1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <DisplayHardware/Hal.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/DisplayColorProfile.h>
20 #include <compositionengine/LayerFECompositionState.h>
21 #include <compositionengine/Output.h>
22 #include <compositionengine/impl/HwcBufferCache.h>
23 #include <compositionengine/impl/OutputCompositionState.h>
24 #include <compositionengine/impl/OutputLayer.h>
25 #include <compositionengine/impl/OutputLayerCompositionState.h>
26 #include <cstdint>
27 #include "system/graphics-base-v1.0.h"
28
29 #include <ui/DataspaceUtils.h>
30
31 // TODO(b/129481165): remove the #pragma below and fix conversion issues
32 #pragma clang diagnostic push
33 #pragma clang diagnostic ignored "-Wconversion"
34
35 #include "DisplayHardware/HWComposer.h"
36
37 // TODO(b/129481165): remove the #pragma below and fix conversion issues
38 #pragma clang diagnostic pop // ignored "-Wconversion"
39
40 using aidl::android::hardware::graphics::composer3::Composition;
41
42 namespace android::compositionengine {
43
44 OutputLayer::~OutputLayer() = default;
45
46 namespace impl {
47
48 namespace {
49
reduce(const FloatRect & win,const Region & exclude)50 FloatRect reduce(const FloatRect& win, const Region& exclude) {
51 if (CC_LIKELY(exclude.isEmpty())) {
52 return win;
53 }
54 // Convert through Rect (by rounding) for lack of FloatRegion
55 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
56 }
57
58 } // namespace
59
createOutputLayer(const compositionengine::Output & output,const sp<compositionengine::LayerFE> & layerFE)60 std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output,
61 const sp<compositionengine::LayerFE>& layerFE) {
62 return createOutputLayerTemplated<OutputLayer>(output, layerFE);
63 }
64
65 OutputLayer::~OutputLayer() = default;
66
setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer)67 void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) {
68 auto& state = editState();
69 if (hwcLayer) {
70 state.hwc.emplace(std::move(hwcLayer));
71 } else {
72 state.hwc.reset();
73 }
74 }
75
calculateInitialCrop() const76 Rect OutputLayer::calculateInitialCrop() const {
77 const auto& layerState = *getLayerFE().getCompositionState();
78
79 // apply the projection's clipping to the window crop in
80 // layerstack space, and convert-back to layer space.
81 // if there are no window scaling involved, this operation will map to full
82 // pixels in the buffer.
83
84 FloatRect activeCropFloat =
85 reduce(layerState.geomLayerBounds, layerState.transparentRegionHint);
86
87 const Rect& viewport = getOutput().getState().layerStackSpace.getContent();
88 const ui::Transform& layerTransform = layerState.geomLayerTransform;
89 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
90 // Transform to screen space.
91 activeCropFloat = layerTransform.transform(activeCropFloat);
92 activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
93 // Back to layer space to work with the content crop.
94 activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
95
96 // This needs to be here as transform.transform(Rect) computes the
97 // transformed rect and then takes the bounding box of the result before
98 // returning. This means
99 // transform.inverse().transform(transform.transform(Rect)) != Rect
100 // in which case we need to make sure the final rect is clipped to the
101 // display bounds.
102 Rect activeCrop{activeCropFloat};
103 if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
104 activeCrop.clear();
105 }
106 return activeCrop;
107 }
108
calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const109 FloatRect OutputLayer::calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const {
110 const auto& layerState = *getLayerFE().getCompositionState();
111
112 if (!layerState.geomUsesSourceCrop) {
113 return {};
114 }
115
116 // the content crop is the area of the content that gets scaled to the
117 // layer's size. This is in buffer space.
118 FloatRect crop = layerState.geomContentCrop.toFloatRect();
119
120 // In addition there is a WM-specified crop we pull from our drawing state.
