 TimingLogger* logger,
596 /*inout*/MemMap* image_reservation,
597 /*out*/std::string* error_msg)
598 REQUIRES_SHARED(Locks::mutator_lock_) {
599 CHECK(image_filename != nullptr);
600 CHECK(image_location != nullptr);
601
602 std::unique_ptr<File> file;
603 {
604 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
605 file.reset(OS::OpenFileForReading(image_filename));
606 if (file == nullptr) {
607 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
608 return nullptr;
609 }
610 }
611 return Init(file.get(),
612 image_filename,
613 image_location,
614 /*profile_files=*/ {},
615 /*allow_direct_mapping=*/ true,
616 logger,
617 image_reservation,
618 error_msg);
619 }
620
Init(File * file,const char * image_filename,const char * image_location,const std::vector<std::string> & profile_files,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)621 static std::unique_ptr<ImageSpace> Init(File* file,
622 const char* image_filename,
623 const char* image_location,
624 const std::vector<std::string>& profile_files,
625 bool allow_direct_mapping,
626 TimingLogger* logger,
627 /*inout*/MemMap* image_reservation,
628 /*out*/std::string* error_msg)
629 REQUIRES_SHARED(Locks::mutator_lock_) {
630 CHECK(image_filename != nullptr);
631 CHECK(image_location != nullptr);
632
633 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
634
635 ImageHeader image_header;
636 {
637 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
638 bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u);
639 if (!success || !image_header.IsValid()) {
640 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
641 return nullptr;
642 }
643 }
644 // Check that the file is larger or equal to the header size + data size.
645 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
646 if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) {
647 *error_msg = StringPrintf(
648 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
649 image_file_size,
650 static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize()));
651 return nullptr;
652 }
653
654 if (VLOG_IS_ON(startup)) {
655 LOG(INFO) << "Dumping image sections";
656 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
657 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
658 auto& section = image_header.GetImageSection(section_idx);
659 LOG(INFO) << section_idx << " start="
660 << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " "
661 << section;
662 }
663 }
664
665 const auto& bitmap_section = image_header.GetImageBitmapSection();
666 // The location we want to map from is the first aligned page after the end of the stored
667 // (possibly compressed) data.
668 const size_t image_bitmap_offset =
669 RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kPageSize);
670 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
671 if (end_of_bitmap != image_file_size) {
672 *error_msg = StringPrintf(
673 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
674 image_file_size,
675 end_of_bitmap);
676 return nullptr;
677 }
678
679 // GetImageBegin is the preferred address to map the image. If we manage to map the
680 // image at the image begin, the amount of fixup work required is minimized.
681 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
682 // avoid reading proc maps for a mapping failure and slowing everything down.
683 // For the boot image, we have already reserved the memory and we load the image
684 // into the `image_reservation`.
685 MemMap map = LoadImageFile(
686 image_filename,
687 image_location,
688 image_header,
689 file->Fd(),
690 allow_direct_mapping,
691 logger,
692 image_reservation,
693 error_msg);
694 if (!map.IsValid()) {
695 DCHECK(!error_msg->empty());
696 return nullptr;
697 }
698 DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader)));
699
700 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
701 PROT_READ,
702 MAP_PRIVATE,
703 file->Fd(),
704 image_bitmap_offset,
705 /*low_4gb=*/ false,
706 image_filename,
707 error_msg);
708 if (!image_bitmap_map.IsValid()) {
709 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
710 return nullptr;
711 }
712 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
713 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
714 image_filename,
715 bitmap_index));
716 // Bitmap only needs to cover until the end of the mirror objects section.
717 const ImageSection& image_objects = image_header.GetObjectsSection();
718 // We only want the mirror object, not the ArtFields and ArtMethods.
719 uint8_t* const image_end = map.Begin() + image_objects.End();
720 accounting::ContinuousSpaceBitmap bitmap;
721 {
722 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
723 bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap(
724 bitmap_name,
725 std::move(image_bitmap_map),
726 reinterpret_cast<uint8_t*>(map.Begin()),
727 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
728 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize));
729 if (!bitmap.IsValid()) {
730 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
731 return nullptr;
732 }
733 }
734 // We only want the mirror object, not the ArtFields and ArtMethods.
735 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
736 image_location,
737 profile_files,
738 std::move(map),
739 std::move(bitmap),
740 image_end));
741 return space;
742 }
743
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)744 static bool CheckImageComponentCount(const ImageSpace& space,
745 uint32_t expected_component_count,
746 /*out*/std::string* error_msg) {
747 const ImageHeader& header = space.GetImageHeader();
748 if (header.GetComponentCount() != expected_component_count) {
749 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
750 space.GetImageFilename().c_str(),
751 header.GetComponentCount(),
752 expected_component_count);
753 return false;
754 }
755 return true;
756 }
757
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)758 static bool CheckImageReservationSize(const ImageSpace& space,
759 uint32_t expected_reservation_size,
760 /*out*/std::string* error_msg) {
761 const ImageHeader& header = space.GetImageHeader();
762 if (header.GetImageReservationSize() != expected_reservation_size) {
763 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
764 space.GetImageFilename().c_str(),
765 header.GetImageReservationSize(),
766 expected_reservation_size);
767 return false;
768 }
769 return true;
770 }
771
772 template <typename Container>
RemoveInternTableDuplicates(const Container & old_spaces,ImageSpace * new_space,SafeMap<mirror::String *,mirror::String * > * intern_remap)773 static void RemoveInternTableDuplicates(
774 const Container& old_spaces,
775 /*inout*/ImageSpace* new_space,
776 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
777 REQUIRES_SHARED(Locks::mutator_lock_) {
778 const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection();
779 if (new_interns.Size() != 0u) {
780 const uint8_t* new_data = new_space->Begin() + new_interns.Offset();
781 size_t new_read_count;
782 InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count);
783 for (const auto& old_space : old_spaces) {
784 const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection();
785 if (old_interns.Size() != 0u) {
786 const uint8_t* old_data = old_space->Begin() + old_interns.Offset();
787 size_t old_read_count;
788 InternTable::UnorderedSet old_set(
789 old_data, /*make_copy_of_data=*/ false, &old_read_count);
790 RemoveDuplicates(old_set, &new_set, intern_remap);
791 }
792 }
793 }
794 }
795
RemapInternedStringDuplicates(const SafeMap<mirror::String *,mirror::String * > & intern_remap,ImageSpace * new_space)796 static void RemapInternedStringDuplicates(
797 const SafeMap<mirror::String*, mirror::String*>& intern_remap,
798 ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) {
799 RemapInternedStringsVisitor visitor(intern_remap);
800 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
801 uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size();
802 DCHECK_ALIGNED(objects_end, kObjectAlignment);
803 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
804 mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos);
805 object->VisitReferences</*kVisitNativeRoots=*/ false,
806 kVerifyNone,
807 kWithoutReadBarrier>(visitor, visitor);
808 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
809 }
810 }
811
812 private:
813 // Remove duplicates found in the `old_set` from the `new_set`.
814 // Record the removed Strings for remapping. No read barriers are needed as the
815 // tables are either just being loaded and not yet a part of the heap, or boot
816 // image intern tables with non-moveable Strings used when loading an app image.
RemoveDuplicates(const InternTable::UnorderedSet & old_set,InternTable::UnorderedSet * new_set,SafeMap<mirror::String *,mirror::String * > * intern_remap)817 static void RemoveDuplicates(const InternTable::UnorderedSet& old_set,
818 /*inout*/InternTable::UnorderedSet* new_set,
819 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
820 REQUIRES_SHARED(Locks::mutator_lock_) {
821 if (old_set.size() < new_set->size()) {
822 for (const GcRoot<mirror::String>& old_s : old_set) {
823 auto new_it = new_set->find(old_s);
824 if (UNLIKELY(new_it != new_set->end())) {
825 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>());
826 new_set->erase(new_it);
827 }
828 }
829 } else {
830 for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) {
831 auto old_it = old_set.find(*new_it);
832 if (UNLIKELY(old_it != old_set.end())) {
833 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(),
834 old_it->Read<kWithoutReadBarrier>());
835 new_it = new_set->erase(new_it);
836 } else {
837 ++new_it;
838 }
839 }
840 }
841 }
842
ValidateBootImageChecksum(const char * image_filename,const ImageHeader & image_header,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,size_t * boot_image_space_dependencies,std::string * error_msg)843 static bool ValidateBootImageChecksum(const char* image_filename,
844 const ImageHeader& image_header,
845 const OatFile* oat_file,
846 ArrayRef<ImageSpace* const> boot_image_spaces,
847 /*out*/size_t* boot_image_space_dependencies,
848 /*out*/std::string* error_msg) {
849 // Use the boot image component count to calculate the checksum from
850 // the appropriate number of boot image chunks.
851 uint32_t boot_image_component_count = image_header.GetBootImageComponentCount();
852 size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces);
853 if (boot_image_component_count > expected_image_component_count) {
854 *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s",
855 boot_image_component_count,
856 expected_image_component_count,
857 image_filename);
858 return false;
859 }
860 uint32_t checksum = 0u;
861 size_t chunk_count = 0u;
862 size_t space_pos = 0u;
863 uint64_t boot_image_size = 0u;
864 for (size_t component_count = 0u; component_count != boot_image_component_count; ) {
865 const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader();
866 if (current_header.GetComponentCount() > boot_image_component_count - component_count) {
867 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
868 "%u is between %zu and %zu",
869 image_filename,
870 boot_image_component_count,
871 component_count,
872 component_count + current_header.GetComponentCount());
873 return false;
874 }
875 component_count += current_header.GetComponentCount();
876 checksum ^= current_header.GetImageChecksum();
877 chunk_count += 1u;
878 space_pos += current_header.GetImageSpaceCount();
879 boot_image_size += current_header.GetImageReservationSize();
880 }
881 if (image_header.GetBootImageChecksum() != checksum) {
882 *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s",
883 image_header.GetBootImageChecksum(),
884 checksum,
885 image_filename);
886 return false;
887 }
888 if (image_header.GetBootImageSize() != boot_image_size) {
889 *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s",
890 image_header.GetBootImageSize(),
891 boot_image_size,
892 image_filename);
893 return false;
894 }
895 // Oat checksums, if present, have already been validated, so we know that
896 // they match the loaded image spaces. Therefore, we just verify that they
897 // are consistent in the number of boot image chunks they list by looking
898 // for the kImageChecksumPrefix at the start of each component.
899 const char* oat_boot_class_path_checksums =
900 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
901 if (oat_boot_class_path_checksums != nullptr) {
902 size_t oat_bcp_chunk_count = 0u;
903 while (*oat_boot_class_path_checksums == kImageChecksumPrefix) {
904 oat_bcp_chunk_count += 1u;
905 // Find the start of the next component if any.
906 const char* separator = strchr(oat_boot_class_path_checksums, ':');
907 oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : "";
908 }
909 if (oat_bcp_chunk_count != chunk_count) {
910 *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s",
911 oat_bcp_chunk_count,
912 chunk_count,
913 image_filename);
914 return false;
915 }
916 }
917 *boot_image_space_dependencies = space_pos;
918 return true;
919 }
920
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)921 static MemMap LoadImageFile(const char* image_filename,
922 const char* image_location,
923 const ImageHeader& image_header,
924 int fd,
925 bool allow_direct_mapping,
926 TimingLogger* logger,
927 /*inout*/MemMap* image_reservation,
928 /*out*/std::string* error_msg)
929 REQUIRES_SHARED(Locks::mutator_lock_) {
930 TimingLogger::ScopedTiming timing("MapImageFile", logger);
931 std::string temp_error_msg;
932 const bool is_compressed = image_header.HasCompressedBlock();
933 if (!is_compressed && allow_direct_mapping) {
934 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
935 return MemMap::MapFileAtAddress(address,
936 image_header.GetImageSize(),
937 PROT_READ | PROT_WRITE,
938 MAP_PRIVATE,
939 fd,
940 /*start=*/ 0,
941 /*low_4gb=*/ true,
942 image_filename,
943 /*reuse=*/ false,
944 image_reservation,
945 error_msg);
946 }
947
948 // Reserve output and copy/decompress into it.
949 MemMap map = MemMap::MapAnonymous(image_location,
950 image_header.GetImageSize(),
951 PROT_READ | PROT_WRITE,
952 /*low_4gb=*/ true,
953 image_reservation,
954 error_msg);
955 if (map.IsValid()) {
956 const size_t stored_size = image_header.GetDataSize();
957 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
958 PROT_READ,
959 MAP_PRIVATE,
960 fd,
961 /*start=*/ 0,
962 /*low_4gb=*/ false,
963 image_filename,
964 error_msg);
965 if (!temp_map.IsValid()) {
966 DCHECK(error_msg == nullptr || !error_msg->empty());
967 return MemMap::Invalid();
968 }
969
970 Runtime* runtime = Runtime::Current();
971 // The runtime might not be available at this point if we're running
972 // dex2oat or oatdump.
973 if (runtime != nullptr) {
974 size_t madvise_size_limit = runtime->GetMadviseWillNeedSizeArt();
975 Runtime::MadviseFileForRange(madvise_size_limit,
976 temp_map.Size(),
977 temp_map.Begin(),
978 temp_map.End(),
979 image_filename);
980 }
981
982 if (is_compressed) {
983 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
984
985 Runtime::ScopedThreadPoolUsage stpu;
986 ThreadPool* const pool = stpu.GetThreadPool();
987 const uint64_t start = NanoTime();
988 Thread* const self = Thread::Current();
989 static constexpr size_t kMinBlocks = 2u;
990 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
991 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
992 auto function = [&](Thread*) {
993 const uint64_t start2 = NanoTime();
994 ScopedTrace trace("LZ4 decompress block");
995 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
996 /*in_ptr=*/temp_map.Begin(),
997 error_msg);
998 if (!result && error_msg != nullptr) {
999 *error_msg = "Failed to decompress image block " + *error_msg;
1000 }
1001 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
1002 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
1003 };
1004 if (use_parallel) {
1005 pool->AddTask(self, new FunctionTask(std::move(function)));
1006 } else {
1007 function(self);
1008 }
1009 }
1010 if (use_parallel) {
1011 ScopedTrace trace("Waiting for workers");
1012 // Go to native since we don't want to suspend while holding the mutator lock.
1013 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1014 pool->Wait(self, true, false);
1015 }
1016 const uint64_t time = NanoTime() - start;
1017 // Add one 1 ns to prevent possible divide by 0.
1018 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1019 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1020 << "/s)";
1021 } else {
1022 DCHECK(!allow_direct_mapping);
1023 // We do not allow direct mapping for boot image extensions compiled to a memfd.
1024 // This prevents wasting memory by kernel keeping the contents of the file alive
1025 // despite these contents being unreachable once the file descriptor is closed
1026 // and mmapped memory is copied for all existing mappings.
1027 //
1028 // Most pages would be copied during relocation while there is only one mapping.
1029 // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE
1030 // as required for forking from zygote, but there would still be some pages
1031 // wasted anyway and we want to avoid that. (For example, static synchronized
1032 // methods use the class object for locking and thus modify its lockword.)
1033
1034 // No other process should race to overwrite the extension in memfd.
1035 DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0);
1036 memcpy(map.Begin(), temp_map.Begin(), temp_map.Size());
1037 }
1038 }
1039
1040 return map;
1041 }
1042
1043 class EmptyRange {
1044 public:
InSource(uintptr_t) const1045 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1046 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1047 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
1048 };
1049
1050 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1051 class ForwardAddress {
1052 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1053 explicit ForwardAddress(const Range0& range0 = Range0(),
1054 const Range1& range1 = Range1(),
1055 const Range2& range2 = Range2())
1056 : range0_(range0), range1_(range1), range2_(range2) {}
1057
1058 // Return the relocated address of a heap object.
1059 // Null checks must be performed in the caller (for performance reasons).
