1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "class_root-inl.h"
23 #include "debug_print.h"
24 #include "debugger.h"
25 #include "dex/dex_file-inl.h"
26 #include "dex/dex_file_types.h"
27 #include "dex/dex_instruction-inl.h"
28 #include "dex/method_reference.h"
29 #include "entrypoints/entrypoint_utils-inl.h"
30 #include "entrypoints/quick/callee_save_frame.h"
31 #include "entrypoints/runtime_asm_entrypoints.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "imt_conflict_table.h"
34 #include "imtable-inl.h"
35 #include "instrumentation.h"
36 #include "interpreter/interpreter.h"
37 #include "interpreter/interpreter_common.h"
38 #include "interpreter/shadow_frame-inl.h"
39 #include "jit/jit.h"
40 #include "jit/jit_code_cache.h"
41 #include "linear_alloc.h"
42 #include "method_handles.h"
43 #include "mirror/class-inl.h"
44 #include "mirror/dex_cache-inl.h"
45 #include "mirror/method.h"
46 #include "mirror/method_handle_impl.h"
47 #include "mirror/object-inl.h"
48 #include "mirror/object_array-inl.h"
49 #include "mirror/var_handle.h"
50 #include "oat.h"
51 #include "oat_file.h"
52 #include "oat_quick_method_header.h"
53 #include "quick_exception_handler.h"
54 #include "runtime.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "var_handles.h"
59 #include "well_known_classes.h"
60
61 namespace art {
62
63 extern "C" NO_RETURN void artDeoptimizeFromCompiledCode(DeoptimizationKind kind, Thread* self);
64 extern "C" NO_RETURN void artDeoptimize(Thread* self);
65
66 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
67 class QuickArgumentVisitor {
68 // Number of bytes for each out register in the caller method's frame.
69 static constexpr size_t kBytesStackArgLocation = 4;
70 // Frame size in bytes of a callee-save frame for RefsAndArgs.
71 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
72 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
73 // Offset of first GPR arg.
74 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
75 RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
76 // Offset of first FPR arg.
77 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
78 RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
79 // Offset of return address.
80 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
81 RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
82 #if defined(__arm__)
83 // The callee save frame is pointed to by SP.
84 // | argN | |
85 // | ... | |
86 // | arg4 | |
87 // | arg3 spill | | Caller's frame
88 // | arg2 spill | |
89 // | arg1 spill | |
90 // | Method* | ---
91 // | LR |
92 // | ... | 4x6 bytes callee saves
93 // | R3 |
94 // | R2 |
95 // | R1 |
96 // | S15 |
97 // | : |
98 // | S0 |
99 // | | 4x2 bytes padding
100 // | Method* | <- sp
101 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
102 static constexpr bool kAlignPairRegister = true;
103 static constexpr bool kQuickSoftFloatAbi = false;
104 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
105 static constexpr bool kQuickSkipOddFpRegisters = false;
106 static constexpr size_t kNumQuickGprArgs = 3;
107 static constexpr size_t kNumQuickFprArgs = 16;
108 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)109 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
110 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
111 }
112 #elif defined(__aarch64__)
113 // The callee save frame is pointed to by SP.
114 // | argN | |
115 // | ... | |
116 // | arg4 | |
117 // | arg3 spill | | Caller's frame
118 // | arg2 spill | |
119 // | arg1 spill | |
120 // | Method* | ---
121 // | LR |
122 // | X29 |
123 // | : |
124 // | X20 |
125 // | X7 |
126 // | : |
127 // | X1 |
128 // | D7 |
129 // | : |
130 // | D0 |
131 // | | padding
132 // | Method* | <- sp
133 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
134 static constexpr bool kAlignPairRegister = false;
135 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
136 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
137 static constexpr bool kQuickSkipOddFpRegisters = false;
138 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
139 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
140 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)141 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
142 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
143 }
144 #elif defined(__i386__)
145 // The callee save frame is pointed to by SP.
146 // | argN | |
147 // | ... | |
148 // | arg4 | |
149 // | arg3 spill | | Caller's frame
150 // | arg2 spill | |
151 // | arg1 spill | |
152 // | Method* | ---
153 // | Return |
154 // | EBP,ESI,EDI | callee saves
155 // | EBX | arg3
156 // | EDX | arg2
157 // | ECX | arg1
158 // | XMM3 | float arg 4
159 // | XMM2 | float arg 3
160 // | XMM1 | float arg 2
161 // | XMM0 | float arg 1
162 // | EAX/Method* | <- sp
163 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
164 static constexpr bool kAlignPairRegister = false;
165 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
166 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
167 static constexpr bool kQuickSkipOddFpRegisters = false;
168 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
169 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
170 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)171 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
172 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
173 }
174 #elif defined(__x86_64__)
175 // The callee save frame is pointed to by SP.
176 // | argN | |
177 // | ... | |
178 // | reg. arg spills | | Caller's frame
179 // | Method* | ---
180 // | Return |
181 // | R15 | callee save
182 // | R14 | callee save
183 // | R13 | callee save
184 // | R12 | callee save
185 // | R9 | arg5
186 // | R8 | arg4
187 // | RSI/R6 | arg1
188 // | RBP/R5 | callee save
189 // | RBX/R3 | callee save
190 // | RDX/R2 | arg2
191 // | RCX/R1 | arg3
192 // | XMM7 | float arg 8
193 // | XMM6 | float arg 7
194 // | XMM5 | float arg 6
195 // | XMM4 | float arg 5
196 // | XMM3 | float arg 4
197 // | XMM2 | float arg 3
198 // | XMM1 | float arg 2
199 // | XMM0 | float arg 1
200 // | Padding |
201 // | RDI/Method* | <- sp
202 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
203 static constexpr bool kAlignPairRegister = false;
204 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
205 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
206 static constexpr bool kQuickSkipOddFpRegisters = false;
207 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
208 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
209 static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)210 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
211 switch (gpr_index) {
212 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
213 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
214 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
215 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
216 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
217 default:
218 LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
219 UNREACHABLE();
220 }
221 }
222 #else
223 #error "Unsupported architecture"
224 #endif
225
226 public:
227 // Special handling for proxy methods. Proxy methods are instance methods so the
228 // 'this' object is the 1st argument. They also have the same frame layout as the
229 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
230 // 1st GPR.
GetProxyThisObjectReference(ArtMethod ** sp)231 static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
232 REQUIRES_SHARED(Locks::mutator_lock_) {
233 CHECK((*sp)->IsProxyMethod());
234 CHECK_GT(kNumQuickGprArgs, 0u);
235 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
236 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
237 GprIndexToGprOffset(kThisGprIndex);
238 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
239 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
240 }
241
GetCallingMethod(ArtMethod ** sp)242 static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
243 DCHECK((*sp)->IsCalleeSaveMethod());
244 return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
245 }
246
GetOuterMethod(ArtMethod ** sp)247 static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
248 DCHECK((*sp)->IsCalleeSaveMethod());
249 uint8_t* previous_sp =
250 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
251 return *reinterpret_cast<ArtMethod**>(previous_sp);
252 }
253
GetCallingDexPc(ArtMethod ** sp)254 static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
255 DCHECK((*sp)->IsCalleeSaveMethod());
256 constexpr size_t callee_frame_size =
257 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
258 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
259 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
260 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
261 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
262 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
263
264 if (current_code->IsOptimized()) {
265 CodeInfo code_info = CodeInfo::DecodeInlineInfoOnly(current_code);
266 StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset);
267 DCHECK(stack_map.IsValid());
268 BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
269 if (!inline_infos.empty()) {
270 return inline_infos.back().GetDexPc();
271 } else {
272 return stack_map.GetDexPc();
273 }
274 } else {
275 return current_code->ToDexPc(caller_sp, outer_pc);
276 }
277 }
278
GetCallingPcAddr(ArtMethod ** sp)279 static uint8_t* GetCallingPcAddr(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
280 DCHECK((*sp)->IsCalleeSaveMethod());
281 uint8_t* return_adress_spill =
282 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
283 return return_adress_spill;
284 }
285
286 // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)287 static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
288 return *reinterpret_cast<uintptr_t*>(GetCallingPcAddr(sp));
289 }
290
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)291 QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
292 uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
293 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
294 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
295 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
296 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
297 + sizeof(ArtMethod*)), // Skip ArtMethod*.