121 Rect activeCrop = calculateInitialCrop();
122 const Rect& bufferSize = layerState.geomBufferSize;
123
124 int winWidth = bufferSize.getWidth();
125 int winHeight = bufferSize.getHeight();
126
127 // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
128 // if display frame hasn't been set and the parent is an unbounded layer.
129 if (winWidth < 0 && winHeight < 0) {
130 return crop;
131 }
132
133 // Transform the window crop to match the buffer coordinate system,
134 // which means using the inverse of the current transform set on the
135 // SurfaceFlingerConsumer.
136 uint32_t invTransform = layerState.geomBufferTransform;
137 if (layerState.geomBufferUsesDisplayInverseTransform) {
138 /*
139 * the code below applies the primary display's inverse transform to the
140 * buffer
141 */
142 uint32_t invTransformOrient = internalDisplayRotationFlags;
143 // calculate the inverse transform
144 if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
145 invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
146 }
147 // and apply to the current transform
148 invTransform =
149 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
150 }
151
152 if (invTransform & HAL_TRANSFORM_ROT_90) {
153 // If the activeCrop has been rotate the ends are rotated but not
154 // the space itself so when transforming ends back we can't rely on
155 // a modification of the axes of rotation. To account for this we
156 // need to reorient the inverse rotation in terms of the current
157 // axes of rotation.
158 bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
159 bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
160 if (isHFlipped == isVFlipped) {
161 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
162 }
163 std::swap(winWidth, winHeight);
164 }
165 const Rect winCrop =
166 activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
167
168 // below, crop is intersected with winCrop expressed in crop's coordinate space
169 const float xScale = crop.getWidth() / float(winWidth);
170 const float yScale = crop.getHeight() / float(winHeight);
171
172 const float insetLeft = winCrop.left * xScale;
173 const float insetTop = winCrop.top * yScale;
174 const float insetRight = (winWidth - winCrop.right) * xScale;
175 const float insetBottom = (winHeight - winCrop.bottom) * yScale;
176
177 crop.left += insetLeft;
178 crop.top += insetTop;
179 crop.right -= insetRight;
180 crop.bottom -= insetBottom;
181
182 return crop;
183 }
184
calculateOutputDisplayFrame() const185 Rect OutputLayer::calculateOutputDisplayFrame() const {
186 const auto& layerState = *getLayerFE().getCompositionState();
187 const auto& outputState = getOutput().getState();
188
189 // apply the layer's transform, followed by the display's global transform
190 // here we're guaranteed that the layer's transform preserves rects
191 Region activeTransparentRegion = layerState.transparentRegionHint;
192 const ui::Transform& layerTransform = layerState.geomLayerTransform;
193 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
194 const Rect& bufferSize = layerState.geomBufferSize;
195 Rect activeCrop = layerState.geomCrop;
196 if (!activeCrop.isEmpty() && bufferSize.isValid()) {
197 activeCrop = layerTransform.transform(activeCrop);
198 if (!activeCrop.intersect(outputState.layerStackSpace.getContent(), &activeCrop)) {
199 activeCrop.clear();
200 }
201 activeCrop = inverseLayerTransform.transform(activeCrop, true);
202 // This needs to be here as transform.transform(Rect) computes the
203 // transformed rect and then takes the bounding box of the result before
204 // returning. This means
205 // transform.inverse().transform(transform.transform(Rect)) != Rect
206 // in which case we need to make sure the final rect is clipped to the
207 // display bounds.
208 if (!activeCrop.intersect(bufferSize, &activeCrop)) {
209 activeCrop.clear();
210 }
211 // mark regions outside the crop as transparent
212 activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top));
213 activeTransparentRegion.orSelf(
214 Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight()));
215 activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
216 activeTransparentRegion.orSelf(
217 Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom));
218 }
219
220 // reduce uses a FloatRect to provide more accuracy during the
221 // transformation. We then round upon constructing 'frame'.