1060 template <typename T>
operator ()(T * src) const1061 ALWAYS_INLINE T* operator()(T* src) const {
1062 DCHECK(src != nullptr);
1063 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1064 if (range2_.InSource(uint_src)) {
1065 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1066 }
1067 if (range1_.InSource(uint_src)) {
1068 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1069 }
1070 CHECK(range0_.InSource(uint_src))
1071 << reinterpret_cast<const void*>(src) << " not in "
1072 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1073 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1074 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1075 }
1076
1077 private:
1078 const Range0 range0_;
1079 const Range1 range1_;
1080 const Range2 range2_;
1081 };
1082
1083 template <typename Forward>
1084 class FixupRootVisitor {
1085 public:
1086 template<typename... Args>
FixupRootVisitor(Args...args)1087 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1088
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1089 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1090 REQUIRES_SHARED(Locks::mutator_lock_) {
1091 if (!root->IsNull()) {
1092 VisitRoot(root);
1093 }
1094 }
1095
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1096 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1097 REQUIRES_SHARED(Locks::mutator_lock_) {
1098 mirror::Object* ref = root->AsMirrorPtr();
1099 mirror::Object* new_ref = forward_(ref);
1100 if (ref != new_ref) {
1101 root->Assign(new_ref);
1102 }
1103 }
1104
1105 private:
1106 Forward forward_;
1107 };
1108
1109 template <typename Forward>
1110 class FixupObjectVisitor {
1111 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1112 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1113 const Forward& forward)
1114 : visited_(visited), forward_(forward) {}
1115
1116 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1117 ALWAYS_INLINE void VisitRootIfNonNull(
1118 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1119
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1120 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1121 const {}
1122
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1123 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1124 MemberOffset offset,
1125 bool is_static ATTRIBUTE_UNUSED) const
1126 NO_THREAD_SAFETY_ANALYSIS {
1127 // Space is not yet added to the heap, don't do a read barrier.
1128 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1129 offset);
1130 if (ref != nullptr) {
1131 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1132 // image.
1133 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1134 }
1135 }
1136
1137 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1138 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1139 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1140 DCHECK(klass->IsTypeOfReferenceClass());
1141 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1142 }
1143
operator ()(mirror::Object * obj) const1144 void operator()(mirror::Object* obj) const
1145 NO_THREAD_SAFETY_ANALYSIS {
1146 if (!visited_->Set(obj)) {
1147 // Not already visited.
1148 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1149 *this,
1150 *this);
1151 CHECK(!obj->IsClass());
1152 }
1153 }
1154
1155 private:
1156 gc::accounting::ContinuousSpaceBitmap* const visited_;
1157 Forward forward_;
1158 };
1159
1160 // Relocate an image space mapped at target_base which possibly used to be at a different base
1161 // address. In place means modifying a single ImageSpace in place rather than relocating from
1162 // one ImageSpace to another.
1163 template <PointerSize kPointerSize>
RelocateInPlace(uint32_t boot_image_begin,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1164 static bool RelocateInPlace(uint32_t boot_image_begin,
1165 uint8_t* target_base,
1166 accounting::ContinuousSpaceBitmap* bitmap,
1167 const OatFile* app_oat_file,
1168 std::string* error_msg) {
1169 DCHECK(error_msg != nullptr);
1170 // Set up sections.
1171 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base);
1172 const uint32_t boot_image_size = image_header->GetBootImageSize();
1173 const ImageSection& objects_section = image_header->GetObjectsSection();
1174 // Where the app image objects are mapped to.
1175 uint8_t* objects_location = target_base + objects_section.Offset();
1176 TimingLogger logger(__FUNCTION__, true, false);
1177 RelocationRange boot_image(image_header->GetBootImageBegin(),
1178 boot_image_begin,
1179 boot_image_size);
1180 // Metadata is everything after the objects section, use exclusion to be safe.
1181 RelocationRange app_image_metadata(
1182 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(),
1183 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1184 image_header->GetImageSize() - objects_section.End());
1185 // App image heap objects, may be mapped in the heap.
1186 RelocationRange app_image_objects(
1187 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(),
1188 reinterpret_cast<uintptr_t>(objects_location),
1189 objects_section.Size());
1190 // Use the oat data section since this is where the OatFile::Begin is.
1191 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()),
1192 // Not necessarily in low 4GB.
1193 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1194 image_header->GetOatDataEnd() - image_header->GetOatDataBegin());
1195 VLOG(image) << "App image metadata " << app_image_metadata;
1196 VLOG(image) << "App image objects " << app_image_objects;
1197 VLOG(image) << "App oat " << app_oat;
1198 VLOG(image) << "Boot image " << boot_image;
1199 // True if we need to fixup any heap pointers.
1200 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1201 app_image_objects.Delta() != 0;
1202 if (!fixup_image) {
1203 // Nothing to fix up.
1204 return true;
1205 }
1206 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1207 // TODO: Assert that the app image does not contain any Method, Constructor,
1208 // FieldVarHandle or StaticFieldVarHandle. These require extra relocation
1209 // for the `ArtMethod*` and `ArtField*` pointers they contain.
1210
1211 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1212 ForwardObject forward_object(boot_image, app_image_objects);
1213 ForwardObject forward_metadata(boot_image, app_image_metadata);
1214 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1215 ForwardCode forward_code(boot_image, app_oat);
1216 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1217 forward_object,
1218 forward_metadata);
1219 if (fixup_image) {
1220 // Two pass approach, fix up all classes first, then fix up non class-objects.
1221 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1222 gc::accounting::ContinuousSpaceBitmap visited_bitmap(
1223 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1224 target_base,
1225 image_header->GetImageSize()));
1226 {
1227 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1228 ObjPtr<mirror::Class> class_class = [&]() NO_THREAD_SAFETY_ANALYSIS {
1229 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest(
1230 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr());
1231 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
1232 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
1233 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1234 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest(
1235 image_roots->GetWithoutChecks<kVerifyNone,
1236 kWithoutReadBarrier>(class_roots_index).Ptr()));
1237 return GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
1238 }();
1239 const auto& class_table_section = image_header->GetClassTableSection();
1240 if (class_table_section.Size() > 0u) {
1241 ScopedObjectAccess soa(Thread::Current());
1242 ClassTableVisitor class_table_visitor(forward_object);
1243 size_t read_count = 0u;
1244 const uint8_t* data = target_base + class_table_section.Offset();
1245 // We avoid making a copy of the data since we want modifications to be propagated to the
1246 // memory map.
1247 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1248 for (ClassTable::TableSlot& slot : temp_set) {
1249 slot.VisitRoot(class_table_visitor);
1250 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
1251 if (!app_image_objects.InDest(klass.Ptr())) {
1252 continue;
1253 }
1254 const bool already_marked = visited_bitmap.Set(klass.Ptr());
1255 CHECK(!already_marked) << "App image class already visited";
1256 patch_object_visitor.VisitClass(klass, class_class);
1257 // Then patch the non-embedded vtable and iftable.
1258 ObjPtr<mirror::PointerArray> vtable =
1259 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1260 if (vtable != nullptr &&
1261 app_image_objects.InDest(vtable.Ptr()) &&
1262 !visited_bitmap.Set(vtable.Ptr())) {
1263 patch_object_visitor.VisitPointerArray(vtable);
1264 }
1265 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1266 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1267 // Avoid processing the fields of iftable since we will process them later anyways
1268 // below.
1269 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1270 for (int32_t i = 0; i != ifcount; ++i) {
1271 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1272 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1273 if (unpatched_ifarray != nullptr) {
1274 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1275 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1276 if (app_image_objects.InDest(ifarray.Ptr()) &&
1277 !visited_bitmap.Set(ifarray.Ptr())) {
1278 patch_object_visitor.VisitPointerArray(ifarray);
1279 }
1280 }
1281 }
1282 }
1283 }
1284 }
1285 }
1286
1287 // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is
1288 // probably not required).
1289 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1290 ScopedObjectAccess soa(Thread::Current());
1291 // Need to update the image to be at the target base.
1292 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1293 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1294 FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object);
1295 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1296 // Fixup image roots.
1297 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1298 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr())));
1299 image_header->RelocateImageReferences(app_image_objects.Delta());
1300 image_header->RelocateBootImageReferences(boot_image.Delta());
1301 CHECK_EQ(image_header->GetImageBegin(), target_base);
1302 }
1303 {
1304 // Only touches objects in the app image, no need for mutator lock.
1305 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1306 image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1307 // TODO: Consider a separate visitor for runtime vs normal methods.
1308 if (UNLIKELY(method.IsRuntimeMethod())) {
1309 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1310 if (table != nullptr) {
1311 ImtConflictTable* new_table = forward_metadata(table);
1312 if (table != new_table) {
1313 method.SetImtConflictTable(new_table, kPointerSize);
1314 }
1315 }
1316 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1317 const void* new_code = forward_code(old_code);
1318 if (old_code != new_code) {
1319 method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
1320 }
1321 } else {
1322 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1323 method.UpdateEntrypoints(forward_code, kPointerSize);
1324 }
1325 }, target_base, kPointerSize);
1326 }
1327 if (fixup_image) {
1328 {
1329 // Only touches objects in the app image, no need for mutator lock.
1330 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1331 image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1332 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1333 &field.DeclaringClassRoot());
1334 }, target_base);
1335 }
1336 {
1337 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1338 image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1339 }
1340 {
1341 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1342 image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1343 }
1344 // Fix up the intern table.
1345 const auto& intern_table_section = image_header->GetInternedStringsSection();
1346 if (intern_table_section.Size() > 0u) {
1347 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1348 ScopedObjectAccess soa(Thread::Current());
1349 // Fixup the pointers in the newly written intern table to contain image addresses.
1350 InternTable temp_intern_table;
1351 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1352 // so that the VisitRoots() will update the memory directly rather than the copies.
1353 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1354 [&](InternTable::UnorderedSet& strings)
1355 REQUIRES_SHARED(Locks::mutator_lock_) {
1356 for (GcRoot<mirror::String>& root : strings) {
1357 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1358 }
1359 }, /*is_boot_image=*/ false);
1360 }
1361 }
1362 if (VLOG_IS_ON(image)) {
1363 logger.Dump(LOG_STREAM(INFO));
1364 }
1365 return true;
1366 }
1367 };
1368
AppendImageChecksum(uint32_t component_count,uint32_t checksum,std::string * checksums)1369 static void AppendImageChecksum(uint32_t component_count,
1370 uint32_t checksum,
1371 /*inout*/std::string* checksums) {
1372 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
1373 StringAppendF(checksums, "i;%u/%08x", component_count, checksum);
1374 }
1375
CheckAndRemoveImageChecksum(uint32_t component_count,uint32_t checksum,std::string_view * oat_checksums,std::string * error_msg)1376 static bool CheckAndRemoveImageChecksum(uint32_t component_count,
1377 uint32_t checksum,
1378 /*inout*/std::string_view* oat_checksums,
1379 /*out*/std::string* error_msg) {
1380 std::string image_checksum;
1381 AppendImageChecksum(component_count, checksum, &image_checksum);
1382 if (!StartsWith(*oat_checksums, image_checksum)) {
1383 *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s",
1384 std::string(*oat_checksums).c_str(),
1385 image_checksum.c_str());
1386 return false;
1387 }
1388 oat_checksums->remove_prefix(image_checksum.size());
1389 return true;
1390 }
1391
1392 // Helper class to find the primary boot image and boot image extensions
1393 // and determine the boot image layout.
1394 class ImageSpace::BootImageLayout {
1395 public:
1396 // Description of a "chunk" of the boot image, i.e. either primary boot image
1397 // or a boot image extension, used in conjunction with the boot class path to
1398 // load boot image components.
1399 struct ImageChunk {
1400 std::string base_location;
1401 std::string base_filename;
1402 std::vector<std::string> profile_files;
1403 size_t start_index;
1404 uint32_t component_count;
1405 uint32_t image_space_count;
1406 uint32_t reservation_size;
1407 uint32_t checksum;
1408 uint32_t boot_image_component_count;
1409 uint32_t boot_image_checksum;
1410 uint32_t boot_image_size;
1411
1412 // The following file descriptors hold the memfd files for extensions compiled
1413 // in memory and described by the above fields. We want to use them to mmap()
1414 // the contents and then close them while treating the ImageChunk description
1415 // as immutable (const), so make these fields explicitly mutable.
1416 mutable android::base::unique_fd art_fd;
1417 mutable android::base::unique_fd vdex_fd;
1418 mutable android::base::unique_fd oat_fd;
1419 };
1420
BootImageLayout(ArrayRef<const std::string> image_locations,ArrayRef<const std::string> boot_class_path,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const int> boot_class_path_fds,ArrayRef<const int> boot_class_path_image_fds,ArrayRef<const int> boot_class_path_vdex_fds,ArrayRef<const int> boot_class_path_oat_fds)1421 BootImageLayout(ArrayRef<const std::string> image_locations,
1422 ArrayRef<const std::string> boot_class_path,
1423 ArrayRef<const std::string> boot_class_path_locations,
1424 ArrayRef<const int> boot_class_path_fds,
1425 ArrayRef<const int> boot_class_path_image_fds,
1426 ArrayRef<const int> boot_class_path_vdex_fds,
1427 ArrayRef<const int> boot_class_path_oat_fds)
1428 : image_locations_(image_locations),
1429 boot_class_path_(boot_class_path),
1430 boot_class_path_locations_(boot_class_path_locations),
1431 boot_class_path_fds_(boot_class_path_fds),
1432 boot_class_path_image_fds_(boot_class_path_image_fds),
1433 boot_class_path_vdex_fds_(boot_class_path_vdex_fds),
1434 boot_class_path_oat_fds_(boot_class_path_oat_fds) {}
1435
1436 std::string GetPrimaryImageLocation();
1437
LoadFromSystem(InstructionSet image_isa,std::string * error_msg)1438 bool LoadFromSystem(InstructionSet image_isa, /*out*/std::string* error_msg) {
1439 return LoadOrValidateFromSystem(image_isa, /*oat_checksums=*/ nullptr, error_msg);
1440 }
1441
ValidateFromSystem(InstructionSet image_isa,std::string_view * oat_checksums,std::string * error_msg)1442 bool ValidateFromSystem(InstructionSet image_isa,
1443 /*inout*/std::string_view* oat_checksums,
1444 /*out*/std::string* error_msg) {
1445 DCHECK(oat_checksums != nullptr);
1446 return LoadOrValidateFromSystem(image_isa, oat_checksums, error_msg);
1447 }
1448
GetChunks() const1449 ArrayRef<const ImageChunk> GetChunks() const {
1450 return ArrayRef<const ImageChunk>(chunks_);
1451 }
1452
GetBaseAddress() const1453 uint32_t GetBaseAddress() const {
1454 return base_address_;
1455 }
1456
GetNextBcpIndex() const1457 size_t GetNextBcpIndex() const {
1458 return next_bcp_index_;
1459 }
1460
GetTotalComponentCount() const1461 size_t GetTotalComponentCount() const {
1462 return total_component_count_;
1463 }
1464
GetTotalReservationSize() const1465 size_t GetTotalReservationSize() const {
1466 return total_reservation_size_;
1467 }
1468
1469 private:
1470 struct NamedComponentLocation {
1471 std::string base_location;
1472 size_t bcp_index;
1473 std::vector<std::string> profile_filenames;
1474 };
1475
ExpandLocationImpl(const std::string & location,size_t bcp_index,bool boot_image_extension)1476 std::string ExpandLocationImpl(const std::string& location,
1477 size_t bcp_index,
1478 bool boot_image_extension) {
1479 std::vector<std::string> expanded = ExpandMultiImageLocations(
1480 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, 1u),
1481 location,
1482 boot_image_extension);
1483 DCHECK_EQ(expanded.size(), 1u);
1484 return expanded[0];
1485 }
1486
ExpandLocation(const std::string & location,size_t bcp_index)1487 std::string ExpandLocation(const std::string& location, size_t bcp_index) {
1488 if (bcp_index == 0u) {
1489 DCHECK_EQ(location, ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ false));
1490 return location;
1491 } else {
1492 return ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ true);
1493 }
1494 }
1495
GetBcpComponentPath(size_t bcp_index)1496 std::string GetBcpComponentPath(size_t bcp_index) {
1497 DCHECK_LE(bcp_index, boot_class_path_.size());
1498 size_t bcp_slash_pos = boot_class_path_[bcp_index].rfind('/');
1499 DCHECK_NE(bcp_slash_pos, std::string::npos);
1500 return boot_class_path_[bcp_index].substr(0u, bcp_slash_pos + 1u);
1501 }
1502
1503 bool VerifyImageLocation(ArrayRef<const std::string> components,
1504 /*out*/size_t* named_components_count,
1505 /*out*/std::string* error_msg);
1506
1507 bool MatchNamedComponents(
1508 ArrayRef<const std::string> named_components,
1509 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1510 /*out*/std::string* error_msg);
1511
1512 bool ValidateBootImageChecksum(const char* file_description,
1513 const ImageHeader& header,
1514 /*out*/std::string* error_msg);
1515
1516 bool ValidateHeader(const ImageHeader& header,
1517 size_t bcp_index,
1518 const char* file_description,
1519 /*out*/std::string* error_msg);
1520
1521 bool ValidateOatFile(const std::string& base_location,
1522 const std::string& base_filename,
1523 size_t bcp_index,
1524 size_t component_count,
1525 /*out*/std::string* error_msg);
1526
1527 bool ReadHeader(const std::string& base_location,
1528 const std::string& base_filename,
1529 size_t bcp_index,
1530 /*out*/std::string* error_msg);
1531
1532 // Compiles a consecutive subsequence of bootclasspath dex files, whose contents are included in
1533 // the profiles specified by `profile_filenames`, starting from `bcp_index`.