298 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
299 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
300 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
301 "Number of Quick FPR arguments unexpected");
302 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
303 "Double alignment unexpected");
304 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
305 // next register is even.
306 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
307 "Number of Quick FPR arguments not even");
308 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
309 }
310
~QuickArgumentVisitor()311 virtual ~QuickArgumentVisitor() {}
312
313 virtual void Visit() = 0;
314
GetParamPrimitiveType() const315 Primitive::Type GetParamPrimitiveType() const {
316 return cur_type_;
317 }
318
GetParamAddress() const319 uint8_t* GetParamAddress() const {
320 if (!kQuickSoftFloatAbi) {
321 Primitive::Type type = GetParamPrimitiveType();
322 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
323 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
324 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
325 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
326 }
327 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
328 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
329 }
330 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
331 }
332 }
333 if (gpr_index_ < kNumQuickGprArgs) {
334 return gpr_args_ + GprIndexToGprOffset(gpr_index_);
335 }
336 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
337 }
338
IsSplitLongOrDouble() const339 bool IsSplitLongOrDouble() const {
340 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
341 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
342 return is_split_long_or_double_;
343 } else {
344 return false; // An optimization for when GPR and FPRs are 64bit.
345 }
346 }
347
IsParamAReference() const348 bool IsParamAReference() const {
349 return GetParamPrimitiveType() == Primitive::kPrimNot;
350 }
351
IsParamALongOrDouble() const352 bool IsParamALongOrDouble() const {
353 Primitive::Type type = GetParamPrimitiveType();
354 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
355 }
356
ReadSplitLongParam() const357 uint64_t ReadSplitLongParam() const {
358 // The splitted long is always available through the stack.
359 return *reinterpret_cast<uint64_t*>(stack_args_
360 + stack_index_ * kBytesStackArgLocation);
361 }
362
IncGprIndex()363 void IncGprIndex() {
364 gpr_index_++;
365 if (kGprFprLockstep) {
366 fpr_index_++;
367 }
368 }
369
IncFprIndex()370 void IncFprIndex() {
371 fpr_index_++;
372 if (kGprFprLockstep) {
373 gpr_index_++;
374 }
375 }
376
VisitArguments()377 void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
378 // (a) 'stack_args_' should point to the first method's argument
379 // (b) whatever the argument type it is, the 'stack_index_' should
380 // be moved forward along with every visiting.
381 gpr_index_ = 0;
382 fpr_index_ = 0;
383 if (kQuickDoubleRegAlignedFloatBackFilled) {
384 fpr_double_index_ = 0;
385 }
386 stack_index_ = 0;
387 if (!is_static_) { // Handle this.
388 cur_type_ = Primitive::kPrimNot;
389 is_split_long_or_double_ = false;
390 Visit();
391 stack_index_++;
392 if (kNumQuickGprArgs > 0) {
393 IncGprIndex();
394 }
395 }
396 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
397 cur_type_ = Primitive::GetType(shorty_[shorty_index]);
398 switch (cur_type_) {
399 case Primitive::kPrimNot:
400 case Primitive::kPrimBoolean:
401 case Primitive::kPrimByte:
402 case Primitive::kPrimChar:
403 case Primitive::kPrimShort:
404 case Primitive::kPrimInt:
405 is_split_long_or_double_ = false;
406 Visit();
407 stack_index_++;
408 if (gpr_index_ < kNumQuickGprArgs) {
409 IncGprIndex();
410 }
411 break;
412 case Primitive::kPrimFloat:
413 is_split_long_or_double_ = false;
414 Visit();
415 stack_index_++;
416 if (kQuickSoftFloatAbi) {
417 if (gpr_index_ < kNumQuickGprArgs) {
418 IncGprIndex();
419 }
420 } else {
421 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
422 IncFprIndex();
423 if (kQuickDoubleRegAlignedFloatBackFilled) {
424 // Double should not overlap with float.
425 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
426 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
427 // Float should not overlap with double.
428 if (fpr_index_ % 2 == 0) {
429 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
430 }
431 } else if (kQuickSkipOddFpRegisters) {
432 IncFprIndex();
433 }
434 }
435 }
436 break;
437 case Primitive::kPrimDouble:
438 case Primitive::kPrimLong:
439 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
440 if (cur_type_ == Primitive::kPrimLong &&
441 gpr_index_ == 0 &&
442 kAlignPairRegister) {
443 // Currently, this is only for ARM, where we align long parameters with
444 // even-numbered registers by skipping R1 and using R2 instead.
445 IncGprIndex();
446 }
447 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
448 ((gpr_index_ + 1) == kNumQuickGprArgs);
449 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
450 // We don't want to split this. Pass over this register.
451 gpr_index_++;
452 is_split_long_or_double_ = false;
453 }
454 Visit();
455 if (kBytesStackArgLocation == 4) {
456 stack_index_+= 2;
457 } else {
458 CHECK_EQ(kBytesStackArgLocation, 8U);
459 stack_index_++;
460 }
461 if (gpr_index_ < kNumQuickGprArgs) {
462 IncGprIndex();
463 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
464 if (gpr_index_ < kNumQuickGprArgs) {
465 IncGprIndex();
466 }
467 }
468 }
469 } else {
470 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
471 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
472 Visit();
473 if (kBytesStackArgLocation == 4) {
474 stack_index_+= 2;
475 } else {
476 CHECK_EQ(kBytesStackArgLocation, 8U);
477 stack_index_++;
478 }
479 if (kQuickDoubleRegAlignedFloatBackFilled) {
480 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
481 fpr_double_index_ += 2;
482 // Float should not overlap with double.
483 if (fpr_index_ % 2 == 0) {
484 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
485 }
486 }
487 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
488 IncFprIndex();
489 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
490 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
491 IncFprIndex();
492 }
493 }
494 }
495 }
496 break;
497 default:
498 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
499 }
500 }
501 }
502
503 protected:
504 const bool is_static_;
505 const char* const shorty_;
506 const uint32_t shorty_len_;
507
508 private:
509 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
510 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
511 uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
512 uint32_t gpr_index_; // Index into spilled GPRs.
513 // Index into spilled FPRs.
514 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
515 // holds a higher register number.
516 uint32_t fpr_index_;
517 // Index into spilled FPRs for aligned double.
518 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
519 // terms of singles, may be behind fpr_index.
520 uint32_t fpr_double_index_;
521 uint32_t stack_index_; // Index into arguments on the stack.
522 // The current type of argument during VisitArguments.
523 Primitive::Type cur_type_;
524 // Does a 64bit parameter straddle the register and stack arguments?
525 bool is_split_long_or_double_;
526 };
527
528 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
529 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)530 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
531 REQUIRES_SHARED(Locks::mutator_lock_) {
532 return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
533 }
534
535 // Visits arguments on the stack placing them into the shadow frame.
536 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
537 public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)538 BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
539 uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
540 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
541
542 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
543
544 private:
545 ShadowFrame* const sf_;
546 uint32_t cur_reg_;
547
548 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
549 };
550
Visit()551 void BuildQuickShadowFrameVisitor::Visit() {
552 Primitive::Type type = GetParamPrimitiveType();
553 switch (type) {
554 case Primitive::kPrimLong: // Fall-through.
555 case Primitive::kPrimDouble:
556 if (IsSplitLongOrDouble()) {
557 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
558 } else {
559 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
560 }
561 ++cur_reg_;
562 break;
563 case Primitive::kPrimNot: {
564 StackReference<mirror::Object>* stack_ref =
565 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
566 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
567 }
568 break;
569 case Primitive::kPrimBoolean: // Fall-through.
570 case Primitive::kPrimByte: // Fall-through.
571 case Primitive::kPrimChar: // Fall-through.
572 case Primitive::kPrimShort: // Fall-through.
573 case Primitive::kPrimInt: // Fall-through.
574 case Primitive::kPrimFloat:
575 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
576 break;
577 case Primitive::kPrimVoid:
578 LOG(FATAL) << "UNREACHABLE";
579 UNREACHABLE();
580 }
581 ++cur_reg_;
582 }
583
584 // Don't inline. See b/65159206.