222 FloatRect geomLayerBounds = layerState.geomLayerBounds;
223
224 // Some HWCs may clip client composited input to its displayFrame. Make sure
225 // that this does not cut off the shadow.
226 if (layerState.forceClientComposition && layerState.shadowRadius > 0.0f) {
227 const auto outset = layerState.shadowRadius;
228 geomLayerBounds.left -= outset;
229 geomLayerBounds.top -= outset;
230 geomLayerBounds.right += outset;
231 geomLayerBounds.bottom += outset;
232 }
233 Rect frame{layerTransform.transform(reduce(geomLayerBounds, activeTransparentRegion))};
234 if (!frame.intersect(outputState.layerStackSpace.getContent(), &frame)) {
235 frame.clear();
236 }
237 const ui::Transform displayTransform{outputState.transform};
238
239 return displayTransform.transform(frame);
240 }
241
calculateOutputRelativeBufferTransform(uint32_t internalDisplayRotationFlags) const242 uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
243 uint32_t internalDisplayRotationFlags) const {
244 const auto& layerState = *getLayerFE().getCompositionState();
245 const auto& outputState = getOutput().getState();
246
247 /*
248 * Transformations are applied in this order:
249 * 1) buffer orientation/flip/mirror
250 * 2) state transformation (window manager)
251 * 3) layer orientation (screen orientation)
252 * (NOTE: the matrices are multiplied in reverse order)
253 */
254 const ui::Transform& layerTransform = layerState.geomLayerTransform;
255 const ui::Transform displayTransform{outputState.transform};
256 const ui::Transform bufferTransform{layerState.geomBufferTransform};
257 ui::Transform transform(displayTransform * layerTransform * bufferTransform);
258
259 if (layerState.geomBufferUsesDisplayInverseTransform) {
260 /*
261 * We must apply the internal display's inverse transform to the buffer
262 * transform, and not the one for the output this layer is on.
263 */
264 uint32_t invTransform = internalDisplayRotationFlags;
265
266 // calculate the inverse transform
267 if (invTransform & HAL_TRANSFORM_ROT_90) {
268 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
269 }
270
271 /*
272 * Here we cancel out the orientation component of the WM transform.
273 * The scaling and translate components are already included in our bounds
274 * computation so it's enough to just omit it in the composition.
275 * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
276 */
277 transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
278 }
279
280 // this gives us only the "orientation" component of the transform
281 return transform.getOrientation();
282 }
283
updateCompositionState(bool includeGeometry,bool forceClientComposition,ui::Transform::RotationFlags internalDisplayRotationFlags)284 void OutputLayer::updateCompositionState(
285 bool includeGeometry, bool forceClientComposition,
286 ui::Transform::RotationFlags internalDisplayRotationFlags) {
287 const auto* layerFEState = getLayerFE().getCompositionState();
288 if (!layerFEState) {
289 return;
290 }
291
292 const auto& outputState = getOutput().getState();
293 const auto& profile = *getOutput().getDisplayColorProfile();
294 auto& state = editState();
295
296 if (includeGeometry) {
297 // Clear the forceClientComposition flag before it is set for any
298 // reason. Note that since it can be set by some checks below when
299 // updating the geometry state, we only clear it when updating the
300 // geometry since those conditions for forcing client composition won't
301 // go away otherwise.
302 state.forceClientComposition = false;
303
304 state.displayFrame = calculateOutputDisplayFrame();
305 state.sourceCrop = calculateOutputSourceCrop(internalDisplayRotationFlags);
306 state.bufferTransform = static_cast<Hwc2::Transform>(
307 calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
308
309 if ((layerFEState->isSecure && !outputState.isSecure) ||
310 (state.bufferTransform & ui::Transform::ROT_INVALID)) {
311 state.forceClientComposition = true;
312 }
313 }
314
315 // Determine the output dependent dataspace for this layer. If it is
316 // colorspace agnostic, it just uses the dataspace chosen for the output to
317 // avoid the need for color conversion.