1534 bool CompileBootclasspathElements(const std::string& base_location,
1535 const std::string& base_filename,
1536 size_t bcp_index,
1537 const std::vector<std::string>& profile_filenames,
1538 ArrayRef<const std::string> dependencies,
1539 /*out*/std::string* error_msg);
1540
1541 bool CheckAndRemoveLastChunkChecksum(/*inout*/std::string_view* oat_checksums,
1542 /*out*/std::string* error_msg);
1543
1544 template <typename FilenameFn>
1545 bool LoadOrValidate(FilenameFn&& filename_fn,
1546 /*inout*/std::string_view* oat_checksums,
1547 /*out*/std::string* error_msg);
1548
1549 bool LoadOrValidateFromSystem(InstructionSet image_isa,
1550 /*inout*/std::string_view* oat_checksums,
1551 /*out*/std::string* error_msg);
1552
1553 ArrayRef<const std::string> image_locations_;
1554 ArrayRef<const std::string> boot_class_path_;
1555 ArrayRef<const std::string> boot_class_path_locations_;
1556 ArrayRef<const int> boot_class_path_fds_;
1557 ArrayRef<const int> boot_class_path_image_fds_;
1558 ArrayRef<const int> boot_class_path_vdex_fds_;
1559 ArrayRef<const int> boot_class_path_oat_fds_;
1560
1561 std::vector<ImageChunk> chunks_;
1562 uint32_t base_address_ = 0u;
1563 size_t next_bcp_index_ = 0u;
1564 size_t total_component_count_ = 0u;
1565 size_t total_reservation_size_ = 0u;
1566 };
1567
GetPrimaryImageLocation()1568 std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() {
1569 DCHECK(!image_locations_.empty());
1570 std::string location = image_locations_[0];
1571 size_t profile_separator_pos = location.find(kProfileSeparator);
1572 if (profile_separator_pos != std::string::npos) {
1573 location.resize(profile_separator_pos);
1574 }
1575 if (location.find('/') == std::string::npos) {
1576 // No path, so use the path from the first boot class path component.
1577 size_t slash_pos = boot_class_path_.empty()
1578 ? std::string::npos
1579 : boot_class_path_[0].rfind('/');
1580 if (slash_pos == std::string::npos) {
1581 return std::string();
1582 }
1583 location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u));
1584 }
1585 return location;
1586 }
1587
VerifyImageLocation(ArrayRef<const std::string> components,size_t * named_components_count,std::string * error_msg)1588 bool ImageSpace::BootImageLayout::VerifyImageLocation(
1589 ArrayRef<const std::string> components,
1590 /*out*/size_t* named_components_count,
1591 /*out*/std::string* error_msg) {
1592 DCHECK(named_components_count != nullptr);
1593
1594 // Validate boot class path. Require a path and non-empty name in each component.
1595 for (const std::string& bcp_component : boot_class_path_) {
1596 size_t bcp_slash_pos = bcp_component.rfind('/');
1597 if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) {
1598 *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str());
1599 return false;
1600 }
1601 }
1602
1603 // Validate the format of image location components.
1604 size_t components_size = components.size();
1605 if (components_size == 0u) {
1606 *error_msg = "Empty image location.";
1607 return false;
1608 }
1609 size_t wildcards_start = components_size; // No wildcards.
1610 for (size_t i = 0; i != components_size; ++i) {
1611 const std::string& component = components[i];
1612 DCHECK(!component.empty()); // Guaranteed by Split().
1613 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1614 size_t wildcard_pos = component.find('*');
1615 if (wildcard_pos == std::string::npos) {
1616 if (wildcards_start != components.size()) {
1617 *error_msg =
1618 StringPrintf("Image component without wildcard after component with wildcard: %s",
1619 component.c_str());
1620 return false;
1621 }
1622 for (size_t j = 0; j < parts.size(); j++) {
1623 if (parts[j].empty()) {
1624 *error_msg = StringPrintf("Missing component and/or profile name in %s",
1625 component.c_str());
1626 return false;
1627 }
1628 if (parts[j].back() == '/') {
1629 *error_msg = StringPrintf("%s name ends with path separator: %s",
1630 j == 0 ? "Image component" : "Profile",
1631 component.c_str());
1632 return false;
1633 }
1634 }
1635 } else {
1636 if (parts.size() > 1) {
1637 *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s",
1638 component.c_str());
1639 return false;
1640 }
1641 if (wildcards_start == components_size) {
1642 wildcards_start = i;
1643 }
1644 // Wildcard must be the last character.
1645 if (wildcard_pos != component.size() - 1u) {
1646 *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str());
1647 return false;
1648 }
1649 // And it must be either plain wildcard or preceded by a path separator.
1650 if (component.size() != 1u && component[wildcard_pos - 1u] != '/') {
1651 *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s",
1652 component.c_str());
1653 return false;
1654 }
1655 if (i == 0) {
1656 *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str());
1657 return false;
1658 }
1659 }
1660 }
1661
1662 *named_components_count = wildcards_start;
1663 return true;
1664 }
1665
MatchNamedComponents(ArrayRef<const std::string> named_components,std::vector<NamedComponentLocation> * named_component_locations,std::string * error_msg)1666 bool ImageSpace::BootImageLayout::MatchNamedComponents(
1667 ArrayRef<const std::string> named_components,
1668 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1669 /*out*/std::string* error_msg) {
1670 DCHECK(!named_components.empty());
1671 DCHECK(named_component_locations->empty());
1672 named_component_locations->reserve(named_components.size());
1673 size_t bcp_component_count = boot_class_path_.size();
1674 size_t bcp_pos = 0;
1675 std::string base_name;
1676 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
1677 std::string component = named_components[i];
1678 std::vector<std::string> profile_filenames; // Empty.
1679 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1680 for (size_t j = 0; j < parts.size(); j++) {
1681 if (j == 0) {
1682 component = std::move(parts[j]);
1683 DCHECK(!component.empty()); // Checked by VerifyImageLocation()
1684 } else {
1685 profile_filenames.push_back(std::move(parts[j]));
1686 DCHECK(!profile_filenames.back().empty()); // Checked by VerifyImageLocation()
1687 }
1688 }
1689 size_t slash_pos = component.rfind('/');
1690 std::string base_location;
1691 if (i == 0u) {
1692 // The primary boot image name is taken as provided. It forms the base
1693 // for expanding the extension filenames.
1694 if (slash_pos != std::string::npos) {
1695 base_name = component.substr(slash_pos + 1u);
1696 base_location = component;
1697 } else {
1698 base_name = component;
1699 base_location = GetBcpComponentPath(0u) + component;
1700 }
1701 } else {
1702 std::string to_match;
1703 if (slash_pos != std::string::npos) {
1704 // If we have the full path, we just need to match the filename to the BCP component.
1705 base_location = component.substr(0u, slash_pos + 1u) + base_name;
1706 to_match = component;
1707 }
1708 while (true) {
1709 if (slash_pos == std::string::npos) {
1710 // If we do not have a full path, we need to update the path based on the BCP location.
1711 std::string path = GetBcpComponentPath(bcp_pos);
1712 to_match = path + component;
1713 base_location = path + base_name;
1714 }
1715 if (ExpandLocation(base_location, bcp_pos) == to_match) {
1716 break;
1717 }
1718 ++bcp_pos;
1719 if (bcp_pos == bcp_component_count) {
1720 *error_msg = StringPrintf("Image component %s does not match a boot class path component",
1721 component.c_str());
1722 return false;
1723 }
1724 }
1725 }
1726 for (std::string& profile_filename : profile_filenames) {
1727 if (profile_filename.find('/') == std::string::npos) {
1728 profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos));
1729 }
1730 }
1731 NamedComponentLocation location;
1732 location.base_location = base_location;
1733 location.bcp_index = bcp_pos;
1734 location.profile_filenames = profile_filenames;
1735 named_component_locations->push_back(location);
1736 ++bcp_pos;
1737 }
1738 return true;
1739 }
1740
ValidateBootImageChecksum(const char * file_description,const ImageHeader & header,std::string * error_msg)1741 bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description,
1742 const ImageHeader& header,
1743 /*out*/std::string* error_msg) {
1744 uint32_t boot_image_component_count = header.GetBootImageComponentCount();
1745 if (chunks_.empty() != (boot_image_component_count == 0u)) {
1746 *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s",
1747 file_description,
1748 boot_image_component_count,
1749 chunks_.empty() ? "should be 0" : "should not be 0");
1750 return false;
1751 }
1752 uint32_t component_count = 0u;
1753 uint32_t composite_checksum = 0u;
1754 uint64_t boot_image_size = 0u;
1755 for (const ImageChunk& chunk : chunks_) {
1756 if (component_count == boot_image_component_count) {
1757 break; // Hit the component count.
1758 }
1759 if (chunk.start_index != component_count) {
1760 break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`.
1761 }
1762 if (chunk.component_count > boot_image_component_count - component_count) {
1763 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1764 "%u is between %u and %u",
1765 file_description,
1766 boot_image_component_count,
1767 component_count,
1768 component_count + chunk.component_count);
1769 return false;
1770 }
1771 component_count += chunk.component_count;
1772 composite_checksum ^= chunk.checksum;
1773 boot_image_size += chunk.reservation_size;
1774 }
1775 DCHECK_LE(component_count, boot_image_component_count);
1776 if (component_count != boot_image_component_count) {
1777 *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u",
1778 file_description,
1779 boot_image_component_count,
1780 component_count);
1781 return false;
1782 }
1783 if (composite_checksum != header.GetBootImageChecksum()) {
1784 *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x",
1785 file_description,
1786 header.GetBootImageChecksum(),
1787 composite_checksum);
1788 return false;
1789 }
1790 if (boot_image_size != header.GetBootImageSize()) {
1791 *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64,
1792 file_description,
1793 header.GetBootImageSize(),
1794 boot_image_size);
1795 return false;
1796 }
1797 return true;
1798 }
1799
ValidateHeader(const ImageHeader & header,size_t bcp_index,const char * file_description,std::string * error_msg)1800 bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header,
1801 size_t bcp_index,
1802 const char* file_description,
1803 /*out*/std::string* error_msg) {
1804 size_t bcp_component_count = boot_class_path_.size();
1805 DCHECK_LT(bcp_index, bcp_component_count);
1806 size_t allowed_component_count = bcp_component_count - bcp_index;
1807 DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize);
1808 size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_;
1809
1810 if (header.GetComponentCount() == 0u ||
1811 header.GetComponentCount() > allowed_component_count) {
1812 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
1813 "expected non-zero and <= %zu",
1814 file_description,
1815 header.GetComponentCount(),
1816 allowed_component_count);
1817 return false;
1818 }
1819 if (header.GetImageReservationSize() > allowed_reservation_size) {
1820 *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu",
1821 file_description,
1822 header.GetImageReservationSize(),
1823 allowed_reservation_size);
1824 return false;
1825 }
1826 if (!ValidateBootImageChecksum(file_description, header, error_msg)) {
1827 return false;
1828 }
1829
1830 return true;
1831 }
1832
ValidateOatFile(const std::string & base_location,const std::string & base_filename,size_t bcp_index,size_t component_count,std::string * error_msg)1833 bool ImageSpace::BootImageLayout::ValidateOatFile(
1834 const std::string& base_location,
1835 const std::string& base_filename,
1836 size_t bcp_index,
1837 size_t component_count,
1838 /*out*/std::string* error_msg) {
1839 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1840 std::string art_location = ExpandLocation(base_location, bcp_index);
1841 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1842 std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(art_location);
1843 int oat_fd =
1844 bcp_index < boot_class_path_oat_fds_.size() ? boot_class_path_oat_fds_[bcp_index] : -1;
1845 int vdex_fd =
1846 bcp_index < boot_class_path_vdex_fds_.size() ? boot_class_path_vdex_fds_[bcp_index] : -1;
1847 auto dex_filenames =
1848 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, component_count);
1849 auto dex_fds =
1850 bcp_index + component_count < boot_class_path_fds_.size() ?
1851 ArrayRef<const int>(boot_class_path_fds_).SubArray(bcp_index, component_count) :
1852 ArrayRef<const int>();
1853 // We open the oat file here only for validating that it's up-to-date. We don't open it as
1854 // executable or mmap it to a reserved space. This `OatFile` object will be dropped after
1855 // validation, and will not go into the `ImageSpace`.
1856 std::unique_ptr<OatFile> oat_file;
1857 DCHECK_EQ(oat_fd >= 0, vdex_fd >= 0);
1858 if (oat_fd >= 0) {
1859 oat_file.reset(OatFile::Open(
1860 /*zip_fd=*/ -1,
1861 vdex_fd,
1862 oat_fd,
1863 oat_location,
1864 /*executable=*/ false,
1865 /*low_4gb=*/ false,
1866 dex_filenames,
1867 dex_fds,
1868 /*reservation=*/ nullptr,
1869 error_msg));
1870 } else {
1871 oat_file.reset(OatFile::Open(
1872 /*zip_fd=*/ -1,
1873 oat_filename,
1874 oat_location,
1875 /*executable=*/ false,
1876 /*low_4gb=*/ false,
1877 dex_filenames,
1878 dex_fds,
1879 /*reservation=*/ nullptr,
1880 error_msg));
1881 }
1882 if (oat_file == nullptr) {
1883 *error_msg = StringPrintf("Failed to open oat file '%s' when validating it for image '%s': %s",
1884 oat_filename.c_str(),
1885 art_location.c_str(),
1886 error_msg->c_str());
1887 return false;
1888 }
1889 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg, dex_filenames, dex_fds)) {
1890 return false;
1891 }
1892 return true;
1893 }
1894
ReadHeader(const std::string & base_location,const std::string & base_filename,size_t bcp_index,std::string * error_msg)1895 bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location,
1896 const std::string& base_filename,
1897 size_t bcp_index,
1898 /*out*/std::string* error_msg) {
1899 DCHECK_LE(next_bcp_index_, bcp_index);
1900 DCHECK_LT(bcp_index, boot_class_path_.size());
1901
1902 std::string actual_filename = ExpandLocation(base_filename, bcp_index);
1903 int bcp_image_fd = bcp_index < boot_class_path_image_fds_.size()
1904 ? boot_class_path_image_fds_[bcp_index]
1905 : -1;
1906 ImageHeader header;
1907 // When BCP image is provided as FD, it needs to be dup'ed (since it's stored in unique_fd) so
1908 // that it can later be used in LoadComponents.
1909 auto image_file = bcp_image_fd >= 0
1910 ? std::make_unique<File>(DupCloexec(bcp_image_fd), actual_filename, /*check_usage=*/ false)
1911 : std::unique_ptr<File>(OS::OpenFileForReading(actual_filename.c_str()));
1912 if (!image_file || !image_file->IsOpened()) {
1913 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header",
1914 actual_filename.c_str());
1915 return false;
1916 }
1917 if (!ReadSpecificImageHeader(image_file.get(), actual_filename.c_str(), &header, error_msg)) {
1918 return false;
1919 }
1920 const char* file_description = actual_filename.c_str();
1921 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
1922 return false;
1923 }
1924
1925 // Validate oat files. We do it here so that the boot image will be re-compiled in memory if it's
1926 // outdated.