585 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)586 static void HandleDeoptimization(JValue* result,
587 ArtMethod* method,
588 ShadowFrame* deopt_frame,
589 ManagedStack* fragment)
590 REQUIRES_SHARED(Locks::mutator_lock_) {
591 // Coming from partial-fragment deopt.
592 Thread* self = Thread::Current();
593 if (kIsDebugBuild) {
594 // Consistency-check: are the methods as expected? We check that the last shadow frame
595 // (the bottom of the call-stack) corresponds to the called method.
596 ShadowFrame* linked = deopt_frame;
597 while (linked->GetLink() != nullptr) {
598 linked = linked->GetLink();
599 }
600 CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
601 << ArtMethod::PrettyMethod(linked->GetMethod());
602 }
603
604 if (VLOG_IS_ON(deopt)) {
605 // Print out the stack to verify that it was a partial-fragment deopt.
606 LOG(INFO) << "Continue-ing from deopt. Stack is:";
607 QuickExceptionHandler::DumpFramesWithType(self, true);
608 }
609
610 ObjPtr<mirror::Throwable> pending_exception;
611 bool from_code = false;
612 DeoptimizationMethodType method_type;
613 self->PopDeoptimizationContext(/* out */ result,
614 /* out */ &pending_exception,
615 /* out */ &from_code,
616 /* out */ &method_type);
617
618 // Push a transition back into managed code onto the linked list in thread.
619 self->PushManagedStackFragment(fragment);
620
621 // Ensure that the stack is still in order.
622 if (kIsDebugBuild) {
623 class EntireStackVisitor : public StackVisitor {
624 public:
625 explicit EntireStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
626 : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
627
628 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
629 // Nothing to do here. In a debug build, ValidateFrame will do the work in the walking
630 // logic. Just always say we want to continue.
631 return true;
632 }
633 };
634 EntireStackVisitor esv(self);
635 esv.WalkStack();
636 }
637
638 // Restore the exception that was pending before deoptimization then interpret the
639 // deoptimized frames.
640 if (pending_exception != nullptr) {
641 self->SetException(pending_exception);
642 }
643 interpreter::EnterInterpreterFromDeoptimize(self,
644 deopt_frame,
645 result,
646 from_code,
647 method_type);
648 }
649
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)650 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
651 REQUIRES_SHARED(Locks::mutator_lock_) {
652 // Ensure we don't get thread suspension until the object arguments are safely in the shadow
653 // frame.
654 ScopedQuickEntrypointChecks sqec(self);
655
656 if (UNLIKELY(!method->IsInvokable())) {
657 method->ThrowInvocationTimeError();
658 return 0;
659 }
660
661 JValue tmp_value;
662 ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
663 StackedShadowFrameType::kDeoptimizationShadowFrame, false);
664 ManagedStack fragment;
665
666 DCHECK(!method->IsNative()) << method->PrettyMethod();
667 uint32_t shorty_len = 0;
668 ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
669 DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
670 CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
671 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
672
673 JValue result;
674 bool force_frame_pop = false;
675
676 if (UNLIKELY(deopt_frame != nullptr)) {
677 HandleDeoptimization(&result, method, deopt_frame, &fragment);
678 } else {
679 const char* old_cause = self->StartAssertNoThreadSuspension(
680 "Building interpreter shadow frame");
681 uint16_t num_regs = accessor.RegistersSize();
682 // No last shadow coming from quick.
683 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
684 CREATE_SHADOW_FRAME(num_regs, /* link= */ nullptr, method, /* dex_pc= */ 0);
685 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
686 size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
687 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
688 shadow_frame, first_arg_reg);
689 shadow_frame_builder.VisitArguments();
690 // Push a transition back into managed code onto the linked list in thread.
691 self->PushManagedStackFragment(&fragment);
692 self->PushShadowFrame(shadow_frame);
693 self->EndAssertNoThreadSuspension(old_cause);
694
695 if (NeedsClinitCheckBeforeCall(method)) {
696 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
697 if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) {
698 // Ensure static method's class is initialized.
699 StackHandleScope<1> hs(self);
700 Handle<mirror::Class> h_class(hs.NewHandle(declaring_class));
701 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
702 DCHECK(Thread::Current()->IsExceptionPending()) << method->PrettyMethod();
703 self->PopManagedStackFragment(fragment);
704 return 0;
705 }
706 }
707 }
708
709 result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
710 force_frame_pop = shadow_frame->GetForcePopFrame();
711 }
712
713 // Pop transition.
714 self->PopManagedStackFragment(fragment);
715
716 // Request a stack deoptimization if needed
717 ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
718 uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
719 // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
720 // should be done and it knows the real return pc. NB If the upcall is null we don't need to do
721 // anything. This can happen during shutdown or early startup.
722 if (UNLIKELY(
723 caller != nullptr &&
724 caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
725 (self->IsForceInterpreter() || Dbg::IsForcedInterpreterNeededForUpcall(self, caller)))) {
726 if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
727 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
728 << caller->PrettyMethod();
729 } else {
730 VLOG(deopt) << "Forcing deoptimization on return from method " << method->PrettyMethod()
731 << " to " << caller->PrettyMethod()
732 << (force_frame_pop ? " for frame-pop" : "");
733 DCHECK_IMPLIES(force_frame_pop, result.GetJ() == 0)
734 << "Force frame pop should have no result.";
735 if (force_frame_pop && self->GetException() != nullptr) {
736 LOG(WARNING) << "Suppressing exception for instruction-retry: "
737 << self->GetException()->Dump();
738 }
739 // Push the context of the deoptimization stack so we can restore the return value and the
740 // exception before executing the deoptimized frames.
741 self->PushDeoptimizationContext(
742 result,
743 shorty[0] == 'L' || shorty[0] == '[', /* class or array */
744 force_frame_pop ? nullptr : self->GetException(),
745 /* from_code= */ false,
746 DeoptimizationMethodType::kDefault);
747
748 // Set special exception to cause deoptimization.
749 self->SetException(Thread::GetDeoptimizationException());
750 }
751 }
752
753 // No need to restore the args since the method has already been run by the interpreter.
754 return result.GetJ();
755 }
756
757 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
758 // to jobjects.
759 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
760 public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)761 BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
762 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
763 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
764
765 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
766
767 private:
768 ScopedObjectAccessUnchecked* const soa_;
769 std::vector<jvalue>* const args_;
770
771 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
772 };
773
Visit()774 void BuildQuickArgumentVisitor::Visit() {
775 jvalue val;
776 Primitive::Type type = GetParamPrimitiveType();
777 switch (type) {
778 case Primitive::kPrimNot: {
779 StackReference<mirror::Object>* stack_ref =
780 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
781 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
782 break;
783 }
784 case Primitive::kPrimLong: // Fall-through.
785 case Primitive::kPrimDouble:
786 if (IsSplitLongOrDouble()) {
787 val.j = ReadSplitLongParam();
788 } else {
789 val.j = *reinterpret_cast<jlong*>(GetParamAddress());
790 }
791 break;
792 case Primitive::kPrimBoolean: // Fall-through.
793 case Primitive::kPrimByte: // Fall-through.
794 case Primitive::kPrimChar: // Fall-through.
795 case Primitive::kPrimShort: // Fall-through.
796 case Primitive::kPrimInt: // Fall-through.
797 case Primitive::kPrimFloat:
798 val.i = *reinterpret_cast<jint*>(GetParamAddress());
799 break;
800 case Primitive::kPrimVoid:
801 LOG(FATAL) << "UNREACHABLE";
802 UNREACHABLE();
803 }
804 args_->push_back(val);
805 }
806
807 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
808 // which is responsible for recording callee save registers. We explicitly place into jobjects the
809 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
810 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)811 extern "C" uint64_t artQuickProxyInvokeHandler(
812 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
813 REQUIRES_SHARED(Locks::mutator_lock_) {
814 DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
815 DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
816 // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
817 const char* old_cause =
818 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
819 // Register the top of the managed stack, making stack crawlable.
820 DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
821 self->VerifyStack();
822 // Start new JNI local reference state.