318 state.dataspace = layerFEState->isColorspaceAgnostic &&
319 outputState.targetDataspace != ui::Dataspace::UNKNOWN
320 ? outputState.targetDataspace
321 : layerFEState->dataspace;
322
323 // Override the dataspace transfer from 170M to sRGB if the device configuration requests this.
324 // We do this here instead of in buffer info so that dumpsys can still report layers that are
325 // using the 170M transfer. Also we only do this if the colorspace is not agnostic for the
326 // layer, in case the color profile uses a 170M transfer function.
327 if (outputState.treat170mAsSrgb && !layerFEState->isColorspaceAgnostic &&
328 (state.dataspace & HAL_DATASPACE_TRANSFER_MASK) == HAL_DATASPACE_TRANSFER_SMPTE_170M) {
329 state.dataspace = static_cast<ui::Dataspace>(
330 (state.dataspace & HAL_DATASPACE_STANDARD_MASK) |
331 (state.dataspace & HAL_DATASPACE_RANGE_MASK) | HAL_DATASPACE_TRANSFER_SRGB);
332 }
333
334 // For hdr content, treat the white point as the display brightness - HDR content should not be
335 // boosted or dimmed.
336 // If the layer explicitly requests to disable dimming, then don't dim either.
337 if (isHdrDataspace(state.dataspace) ||
338 getOutput().getState().displayBrightnessNits == getOutput().getState().sdrWhitePointNits ||
339 getOutput().getState().displayBrightnessNits == 0.f || !layerFEState->dimmingEnabled) {
340 state.dimmingRatio = 1.f;
341 state.whitePointNits = getOutput().getState().displayBrightnessNits;
342 } else {
343 state.dimmingRatio = std::clamp(getOutput().getState().sdrWhitePointNits /
344 getOutput().getState().displayBrightnessNits,
345 0.f, 1.f);
346 state.whitePointNits = getOutput().getState().sdrWhitePointNits;
347 }
348
349 // These are evaluated every frame as they can potentially change at any
350 // time.
351 if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) ||
352 forceClientComposition) {
353 state.forceClientComposition = true;
354 }
355 }
356
writeStateToHWC(bool includeGeometry,bool skipLayer,uint32_t z,bool zIsOverridden,bool isPeekingThrough)357 void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z,
358 bool zIsOverridden, bool isPeekingThrough) {
359 const auto& state = getState();
360 // Skip doing this if there is no HWC interface
361 if (!state.hwc) {
362 return;
363 }
364
365 auto& hwcLayer = (*state.hwc).hwcLayer;
366 if (!hwcLayer) {
367 ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
368 getLayerFE().getDebugName(), getOutput().getName().c_str());
369 return;
370 }
371
372 const auto* outputIndependentState = getLayerFE().getCompositionState();
373 if (!outputIndependentState) {
374 return;
375 }
376
377 auto requestedCompositionType = outputIndependentState->compositionType;
378
379 if (requestedCompositionType == Composition::SOLID_COLOR && state.overrideInfo.buffer) {
380 // this should never happen, as SOLID_COLOR is skipped from caching, b/230073351
381 requestedCompositionType = Composition::DEVICE;
382 }
383
384 // TODO(b/181172795): We now update geometry for all flattened layers. We should update it
385 // only when the geometry actually changes
386 const bool isOverridden =
387 state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden;
388 const bool prevOverridden = state.hwc->stateOverridden;
389 if (isOverridden || prevOverridden || skipLayer || includeGeometry) {
390 writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z);
391 writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState,
392 skipLayer);
393 }
394
395 writeOutputDependentPerFrameStateToHWC(hwcLayer.get());
396 writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState,
397 requestedCompositionType, skipLayer);
398
399 writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough,
400 skipLayer);
401
402 if (requestedCompositionType == Composition::SOLID_COLOR) {
403 writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState);
404 }
405
406 editState().hwc->stateOverridden = isOverridden;
407 editState().hwc->layerSkipped = skipLayer;
408 }
409
writeOutputDependentGeometryStateToHWC(HWC2::Layer * hwcLayer,Composition requestedCompositionType,uint32_t z)410 void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer,
411 Composition requestedCompositionType,
412 uint32_t z) {
413 const auto& outputDependentState = getState();
414
415 Rect displayFrame = outputDependentState.displayFrame;
416 FloatRect sourceCrop = outputDependentState.sourceCrop;
417
418 if (outputDependentState.overrideInfo.buffer != nullptr) {
419 displayFrame = outputDependentState.overrideInfo.displayFrame;
420 sourceCrop =
421 FloatRect(0.f, 0.f,