1927 size_t component_count = (header.GetImageSpaceCount() == 1u) ? header.GetComponentCount() : 1u;
1928 for (size_t i = 0; i < header.GetImageSpaceCount(); i++) {
1929 if (!ValidateOatFile(base_location, base_filename, bcp_index + i, component_count, error_msg)) {
1930 return false;
1931 }
1932 }
1933
1934 if (chunks_.empty()) {
1935 base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin());
1936 }
1937 ImageChunk chunk;
1938 chunk.base_location = base_location;
1939 chunk.base_filename = base_filename;
1940 chunk.start_index = bcp_index;
1941 chunk.component_count = header.GetComponentCount();
1942 chunk.image_space_count = header.GetImageSpaceCount();
1943 chunk.reservation_size = header.GetImageReservationSize();
1944 chunk.checksum = header.GetImageChecksum();
1945 chunk.boot_image_component_count = header.GetBootImageComponentCount();
1946 chunk.boot_image_checksum = header.GetBootImageChecksum();
1947 chunk.boot_image_size = header.GetBootImageSize();
1948 chunks_.push_back(std::move(chunk));
1949 next_bcp_index_ = bcp_index + header.GetComponentCount();
1950 total_component_count_ += header.GetComponentCount();
1951 total_reservation_size_ += header.GetImageReservationSize();
1952 return true;
1953 }
1954
CompileBootclasspathElements(const std::string & base_location,const std::string & base_filename,size_t bcp_index,const std::vector<std::string> & profile_filenames,ArrayRef<const std::string> dependencies,std::string * error_msg)1955 bool ImageSpace::BootImageLayout::CompileBootclasspathElements(
1956 const std::string& base_location,
1957 const std::string& base_filename,
1958 size_t bcp_index,
1959 const std::vector<std::string>& profile_filenames,
1960 ArrayRef<const std::string> dependencies,
1961 /*out*/std::string* error_msg) {
1962 DCHECK_LE(total_component_count_, next_bcp_index_);
1963 DCHECK_LE(next_bcp_index_, bcp_index);
1964 size_t bcp_component_count = boot_class_path_.size();
1965 DCHECK_LT(bcp_index, bcp_component_count);
1966 DCHECK(!profile_filenames.empty());
1967 if (total_component_count_ != bcp_index) {
1968 // We require all previous BCP components to have a boot image space (primary or extension).
1969 *error_msg = "Cannot compile extension because of missing dependencies.";
1970 return false;
1971 }
1972 Runtime* runtime = Runtime::Current();
1973 if (!runtime->IsImageDex2OatEnabled()) {
1974 *error_msg = "Cannot compile bootclasspath because dex2oat for image compilation is disabled.";
1975 return false;
1976 }
1977
1978 // Check dependencies.
1979 DCHECK_EQ(dependencies.empty(), bcp_index == 0);
1980 size_t dependency_component_count = 0;
1981 for (size_t i = 0, size = dependencies.size(); i != size; ++i) {
1982 if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) {
1983 *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str());
1984 return false;
1985 }
1986 dependency_component_count += chunks_[i].component_count;
1987 }
1988
1989 // Collect locations from the profile.
1990 std::set<std::string> dex_locations;
1991 for (const std::string& profile_filename : profile_filenames) {
1992 std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str()));
1993 if (profile_file == nullptr) {
1994 *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s",
1995 profile_filename.c_str(),
1996 strerror(errno));
1997 return false;
1998 }
1999
2000 // TODO: Rewrite ProfileCompilationInfo to provide a better interface and
2001 // to store the dex locations in uncompressed section of the file.
2002 auto collect_fn = [&dex_locations](const std::string& dex_location,
2003 uint32_t checksum ATTRIBUTE_UNUSED) {
2004 dex_locations.insert(dex_location); // Just collect locations.
2005 return false; // Do not read the profile data.
2006 };
2007 ProfileCompilationInfo info(/*for_boot_image=*/ true);
2008 if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) {
2009 *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str());
2010 return false;
2011 }
2012 }
2013
2014 // Match boot class path components to locations from profile.
2015 // Note that the profile records only filenames without paths.
2016 size_t bcp_end = bcp_index;
2017 for (; bcp_end != bcp_component_count; ++bcp_end) {
2018 const std::string& bcp_component = boot_class_path_locations_[bcp_end];
2019 size_t slash_pos = bcp_component.rfind('/');
2020 DCHECK_NE(slash_pos, std::string::npos);
2021 std::string bcp_component_name = bcp_component.substr(slash_pos + 1u);
2022 if (dex_locations.count(bcp_component_name) == 0u) {
2023 break; // Did not find the current location in dex file.
2024 }
2025 }
2026
2027 if (bcp_end == bcp_index) {
2028 // No data for the first (requested) component.
2029 *error_msg = StringPrintf("The profile does not contain data for %s",
2030 boot_class_path_locations_[bcp_index].c_str());
2031 return false;
2032 }
2033
2034 // Create in-memory files.
2035 std::string art_filename = ExpandLocation(base_filename, bcp_index);
2036 std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename);
2037 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
2038 android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0));
2039 android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0));
2040 android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0));
2041 if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) {
2042 *error_msg = StringPrintf("Failed to create memfd handles for compiling bootclasspath for %s",
2043 boot_class_path_locations_[bcp_index].c_str());
2044 return false;
2045 }
2046
2047 // Construct the dex2oat command line.
2048 std::string dex2oat = runtime->GetCompilerExecutable();
2049 ArrayRef<const std::string> head_bcp =
2050 boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
2051 ArrayRef<const std::string> head_bcp_locations =
2052 boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
2053 ArrayRef<const std::string> bcp_to_compile =
2054 boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
2055 ArrayRef<const std::string> bcp_to_compile_locations =
2056 boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
2057 std::string boot_class_path = head_bcp.empty() ?
2058 Join(bcp_to_compile, ':') :
2059 Join(head_bcp, ':') + ':' + Join(bcp_to_compile, ':');
2060 std::string boot_class_path_locations =
2061 head_bcp_locations.empty() ?
2062 Join(bcp_to_compile_locations, ':') :
2063 Join(head_bcp_locations, ':') + ':' + Join(bcp_to_compile_locations, ':');
2064
2065 std::vector<std::string> args;
2066 args.push_back(dex2oat);
2067 args.push_back("--runtime-arg");
2068 args.push_back("-Xbootclasspath:" + boot_class_path);
2069 args.push_back("--runtime-arg");
2070 args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations);
2071 if (dependencies.empty()) {
2072 args.push_back(android::base::StringPrintf("--base=0x%08x", ART_BASE_ADDRESS));
2073 } else {
2074 args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator));
2075 }
2076 for (size_t i = bcp_index; i != bcp_end; ++i) {
2077 args.push_back("--dex-file=" + boot_class_path_[i]);
2078 args.push_back("--dex-location=" + boot_class_path_locations_[i]);
2079 }
2080 args.push_back("--image-fd=" + std::to_string(art_fd.get()));
2081 args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get()));
2082 args.push_back("--oat-fd=" + std::to_string(oat_fd.get()));
2083 args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename));
2084 args.push_back("--single-image");
2085 args.push_back("--image-format=uncompressed");
2086
2087 // We currently cannot guarantee that the boot class path has no verification failures.
2088 // And we do not want to compile anything, compilation should be done by JIT in zygote.
2089 args.push_back("--compiler-filter=verify");
2090
2091 // Pass the profiles.
2092 for (const std::string& profile_filename : profile_filenames) {
2093 args.push_back("--profile-file=" + profile_filename);
2094 }
2095
2096 // Do not let the file descriptor numbers change the compilation output.
2097 args.push_back("--avoid-storing-invocation");
2098
2099 runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args);
2100
2101 if (!kIsTargetBuild) {
2102 args.push_back("--host");
2103 }
2104
2105 // Image compiler options go last to allow overriding above args, such as --compiler-filter.
2106 for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) {
2107 args.push_back(compiler_option);
2108 }
2109
2110 // Compile.
2111 VLOG(image) << "Compiling boot bootclasspath for " << (bcp_end - bcp_index)
2112 << " components, starting from " << boot_class_path_locations_[bcp_index];
2113 if (!Exec(args, error_msg)) {
2114 return false;
2115 }
2116
2117 // Read and validate the image header.
2118 ImageHeader header;
2119 {
2120 File image_file(art_fd.release(), /*check_usage=*/ false);
2121 if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) {
2122 return false;
2123 }
2124 art_fd.reset(image_file.Release());
2125 }
2126 const char* file_description = "compiled image file";
2127 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2128 return false;
2129 }
2130
2131 DCHECK_EQ(chunks_.empty(), dependencies.empty());
2132 ImageChunk chunk;
2133 chunk.base_location = base_location;
2134 chunk.base_filename = base_filename;
2135 chunk.profile_files = profile_filenames;
2136 chunk.start_index = bcp_index;
2137 chunk.component_count = header.GetComponentCount();
2138 chunk.image_space_count = header.GetImageSpaceCount();
2139 chunk.reservation_size = header.GetImageReservationSize();
2140 chunk.checksum = header.GetImageChecksum();
2141 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2142 chunk.boot_image_checksum = header.GetBootImageChecksum();
2143 chunk.boot_image_size = header.GetBootImageSize();
2144 chunk.art_fd.reset(art_fd.release());
2145 chunk.vdex_fd.reset(vdex_fd.release());
2146 chunk.oat_fd.reset(oat_fd.release());
2147 chunks_.push_back(std::move(chunk));
2148 next_bcp_index_ = bcp_index + header.GetComponentCount();
2149 total_component_count_ += header.GetComponentCount();
2150 total_reservation_size_ += header.GetImageReservationSize();
2151 return true;
2152 }
2153
CheckAndRemoveLastChunkChecksum(std::string_view * oat_checksums,std::string * error_msg)2154 bool ImageSpace::BootImageLayout::CheckAndRemoveLastChunkChecksum(
2155 /*inout*/std::string_view* oat_checksums,
2156 /*out*/std::string* error_msg) {
2157 DCHECK(oat_checksums != nullptr);
2158 DCHECK(!chunks_.empty());
2159 const ImageChunk& chunk = chunks_.back();
2160 size_t component_count = chunk.component_count;
2161 size_t checksum = chunk.checksum;
2162 if (!CheckAndRemoveImageChecksum(component_count, checksum, oat_checksums, error_msg)) {
2163 DCHECK(!error_msg->empty());
2164 return false;
2165 }
2166 if (oat_checksums->empty()) {
2167 if (next_bcp_index_ != boot_class_path_.size()) {
2168 *error_msg = StringPrintf("Checksum too short, missing %zu components.",
2169 boot_class_path_.size() - next_bcp_index_);
2170 return false;
2171 }
2172 return true;
2173 }
2174 if (!StartsWith(*oat_checksums, ":")) {
2175 *error_msg = StringPrintf("Missing ':' separator at start of %s",
2176 std::string(*oat_checksums).c_str());
2177 return false;
2178 }
2179 oat_checksums->remove_prefix(1u);
2180 if (oat_checksums->empty()) {
2181 *error_msg = "Missing checksums after the ':' separator.";
2182 return false;
2183 }
2184 return true;
2185 }
2186
2187 template <typename FilenameFn>
LoadOrValidate(FilenameFn && filename_fn,std::string_view * oat_checksums,std::string * error_msg)2188 bool ImageSpace::BootImageLayout::LoadOrValidate(FilenameFn&& filename_fn,
2189 /*inout*/std::string_view* oat_checksums,
2190 /*out*/std::string* error_msg) {
2191 DCHECK(GetChunks().empty());
2192 DCHECK_EQ(GetBaseAddress(), 0u);
2193 bool validate = (oat_checksums != nullptr);
2194 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
2195 DCHECK_IMPLIES(validate, StartsWith(*oat_checksums, "i"));
2196
2197 ArrayRef<const std::string> components = image_locations_;
2198 size_t named_components_count = 0u;
2199 if (!VerifyImageLocation(components, &named_components_count, error_msg)) {
2200 return false;
2201 }
2202
2203 ArrayRef<const std::string> named_components =
2204 ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count);
2205
2206 std::vector<NamedComponentLocation> named_component_locations;
2207 if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) {
2208 return false;
2209 }
2210
2211 // Load the image headers of named components.
2212 DCHECK_EQ(named_component_locations.size(), named_components.size());
2213 const size_t bcp_component_count = boot_class_path_.size();
2214 size_t bcp_pos = 0u;
2215 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
2216 const std::string& base_location = named_component_locations[i].base_location;
2217 size_t bcp_index = named_component_locations[i].bcp_index;
2218 const std::vector<std::string>& profile_filenames =
2219 named_component_locations[i].profile_filenames;
2220 DCHECK_EQ(i == 0, bcp_index == 0);
2221 if (bcp_index < bcp_pos) {
2222 DCHECK_NE(i, 0u);
2223 LOG(ERROR) << "Named image component already covered by previous image: " << base_location;
2224 continue;
2225 }
2226 if (validate && bcp_index > bcp_pos) {
2227 *error_msg = StringPrintf("End of contiguous boot class path images, remaining checksum: %s",
2228 std::string(*oat_checksums).c_str());
2229 return false;
2230 }
2231 std::string local_error_msg;
2232 std::string* err_msg = validate ? error_msg : &local_error_msg;
2233 std::string base_filename;
2234 if (!filename_fn(base_location, &base_filename, err_msg) ||
2235 !ReadHeader(base_location, base_filename, bcp_index, err_msg)) {
2236 if (validate) {
2237 return false;
2238 }
2239 LOG(ERROR) << "Error reading named image component header for " << base_location
2240 << ", error: " << local_error_msg;
2241 // If the primary boot image is invalid, we generate a single full image. This is faster than
2242 // generating the primary boot image and the extension separately.
2243 if (bcp_index == 0) {
2244 // We must at least have profiles for the core libraries.
2245 if (profile_filenames.empty()) {
2246 *error_msg = "Full boot image cannot be compiled because no profile is provided.";
2247 return false;
2248 }
2249 std::vector<std::string> all_profiles;
2250 for (const NamedComponentLocation& named_component_location : named_component_locations) {
2251 const std::vector<std::string>& profiles = named_component_location.profile_filenames;
2252 all_profiles.insert(all_profiles.end(), profiles.begin(), profiles.end());
2253 }
2254 if (!CompileBootclasspathElements(base_location,
2255 base_filename,
2256 /*bcp_index=*/ 0,
2257 all_profiles,
2258 /*dependencies=*/ ArrayRef<const std::string>{},
2259 &local_error_msg)) {
2260 *error_msg =
2261 StringPrintf("Full boot image cannot be compiled: %s", local_error_msg.c_str());
2262 return false;
2263 }
2264 // No extensions are needed.
2265 return true;
2266 }
2267 if (profile_filenames.empty() ||
2268 !CompileBootclasspathElements(base_location,
2269 base_filename,
2270 bcp_index,
2271 profile_filenames,
2272 components.SubArray(/*pos=*/ 0, /*length=*/ 1),
2273 &local_error_msg)) {
2274 if (!profile_filenames.empty()) {
2275 LOG(ERROR) << "Error compiling boot image extension for " << boot_class_path_[bcp_index]
2276 << ", error: " << local_error_msg;
2277 }
2278 bcp_pos = bcp_index + 1u; // Skip at least this component.
2279 DCHECK_GT(bcp_pos, GetNextBcpIndex());
2280 continue;
2281 }
2282 }
2283 if (validate) {
2284 if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) {
2285 return false;
2286 }
2287 if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) {
2288 return true; // Let the caller deal with the dex file checksums if any.
2289 }
2290 }
2291 bcp_pos = GetNextBcpIndex();
2292 }
2293
2294 // Look for remaining components if there are any wildcard specifications.
2295 ArrayRef<const std::string> search_paths = components.SubArray(/*pos=*/ named_components_count);
2296 if (!search_paths.empty()) {
2297 const std::string& primary_base_location = named_component_locations[0].base_location;
2298 size_t base_slash_pos = primary_base_location.rfind('/');
2299 DCHECK_NE(base_slash_pos, std::string::npos);
2300 std::string base_name = primary_base_location.substr(base_slash_pos + 1u);
2301 DCHECK(!base_name.empty());
2302 while (bcp_pos != bcp_component_count) {
2303 const std::string& bcp_component = boot_class_path_[bcp_pos];
2304 bool found = false;
2305 for (const std::string& path : search_paths) {
2306 std::string base_location;
2307 if (path.size() == 1u) {
2308 DCHECK_EQ(path, "*");
2309 size_t slash_pos = bcp_component.rfind('/');
2310 DCHECK_NE(slash_pos, std::string::npos);
2311 base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name;
2312 } else {
2313 DCHECK(EndsWith(path, "/*"));
2314 base_location = path.substr(0u, path.size() - 1u) + base_name;
2315 }
2316 std::string err_msg; // Ignored.
2317 std::string base_filename;
2318 if (filename_fn(base_location, &base_filename, &err_msg) &&
2319 ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) {
2320 VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos);
2321 bcp_pos = GetNextBcpIndex();
2322 found = true;
2323 if (validate) {
2324 if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) {
2325 return false;
2326 }
2327 if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) {
2328 return true; // Let the caller deal with the dex file checksums if any.