823 JNIEnvExt* env = self->GetJniEnv();
824 ScopedObjectAccessUnchecked soa(env);
825 ScopedJniEnvLocalRefState env_state(env);
826 // Create local ref. copies of proxy method and the receiver.
827 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
828
829 // Placing arguments into args vector and remove the receiver.
830 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
831 CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
832 << non_proxy_method->PrettyMethod();
833 std::vector<jvalue> args;
834 uint32_t shorty_len = 0;
835 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
836 BuildQuickArgumentVisitor local_ref_visitor(
837 sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
838
839 local_ref_visitor.VisitArguments();
840 DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
841 args.erase(args.begin());
842
843 // Convert proxy method into expected interface method.
844 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
845 DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
846 DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
847 self->EndAssertNoThreadSuspension(old_cause);
848 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
849 DCHECK(!Runtime::Current()->IsActiveTransaction());
850 ObjPtr<mirror::Method> interface_reflect_method =
851 mirror::Method::CreateFromArtMethod<kRuntimePointerSize>(soa.Self(), interface_method);
852 if (interface_reflect_method == nullptr) {
853 soa.Self()->AssertPendingOOMException();
854 return 0;
855 }
856 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
857
858 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
859 // that performs allocations or instrumentation events.
860 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
861 if (instr->HasMethodEntryListeners()) {
862 instr->MethodEnterEvent(soa.Self(), proxy_method);
863 if (soa.Self()->IsExceptionPending()) {
864 instr->MethodUnwindEvent(self,
865 soa.Decode<mirror::Object>(rcvr_jobj),
866 proxy_method,
867 0);
868 return 0;
869 }
870 }
871 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
872 if (soa.Self()->IsExceptionPending()) {
873 if (instr->HasMethodUnwindListeners()) {
874 instr->MethodUnwindEvent(self,
875 soa.Decode<mirror::Object>(rcvr_jobj),
876 proxy_method,
877 0);
878 }
879 } else if (instr->HasMethodExitListeners()) {
880 instr->MethodExitEvent(self,
881 proxy_method,
882 {},
883 result);
884 }
885 return result.GetJ();
886 }
887
888 // Visitor returning a reference argument at a given position in a Quick stack frame.
889 // NOTE: Only used for testing purposes.
890 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
891 public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)892 GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
893 const char* shorty,
894 uint32_t shorty_len,
895 size_t arg_pos)
896 : QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
897 cur_pos_(0u),
898 arg_pos_(arg_pos),
899 ref_arg_(nullptr) {
900 CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
901 }
902
Visit()903 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
904 if (cur_pos_ == arg_pos_) {
905 Primitive::Type type = GetParamPrimitiveType();
906 CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
907 ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
908 }
909 ++cur_pos_;
910 }
911
GetReferenceArgument()912 StackReference<mirror::Object>* GetReferenceArgument() {
913 return ref_arg_;
914 }
915
916 private:
917 // The position of the currently visited argument.
918 size_t cur_pos_;
919 // The position of the searched argument.
920 const size_t arg_pos_;
921 // The reference argument, if found.
922 StackReference<mirror::Object>* ref_arg_;
923
924 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
925 };
926
927 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
928 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)929 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
930 ArtMethod** sp)
931 REQUIRES_SHARED(Locks::mutator_lock_) {
932 ArtMethod* proxy_method = *sp;
933 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
934 CHECK(!non_proxy_method->IsStatic())
935 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
936 uint32_t shorty_len = 0;
937 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
938 GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
939 ref_arg_visitor.VisitArguments();
940 StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
941 return ref_arg;
942 }
943
944 // Visitor returning all the reference arguments in a Quick stack frame.
945 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
946 public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)947 GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
948 bool is_static,
949 const char* shorty,
950 uint32_t shorty_len)
951 : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
952
Visit()953 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
954 Primitive::Type type = GetParamPrimitiveType();
955 if (type == Primitive::kPrimNot) {
956 StackReference<mirror::Object>* ref_arg =
957 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
958 ref_args_.push_back(ref_arg);
959 }
960 }
961
GetReferenceArguments()962 std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
963 return ref_args_;
964 }
965
966 private:
967 // The reference arguments.
968 std::vector<StackReference<mirror::Object>*> ref_args_;
969
970 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
971 };
972
973 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)974 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
975 REQUIRES_SHARED(Locks::mutator_lock_) {
976 ArtMethod* proxy_method = *sp;
977 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
978 CHECK(!non_proxy_method->IsStatic())
979 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
980 uint32_t shorty_len = 0;
981 const char* shorty = non_proxy_method->GetShorty(&shorty_len);
982 GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
983 ref_args_visitor.VisitArguments();
984 std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
985 return ref_args;
986 }
987
988 // Read object references held in arguments from quick frames and place in a JNI local references,
989 // so they don't get garbage collected.
990 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
991 public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)992 RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
993 uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
994 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
995
996 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
997
998 void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
999
1000 private:
1001 ScopedObjectAccessUnchecked* const soa_;
1002 // References which we must update when exiting in case the GC moved the objects.
1003 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1004
1005 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1006 };
1007
Visit()1008 void RememberForGcArgumentVisitor::Visit() {
1009 if (IsParamAReference()) {
1010 StackReference<mirror::Object>* stack_ref =
1011 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1012 jobject reference =
1013 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1014 references_.push_back(std::make_pair(reference, stack_ref));
1015 }
1016 }
1017
FixupReferences()1018 void RememberForGcArgumentVisitor::FixupReferences() {
1019 // Fixup any references which may have changed.
1020 for (const auto& pair : references_) {
1021 pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1022 soa_->Env()->DeleteLocalRef(pair.first);
1023 }
1024 }
1025
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)1026 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1027 mirror::Object* this_object,
1028 Thread* self,
1029 ArtMethod** sp)
1030 REQUIRES_SHARED(Locks::mutator_lock_) {
1031 const void* result;
1032 // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1033 // that part.
1034 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1035 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1036 DCHECK(!method->IsProxyMethod())
1037 << "Proxy method " << method->PrettyMethod()
1038 << " (declaring class: " << method->GetDeclaringClass()->PrettyClass() << ")"
1039 << " should not hit instrumentation entrypoint.";
1040 DCHECK(!instrumentation->IsDeoptimized(method));
1041 // This will get the entry point either from the oat file, the JIT or the appropriate bridge
1042 // method if none of those can be found.
1043 result = instrumentation->GetCodeForInvoke(method);
1044 DCHECK_NE(result, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
1045 bool interpreter_entry = Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result);
1046 bool is_static = method->IsStatic();
1047 uint32_t shorty_len;
1048 const char* shorty =
1049 method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1050
1051 ScopedObjectAccessUnchecked soa(self);
1052 RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1053 visitor.VisitArguments();
1054
1055 StackHandleScope<2> hs(self);
1056 Handle<mirror::Object> h_object(hs.NewHandle(is_static ? nullptr : this_object));
1057 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
1058
1059 // Ensure that the called method's class is initialized.
1060 if (NeedsClinitCheckBeforeCall(method) && !h_class->IsVisiblyInitialized()) {
1061 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
1062 visitor.FixupReferences();
1063 DCHECK(self->IsExceptionPending());
1064 return nullptr;
1065 }
1066 }
1067
1068 instrumentation->PushInstrumentationStackFrame(self,
1069 is_static ? nullptr : h_object.Get(),
1070 method,
1071 reinterpret_cast<uintptr_t>(
1072 QuickArgumentVisitor::GetCallingPcAddr(sp)),
1073 QuickArgumentVisitor::GetCallingPc(sp),
1074 interpreter_entry);
1075
1076 visitor.FixupReferences();
1077 if (UNLIKELY(self->IsExceptionPending())) {
1078 return nullptr;
1079 }
1080 CHECK(result != nullptr) << method->PrettyMethod();
1081 return result;
1082 }
1083
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1084 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1085 ArtMethod** sp,
1086 uint64_t* gpr_result,
1087 uint64_t* fpr_result)
1088 REQUIRES_SHARED(Locks::mutator_lock_) {
1089 DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1090 CHECK(gpr_result != nullptr);
1091 CHECK(fpr_result != nullptr);
1092 // Instrumentation exit stub must not be entered with a pending exception.
1093 CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1094 << self->GetException()->Dump();
1095 // Compute address of return PC and check that it currently holds 0.