422 static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
423 ->getWidth()),
424 static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
425 ->getHeight()));
426 }
427
428 ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top,
429 displayFrame.right, displayFrame.bottom);
430
431 if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) {
432 ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
433 getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right,
434 displayFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
435 }
436
437 if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) {
438 ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
439 "%s (%d)",
440 getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right,
441 sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
442 }
443
444 if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) {
445 ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z,
446 to_string(error).c_str(), static_cast<int32_t>(error));
447 }
448
449 // Solid-color layers and overridden buffers should always use an identity transform.
450 const auto bufferTransform = (requestedCompositionType != Composition::SOLID_COLOR &&
451 getState().overrideInfo.buffer == nullptr)
452 ? outputDependentState.bufferTransform
453 : static_cast<hal::Transform>(0);
454 if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform));
455 error != hal::Error::NONE) {
456 ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(),
457 toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(),
458 static_cast<int32_t>(error));
459 }
460 }
461
writeOutputIndependentGeometryStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)462 void OutputLayer::writeOutputIndependentGeometryStateToHWC(
463 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
464 bool skipLayer) {
465 // If there is a peekThroughLayer, then this layer has a hole in it. We need to use
466 // PREMULTIPLIED so it will peek through.
467 const auto& overrideInfo = getState().overrideInfo;
468 const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer
469 ? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED
470 : outputIndependentState.blendMode;
471 if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) {
472 ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(),
473 toString(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
474 }
475
476 const float alpha = skipLayer
477 ? 0.0f
478 : (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha);
479 ALOGV("Writing alpha %f", alpha);
480
481 if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) {
482 ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha,
483 to_string(error).c_str(), static_cast<int32_t>(error));
484 }
485
486 for (const auto& [name, entry] : outputIndependentState.metadata) {
487 if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value);
488 error != hal::Error::NONE) {
489 ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(),
490 name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
491 }
492 }
493 }
494
writeOutputDependentPerFrameStateToHWC(HWC2::Layer * hwcLayer)495 void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) {
496 const auto& outputDependentState = getState();
497
498 // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry
499 // state and should not change every frame.
500 Region visibleRegion = outputDependentState.overrideInfo.buffer
501 ? Region(outputDependentState.overrideInfo.visibleRegion)
502 : outputDependentState.outputSpaceVisibleRegion;
503 if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) {
504 ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(),
505 to_string(error).c_str(), static_cast<int32_t>(error));
506 visibleRegion.dump(LOG_TAG);
507 }
508
509 if (auto error =
510 hwcLayer->setBlockingRegion(outputDependentState.outputSpaceBlockingRegionHint);
511 error != hal::Error::NONE) {
512 ALOGE("[%s] Failed to set blocking region: %s (%d)", getLayerFE().getDebugName(),
513 to_string(error).c_str(), static_cast<int32_t>(error));
514 outputDependentState.outputSpaceBlockingRegionHint.dump(LOG_TAG);
515 }
516
517 const auto dataspace = outputDependentState.overrideInfo.buffer
518 ? outputDependentState.overrideInfo.dataspace
519 : outputDependentState.dataspace;
520
521 if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) {
522 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace,
523 to_string(error).c_str(), static_cast<int32_t>(error));
524 }
525
526 // Cached layers are not dimmed, which means that composer should attempt to dim.