2329 }
2330 }
2331 break;
2332 }
2333 }
2334 if (!found) {
2335 if (validate) {
2336 *error_msg = StringPrintf("Missing extension for %s, remaining checksum: %s",
2337 bcp_component.c_str(),
2338 std::string(*oat_checksums).c_str());
2339 return false;
2340 }
2341 ++bcp_pos;
2342 }
2343 }
2344 }
2345
2346 return true;
2347 }
2348
LoadOrValidateFromSystem(InstructionSet image_isa,std::string_view * oat_checksums,std::string * error_msg)2349 bool ImageSpace::BootImageLayout::LoadOrValidateFromSystem(InstructionSet image_isa,
2350 /*inout*/std::string_view* oat_checksums,
2351 /*out*/std::string* error_msg) {
2352 auto filename_fn = [image_isa](const std::string& location,
2353 /*out*/std::string* filename,
2354 /*out*/std::string* err_msg ATTRIBUTE_UNUSED) {
2355 *filename = GetSystemImageFilename(location.c_str(), image_isa);
2356 return true;
2357 };
2358 return LoadOrValidate(filename_fn, oat_checksums, error_msg);
2359 }
2360
2361 class ImageSpace::BootImageLoader {
2362 public:
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::vector<int> & boot_class_path_fds,const std::vector<int> & boot_class_path_image_fds,const std::vector<int> & boot_class_path_vdex_fds,const std::vector<int> & boot_class_path_oat_fds,const std::vector<std::string> & image_locations,InstructionSet image_isa,bool relocate,bool executable)2363 BootImageLoader(const std::vector<std::string>& boot_class_path,
2364 const std::vector<std::string>& boot_class_path_locations,
2365 const std::vector<int>& boot_class_path_fds,
2366 const std::vector<int>& boot_class_path_image_fds,
2367 const std::vector<int>& boot_class_path_vdex_fds,
2368 const std::vector<int>& boot_class_path_oat_fds,
2369 const std::vector<std::string>& image_locations,
2370 InstructionSet image_isa,
2371 bool relocate,
2372 bool executable)
2373 : boot_class_path_(boot_class_path),
2374 boot_class_path_locations_(boot_class_path_locations),
2375 boot_class_path_fds_(boot_class_path_fds),
2376 boot_class_path_image_fds_(boot_class_path_image_fds),
2377 boot_class_path_vdex_fds_(boot_class_path_vdex_fds),
2378 boot_class_path_oat_fds_(boot_class_path_oat_fds),
2379 image_locations_(image_locations),
2380 image_isa_(image_isa),
2381 relocate_(relocate),
2382 executable_(executable),
2383 has_system_(false) {
2384 }
2385
FindImageFiles()2386 void FindImageFiles() {
2387 BootImageLayout layout(image_locations_,
2388 boot_class_path_,
2389 boot_class_path_locations_,
2390 boot_class_path_fds_,
2391 boot_class_path_image_fds_,
2392 boot_class_path_vdex_fds_,
2393 boot_class_path_oat_fds_);
2394 std::string image_location = layout.GetPrimaryImageLocation();
2395 std::string system_filename;
2396 bool found_image = FindImageFilenameImpl(image_location.c_str(),
2397 image_isa_,
2398 &has_system_,
2399 &system_filename);
2400 DCHECK_EQ(found_image, has_system_);
2401 }
2402
HasSystem() const2403 bool HasSystem() const { return has_system_; }
2404
2405 bool LoadFromSystem(size_t extra_reservation_size,
2406 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2407 /*out*/MemMap* extra_reservation,
2408 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2409
2410 private:
LoadImage(const BootImageLayout & layout,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)2411 bool LoadImage(
2412 const BootImageLayout& layout,
2413 bool validate_oat_file,
2414 size_t extra_reservation_size,
2415 TimingLogger* logger,
2416 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2417 /*out*/MemMap* extra_reservation,
2418 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
2419 ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks();
2420 DCHECK(!chunks.empty());
2421 const uint32_t base_address = layout.GetBaseAddress();
2422 const size_t image_component_count = layout.GetTotalComponentCount();
2423 const size_t image_reservation_size = layout.GetTotalReservationSize();
2424
2425 DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize);
2426 static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max());
2427 if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) {
2428 // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize,
2429 // the `extra_reservation_size` would have to be really excessive to fail this check.
2430 *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size);
2431 return false;
2432 }
2433
2434 // Reserve address space. If relocating, choose a random address for ALSR.
2435 uint8_t* addr = reinterpret_cast<uint8_t*>(
2436 relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address);
2437 MemMap image_reservation =
2438 ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg);
2439 if (!image_reservation.IsValid()) {
2440 return false;
2441 }
2442
2443 // Load components.
2444 std::vector<std::unique_ptr<ImageSpace>> spaces;
2445 spaces.reserve(image_component_count);
2446 size_t max_image_space_dependencies = 0u;
2447 for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) {
2448 const BootImageLayout::ImageChunk& chunk = chunks[i];
2449 std::string extension_error_msg;
2450 uint8_t* old_reservation_begin = image_reservation.Begin();
2451 size_t old_reservation_size = image_reservation.Size();
2452 DCHECK_LE(chunk.reservation_size, old_reservation_size);
2453 if (!LoadComponents(chunk,
2454 validate_oat_file,
2455 max_image_space_dependencies,
2456 logger,
2457 &spaces,
2458 &image_reservation,
2459 (i == 0) ? error_msg : &extension_error_msg)) {
2460 // Failed to load the chunk. If this is the primary boot image, report the error.
2461 if (i == 0) {
2462 return false;
2463 }
2464 // For extension, shrink the reservation (and remap if needed, see below).
2465 size_t new_reservation_size = old_reservation_size - chunk.reservation_size;
2466 if (new_reservation_size == 0u) {
2467 DCHECK_EQ(extra_reservation_size, 0u);
2468 DCHECK_EQ(i + 1u, num_chunks);
2469 image_reservation.Reset();
2470 } else if (old_reservation_begin != image_reservation.Begin()) {
2471 // Part of the image reservation has been used and then unmapped when
2472 // rollling back the partial boot image extension load. Try to remap
2473 // the image reservation. As this should be running single-threaded,
2474 // the address range should still be available to mmap().
2475 image_reservation.Reset();
2476 std::string remap_error_msg;
2477 image_reservation = ReserveBootImageMemory(old_reservation_begin,
2478 new_reservation_size,
2479 &remap_error_msg);
2480 if (!image_reservation.IsValid()) {
2481 *error_msg = StringPrintf("Failed to remap boot image reservation after failing "
2482 "to load boot image extension (%s: %s): %s",
2483 boot_class_path_locations_[chunk.start_index].c_str(),
2484 extension_error_msg.c_str(),
2485 remap_error_msg.c_str());
2486 return false;
2487 }
2488 } else {
2489 DCHECK_EQ(old_reservation_size, image_reservation.Size());
2490 image_reservation.SetSize(new_reservation_size);
2491 }
2492 LOG(ERROR) << "Failed to load boot image extension "
2493 << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg;
2494 }
2495 // Update `max_image_space_dependencies` if all previous BCP components
2496 // were covered and loading the current chunk succeeded.
2497 size_t total_component_count = 0;
2498 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2499 total_component_count += space->GetComponentCount();
2500 }
2501 if (max_image_space_dependencies == chunk.start_index &&
2502 total_component_count == chunk.start_index + chunk.component_count) {
2503 max_image_space_dependencies = chunk.start_index + chunk.component_count;
2504 }
2505 }
2506
2507 MemMap local_extra_reservation;
2508 if (!RemapExtraReservation(extra_reservation_size,
2509 &image_reservation,
2510 &local_extra_reservation,
2511 error_msg)) {
2512 return false;
2513 }
2514
2515 MaybeRelocateSpaces(spaces, logger);
2516 DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger);
2517 boot_image_spaces->swap(spaces);
2518 *extra_reservation = std::move(local_extra_reservation);
2519 return true;
2520 }
2521
2522 private:
2523 class SimpleRelocateVisitor {
2524 public:
SimpleRelocateVisitor(uint32_t diff,uint32_t begin,uint32_t size)2525 SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size)
2526 : diff_(diff), begin_(begin), size_(size) {}
2527
2528 // Adapter taking the same arguments as SplitRangeRelocateVisitor
2529 // to simplify constructing the various visitors in DoRelocateSpaces().
SimpleRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2530 SimpleRelocateVisitor(uint32_t base_diff,
2531 uint32_t current_diff,
2532 uint32_t bound,
2533 uint32_t begin,
2534 uint32_t size)
2535 : SimpleRelocateVisitor(base_diff, begin, size) {
2536 // Check arguments unused by this class.
2537 DCHECK_EQ(base_diff, current_diff);
2538 DCHECK_EQ(bound, begin);
2539 }
2540
2541 template <typename T>
operator ()(T * src) const2542 ALWAYS_INLINE T* operator()(T* src) const {
2543 DCHECK(InSource(src));
2544 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2545 return reinterpret_cast32<T*>(raw_src + diff_);
2546 }
2547
2548 template <typename T>
InSource(T * ptr) const2549 ALWAYS_INLINE bool InSource(T* ptr) const {
2550 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2551 return raw_ptr - begin_ < size_;
2552 }
2553
2554 template <typename T>
InDest(T * ptr) const2555 ALWAYS_INLINE bool InDest(T* ptr) const {
2556 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2557 uint32_t src_ptr = raw_ptr - diff_;
2558 return src_ptr - begin_ < size_;
2559 }
2560
2561 private:
2562 const uint32_t diff_;
2563 const uint32_t begin_;
2564 const uint32_t size_;
2565 };
2566
2567 class SplitRangeRelocateVisitor {
2568 public:
SplitRangeRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2569 SplitRangeRelocateVisitor(uint32_t base_diff,
2570 uint32_t current_diff,
2571 uint32_t bound,
2572 uint32_t begin,
2573 uint32_t size)
2574 : base_diff_(base_diff),
2575 current_diff_(current_diff),
2576 bound_(bound),
2577 begin_(begin),
2578 size_(size) {
2579 DCHECK_NE(begin_, bound_);
2580 // The bound separates the boot image range and the extension range.
2581 DCHECK_LT(bound_ - begin_, size_);
2582 }
2583
2584 template <typename T>
operator ()(T * src) const2585 ALWAYS_INLINE T* operator()(T* src) const {
2586 DCHECK(InSource(src));
2587 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2588 uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_;
2589 return reinterpret_cast32<T*>(raw_src + diff);
2590 }
2591
2592 template <typename T>
InSource(T * ptr) const2593 ALWAYS_INLINE bool InSource(T* ptr) const {
2594 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2595 return raw_ptr - begin_ < size_;
2596 }
2597
2598 private:
2599 const uint32_t base_diff_;
2600 const uint32_t current_diff_;
2601 const uint32_t bound_;
2602 const uint32_t begin_;
2603 const uint32_t size_;
2604 };
2605
PointerAddress(ArtMethod * method,MemberOffset offset)2606 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
2607 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
2608 }
2609
2610 template <PointerSize kPointerSize>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> & spaces,int64_t base_diff64)2611 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces,
2612 int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) {
2613 DCHECK(!spaces.empty());
2614 gc::accounting::ContinuousSpaceBitmap patched_objects(
2615 gc::accounting::ContinuousSpaceBitmap::Create(
2616 "Marked objects",
2617 spaces.front()->Begin(),
2618 spaces.back()->End() - spaces.front()->Begin()));
2619 const ImageHeader& base_header = spaces[0]->GetImageHeader();
2620 size_t base_image_space_count = base_header.GetImageSpaceCount();
2621 DCHECK_LE(base_image_space_count, spaces.size());
2622 DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>(
2623 spaces.SubArray(/*pos=*/ 0u, base_image_space_count),
2624 base_diff64,
2625 &patched_objects);
2626
2627 for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) {
2628 const ImageHeader& ext_header = spaces[i]->GetImageHeader();
2629 size_t ext_image_space_count = ext_header.GetImageSpaceCount();
2630 DCHECK_LE(ext_image_space_count, size - i);
2631 DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>(
2632 spaces.SubArray(/*pos=*/ i, ext_image_space_count),
2633 base_diff64,
2634 &patched_objects);
2635 i += ext_image_space_count;
2636 }
2637 }
2638
2639 template <PointerSize kPointerSize, bool kExtension>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,int64_t base_diff64,gc::accounting::ContinuousSpaceBitmap * patched_objects)2640 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2641 int64_t base_diff64,
2642 gc::accounting::ContinuousSpaceBitmap* patched_objects)
2643 REQUIRES_SHARED(Locks::mutator_lock_) {
2644 DCHECK(!spaces.empty());
2645 const ImageHeader& first_header = spaces.front()->GetImageHeader();
2646 uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin());
2647 uint32_t image_size = first_header.GetImageReservationSize();
2648 DCHECK_NE(image_size, 0u);
2649 uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin;
2650 uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size;
2651 if (kExtension) {
2652 DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin);
2653 }
2654 int64_t current_diff64 = kExtension
2655 ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) -
2656 static_cast<int64_t>(image_begin)
2657 : base_diff64;
2658 if (base_diff64 == 0 && current_diff64 == 0) {
2659 return;
2660 }
2661 uint32_t base_diff = static_cast<uint32_t>(base_diff64);
2662 uint32_t current_diff = static_cast<uint32_t>(current_diff64);
2663
2664 // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we
2665 // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor.
2666 using MainRelocateVisitor = typename std::conditional<
2667 kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type;
2668 SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size);
2669 MainRelocateVisitor main_relocate_visitor(
2670 base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size);
2671
2672 using MainPatchRelocateVisitor =
2673 PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>;
2674 using SimplePatchRelocateVisitor =
2675 PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>;
2676 MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor,
2677 main_relocate_visitor);
2678 SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor,
2679 simple_relocate_visitor);
2680
2681 // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below.
2682 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots;
2683 ObjPtr<mirror::Class> class_class;
2684 ObjPtr<mirror::Class> method_class;
2685 ObjPtr<mirror::Class> constructor_class;
2686 ObjPtr<mirror::Class> field_var_handle_class;
2687 ObjPtr<mirror::Class> static_field_var_handle_class;
2688 {
2689 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
2690 simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr());
2691 DCHECK(!patched_objects->Test(image_roots.Ptr()));
2692
2693 SimpleRelocateVisitor base_relocate_visitor(
2694 base_diff,
2695 source_begin,
2696 kExtension ? source_size - image_size : image_size);
2697 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
2698 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
2699 class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor(
2700 image_roots->GetWithoutChecks<kVerifyNone>(class_roots_index).Ptr()));
2701 if (kExtension) {
2702 // Class roots must have been visited if we relocated the primary boot image.
2703 DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr()));
2704 class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
2705 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
2706 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
2707 field_var_handle_class =
2708 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots);
2709 static_field_var_handle_class =
2710 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots);
2711 } else {
2712 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2713 class_class = simple_relocate_visitor(
2714 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr());
2715 method_class = simple_relocate_visitor(
2716 GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr());
2717 constructor_class = simple_relocate_visitor(
2718 GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr());
2719 field_var_handle_class = simple_relocate_visitor(
2720 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2721 static_field_var_handle_class = simple_relocate_visitor(
2722 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2723 }
2724 }
2725
2726 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2727 // First patch the image header.
2728 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64);
2729 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64);
2730
2731 // Patch fields and methods.
2732 const ImageHeader& image_header = space->GetImageHeader();
2733 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
2734 // Fields always reference class in the current image.
2735 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
2736 &field.DeclaringClassRoot());
2737 }, space->Begin());
2738 image_header.VisitPackedArtMethods([&](ArtMethod& method)
2739 REQUIRES_SHARED(Locks::mutator_lock_) {
2740 main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
2741 if (!method.HasCodeItem()) {
2742 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
2743 main_patch_object_visitor.PatchNativePointer(data_address);
2744 }
2745 void** entrypoint_address =
2746 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
2747 main_patch_object_visitor.PatchNativePointer(entrypoint_address);
2748 }, space->Begin(), kPointerSize);
2749 auto method_table_visitor = [&](ArtMethod* method) {
2750 DCHECK(method != nullptr);
2751 return main_relocate_visitor(method);
2752 };
2753 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
2754 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
2755
2756 // Patch the intern table.
2757 if (image_header.GetInternedStringsSection().Size() != 0u) {
2758 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
2759 size_t read_count;
2760 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2761 for (GcRoot<mirror::String>& slot : temp_set) {
2762 // The intern table contains only strings in the current image.