1096 constexpr size_t return_pc_offset =
1097 RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveEverything);
1098 uintptr_t* return_pc_addr = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1099 return_pc_offset);
1100 CHECK_EQ(*return_pc_addr, 0U);
1101
1102 // Pop the frame filling in the return pc. The low half of the return value is 0 when
1103 // deoptimization shouldn't be performed with the high-half having the return address. When
1104 // deoptimization should be performed the low half is zero and the high-half the address of the
1105 // deoptimization entry point.
1106 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1107 TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1108 self, return_pc_addr, gpr_result, fpr_result);
1109 if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1110 return GetTwoWordFailureValue();
1111 }
1112 return return_or_deoptimize_pc;
1113 }
1114
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1115 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1116 REQUIRES_SHARED(Locks::mutator_lock_) {
1117 if (dex_pc == static_cast<uint32_t>(-1)) {
1118 CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1119 return "<native>";
1120 } else {
1121 CodeItemInstructionAccessor accessor = method->DexInstructions();
1122 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1123 return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1124 }
1125 }
1126
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1127 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1128 REQUIRES_SHARED(Locks::mutator_lock_) {
1129 std::string storage;
1130 const char* descriptor = klass->GetDescriptor(&storage);
1131 LOG(FATAL_WITHOUT_ABORT) << " " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1132 const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1133 if (oat_dex_file != nullptr) {
1134 const OatFile* oat_file = oat_dex_file->GetOatFile();
1135 const char* dex2oat_cmdline =
1136 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1137 LOG(FATAL_WITHOUT_ABORT) << " OatFile: " << oat_file->GetLocation()
1138 << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1139 }
1140 }
1141
DumpB74410240DebugData(ArtMethod ** sp)1142 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1143 // Mimick the search for the caller and dump some data while doing so.
1144 LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1145
1146 constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1147 CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1148
1149 constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1150 auto** caller_sp = reinterpret_cast<ArtMethod**>(
1151 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1152 constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1153 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1154 (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1155 ArtMethod* outer_method = *caller_sp;
1156
1157 if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1158 LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1159 << " native pc: " << caller_pc << " Instrumented!";
1160 return;
1161 }
1162
1163 const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1164 CHECK(current_code != nullptr);
1165 CHECK(current_code->IsOptimized());
1166 uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1167 CodeInfo code_info(current_code);
1168 StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1169 CHECK(stack_map.IsValid());
1170 uint32_t dex_pc = stack_map.GetDexPc();
1171
1172 // Log the outer method and its associated dex file and class table pointer which can be used
1173 // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1174 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1175 LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1176 << " native pc: " << caller_pc
1177 << " dex pc: " << dex_pc
1178 << " dex file: " << outer_method->GetDexFile()->GetLocation()
1179 << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1180 DumpB74410240ClassData(outer_method->GetDeclaringClass());
1181 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(outer_method, dex_pc);
1182
1183 ArtMethod* caller = outer_method;
1184 BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1185 for (InlineInfo inline_info : inline_infos) {
1186 const char* tag = "";
1187 dex_pc = inline_info.GetDexPc();
1188 if (inline_info.EncodesArtMethod()) {
1189 tag = "encoded ";
1190 caller = inline_info.GetArtMethod();
1191 } else {
1192 uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1193 if (dex_pc == static_cast<uint32_t>(-1)) {
1194 tag = "special ";
1195 CHECK(inline_info.Equals(inline_infos.back()));
1196 caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1197 CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1198 } else {
1199 ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1200 ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1201 caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1202 CHECK(caller != nullptr);
1203 }
1204 }
1205 LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1206 << ": " << tag << caller->PrettyMethod()
1207 << " dex pc: " << dex_pc
1208 << " dex file: " << caller->GetDexFile()->GetLocation()
1209 << " class table: "
1210 << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1211 DumpB74410240ClassData(caller->GetDeclaringClass());
1212 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(caller, dex_pc);
1213 }
1214 }
1215
1216 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1217 extern "C" const void* artQuickResolutionTrampoline(
1218 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1219 REQUIRES_SHARED(Locks::mutator_lock_) {
1220 // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1221 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1222 // does not have the same stack layout as the callee-save method).
1223 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1224 // Start new JNI local reference state
1225 JNIEnvExt* env = self->GetJniEnv();
1226 ScopedObjectAccessUnchecked soa(env);
1227 ScopedJniEnvLocalRefState env_state(env);
1228 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1229
1230 // Compute details about the called method (avoid GCs)
1231 ClassLinker* linker = Runtime::Current()->GetClassLinker();
1232 InvokeType invoke_type;
1233 MethodReference called_method(nullptr, 0);
1234 const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1235 ArtMethod* caller = nullptr;
1236 if (!called_method_known_on_entry) {
1237 caller = QuickArgumentVisitor::GetCallingMethod(sp);
1238 called_method.dex_file = caller->GetDexFile();
1239
1240 {
1241 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1242 CodeItemInstructionAccessor accessor(caller->DexInstructions());
1243 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1244 const Instruction& instr = accessor.InstructionAt(dex_pc);
1245 Instruction::Code instr_code = instr.Opcode();
1246 bool is_range;
1247 switch (instr_code) {
1248 case Instruction::INVOKE_DIRECT:
1249 invoke_type = kDirect;
1250 is_range = false;
1251 break;
1252 case Instruction::INVOKE_DIRECT_RANGE:
1253 invoke_type = kDirect;
1254 is_range = true;
1255 break;
1256 case Instruction::INVOKE_STATIC:
1257 invoke_type = kStatic;
1258 is_range = false;
1259 break;
1260 case Instruction::INVOKE_STATIC_RANGE:
1261 invoke_type = kStatic;
1262 is_range = true;
1263 break;
1264 case Instruction::INVOKE_SUPER:
1265 invoke_type = kSuper;
1266 is_range = false;
1267 break;
1268 case Instruction::INVOKE_SUPER_RANGE:
1269 invoke_type = kSuper;
1270 is_range = true;
1271 break;
1272 case Instruction::INVOKE_VIRTUAL:
1273 invoke_type = kVirtual;
1274 is_range = false;
1275 break;
1276 case Instruction::INVOKE_VIRTUAL_RANGE:
1277 invoke_type = kVirtual;
1278 is_range = true;
1279 break;
1280 case Instruction::INVOKE_INTERFACE:
1281 invoke_type = kInterface;
1282 is_range = false;
1283 break;
1284 case Instruction::INVOKE_INTERFACE_RANGE:
1285 invoke_type = kInterface;
1286 is_range = true;
1287 break;
1288 default:
1289 DumpB74410240DebugData(sp);
1290 LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1291 UNREACHABLE();
1292 }
1293 called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1294 VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1295 << called_method.index;
1296 }
1297 } else {
1298 invoke_type = kStatic;
1299 called_method.dex_file = called->GetDexFile();
1300 called_method.index = called->GetDexMethodIndex();
1301 }
1302 uint32_t shorty_len;
1303 const char* shorty =
1304 called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1305 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1306 visitor.VisitArguments();
1307 self->EndAssertNoThreadSuspension(old_cause);
1308 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1309 // Resolve method filling in dex cache.
1310 if (!called_method_known_on_entry) {
1311 StackHandleScope<1> hs(self);
1312 mirror::Object* fake_receiver = nullptr;
1313 HandleWrapper<mirror::Object> h_receiver(
1314 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &fake_receiver));
1315 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1316 called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1317 self, called_method.index, caller, invoke_type);
1318 }
1319 const void* code = nullptr;
1320 if (LIKELY(!self->IsExceptionPending())) {
1321 // Incompatible class change should have been handled in resolve method.
1322 CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1323 << called->PrettyMethod() << " " << invoke_type;
1324 if (virtual_or_interface || invoke_type == kSuper) {
1325 // Refine called method based on receiver for kVirtual/kInterface, and
1326 // caller for kSuper.