527 // Note that if the dimming ratio is large, then this may cause the cached layer
528 // to kick back into GPU composition :(
529 // Also note that this assumes that there are no HDR layers that are able to be cached.
530 // Otherwise, this could cause HDR layers to be dimmed twice.
531 const auto dimmingRatio = outputDependentState.overrideInfo.buffer
532 ? (getOutput().getState().displayBrightnessNits != 0.f
533 ? std::clamp(getOutput().getState().sdrWhitePointNits /
534 getOutput().getState().displayBrightnessNits,
535 0.f, 1.f)
536 : 1.f)
537 : outputDependentState.dimmingRatio;
538
539 if (auto error = hwcLayer->setBrightness(dimmingRatio); error != hal::Error::NONE) {
540 ALOGE("[%s] Failed to set brightness %f: %s (%d)", getLayerFE().getDebugName(),
541 dimmingRatio, to_string(error).c_str(), static_cast<int32_t>(error));
542 }
543 }
544
writeOutputIndependentPerFrameStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,Composition compositionType,bool skipLayer)545 void OutputLayer::writeOutputIndependentPerFrameStateToHWC(
546 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
547 Composition compositionType, bool skipLayer) {
548 switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) {
549 case hal::Error::NONE:
550 break;
551 case hal::Error::UNSUPPORTED:
552 editState().forceClientComposition = true;
553 break;
554 default:
555 ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(),
556 to_string(error).c_str(), static_cast<int32_t>(error));
557 }
558
559 const Region& surfaceDamage = getState().overrideInfo.buffer
560 ? getState().overrideInfo.damageRegion
561 : (getState().hwc->stateOverridden ? Region::INVALID_REGION
562 : outputIndependentState.surfaceDamage);
563
564 if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) {
565 ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(),
566 to_string(error).c_str(), static_cast<int32_t>(error));
567 outputIndependentState.surfaceDamage.dump(LOG_TAG);
568 }
569
570 // Content-specific per-frame state
571 switch (compositionType) {
572 case Composition::SOLID_COLOR:
573 // For compatibility, should be written AFTER the composition type.
574 break;
575 case Composition::SIDEBAND:
576 writeSidebandStateToHWC(hwcLayer, outputIndependentState);
577 break;
578 case Composition::CURSOR:
579 case Composition::DEVICE:
580 case Composition::DISPLAY_DECORATION:
581 writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer);
582 break;
583 case Composition::INVALID:
584 case Composition::CLIENT:
585 // Ignored
586 break;
587 }
588 }
589
writeSolidColorStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)590 void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer,
591 const LayerFECompositionState& outputIndependentState) {
592 aidl::android::hardware::graphics::composer3::Color color = {outputIndependentState.color.r,
593 outputIndependentState.color.g,
594 outputIndependentState.color.b,
595 1.0f};
596
597 if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) {
598 ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(),
599 to_string(error).c_str(), static_cast<int32_t>(error));
600 }
601 }
602
writeSidebandStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)603 void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer,
604 const LayerFECompositionState& outputIndependentState) {
605 if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle());
606 error != hal::Error::NONE) {
607 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(),
608 outputIndependentState.sidebandStream->handle(), to_string(error).c_str(),
609 static_cast<int32_t>(error));
610 }
611 }
612
writeBufferStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)613 void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer,
614 const LayerFECompositionState& outputIndependentState,
615 bool skipLayer) {
616 auto supportedPerFrameMetadata =
617 getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata();
618 if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata,
619 outputIndependentState.hdrMetadata);
620 error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) {
621 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(),
622 to_string(error).c_str(), static_cast<int32_t>(error));
623 }
624
625 sp<GraphicBuffer> buffer = outputIndependentState.buffer;
626 sp<Fence> acquireFence = outputIndependentState.acquireFence;
627 int slot = outputIndependentState.bufferSlot;
628 if (getState().overrideInfo.buffer != nullptr && !skipLayer) {
629 buffer = getState().overrideInfo.buffer->getBuffer();
630 acquireFence = getState().overrideInfo.acquireFence;
631 slot = HwcBufferCache::FLATTENER_CACHING_SLOT;
632 }
633
634 ALOGV("Writing buffer %p", buffer.get());
635
636 uint32_t hwcSlot = 0;
637 sp<GraphicBuffer> hwcBuffer;
638 // We need access to the output-dependent state for the buffer cache there,
639 // though otherwise the buffer is not output-dependent.