2763 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
2764 }
2765 }
2766
2767 // Patch the class table and classes, so that we can traverse class hierarchy to
2768 // determine the types of other objects when we visit them later.
2769 if (image_header.GetClassTableSection().Size() != 0u) {
2770 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
2771 size_t read_count;
2772 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2773 DCHECK(!temp_set.empty());
2774 // The class table contains only classes in the current image.
2775 ClassTableVisitor class_table_visitor(simple_relocate_visitor);
2776 for (ClassTable::TableSlot& slot : temp_set) {
2777 slot.VisitRoot(class_table_visitor);
2778 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2779 DCHECK(klass != nullptr);
2780 DCHECK(!patched_objects->Test(klass.Ptr()));
2781 patched_objects->Set(klass.Ptr());
2782 main_patch_object_visitor.VisitClass(klass, class_class);
2783 // Then patch the non-embedded vtable and iftable.
2784 ObjPtr<mirror::PointerArray> vtable =
2785 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
2786 if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) &&
2787 !patched_objects->Set(vtable.Ptr())) {
2788 main_patch_object_visitor.VisitPointerArray(vtable);
2789 }
2790 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
2791 if (kExtension ? simple_relocate_visitor.InDest(iftable.Ptr()) : iftable != nullptr) {
2792 int32_t ifcount = iftable->Count<kVerifyNone>();
2793 for (int32_t i = 0; i != ifcount; ++i) {
2794 ObjPtr<mirror::PointerArray> unpatched_ifarray =
2795 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
2796 if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr())
2797 : unpatched_ifarray != nullptr) {
2798 // The iftable has not been patched, so we need to explicitly adjust the pointer.
2799 ObjPtr<mirror::PointerArray> ifarray =
2800 simple_relocate_visitor(unpatched_ifarray.Ptr());
2801 if (!patched_objects->Set(ifarray.Ptr())) {
2802 main_patch_object_visitor.VisitPointerArray(ifarray);
2803 }
2804 }
2805 }
2806 }
2807 }
2808 }
2809 }
2810
2811 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2812 const ImageHeader& image_header = space->GetImageHeader();
2813
2814 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
2815 uint32_t objects_end = image_header.GetObjectsSection().Size();
2816 DCHECK_ALIGNED(objects_end, kObjectAlignment);
2817 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
2818 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
2819 // Note: use Test() rather than Set() as this is the last time we're checking this object.
2820 if (!patched_objects->Test(object)) {
2821 // This is the last pass over objects, so we do not need to Set().
2822 main_patch_object_visitor.VisitObject(object);
2823 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
2824 if (klass == method_class || klass == constructor_class) {
2825 // Patch the ArtMethod* in the mirror::Executable subobject.
2826 ObjPtr<mirror::Executable> as_executable =
2827 ObjPtr<mirror::Executable>::DownCast(object);
2828 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
2829 ArtMethod* patched_method = main_relocate_visitor(unpatched_method);
2830 as_executable->SetArtMethod</*kTransactionActive=*/ false,
2831 /*kCheckTransaction=*/ true,
2832 kVerifyNone>(patched_method);
2833 } else if (klass == field_var_handle_class || klass == static_field_var_handle_class) {
2834 // Patch the ArtField* in the mirror::FieldVarHandle subobject.
2835 ObjPtr<mirror::FieldVarHandle> as_field_var_handle =
2836 ObjPtr<mirror::FieldVarHandle>::DownCast(object);
2837 ArtField* unpatched_field = as_field_var_handle->GetArtField<kVerifyNone>();
2838 ArtField* patched_field = main_relocate_visitor(unpatched_field);
2839 as_field_var_handle->SetArtField<kVerifyNone>(patched_field);
2840 }
2841 }
2842 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2843 }
2844 }
2845 if (kIsDebugBuild && !kExtension) {
2846 // We used just Test() instead of Set() above but we need to use Set()
2847 // for class roots to satisfy a DCHECK() for extensions.
2848 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2849 patched_objects->Set(class_roots.Ptr());
2850 }
2851 }
2852
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)2853 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
2854 TimingLogger* logger)
2855 REQUIRES_SHARED(Locks::mutator_lock_) {
2856 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
2857 ImageSpace* first_space = spaces.front().get();
2858 const ImageHeader& first_space_header = first_space->GetImageHeader();
2859 int64_t base_diff64 =
2860 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) -
2861 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin()));
2862 if (!relocate_) {
2863 DCHECK_EQ(base_diff64, 0);
2864 }
2865
2866 ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces);
2867 PointerSize pointer_size = first_space_header.GetPointerSize();
2868 if (pointer_size == PointerSize::k64) {
2869 DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64);
2870 } else {
2871 DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64);
2872 }
2873 }
2874
DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,TimingLogger * logger)2875 void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2876 TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) {
2877 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger);
2878 DCHECK(!spaces.empty());
2879 size_t num_spaces = spaces.size();
2880 const ImageHeader& primary_header = spaces.front()->GetImageHeader();
2881 size_t primary_image_count = primary_header.GetImageSpaceCount();
2882 size_t primary_image_component_count = primary_header.GetComponentCount();
2883 DCHECK_LE(primary_image_count, num_spaces);
2884 // The primary boot image can be generated with `--single-image` on device, when generated
2885 // in-memory or with odrefresh.
2886 DCHECK(primary_image_count == primary_image_component_count || primary_image_count == 1);
2887 size_t component_count = primary_image_component_count;
2888 size_t space_pos = primary_image_count;
2889 while (space_pos != num_spaces) {
2890 const ImageHeader& current_header = spaces[space_pos]->GetImageHeader();
2891 size_t image_space_count = current_header.GetImageSpaceCount();
2892 DCHECK_LE(image_space_count, num_spaces - space_pos);
2893 size_t dependency_component_count = current_header.GetBootImageComponentCount();
2894 DCHECK_LE(dependency_component_count, component_count);
2895 if (dependency_component_count < component_count) {
2896 // There shall be no duplicate strings with the components that this space depends on.
2897 // Find the end of the dependencies, i.e. start of non-dependency images.
2898 size_t start_component_count = primary_image_component_count;
2899 size_t start_pos = primary_image_count;
2900 while (start_component_count != dependency_component_count) {
2901 const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader();
2902 DCHECK_LE(dependency_header.GetComponentCount(),
2903 dependency_component_count - start_component_count);
2904 start_component_count += dependency_header.GetComponentCount();
2905 start_pos += dependency_header.GetImageSpaceCount();
2906 }
2907 // Remove duplicates from all intern tables belonging to the chunk.
2908 ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces =
2909 spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos);
2910 SafeMap<mirror::String*, mirror::String*> intern_remap;
2911 for (size_t i = 0; i != image_space_count; ++i) {
2912 ImageSpace* new_space = spaces[space_pos + i].get();
2913 Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap);
2914 }
2915 // Remap string for all spaces belonging to the chunk.
2916 if (!intern_remap.empty()) {
2917 for (size_t i = 0; i != image_space_count; ++i) {
2918 ImageSpace* new_space = spaces[space_pos + i].get();
2919 Loader::RemapInternedStringDuplicates(intern_remap, new_space);
2920 }
2921 }
2922 }
2923 component_count += current_header.GetComponentCount();
2924 space_pos += image_space_count;
2925 }
2926 }
2927
Load(const std::string & image_location,const std::string & image_filename,const std::vector<std::string> & profile_files,android::base::unique_fd art_fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2928 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
2929 const std::string& image_filename,
2930 const std::vector<std::string>& profile_files,
2931 android::base::unique_fd art_fd,
2932 TimingLogger* logger,
2933 /*inout*/MemMap* image_reservation,
2934 /*out*/std::string* error_msg)
2935 REQUIRES_SHARED(Locks::mutator_lock_) {
2936 if (art_fd.get() != -1) {
2937 // No need to lock memfd for which we hold the only file descriptor
2938 // (see locking with ScopedFlock for normal files below).
2939 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2940 << image_location << " for compiled extension";
2941
2942 File image_file(art_fd.release(), image_filename, /*check_usage=*/ false);
2943 std::unique_ptr<ImageSpace> result = Loader::Init(&image_file,
2944 image_filename.c_str(),
2945 image_location.c_str(),
2946 profile_files,
2947 /*allow_direct_mapping=*/ false,
2948 logger,
2949 image_reservation,
2950 error_msg);
2951 // Note: We're closing the image file descriptor here when we destroy
2952 // the `image_file` as we no longer need it.
2953 return result;
2954 }
2955
2956 // Note that we must not use the file descriptor associated with
2957 // ScopedFlock::GetFile to Init the image file. We want the file
2958 // descriptor (and the associated exclusive lock) to be released when
2959 // we leave Create.
2960 ScopedFlock image = LockedFile::Open(image_filename.c_str(),
2961 /*flags=*/ O_RDONLY,
2962 /*block=*/ true,
2963 error_msg);
2964
2965 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2966 << image_location;
2967
2968 // If we are in /system we can assume the image is good. We can also
2969 // assume this if we are using a relocated image (i.e. image checksum
2970 // matches) since this is only different by the offset. We need this to
2971 // make sure that host tests continue to work.
2972 // Since we are the boot image, pass null since we load the oat file from the boot image oat
2973 // file name.
2974 return Loader::Init(image_filename.c_str(),
2975 image_location.c_str(),
2976 logger,
2977 image_reservation,
2978 error_msg);
2979 }
2980
OpenOatFile(ImageSpace * space,android::base::unique_fd vdex_fd,android::base::unique_fd oat_fd,ArrayRef<const std::string> dex_filenames,ArrayRef<const int> dex_fds,bool validate_oat_file,ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2981 bool OpenOatFile(ImageSpace* space,
2982 android::base::unique_fd vdex_fd,
2983 android::base::unique_fd oat_fd,
2984 ArrayRef<const std::string> dex_filenames,
2985 ArrayRef<const int> dex_fds,
2986 bool validate_oat_file,
2987 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,
2988 TimingLogger* logger,
2989 /*inout*/MemMap* image_reservation,
2990 /*out*/std::string* error_msg) {
2991 // VerifyImageAllocations() will be called later in Runtime::Init()
2992 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
2993 // and ArtField::java_lang_reflect_ArtField_, which are used from
2994 // Object::SizeOf() which VerifyImageAllocations() calls, are not
2995 // set yet at this point.
2996 DCHECK(image_reservation != nullptr);
2997 std::unique_ptr<OatFile> oat_file;
2998 {
2999 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
3000 std::string oat_filename =
3001 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
3002 std::string oat_location =
3003 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
3004
3005 DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1);
3006 if (vdex_fd.get() == -1) {
3007 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
3008 oat_filename,
3009 oat_location,
3010 executable_,
3011 /*low_4gb=*/ false,
3012 dex_filenames,
3013 dex_fds,
3014 image_reservation,
3015 error_msg));
3016 } else {
3017 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
3018 vdex_fd.get(),
3019 oat_fd.get(),
3020 oat_location,
3021 executable_,
3022 /*low_4gb=*/ false,
3023 dex_filenames,
3024 dex_fds,
3025 image_reservation,
3026 error_msg));
3027 // We no longer need the file descriptors and they will be closed by
3028 // the unique_fd destructor when we leave this function.
3029 }
3030
3031 if (oat_file == nullptr) {
3032 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
3033 oat_filename.c_str(),
3034 space->GetName(),
3035 error_msg->c_str());
3036 return false;
3037 }
3038 const ImageHeader& image_header = space->GetImageHeader();
3039 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
3040 uint32_t image_oat_checksum = image_header.GetOatChecksum();
3041 if (oat_checksum != image_oat_checksum) {
3042 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
3043 " 0x%x in image %s",
3044 oat_checksum,
3045 image_oat_checksum,
3046 space->GetName());
3047 return false;
3048 }
3049 const char* oat_boot_class_path =
3050 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
3051 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
3052 const char* oat_boot_class_path_checksums =
3053 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
3054 oat_boot_class_path_checksums =
3055 (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : "";
3056 size_t component_count = image_header.GetComponentCount();
3057 if (component_count == 0u) {
3058 if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) {
3059 *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s"
3060 " in image %s",
3061 oat_boot_class_path,
3062 oat_boot_class_path_checksums,
3063 space->GetName());
3064 return false;
3065 }
3066 } else if (dependencies.empty()) {
3067 std::string expected_boot_class_path = Join(ArrayRef<const std::string>(
3068 boot_class_path_locations_).SubArray(0u, component_count), ':');
3069 if (expected_boot_class_path != oat_boot_class_path) {
3070 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
3071 "boot class path %s in image %s",
3072 oat_boot_class_path,
3073 expected_boot_class_path.c_str(),
3074 space->GetName());
3075 return false;
3076 }
3077 } else {
3078 std::string local_error_msg;
3079 if (!VerifyBootClassPathChecksums(
3080 oat_boot_class_path_checksums,
3081 oat_boot_class_path,
3082 dependencies,
3083 ArrayRef<const std::string>(boot_class_path_locations_),
3084 ArrayRef<const std::string>(boot_class_path_),
3085 &local_error_msg)) {
3086 *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s",
3087 oat_boot_class_path,
3088 oat_boot_class_path_checksums,
3089 space->GetName(),
3090 local_error_msg.c_str());
3091 return false;
3092 }
3093 }
3094 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
3095 CHECK(image_header.GetOatDataBegin() != nullptr);
3096 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
3097 if (oat_file->Begin() != oat_data_begin) {
3098 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
3099 " %p v. %p",
3100 oat_filename.c_str(),
3101 space->GetName(),
3102 oat_file->Begin(),
3103 oat_data_begin);
3104 return false;
3105 }
3106 }
3107 if (validate_oat_file) {
3108 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
3109 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
3110 DCHECK(!error_msg->empty());
3111 return false;
3112 }
3113 }
3114 space->oat_file_ = std::move(oat_file);
3115 space->oat_file_non_owned_ = space->oat_file_.get();
3116 return true;
3117 }
3118
LoadComponents(const BootImageLayout::ImageChunk & chunk,bool validate_oat_file,size_t max_image_space_dependencies,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * spaces,MemMap * image_reservation,std::string * error_msg)3119 bool LoadComponents(const BootImageLayout::ImageChunk& chunk,
3120 bool validate_oat_file,
3121 size_t max_image_space_dependencies,
3122 TimingLogger* logger,
3123 /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces,
3124 /*inout*/MemMap* image_reservation,
3125 /*out*/std::string* error_msg)
3126 REQUIRES_SHARED(Locks::mutator_lock_) {
3127 // Make sure we destroy the spaces we created if we're returning an error.
3128 // Note that this can unmap part of the original `image_reservation`.