1327 ArtMethod* orig_called = called;
1328 if (invoke_type == kVirtual) {
1329 CHECK(receiver != nullptr) << invoke_type;
1330 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1331 } else if (invoke_type == kInterface) {
1332 CHECK(receiver != nullptr) << invoke_type;
1333 called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1334 } else {
1335 DCHECK_EQ(invoke_type, kSuper);
1336 CHECK(caller != nullptr) << invoke_type;
1337 ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1338 caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1339 if (ref_class->IsInterface()) {
1340 called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1341 } else {
1342 called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1343 called->GetMethodIndex(), kRuntimePointerSize);
1344 }
1345 }
1346
1347 CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1348 << mirror::Object::PrettyTypeOf(receiver) << " "
1349 << invoke_type << " " << orig_called->GetVtableIndex();
1350 }
1351 // Now that we know the actual target, update .bss entry in oat file, if
1352 // any.
1353 if (!called_method_known_on_entry) {
1354 // We only put non copied methods in the BSS. Putting a copy can lead to an
1355 // odd situation where the ArtMethod being executed is unrelated to the
1356 // receiver of the method.
1357 called = called->GetCanonicalMethod();
1358 if (invoke_type == kSuper || invoke_type == kInterface || invoke_type == kVirtual) {
1359 if (called->GetDexFile() == called_method.dex_file) {
1360 called_method.index = called->GetDexMethodIndex();
1361 } else {
1362 called_method.index = called->FindDexMethodIndexInOtherDexFile(
1363 *called_method.dex_file, called_method.index);
1364 DCHECK_NE(called_method.index, dex::kDexNoIndex);
1365 }
1366 }
1367 ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
1368 MaybeUpdateBssMethodEntry(called, called_method, outer_method);
1369 }
1370
1371 // Static invokes need class initialization check but instance invokes can proceed even if
1372 // the class is erroneous, i.e. in the edge case of escaping instances of erroneous classes.
1373 bool success = true;
1374 ObjPtr<mirror::Class> called_class = called->GetDeclaringClass();
1375 if (NeedsClinitCheckBeforeCall(called) && !called_class->IsVisiblyInitialized()) {
1376 // Ensure that the called method's class is initialized.
1377 StackHandleScope<1> hs(soa.Self());
1378 HandleWrapperObjPtr<mirror::Class> h_called_class(hs.NewHandleWrapper(&called_class));
1379 success = linker->EnsureInitialized(soa.Self(), h_called_class, true, true);
1380 }
1381 if (success) {
1382 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1383 // Check if we need instrumented code here. Since resolution stubs could suspend, it is
1384 // possible that we instrumented the entry points after we started executing the resolution
1385 // stub.
1386 code = instrumentation->GetMaybeInstrumentedCodeForInvoke(called);
1387 } else {
1388 DCHECK(called_class->IsErroneous());
1389 DCHECK(self->IsExceptionPending());
1390 }
1391 }
1392 CHECK_EQ(code == nullptr, self->IsExceptionPending());
1393 // Fixup any locally saved objects may have moved during a GC.
1394 visitor.FixupReferences();
1395 // Place called method in callee-save frame to be placed as first argument to quick method.
1396 *sp = called;
1397
1398 return code;
1399 }
1400
1401 /*
1402 * This class uses a couple of observations to unite the different calling conventions through
1403 * a few constants.
1404 *
1405 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1406 * possible alignment.
1407 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1408 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1409 * when we have to split things
1410 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1411 * and we can use Int handling directly.
1412 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1413 * necessary when widening. Also, widening of Ints will take place implicitly, and the
1414 * extension should be compatible with Aarch64, which mandates copying the available bits
1415 * into LSB and leaving the rest unspecified.
1416 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1417 * the stack.
1418 * 6) There is only little endian.
1419 *
1420 *
1421 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1422 * follows:
1423 *
1424 * void PushGpr(uintptr_t): Add a value for the next GPR
1425 *
1426 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
1427 * padding, that is, think the architecture is 32b and aligns 64b.
1428 *
1429 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
1430 * split this if necessary. The current state will have aligned, if
1431 * necessary.
1432 *
1433 * void PushStack(uintptr_t): Push a value to the stack.
1434 */
1435 template<class T> class BuildNativeCallFrameStateMachine {
1436 public:
1437 #if defined(__arm__)
1438 static constexpr bool kNativeSoftFloatAbi = true;
1439 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
1440 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1441
1442 static constexpr size_t kRegistersNeededForLong = 2;
1443 static constexpr size_t kRegistersNeededForDouble = 2;
1444 static constexpr bool kMultiRegistersAligned = true;
1445 static constexpr bool kMultiFPRegistersWidened = false;
1446 static constexpr bool kMultiGPRegistersWidened = false;
1447 static constexpr bool kAlignLongOnStack = true;
1448 static constexpr bool kAlignDoubleOnStack = true;
1449 #elif defined(__aarch64__)
1450 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1451 static constexpr size_t kNumNativeGprArgs = 8; // 8 arguments passed in GPRs.
1452 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1453
1454 static constexpr size_t kRegistersNeededForLong = 1;
1455 static constexpr size_t kRegistersNeededForDouble = 1;
1456 static constexpr bool kMultiRegistersAligned = false;
1457 static constexpr bool kMultiFPRegistersWidened = false;
1458 static constexpr bool kMultiGPRegistersWidened = false;
1459 static constexpr bool kAlignLongOnStack = false;
1460 static constexpr bool kAlignDoubleOnStack = false;
1461 #elif defined(__i386__)
1462 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
1463 static constexpr size_t kNumNativeGprArgs = 0; // 0 arguments passed in GPRs.
1464 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1465
1466 static constexpr size_t kRegistersNeededForLong = 2;
1467 static constexpr size_t kRegistersNeededForDouble = 2;
1468 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
1469 static constexpr bool kMultiFPRegistersWidened = false;
1470 static constexpr bool kMultiGPRegistersWidened = false;
1471 static constexpr bool kAlignLongOnStack = false;
1472 static constexpr bool kAlignDoubleOnStack = false;
1473 #elif defined(__x86_64__)
1474 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1475 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
1476 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1477
1478 static constexpr size_t kRegistersNeededForLong = 1;
1479 static constexpr size_t kRegistersNeededForDouble = 1;
1480 static constexpr bool kMultiRegistersAligned = false;
1481 static constexpr bool kMultiFPRegistersWidened = false;
1482 static constexpr bool kMultiGPRegistersWidened = false;
1483 static constexpr bool kAlignLongOnStack = false;
1484 static constexpr bool kAlignDoubleOnStack = false;
1485 #else
1486 #error "Unsupported architecture"
1487 #endif
1488
1489 public:
BuildNativeCallFrameStateMachine(T * delegate)1490 explicit BuildNativeCallFrameStateMachine(T* delegate)
1491 : gpr_index_(kNumNativeGprArgs),
1492 fpr_index_(kNumNativeFprArgs),
1493 stack_entries_(0),
1494 delegate_(delegate) {
1495 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1496 // the next register is even; counting down is just to make the compiler happy...