640 editState().hwc->hwcBufferCache.getHwcBuffer(slot, buffer, &hwcSlot, &hwcBuffer);
641
642 if (auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
643 error != hal::Error::NONE) {
644 ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(), buffer->handle,
645 to_string(error).c_str(), static_cast<int32_t>(error));
646 }
647 }
648
writeCompositionTypeToHWC(HWC2::Layer * hwcLayer,Composition requestedCompositionType,bool isPeekingThrough,bool skipLayer)649 void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer,
650 Composition requestedCompositionType,
651 bool isPeekingThrough, bool skipLayer) {
652 auto& outputDependentState = editState();
653
654 if (isClientCompositionForced(isPeekingThrough)) {
655 // If we are forcing client composition, we need to tell the HWC
656 requestedCompositionType = Composition::CLIENT;
657 }
658
659 // Set the requested composition type with the HWC whenever it changes
660 // We also resend the composition type when this layer was previously skipped, to ensure that
661 // the composition type is up-to-date.
662 if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType ||
663 (outputDependentState.hwc->layerSkipped && !skipLayer)) {
664 outputDependentState.hwc->hwcCompositionType = requestedCompositionType;
665
666 if (auto error = hwcLayer->setCompositionType(requestedCompositionType);
667 error != hal::Error::NONE) {
668 ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(),
669 to_string(requestedCompositionType).c_str(), to_string(error).c_str(),
670 static_cast<int32_t>(error));
671 }
672 }
673 }
674
writeCursorPositionToHWC() const675 void OutputLayer::writeCursorPositionToHWC() const {
676 // Skip doing this if there is no HWC interface
677 auto hwcLayer = getHwcLayer();
678 if (!hwcLayer) {
679 return;
680 }
681
682 const auto* layerFEState = getLayerFE().getCompositionState();
683 if (!layerFEState) {
684 return;
685 }
686
687 const auto& outputState = getOutput().getState();
688
689 Rect frame = layerFEState->cursorFrame;
690 frame.intersect(outputState.layerStackSpace.getContent(), &frame);
691 Rect position = outputState.transform.transform(frame);
692
693 if (auto error = hwcLayer->setCursorPosition(position.left, position.top);
694 error != hal::Error::NONE) {
695 ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)",
696 getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(),
697 static_cast<int32_t>(error));
698 }
699 }
700
getHwcLayer() const701 HWC2::Layer* OutputLayer::getHwcLayer() const {
702 const auto& state = getState();
703 return state.hwc ? state.hwc->hwcLayer.get() : nullptr;
704 }
705
requiresClientComposition() const706 bool OutputLayer::requiresClientComposition() const {
707 const auto& state = getState();
708 return !state.hwc || state.hwc->hwcCompositionType == Composition::CLIENT;
709 }
710
isHardwareCursor() const711 bool OutputLayer::isHardwareCursor() const {
712 const auto& state = getState();
713 return state.hwc && state.hwc->hwcCompositionType == Composition::CURSOR;
714 }
715
detectDisallowedCompositionTypeChange(Composition from,Composition to) const716 void OutputLayer::detectDisallowedCompositionTypeChange(Composition from, Composition to) const {
717 bool result = false;
718 switch (from) {
719 case Composition::INVALID:
720 case Composition::CLIENT:
721 result = false;
722 break;
723
724 case Composition::DEVICE:
725 case Composition::SOLID_COLOR:
726 result = (to == Composition::CLIENT);
727 break;
728
729 case Composition::CURSOR:
730 case Composition::SIDEBAND:
731 case Composition::DISPLAY_DECORATION:
732 result = (to == Composition::CLIENT || to == Composition::DEVICE);
733 break;
734 }
735
736 if (!result) {
