• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NEWINOGRADCONVOLUTIONLAYER_H
25 #define ARM_COMPUTE_NEWINOGRADCONVOLUTIONLAYER_H
26 
27 #include "arm_compute/runtime/IFunction.h"
28 
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/runtime/CPP/functions/CPPPermute.h"
31 #include "arm_compute/runtime/MemoryGroup.h"
32 #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
33 #include "arm_compute/runtime/NEON/functions/NEGEMM.h"
34 
35 #include "arm_compute/runtime/Tensor.h"
36 
37 #include <memory>
38 
39 namespace arm_compute
40 {
41 // Forward declarations
42 class ITensor;
43 class ICPPKernel;
44 
45 /** Basic function to simulate a convolution layer. This function calls the following NEON kernels:
46  * -# @ref NEWinogradLayerTransformWeightsKernel (executed only once in the first call to the run() method )
47  * -# @ref NEWinogradLayerTransformInputKernel
48  * -# @ref NEWinogradLayerTransformOutputKernel
49  * -# @ref NEGEMMAssemblyDispatch
50  * -# @ref CPPPermute (three times: weights, input and output)
51  *
52  * @note  Some Winograd configurations (i.e. F(2x2, 5x5), F(4x4, 5x5)) are supported only with enable_fast_math = true
53  */
54 class NEWinogradConvolutionLayer : public IFunction
55 {
56 public:
57     /** Constructor */
58     NEWinogradConvolutionLayer(const std::shared_ptr<IMemoryManager> &memory_manager = nullptr);
59     /** Prevent instances of this class from being moved (As this class contains non movable objects) */
60     NEWinogradConvolutionLayer(NEWinogradConvolutionLayer &&) = delete;
61     /** Prevent instances of this class from being moved (As this class contains non movable objects) */
62     NEWinogradConvolutionLayer &operator=(NEWinogradConvolutionLayer &&) = delete;
63     /** Default destructor */
64     ~NEWinogradConvolutionLayer() = default;
65 
66     /** Set the input and output tensors.
67      *
68      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
69      *                              while every optional dimension from 4 and above represent a batch of inputs.
70      *                              Data types supported: F16/F32.
71      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported: Same as @p input.
72      *                              Currently only 3x3 and 5x5 kernels are supported.
73      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
74      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
75      *                              Data types supported: Same as @p input.
76      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo. Currently only unit strides are supported.
77      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
78      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
79      *                              available which may introduce a drop of accuracy as well. Default is false
80      */
81     void configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info = ActivationLayerInfo(),
82                    bool enable_fast_math = false);
83 
84     // Inherited methods overridden:
85     void run() override;
86     void prepare() override;
87 
88     /** Static function to check if given info will lead to a valid configuration of @ref NEGEMMConvolutionLayer
89      *
90      * @param[in] input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
91      *                             while every optional dimension from 4 and above represent a batch of inputs.
92      *                             Data types supported: F16/F32.
93      * @param[in] weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
94      *                             Currently only 3x3 and 5x5 kernels are supported.
95      * @param[in] biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
96      * @param[in] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
97      *                             Data types supported: Same as @p input.
98      * @param[in] conv_info        Contains padding and stride information described in @ref PadStrideInfo. Currently only unit strides are supported.
99      * @param[in] act_info         (Optional) Activation layer information in case of a fused activation.
100      * @param[in] enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
101      *                              available which may introduce a drop of accuracy as well. Default is false
102      *
103      * @return a status
104      */
105     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
106                            const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
107 
108     /** Prevent instances of this class from being copied (As this class contains pointers) */
109     NEWinogradConvolutionLayer(const NEWinogradConvolutionLayer &) = delete;
110     /** Prevent instances of this class from being copied (As this class contains pointers) */
111     NEWinogradConvolutionLayer &operator=(const NEWinogradConvolutionLayer &) = delete;
112 
113 private:
114     MemoryGroup                 _memory_group;
115     NEGEMM                      _gemm_function;
116     std::unique_ptr<ICPPKernel> _transform_input_kernel;
117     std::unique_ptr<ICPPKernel> _transform_output_kernel;
118     std::unique_ptr<ICPPKernel> _transform_weights_kernel;
119     NEActivationLayer           _activationlayer_function;
120 
121     CPPPermute     _permute_input;
122     CPPPermute     _permute_weights;
123     CPPPermute     _permute_output;
124     Tensor         _input_transformed;
125     Tensor         _output_transformed;
126     Tensor         _input_workspace;
127     Tensor         _output_workspace;
128     Tensor         _kernel_storage;
129     Tensor         _input_nhwc;
130     Tensor         _output_nhwc;
131     Tensor         _weights_hwio;
132     const ITensor *_input;
133     const ITensor *_weights;
134     ITensor       *_output;
135     bool           _is_prepared;
136     bool           _is_activationlayer_enabled;
137 };
138 } // namespace arm_compute
139 #endif /* ARM_COMPUTE_NEWINOGRADCONVOLUTIONLAYER_H */
140