1497 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1498 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1499 }
1500
~BuildNativeCallFrameStateMachine()1501 virtual ~BuildNativeCallFrameStateMachine() {}
1502
HavePointerGpr() const1503 bool HavePointerGpr() const {
1504 return gpr_index_ > 0;
1505 }
1506
AdvancePointer(const void * val)1507 void AdvancePointer(const void* val) {
1508 if (HavePointerGpr()) {
1509 gpr_index_--;
1510 PushGpr(reinterpret_cast<uintptr_t>(val));
1511 } else {
1512 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
1513 PushStack(reinterpret_cast<uintptr_t>(val));
1514 gpr_index_ = 0;
1515 }
1516 }
1517
HaveIntGpr() const1518 bool HaveIntGpr() const {
1519 return gpr_index_ > 0;
1520 }
1521
AdvanceInt(uint32_t val)1522 void AdvanceInt(uint32_t val) {
1523 if (HaveIntGpr()) {
1524 gpr_index_--;
1525 if (kMultiGPRegistersWidened) {
1526 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1527 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1528 } else {
1529 PushGpr(val);
1530 }
1531 } else {
1532 stack_entries_++;
1533 if (kMultiGPRegistersWidened) {
1534 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1535 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1536 } else {
1537 PushStack(val);
1538 }
1539 gpr_index_ = 0;
1540 }
1541 }
1542
HaveLongGpr() const1543 bool HaveLongGpr() const {
1544 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1545 }
1546
LongGprNeedsPadding() const1547 bool LongGprNeedsPadding() const {
1548 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1549 kAlignLongOnStack && // and when it needs alignment
1550 (gpr_index_ & 1) == 1; // counter is odd, see constructor
1551 }
1552
LongStackNeedsPadding() const1553 bool LongStackNeedsPadding() const {
1554 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1555 kAlignLongOnStack && // and when it needs 8B alignment
1556 (stack_entries_ & 1) == 1; // counter is odd
1557 }
1558
AdvanceLong(uint64_t val)1559 void AdvanceLong(uint64_t val) {
1560 if (HaveLongGpr()) {
1561 if (LongGprNeedsPadding()) {
1562 PushGpr(0);
1563 gpr_index_--;
1564 }
1565 if (kRegistersNeededForLong == 1) {
1566 PushGpr(static_cast<uintptr_t>(val));
1567 } else {
1568 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1569 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1570 }
1571 gpr_index_ -= kRegistersNeededForLong;
1572 } else {
1573 if (LongStackNeedsPadding()) {
1574 PushStack(0);
1575 stack_entries_++;
1576 }
1577 if (kRegistersNeededForLong == 1) {
1578 PushStack(static_cast<uintptr_t>(val));
1579 stack_entries_++;
1580 } else {
1581 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1582 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1583 stack_entries_ += 2;
1584 }
1585 gpr_index_ = 0;
1586 }
1587 }
1588
HaveFloatFpr() const1589 bool HaveFloatFpr() const {
1590 return fpr_index_ > 0;
1591 }
1592
AdvanceFloat(float val)1593 void AdvanceFloat(float val) {
1594 if (kNativeSoftFloatAbi) {
1595 AdvanceInt(bit_cast<uint32_t, float>(val));
1596 } else {
1597 if (HaveFloatFpr()) {
1598 fpr_index_--;
1599 if (kRegistersNeededForDouble == 1) {
1600 if (kMultiFPRegistersWidened) {
1601 PushFpr8(bit_cast<uint64_t, double>(val));
1602 } else {
1603 // No widening, just use the bits.
1604 PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1605 }
1606 } else {
1607 PushFpr4(val);
1608 }
1609 } else {
1610 stack_entries_++;
1611 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1612 // Need to widen before storing: Note the "double" in the template instantiation.
1613 // Note: We need to jump through those hoops to make the compiler happy.
1614 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1615 PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1616 } else {
1617 PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1618 }
1619 fpr_index_ = 0;
1620 }
1621 }
1622 }
1623
HaveDoubleFpr() const1624 bool HaveDoubleFpr() const {
1625 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1626 }
1627
DoubleFprNeedsPadding() const1628 bool DoubleFprNeedsPadding() const {
1629 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1630 kAlignDoubleOnStack && // and when it needs alignment
1631 (fpr_index_ & 1) == 1; // counter is odd, see constructor
1632 }
1633
DoubleStackNeedsPadding() const1634 bool DoubleStackNeedsPadding() const {
1635 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1636 kAlignDoubleOnStack && // and when it needs 8B alignment
1637 (stack_entries_ & 1) == 1; // counter is odd
1638 }
1639
AdvanceDouble(uint64_t val)1640 void AdvanceDouble(uint64_t val) {
1641 if (kNativeSoftFloatAbi) {
1642 AdvanceLong(val);
1643 } else {
1644 if (HaveDoubleFpr()) {
1645 if (DoubleFprNeedsPadding()) {
1646 PushFpr4(0);
1647 fpr_index_--;
1648 }
1649 PushFpr8(val);
1650 fpr_index_ -= kRegistersNeededForDouble;
1651 } else {
1652 if (DoubleStackNeedsPadding()) {
1653 PushStack(0);
1654 stack_entries_++;
1655 }
1656 if (kRegistersNeededForDouble == 1) {
1657 PushStack(static_cast<uintptr_t>(val));
1658 stack_entries_++;
1659 } else {
1660 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1661 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1662 stack_entries_ += 2;
1663 }
1664 fpr_index_ = 0;
1665 }
1666 }
1667 }
1668
GetStackEntries() const1669 uint32_t GetStackEntries() const {
1670 return stack_entries_;
1671 }
1672
GetNumberOfUsedGprs() const1673 uint32_t GetNumberOfUsedGprs() const {
1674 return kNumNativeGprArgs - gpr_index_;
1675 }
1676
GetNumberOfUsedFprs() const1677 uint32_t GetNumberOfUsedFprs() const {
1678 return kNumNativeFprArgs - fpr_index_;
1679 }
1680
1681 private:
PushGpr(uintptr_t val)1682 void PushGpr(uintptr_t val) {
1683 delegate_->PushGpr(val);
1684 }
PushFpr4(float val)1685 void PushFpr4(float val) {
1686 delegate_->PushFpr4(val);
1687 }
PushFpr8(uint64_t val)1688 void PushFpr8(uint64_t val) {
1689 delegate_->PushFpr8(val);
1690 }
PushStack(uintptr_t val)1691 void PushStack(uintptr_t val) {
1692 delegate_->PushStack(val);
1693 }
1694
1695 uint32_t gpr_index_; // Number of free GPRs
1696 uint32_t fpr_index_; // Number of free FPRs
1697 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
1698 // extended
1699 T* const delegate_; // What Push implementation gets called
1700 };
1701
1702 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1703 // in subclasses.
1704 //
1705 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1706 // them with handles.
1707 class ComputeNativeCallFrameSize {
1708 public:
ComputeNativeCallFrameSize()1709 ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1710
~ComputeNativeCallFrameSize()1711 virtual ~ComputeNativeCallFrameSize() {}
1712
GetStackSize() const1713 uint32_t GetStackSize() const {
1714 return num_stack_entries_ * sizeof(uintptr_t);
1715 }
1716
LayoutStackArgs(uint8_t * sp8) const1717 uint8_t* LayoutStackArgs(uint8_t* sp8) const {
1718 sp8 -= GetStackSize();
1719 // Align by kStackAlignment; it is at least as strict as native stack alignment.
1720 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1721 return sp8;
1722 }
1723
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1724 virtual void WalkHeader(
1725 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1726 REQUIRES_SHARED(Locks::mutator_lock_) {
1727 }
1728
Walk(const char * shorty,uint32_t shorty_len)1729 void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1730 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1731
1732 WalkHeader(&sm);
1733
1734 for (uint32_t i = 1; i < shorty_len; ++i) {
1735 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1736 switch (cur_type_) {
1737 case Primitive::kPrimNot:
1738 sm.AdvancePointer(nullptr);
1739 break;
1740 case Primitive::kPrimBoolean:
1741 case Primitive::kPrimByte:
1742 case Primitive::kPrimChar:
1743 case Primitive::kPrimShort:
1744 case Primitive::kPrimInt:
1745 sm.AdvanceInt(0);
1746 break;
1747 case Primitive::kPrimFloat:
1748 sm.AdvanceFloat(0);
1749 break;
1750 case Primitive::kPrimDouble:
1751 sm.AdvanceDouble(0);
1752 break;
1753 case Primitive::kPrimLong:
1754 sm.AdvanceLong(0);
1755 break;
1756 default:
1757 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1758 UNREACHABLE();
1759 }
1760 }
1761
1762 num_stack_entries_ = sm.GetStackEntries();
1763 }
1764
PushGpr(uintptr_t)1765 void PushGpr(uintptr_t /* val */) {
1766 // not optimizing registers, yet
1767 }
1768
PushFpr4(float)1769 void PushFpr4(float /* val */) {
1770 // not optimizing registers, yet
1771 }
1772
PushFpr8(uint64_t)1773 void PushFpr8(uint64_t /* val */) {
1774 // not optimizing registers, yet
1775 }
1776
PushStack(uintptr_t)1777 void PushStack(uintptr_t /* val */) {
1778 // counting is already done in the superclass
1779 }
1780
1781 protected:
1782 uint32_t num_stack_entries_;
1783 };
1784
1785 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1786 public:
ComputeGenericJniFrameSize(bool critical_native)1787 explicit ComputeGenericJniFrameSize(bool critical_native)
1788 : critical_native_(critical_native) {}
1789
ComputeLayout(ArtMethod ** managed_sp,const char * shorty,uint32_t shorty_len)1790 uintptr_t* ComputeLayout(ArtMethod** managed_sp, const char* shorty, uint32_t shorty_len)
1791 REQUIRES_SHARED(Locks::mutator_lock_) {
1792 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1793
1794 Walk(shorty, shorty_len);
1795
1796 // Add space for cookie.