3129 class Guard {
3130 public:
3131 explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in)
3132 : spaces_(spaces_in), committed_(spaces_->size()) {}
3133 void Commit() {
3134 DCHECK_LT(committed_, spaces_->size());
3135 committed_ = spaces_->size();
3136 }
3137 ~Guard() {
3138 DCHECK_LE(committed_, spaces_->size());
3139 spaces_->resize(committed_);
3140 }
3141 private:
3142 std::vector<std::unique_ptr<ImageSpace>>* const spaces_;
3143 size_t committed_;
3144 };
3145 Guard guard(spaces);
3146
3147 bool is_extension = (chunk.start_index != 0u);
3148 DCHECK_NE(spaces->empty(), is_extension);
3149 if (max_image_space_dependencies < chunk.boot_image_component_count) {
3150 DCHECK(is_extension);
3151 *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u",
3152 boot_class_path_locations_[chunk.start_index].c_str(),
3153 max_image_space_dependencies,
3154 chunk.boot_image_component_count);
3155 return false;
3156 }
3157 ArrayRef<const std::string> requested_bcp_locations =
3158 ArrayRef<const std::string>(boot_class_path_locations_).SubArray(
3159 chunk.start_index, chunk.image_space_count);
3160 std::vector<std::string> locations =
3161 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension);
3162 std::vector<std::string> filenames =
3163 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension);
3164 DCHECK_EQ(locations.size(), filenames.size());
3165 size_t max_dependency_count = spaces->size();
3166 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3167 android::base::unique_fd image_fd;
3168 if (chunk.art_fd.get() >= 0) {
3169 DCHECK_EQ(locations.size(), 1u);
3170 image_fd = std::move(chunk.art_fd);
3171 } else {
3172 size_t pos = chunk.start_index + i;
3173 int arg_image_fd = pos < boot_class_path_image_fds_.size() ? boot_class_path_image_fds_[pos]
3174 : -1;
3175 if (arg_image_fd >= 0) {
3176 image_fd.reset(DupCloexec(arg_image_fd));
3177 }
3178 }
3179 spaces->push_back(Load(locations[i],
3180 filenames[i],
3181 chunk.profile_files,
3182 std::move(image_fd),
3183 logger,
3184 image_reservation,
3185 error_msg));
3186 const ImageSpace* space = spaces->back().get();
3187 if (space == nullptr) {
3188 return false;
3189 }
3190 uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u;
3191 uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u;
3192 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
3193 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
3194 return false;
3195 }
3196 const ImageHeader& header = space->GetImageHeader();
3197 if (i == 0 && (chunk.checksum != header.GetImageChecksum() ||
3198 chunk.image_space_count != header.GetImageSpaceCount() ||
3199 chunk.boot_image_component_count != header.GetBootImageComponentCount() ||
3200 chunk.boot_image_checksum != header.GetBootImageChecksum() ||
3201 chunk.boot_image_size != header.GetBootImageSize())) {
3202 *error_msg = StringPrintf("Image header modified since previously read from %s; "
3203 "checksum: 0x%08x -> 0x%08x,"
3204 "image_space_count: %u -> %u"
3205 "boot_image_component_count: %u -> %u, "
3206 "boot_image_checksum: 0x%08x -> 0x%08x"
3207 "boot_image_size: 0x%08x -> 0x%08x",
3208 space->GetImageFilename().c_str(),
3209 chunk.checksum,
3210 chunk.image_space_count,
3211 header.GetImageSpaceCount(),
3212 header.GetImageChecksum(),
3213 chunk.boot_image_component_count,
3214 header.GetBootImageComponentCount(),
3215 chunk.boot_image_checksum,
3216 header.GetBootImageChecksum(),
3217 chunk.boot_image_size,
3218 header.GetBootImageSize());
3219 return false;
3220 }
3221 }
3222 DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count);
3223 size_t dependency_count = 0;
3224 size_t dependency_component_count = 0;
3225 while (dependency_component_count < chunk.boot_image_component_count &&
3226 dependency_count < max_dependency_count) {
3227 const ImageHeader& current_header = (*spaces)[dependency_count]->GetImageHeader();
3228 dependency_component_count += current_header.GetComponentCount();
3229 dependency_count += current_header.GetImageSpaceCount();
3230 }
3231 if (dependency_component_count != chunk.boot_image_component_count) {
3232 *error_msg = StringPrintf(
3233 "Unable to find dependencies from image spaces; boot_image_component_count: %u",
3234 chunk.boot_image_component_count);
3235 return false;
3236 }
3237 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies =
3238 ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray(
3239 /*pos=*/ 0u, dependency_count);
3240 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3241 ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get();
3242 size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u;
3243
3244 size_t pos = chunk.start_index + i;
3245 auto boot_class_path_fds = boot_class_path_fds_.empty() ? ArrayRef<const int>()
3246 : boot_class_path_fds_.SubArray(/*pos=*/ pos, bcp_chunk_size);
3247
3248 // Select vdex and oat FD if any exists.
3249 android::base::unique_fd vdex_fd;
3250 android::base::unique_fd oat_fd;
3251 if (chunk.vdex_fd.get() >= 0) {
3252 DCHECK_EQ(locations.size(), 1u);
3253 vdex_fd = std::move(chunk.vdex_fd);
3254 } else {
3255 int arg_vdex_fd = pos < boot_class_path_vdex_fds_.size() ? boot_class_path_vdex_fds_[pos]
3256 : -1;
3257 if (arg_vdex_fd >= 0) {
3258 vdex_fd.reset(DupCloexec(arg_vdex_fd));
3259 }
3260 }
3261 if (chunk.oat_fd.get() >= 0) {
3262 DCHECK_EQ(locations.size(), 1u);
3263 oat_fd = std::move(chunk.oat_fd);
3264 } else {
3265 int arg_oat_fd = pos < boot_class_path_oat_fds_.size() ? boot_class_path_oat_fds_[pos]
3266 : -1;
3267 if (arg_oat_fd >= 0) {
3268 oat_fd.reset(DupCloexec(arg_oat_fd));
3269 }
3270 }
3271
3272 if (!OpenOatFile(space,
3273 std::move(vdex_fd),
3274 std::move(oat_fd),
3275 boot_class_path_.SubArray(/*pos=*/ pos, bcp_chunk_size),
3276 boot_class_path_fds,
3277 validate_oat_file,
3278 dependencies,
3279 logger,
3280 image_reservation,
3281 error_msg)) {
3282 return false;
3283 }
3284 }
3285
3286 guard.Commit();
3287 return true;
3288 }
3289
ReserveBootImageMemory(uint8_t * addr,uint32_t reservation_size,std::string * error_msg)3290 MemMap ReserveBootImageMemory(uint8_t* addr,
3291 uint32_t reservation_size,
3292 /*out*/std::string* error_msg) {
3293 DCHECK_ALIGNED(reservation_size, kPageSize);
3294 DCHECK_ALIGNED(addr, kPageSize);
3295 return MemMap::MapAnonymous("Boot image reservation",
3296 addr,
3297 reservation_size,
3298 PROT_NONE,
3299 /*low_4gb=*/ true,
3300 /*reuse=*/ false,
3301 /*reservation=*/ nullptr,
3302 error_msg);
3303 }
3304
RemapExtraReservation(size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)3305 bool RemapExtraReservation(size_t extra_reservation_size,
3306 /*inout*/MemMap* image_reservation,
3307 /*out*/MemMap* extra_reservation,
3308 /*out*/std::string* error_msg) {
3309 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3310 DCHECK(!extra_reservation->IsValid());
3311 size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u;
3312 if (extra_reservation_size != expected_size) {
3313 *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu",
3314 extra_reservation_size,
3315 expected_size);
3316 return false;
3317 }
3318 if (extra_reservation_size != 0u) {
3319 DCHECK(image_reservation->IsValid());
3320 DCHECK_EQ(extra_reservation_size, image_reservation->Size());
3321 *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(),
3322 "Boot image extra reservation",
3323 PROT_NONE,
3324 error_msg);
3325 if (!extra_reservation->IsValid()) {
3326 return false;
3327 }
3328 }
3329 DCHECK(!image_reservation->IsValid());
3330 return true;
3331 }
3332
3333 const ArrayRef<const std::string> boot_class_path_;
3334 const ArrayRef<const std::string> boot_class_path_locations_;
3335 const ArrayRef<const int> boot_class_path_fds_;
3336 const ArrayRef<const int> boot_class_path_image_fds_;
3337 const ArrayRef<const int> boot_class_path_vdex_fds_;
3338 const ArrayRef<const int> boot_class_path_oat_fds_;
3339 const ArrayRef<const std::string> image_locations_;
3340 const InstructionSet image_isa_;
3341 const bool relocate_;
3342 const bool executable_;
3343 bool has_system_;
3344 };
3345
LoadFromSystem(size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3346 bool ImageSpace::BootImageLoader::LoadFromSystem(
3347 size_t extra_reservation_size,
3348 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3349 /*out*/MemMap* extra_reservation,
3350 /*out*/std::string* error_msg) {
3351 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3352
3353 BootImageLayout layout(image_locations_,
3354 boot_class_path_,
3355 boot_class_path_locations_,
3356 boot_class_path_fds_,
3357 boot_class_path_image_fds_,
3358 boot_class_path_vdex_fds_,
3359 boot_class_path_oat_fds_);
3360 if (!layout.LoadFromSystem(image_isa_, error_msg)) {
3361 return false;
3362 }
3363
3364 // Load the image. We don't validate oat files in this stage because they have been validated
3365 // before.
3366 if (!LoadImage(layout,
3367 /*validate_oat_file=*/ false,
3368 extra_reservation_size,
3369 &logger,
3370 boot_image_spaces,
3371 extra_reservation,
3372 error_msg)) {
3373 return false;
3374 }
3375
3376 if (VLOG_IS_ON(image)) {
3377 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
3378 << *boot_image_spaces->front();
3379 logger.Dump(LOG_STREAM(INFO));
3380 }
3381 return true;
3382 }
3383
IsBootClassPathOnDisk(InstructionSet image_isa)3384 bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) {
3385 Runtime* runtime = Runtime::Current();
3386 BootImageLayout layout(ArrayRef<const std::string>(runtime->GetImageLocations()),
3387 ArrayRef<const std::string>(runtime->GetBootClassPath()),
3388 ArrayRef<const std::string>(runtime->GetBootClassPathLocations()),
3389 ArrayRef<const int>(runtime->GetBootClassPathFds()),
3390 ArrayRef<const int>(runtime->GetBootClassPathImageFds()),
3391 ArrayRef<const int>(runtime->GetBootClassPathVdexFds()),
3392 ArrayRef<const int>(runtime->GetBootClassPathOatFds()));
3393 const std::string image_location = layout.GetPrimaryImageLocation();
3394 std::unique_ptr<ImageHeader> image_header;
3395 std::string error_msg;
3396
3397 std::string system_filename;
3398 bool has_system = false;
3399
3400 if (FindImageFilename(image_location.c_str(),
3401 image_isa,
3402 &system_filename,
3403 &has_system)) {
3404 DCHECK(has_system);
3405 image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg);
3406 }
3407
3408 return image_header != nullptr;
3409 }
3410
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::vector<int> & boot_class_path_fds,const std::vector<int> & boot_class_path_image_fds,const std::vector<int> & boot_class_path_vdex_fds,const std::vector<int> & boot_class_path_odex_fds,const std::vector<std::string> & image_locations,const InstructionSet image_isa,bool relocate,bool executable,size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)3411 bool ImageSpace::LoadBootImage(
3412 const std::vector<std::string>& boot_class_path,
3413 const std::vector<std::string>& boot_class_path_locations,
3414 const std::vector<int>& boot_class_path_fds,
3415 const std::vector<int>& boot_class_path_image_fds,
3416 const std::vector<int>& boot_class_path_vdex_fds,
3417 const std::vector<int>& boot_class_path_odex_fds,
3418 const std::vector<std::string>& image_locations,
3419 const InstructionSet image_isa,
3420 bool relocate,
3421 bool executable,
3422 size_t extra_reservation_size,
3423 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3424 /*out*/MemMap* extra_reservation) {
3425 ScopedTrace trace(__FUNCTION__);
3426
3427 DCHECK(boot_image_spaces != nullptr);
3428 DCHECK(boot_image_spaces->empty());
3429 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3430 DCHECK(extra_reservation != nullptr);
3431 DCHECK_NE(image_isa, InstructionSet::kNone);
3432
3433 if (image_locations.empty()) {
3434 return false;
3435 }
3436
3437 BootImageLoader loader(boot_class_path,
3438 boot_class_path_locations,
3439 boot_class_path_fds,
3440 boot_class_path_image_fds,
3441 boot_class_path_vdex_fds,
3442 boot_class_path_odex_fds,
3443 image_locations,
3444 image_isa,
3445 relocate,
3446 executable);
3447 loader.FindImageFiles();
3448
3449 // Collect all the errors.
3450 std::vector<std::string> error_msgs;
3451
3452 std::string error_msg;
3453 if (loader.LoadFromSystem(
3454 extra_reservation_size, boot_image_spaces, extra_reservation, &error_msg)) {
3455 return true;
3456 }
3457 error_msgs.push_back(error_msg);
3458
3459 std::ostringstream oss;
3460 bool first = true;
3461 for (const auto& msg : error_msgs) {
3462 if (first) {
3463 first = false;
3464 } else {
3465 oss << "\n ";
3466 }
3467 oss << msg;
3468 }
3469
3470 LOG(ERROR) << "Could not create image space with image file '"
3471 << Join(image_locations, kComponentSeparator) << "'. Attempting to fall back to imageless "
3472 << "running. Error was: " << oss.str();
3473
3474 return false;
3475 }
3476
~ImageSpace()3477 ImageSpace::~ImageSpace() {
3478 // Everything done by member destructors. Classes forward-declared in header are now defined.
3479 }
3480
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)3481 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
3482 const OatFile* oat_file,
3483 std::string* error_msg) {
3484 // Note: The oat file has already been validated.
3485 const std::vector<ImageSpace*>& boot_image_spaces =
3486 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3487 return CreateFromAppImage(image,
3488 oat_file,
3489 ArrayRef<ImageSpace* const>(boot_image_spaces),
3490 error_msg);
3491 }
3492
CreateFromAppImage(const char * image,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)3493 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(
3494 const char* image,
3495 const OatFile* oat_file,
3496 ArrayRef<ImageSpace* const> boot_image_spaces,
3497 std::string* error_msg) {
3498 return Loader::InitAppImage(image,
3499 image,
3500 oat_file,
3501 boot_image_spaces,
3502 error_msg);
3503 }
3504
GetOatFile() const3505 const OatFile* ImageSpace::GetOatFile() const {
3506 return oat_file_non_owned_;
3507 }
3508
ReleaseOatFile()3509 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
3510 CHECK(oat_file_ != nullptr);
3511 return std::move(oat_file_);
3512 }
3513
Dump(std::ostream & os) const3514 void ImageSpace::Dump(std::ostream& os) const {
3515 os << GetType()
3516 << " begin=" << reinterpret_cast<void*>(Begin())
3517 << ",end=" << reinterpret_cast<void*>(End())
3518 << ",size=" << PrettySize(Size())
3519 << ",name=\"" << GetName() << "\"]";
3520 }
3521
ValidateApexVersions(const OatFile & oat_file,std::string * error_msg)3522 bool ImageSpace::ValidateApexVersions(const OatFile& oat_file, std::string* error_msg) {
3523 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3524 if (oat_file.GetOatHeader().GetKeyValueStoreSize() == 0) {
3525 return true;
3526 }
3527
3528 // The OAT files in the ART APEX is built on host, so they don't have the right APEX versions. It
3529 // is safe to assume that they are always up-to-date because they are shipped along with the
3530 // runtime and the dex files.
3531 if (kIsTargetAndroid && android::base::StartsWith(oat_file.GetLocation(), GetArtRoot())) {
3532 return true;
3533 }
3534
3535 const char* oat_apex_versions =
3536 oat_file.GetOatHeader().GetStoreValueByKey(OatHeader::kApexVersionsKey);
3537 if (oat_apex_versions == nullptr) {
3538 *error_msg = StringPrintf("ValidateApexVersions failed to get APEX versions from oat file '%s'",
3539 oat_file.GetLocation().c_str());
3540 return false;
3541 }
3542 // For a boot image, it can be generated from a subset of the bootclasspath.
3543 // For an app image, some dex files get compiled with a subset of the bootclasspath.
3544 // For such cases, the OAT APEX versions will be a prefix of the runtime APEX versions.
3545 if (!android::base::StartsWith(Runtime::Current()->GetApexVersions(), oat_apex_versions)) {
3546 *error_msg = StringPrintf(
3547 "ValidateApexVersions found APEX versions mismatch between oat file '%s' and the runtime "
3548 "(Oat file: '%s', Runtime: '%s')",
3549 oat_file.GetLocation().c_str(),
3550 oat_apex_versions,
3551 Runtime::Current()->GetApexVersions().c_str());
3552 return false;
3553 }
3554 return true;
3555 }
3556
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)3557 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
3558 return ValidateOatFile(oat_file, error_msg, ArrayRef<const std::string>(), ArrayRef<const int>());
3559 }
3560
ValidateOatFile(const OatFile & oat_file,std::string * error_msg,ArrayRef<const std::string> dex_filenames,ArrayRef<const int> dex_fds)3561 bool ImageSpace::ValidateOatFile(const OatFile& oat_file,
3562 std::string* error_msg,
3563 ArrayRef<const std::string> dex_filenames,
3564 ArrayRef<const int> dex_fds) {
3565 if (!ValidateApexVersions(oat_file, error_msg)) {
3566 return false;
3567 }
3568
3569 const ArtDexFileLoader dex_file_loader;
3570 size_t dex_file_index = 0;
3571 for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
3572 // Skip multidex locations - These will be checked when we visit their
3573 // corresponding primary non-multidex location.