737 ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)",
738 getLayerFE().getDebugName(), to_string(from).c_str(), static_cast<int>(from),
739 to_string(to).c_str(), static_cast<int>(to));
740 }
741 }
742
isClientCompositionForced(bool isPeekingThrough) const743 bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const {
744 return getState().forceClientComposition ||
745 (!isPeekingThrough && getLayerFE().hasRoundedCorners());
746 }
747
applyDeviceCompositionTypeChange(Composition compositionType)748 void OutputLayer::applyDeviceCompositionTypeChange(Composition compositionType) {
749 auto& state = editState();
750 LOG_FATAL_IF(!state.hwc);
751 auto& hwcState = *state.hwc;
752
753 // Only detected disallowed changes if this was not a skip layer, because the
754 // validated composition type may be arbitrary (usually DEVICE, to reflect that there were
755 // fewer GPU layers)
756 if (!hwcState.layerSkipped) {
757 detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType);
758 }
759
760 hwcState.hwcCompositionType = compositionType;
761 }
762
prepareForDeviceLayerRequests()763 void OutputLayer::prepareForDeviceLayerRequests() {
764 auto& state = editState();
765 state.clearClientTarget = false;
766 }
767
applyDeviceLayerRequest(hal::LayerRequest request)768 void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) {
769 auto& state = editState();
770 switch (request) {
771 case hal::LayerRequest::CLEAR_CLIENT_TARGET:
772 state.clearClientTarget = true;
773 break;
774
775 default:
776 ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(),
777 toString(request).c_str(), static_cast<int>(request));
778 break;
779 }
780 }
781
needsFiltering() const782 bool OutputLayer::needsFiltering() const {
783 const auto& state = getState();
784 const auto& displayFrame = state.displayFrame;
785 const auto& sourceCrop = state.sourceCrop;
786 return sourceCrop.getHeight() != displayFrame.getHeight() ||
787 sourceCrop.getWidth() != displayFrame.getWidth();
788 }
789
getOverrideCompositionList() const790 std::vector<LayerFE::LayerSettings> OutputLayer::getOverrideCompositionList() const {
791 if (getState().overrideInfo.buffer == nullptr) {
792 return {};
793 }
794
795 // Compute the geometry boundaries in layer stack space: we need to transform from the
796 // framebuffer space of the override buffer to layer space.
797 const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace;
798 const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace);
799 const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame);
800
801 LayerFE::LayerSettings settings;
802 settings.geometry = renderengine::Geometry{
803 .boundaries = boundaries.toFloatRect(),
804 };
805 settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId();
806 settings.source = renderengine::PixelSource{
807 .buffer = renderengine::Buffer{
808 .buffer = getState().overrideInfo.buffer,
809 .fence = getState().overrideInfo.acquireFence,
810 // If the transform from layer space to display space contains a rotation, we
811 // need to undo the rotation in the texture transform
812 .textureTransform =
813 ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(),
814 }};
815 settings.sourceDataspace = getState().overrideInfo.dataspace;
816 settings.alpha = 1.0f;
817 settings.whitePointNits = getOutput().getState().sdrWhitePointNits;
818
819 return {static_cast<LayerFE::LayerSettings>(settings)};
820 }
821
dump(std::string & out) const822 void OutputLayer::dump(std::string& out) const {
823 using android::base::StringAppendF;
824
825 StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName());
826 dumpState(out);
827 }
828
829 } // namespace impl
830 } // namespace android::compositionengine
831