3574 if (DexFileLoader::IsMultiDexLocation(oat_dex_file->GetDexFileLocation().c_str())) {
3575 continue;
3576 }
3577
3578 DCHECK(dex_filenames.empty() || dex_file_index < dex_filenames.size());
3579 const std::string& dex_file_location =
3580 dex_filenames.empty() ? oat_dex_file->GetDexFileLocation() : dex_filenames[dex_file_index];
3581 int dex_fd = dex_file_index < dex_fds.size() ? dex_fds[dex_file_index] : -1;
3582 dex_file_index++;
3583
3584 std::vector<uint32_t> checksums;
3585 std::vector<std::string> dex_locations_ignored;
3586 if (!dex_file_loader.GetMultiDexChecksums(
3587 dex_file_location.c_str(), &checksums, &dex_locations_ignored, error_msg, dex_fd)) {
3588 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
3589 "referenced by oat file %s: %s",
3590 dex_file_location.c_str(),
3591 oat_file.GetLocation().c_str(),
3592 error_msg->c_str());
3593 return false;
3594 }
3595 CHECK(!checksums.empty());
3596 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
3597 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3598 "'%s' and dex file '%s' (0x%x != 0x%x)",
3599 oat_file.GetLocation().c_str(),
3600 dex_file_location.c_str(),
3601 oat_dex_file->GetDexFileLocationChecksum(),
3602 checksums[0]);
3603 return false;
3604 }
3605
3606 // Verify checksums for any related multidex entries.
3607 for (size_t i = 1; i < checksums.size(); i++) {
3608 std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
3609 i,
3610 dex_file_location.c_str());
3611 const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
3612 nullptr,
3613 error_msg);
3614 if (multi_dex == nullptr) {
3615 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
3616 oat_file.GetLocation().c_str(),
3617 multi_dex_location.c_str());
3618 return false;
3619 }
3620
3621 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
3622 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3623 "'%s' and dex file '%s' (0x%x != 0x%x)",
3624 oat_file.GetLocation().c_str(),
3625 multi_dex_location.c_str(),
3626 multi_dex->GetDexFileLocationChecksum(),
3627 checksums[i]);
3628 return false;
3629 }
3630 }
3631 }
3632 return true;
3633 }
3634
GetBootClassPathChecksums(ArrayRef<ImageSpace * const> image_spaces,ArrayRef<const DexFile * const> boot_class_path)3635 std::string ImageSpace::GetBootClassPathChecksums(
3636 ArrayRef<ImageSpace* const> image_spaces,
3637 ArrayRef<const DexFile* const> boot_class_path) {
3638 DCHECK(!boot_class_path.empty());
3639 size_t bcp_pos = 0u;
3640 std::string boot_image_checksum;
3641
3642 for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) {
3643 const ImageSpace* main_space = image_spaces[image_pos];
3644 // Caller must make sure that the image spaces correspond to the head of the BCP.
3645 DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u);
3646 DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(),
3647 boot_class_path[bcp_pos]->GetLocation());
3648 const ImageHeader& current_header = main_space->GetImageHeader();
3649 uint32_t image_space_count = current_header.GetImageSpaceCount();
3650 DCHECK_NE(image_space_count, 0u);
3651 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3652 if (image_pos != 0u) {
3653 boot_image_checksum += ':';
3654 }
3655 uint32_t component_count = current_header.GetComponentCount();
3656 AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum);
3657 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3658 const ImageSpace* space = image_spaces[image_pos + space_index];
3659 const OatFile* oat_file = space->oat_file_non_owned_;
3660 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3661 if (kIsDebugBuild) {
3662 CHECK_NE(num_dex_files, 0u);
3663 CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos);
3664 for (size_t i = 0; i != num_dex_files; ++i) {
3665 CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(),
3666 boot_class_path[bcp_pos + i]->GetLocation());
3667 }
3668 }
3669 bcp_pos += num_dex_files;
3670 }
3671 image_pos += image_space_count;
3672 }
3673
3674 ArrayRef<const DexFile* const> boot_class_path_tail =
3675 ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos);
3676 DCHECK(boot_class_path_tail.empty() ||
3677 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
3678 for (const DexFile* dex_file : boot_class_path_tail) {
3679 if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
3680 if (!boot_image_checksum.empty()) {
3681 boot_image_checksum += ':';
3682 }
3683 boot_image_checksum += kDexFileChecksumPrefix;
3684 }
3685 StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
3686 }
3687 return boot_image_checksum;
3688 }
3689
GetNumberOfComponents(ArrayRef<ImageSpace * const> image_spaces)3690 size_t ImageSpace::GetNumberOfComponents(ArrayRef<ImageSpace* const> image_spaces) {
3691 size_t n = 0;
3692 for (auto&& is : image_spaces) {
3693 n += is->GetComponentCount();
3694 }
3695 return n;
3696 }
3697
CheckAndCountBCPComponents(std::string_view oat_boot_class_path,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3698 static size_t CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
3699 ArrayRef<const std::string> boot_class_path,
3700 /*out*/std::string* error_msg) {
3701 // Check that the oat BCP is a prefix of current BCP locations and count components.
3702 size_t component_count = 0u;
3703 std::string_view remaining_bcp(oat_boot_class_path);
3704 bool bcp_ok = false;
3705 for (const std::string& location : boot_class_path) {
3706 if (!StartsWith(remaining_bcp, location)) {
3707 break;
3708 }
3709 remaining_bcp.remove_prefix(location.size());
3710 ++component_count;
3711 if (remaining_bcp.empty()) {
3712 bcp_ok = true;
3713 break;
3714 }
3715 if (!StartsWith(remaining_bcp, ":")) {
3716 break;
3717 }
3718 remaining_bcp.remove_prefix(1u);
3719 }
3720 if (!bcp_ok) {
3721 *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of"
3722 " runtime boot class path (%s)",
3723 std::string(oat_boot_class_path).c_str(),
3724 Join(boot_class_path, ':').c_str());
3725 return static_cast<size_t>(-1);
3726 }
3727 return component_count;
3728 }
3729
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::string> image_locations,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,ArrayRef<const int> boot_class_path_fds,InstructionSet image_isa,std::string * error_msg)3730 bool ImageSpace::VerifyBootClassPathChecksums(std::string_view oat_checksums,
3731 std::string_view oat_boot_class_path,
3732 ArrayRef<const std::string> image_locations,
3733 ArrayRef<const std::string> boot_class_path_locations,
3734 ArrayRef<const std::string> boot_class_path,
3735 ArrayRef<const int> boot_class_path_fds,
3736 InstructionSet image_isa,
3737 /*out*/std::string* error_msg) {
3738 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3739 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3740 return false;
3741 }
3742
3743 DCHECK_EQ(boot_class_path_locations.size(), boot_class_path.size());
3744 size_t bcp_size =
3745 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3746 if (bcp_size == static_cast<size_t>(-1)) {
3747 DCHECK(!error_msg->empty());
3748 return false;
3749 }
3750
3751 size_t bcp_pos = 0u;
3752 if (StartsWith(oat_checksums, "i")) {
3753 // Use only the matching part of the BCP for validation. FDs are optional, so only pass the
3754 // sub-array if provided.
3755 ArrayRef<const int> bcp_fds = boot_class_path_fds.empty()
3756 ? ArrayRef<const int>()
3757 : boot_class_path_fds.SubArray(/*pos=*/ 0u, bcp_size);
3758 BootImageLayout layout(image_locations,
3759 boot_class_path.SubArray(/*pos=*/ 0u, bcp_size),
3760 boot_class_path_locations.SubArray(/*pos=*/ 0u, bcp_size),
3761 bcp_fds,
3762 /*boot_class_path_image_fds=*/ ArrayRef<const int>(),
3763 /*boot_class_path_vdex_fds=*/ ArrayRef<const int>(),
3764 /*boot_class_path_oat_fds=*/ ArrayRef<const int>());
3765 std::string primary_image_location = layout.GetPrimaryImageLocation();
3766 std::string system_filename;
3767 bool has_system = false;
3768 if (!FindImageFilename(primary_image_location.c_str(),
3769 image_isa,
3770 &system_filename,
3771 &has_system)) {
3772 *error_msg = StringPrintf("Unable to find image file for %s and %s",
3773 android::base::Join(image_locations, kComponentSeparator).c_str(),
3774 GetInstructionSetString(image_isa));
3775 return false;
3776 }
3777
3778 DCHECK(has_system);
3779 if (!layout.ValidateFromSystem(image_isa, &oat_checksums, error_msg)) {
3780 return false;
3781 }
3782 bcp_pos = layout.GetNextBcpIndex();
3783 }
3784
3785 for ( ; bcp_pos != bcp_size; ++bcp_pos) {
3786 static_assert(ImageSpace::kDexFileChecksumPrefix == 'd', "Format prefix check.");
3787 if (!StartsWith(oat_checksums, "d")) {
3788 *error_msg = StringPrintf("Missing dex checksums, expected %s to start with 'd'",
3789 std::string(oat_checksums).c_str());
3790 return false;
3791 }
3792 oat_checksums.remove_prefix(1u);
3793
3794 const std::string& bcp_filename = boot_class_path[bcp_pos];
3795 std::vector<uint32_t> checksums;
3796 std::vector<std::string> dex_locations;
3797 const ArtDexFileLoader dex_file_loader;
3798 if (!dex_file_loader.GetMultiDexChecksums(bcp_filename.c_str(),
3799 &checksums,
3800 &dex_locations,
3801 error_msg)) {
3802 return false;
3803 }
3804 DCHECK(!checksums.empty());
3805 for (uint32_t checksum : checksums) {
3806 std::string dex_file_checksum = StringPrintf("/%08x", checksum);
3807 if (!StartsWith(oat_checksums, dex_file_checksum)) {
3808 *error_msg = StringPrintf(
3809 "Dex checksum mismatch for bootclasspath file %s, expected %s to start with %s",
3810 bcp_filename.c_str(),
3811 std::string(oat_checksums).c_str(),
3812 dex_file_checksum.c_str());
3813 return false;
3814 }
3815 oat_checksums.remove_prefix(dex_file_checksum.size());
3816 }
3817 if (bcp_pos + 1u != bcp_size) {
3818 if (!StartsWith(oat_checksums, ":")) {
3819 *error_msg = StringPrintf("Missing ':' separator at start of %s",
3820 std::string(oat_checksums).c_str());
3821 return false;
3822 }
3823 oat_checksums.remove_prefix(1u);
3824 }
3825 }
3826 if (!oat_checksums.empty()) {
3827 *error_msg = StringPrintf("Checksum too long, unexpected tail %s",
3828 std::string(oat_checksums).c_str());
3829 return false;
3830 }
3831 return true;
3832 }
3833
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3834 bool ImageSpace::VerifyBootClassPathChecksums(
3835 std::string_view oat_checksums,
3836 std::string_view oat_boot_class_path,
3837 ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
3838 ArrayRef<const std::string> boot_class_path_locations,
3839 ArrayRef<const std::string> boot_class_path,
3840 /*out*/std::string* error_msg) {
3841 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
3842 DCHECK_GE(boot_class_path_locations.size(), image_spaces.size());
3843 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3844 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3845 return false;
3846 }
3847
3848 size_t oat_bcp_size =
3849 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3850 if (oat_bcp_size == static_cast<size_t>(-1)) {
3851 DCHECK(!error_msg->empty());
3852 return false;
3853 }
3854 const size_t num_image_spaces = image_spaces.size();
3855 size_t dependency_component_count = 0;
3856 for (const std::unique_ptr<ImageSpace>& space : image_spaces) {
3857 dependency_component_count += space->GetComponentCount();
3858 }
3859 if (dependency_component_count != oat_bcp_size) {
3860 *error_msg = StringPrintf("Image header records %s dependencies (%zu) than BCP (%zu)",
3861 dependency_component_count < oat_bcp_size ? "less" : "more",
3862 dependency_component_count,
3863 oat_bcp_size);
3864 return false;
3865 }
3866
3867 // Verify image checksums.
3868 size_t bcp_pos = 0u;
3869 size_t image_pos = 0u;
3870 while (image_pos != num_image_spaces && StartsWith(oat_checksums, "i")) {
3871 // Verify the current image checksum.
3872 const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader();
3873 uint32_t image_space_count = current_header.GetImageSpaceCount();
3874 DCHECK_NE(image_space_count, 0u);
3875 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3876 uint32_t component_count = current_header.GetComponentCount();
3877 uint32_t checksum = current_header.GetImageChecksum();
3878 if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) {
3879 DCHECK(!error_msg->empty());
3880 return false;
3881 }
3882
3883 if (kIsDebugBuild) {
3884 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3885 const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_;
3886 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3887 CHECK_NE(num_dex_files, 0u);
3888 const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation();
3889 CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]);
3890 CHECK(!DexFileLoader::IsMultiDexLocation(main_location.c_str()));
3891 size_t num_base_locations = 1u;
3892 for (size_t i = 1u; i != num_dex_files; ++i) {
3893 if (!DexFileLoader::IsMultiDexLocation(
3894 oat_file->GetOatDexFiles()[i]->GetDexFileLocation().c_str())) {
3895 CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image.
3896 ++num_base_locations;
3897 }
3898 }
3899 if (image_space_count == 1u) {
3900 CHECK_EQ(num_base_locations, component_count);
3901 }
3902 }
3903 }
3904
3905 image_pos += image_space_count;
3906 bcp_pos += component_count;
3907
3908 if (!StartsWith(oat_checksums, ":")) {
3909 // Check that we've reached the end of checksums and BCP.
3910 if (!oat_checksums.empty()) {
3911 *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.",
3912 std::string(oat_checksums).c_str());
3913 return false;
3914 }
3915 if (bcp_pos != oat_bcp_size) {
3916 *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)",
3917 bcp_pos,
3918 oat_bcp_size);
3919 return false;
3920 }
3921 return true;
3922 }
3923 oat_checksums.remove_prefix(1u);
3924 }
3925
3926 // We do not allow dependencies of extensions on dex files. That would require
3927 // interleaving the loading of the images with opening the other BCP dex files.
3928 return false;
3929 }
3930
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location,bool boot_image_extension)3931 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
3932 ArrayRef<const std::string> dex_locations,
3933 const std::string& image_location,
3934 bool boot_image_extension) {
3935 DCHECK(!dex_locations.empty());
3936
3937 // Find the path.
3938 size_t last_slash = image_location.rfind('/');
3939 CHECK_NE(last_slash, std::string::npos);
3940
3941 // We also need to honor path components that were encoded through '@'. Otherwise the loading
3942 // code won't be able to find the images.
3943 if (image_location.find('@', last_slash) != std::string::npos) {
3944 last_slash = image_location.rfind('@');
3945 }
3946
3947 // Find the dot separating the primary image name from the extension.
3948 size_t last_dot = image_location.rfind('.');
3949 // Extract the extension and base (the path and primary image name).
3950 std::string extension;
3951 std::string base = image_location;
3952 if (last_dot != std::string::npos && last_dot > last_slash) {
3953 extension = image_location.substr(last_dot); // Including the dot.
3954 base.resize(last_dot);
3955 }
3956 // For non-empty primary image name, add '-' to the `base`.
3957 if (last_slash + 1u != base.size()) {
3958 base += '-';
3959 }
3960
3961 std::vector<std::string> locations;
3962 locations.reserve(dex_locations.size());
3963 size_t start_index = 0u;
3964 if (!boot_image_extension) {
3965 start_index = 1u;
3966 locations.push_back(image_location);
3967 }
3968
3969 // Now create the other names. Use a counted loop to skip the first one if needed.
3970 for (size_t i = start_index; i < dex_locations.size(); ++i) {
3971 // Replace path with `base` (i.e. image path and prefix) and replace the original
3972 // extension (if any) with `extension`.
3973 std::string name = dex_locations[i];
3974 size_t last_dex_slash = name.rfind('/');
3975 if (last_dex_slash != std::string::npos) {
3976 name = name.substr(last_dex_slash + 1);
3977 }
3978 size_t last_dex_dot = name.rfind('.');
3979 if (last_dex_dot != std::string::npos) {
3980 name.resize(last_dex_dot);
3981 }
3982 locations.push_back(base + name + extension);
3983 }
3984 return locations;
3985 }
3986
DumpSections(std::ostream & os) const3987 void ImageSpace::DumpSections(std::ostream& os) const {
3988 const uint8_t* base = Begin();
3989 const ImageHeader& header = GetImageHeader();
3990 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
3991 auto section_type = static_cast<ImageHeader::ImageSections>(i);
3992 const ImageSection& section = header.GetImageSection(section_type);
3993 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
3994 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
3995 }
3996 }
3997
ReleaseMetadata()3998 void ImageSpace::ReleaseMetadata() {
3999 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
4000 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
4001 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
4002 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
4003 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
4004 if (page_begin < page_end) {
4005 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
4006 }
4007 }
4008
4009 } // namespace space
4010 } // namespace gc
4011 } // namespace art
4012