1797 DCHECK_ALIGNED(managed_sp, sizeof(uintptr_t));
1798 static_assert(sizeof(uintptr_t) >= sizeof(IRTSegmentState));
1799 uint8_t* sp8 = reinterpret_cast<uint8_t*>(managed_sp) - sizeof(uintptr_t);
1800
1801 // Layout stack arguments.
1802 sp8 = LayoutStackArgs(sp8);
1803
1804 // Return the new bottom.
1805 DCHECK_ALIGNED(sp8, sizeof(uintptr_t));
1806 return reinterpret_cast<uintptr_t*>(sp8);
1807 }
1808
GetStartGprRegs(uintptr_t * reserved_area)1809 static uintptr_t* GetStartGprRegs(uintptr_t* reserved_area) {
1810 return reserved_area;
1811 }
1812
GetStartFprRegs(uintptr_t * reserved_area)1813 static uint32_t* GetStartFprRegs(uintptr_t* reserved_area) {
1814 constexpr size_t num_gprs =
1815 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1816 return reinterpret_cast<uint32_t*>(GetStartGprRegs(reserved_area) + num_gprs);
1817 }
1818
GetHiddenArgSlot(uintptr_t * reserved_area)1819 static uintptr_t* GetHiddenArgSlot(uintptr_t* reserved_area) {
1820 // Note: `num_fprs` is 0 on architectures where sizeof(uintptr_t) does not match the
1821 // FP register size (it is actually 0 on all supported 32-bit architectures).
1822 constexpr size_t num_fprs =
1823 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1824 return reinterpret_cast<uintptr_t*>(GetStartFprRegs(reserved_area)) + num_fprs;
1825 }
1826
GetOutArgsSpSlot(uintptr_t * reserved_area)1827 static uintptr_t* GetOutArgsSpSlot(uintptr_t* reserved_area) {
1828 return GetHiddenArgSlot(reserved_area) + 1;
1829 }
1830
1831 // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1832 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
1833 REQUIRES_SHARED(Locks::mutator_lock_);
1834
1835 private:
1836 const bool critical_native_;
1837 };
1838
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1839 void ComputeGenericJniFrameSize::WalkHeader(
1840 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1841 // First 2 parameters are always excluded for @CriticalNative.
1842 if (UNLIKELY(critical_native_)) {
1843 return;
1844 }
1845
1846 // JNIEnv
1847 sm->AdvancePointer(nullptr);
1848
1849 // Class object or this as first argument
1850 sm->AdvancePointer(nullptr);
1851 }
1852
1853 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1854 // the template requirements of BuildGenericJniFrameStateMachine.
1855 class FillNativeCall {
1856 public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1857 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1858 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1859
~FillNativeCall()1860 virtual ~FillNativeCall() {}
1861
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1862 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1863 cur_gpr_reg_ = gpr_regs;
1864 cur_fpr_reg_ = fpr_regs;
1865 cur_stack_arg_ = stack_args;
1866 }
1867
PushGpr(uintptr_t val)1868 void PushGpr(uintptr_t val) {
1869 *cur_gpr_reg_ = val;
1870 cur_gpr_reg_++;
1871 }
1872
PushFpr4(float val)1873 void PushFpr4(float val) {
1874 *cur_fpr_reg_ = val;
1875 cur_fpr_reg_++;
1876 }
1877
PushFpr8(uint64_t val)1878 void PushFpr8(uint64_t val) {
1879 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1880 *tmp = val;
1881 cur_fpr_reg_ += 2;
1882 }
1883
PushStack(uintptr_t val)1884 void PushStack(uintptr_t val) {
1885 *cur_stack_arg_ = val;
1886 cur_stack_arg_++;
1887 }
1888
1889 private:
1890 uintptr_t* cur_gpr_reg_;
1891 uint32_t* cur_fpr_reg_;
1892 uintptr_t* cur_stack_arg_;
1893 };
1894
1895 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1896 // of transitioning into native code.
1897 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
1898 public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod ** managed_sp,uintptr_t * reserved_area)1899 BuildGenericJniFrameVisitor(Thread* self,
1900 bool is_static,
1901 bool critical_native,
1902 const char* shorty,
1903 uint32_t shorty_len,
1904 ArtMethod** managed_sp,
1905 uintptr_t* reserved_area)
1906 : QuickArgumentVisitor(managed_sp, is_static, shorty, shorty_len),
1907 jni_call_(nullptr, nullptr, nullptr, critical_native),
1908 sm_(&jni_call_),
1909 current_vreg_(nullptr) {
1910 DCHECK_ALIGNED(managed_sp, kStackAlignment);
1911 DCHECK_ALIGNED(reserved_area, sizeof(uintptr_t));
1912
1913 ComputeGenericJniFrameSize fsc(critical_native);
1914 uintptr_t* out_args_sp = fsc.ComputeLayout(managed_sp, shorty, shorty_len);
1915
1916 // Store hidden argument for @CriticalNative.
1917 uintptr_t* hidden_arg_slot = fsc.GetHiddenArgSlot(reserved_area);
1918 constexpr uintptr_t kGenericJniTag = 1u;
1919 ArtMethod* method = *managed_sp;
1920 *hidden_arg_slot = critical_native ? (reinterpret_cast<uintptr_t>(method) | kGenericJniTag)
1921 : 0xebad6a89u; // Bad value.
1922
1923 // Set out args SP.
1924 uintptr_t* out_args_sp_slot = fsc.GetOutArgsSpSlot(reserved_area);
1925 *out_args_sp_slot = reinterpret_cast<uintptr_t>(out_args_sp);
1926
1927 // Prepare vreg pointer for spilling references.
1928 static constexpr size_t frame_size =
1929 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
1930 current_vreg_ = reinterpret_cast<uint32_t*>(
1931 reinterpret_cast<uint8_t*>(managed_sp) + frame_size + sizeof(ArtMethod*));
1932
1933 jni_call_.Reset(fsc.GetStartGprRegs(reserved_area),
1934 fsc.GetStartFprRegs(reserved_area),
1935 out_args_sp);
1936
1937 // First 2 parameters are always excluded for CriticalNative methods.
1938 if (LIKELY(!critical_native)) {
1939 // jni environment is always first argument
1940 sm_.AdvancePointer(self->GetJniEnv());
1941
1942 if (is_static) {
1943 // The `jclass` is a pointer to the method's declaring class.
1944 // The declaring class must be marked.
1945 auto* declaring_class = reinterpret_cast<mirror::CompressedReference<mirror::Class>*>(
1946 method->GetDeclaringClassAddressWithoutBarrier());
1947 if (kUseReadBarrier) {
1948 artJniReadBarrier(method);
1949 }
1950 sm_.AdvancePointer(declaring_class);
1951 } // else "this" reference is already handled by QuickArgumentVisitor.
1952 }
1953 }
1954
1955 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1956
1957 private:
1958 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1959 class FillJniCall final : public FillNativeCall {
1960 public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,bool critical_native)1961 FillJniCall(uintptr_t* gpr_regs,
1962 uint32_t* fpr_regs,
1963 uintptr_t* stack_args,
1964 bool critical_native)
1965 : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1966 cur_entry_(0),
1967 critical_native_(critical_native) {}
1968
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1969 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1970 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1971 cur_entry_ = 0U;
1972 }
1973
CriticalNative() const1974 bool CriticalNative() const {
1975 return critical_native_;
1976 }
1977
1978 private:
1979 size_t cur_entry_;
1980 const bool critical_native_;
1981 };
1982
1983 FillJniCall jni_call_;
1984 BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1985
1986 // Pointer to the current vreg in caller's reserved out vreg area.
1987 // Used for spilling reference arguments.
1988 uint32_t* current_vreg_;
1989
1990 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1991 };
1992
Visit()1993 void BuildGenericJniFrameVisitor::Visit() {
1994 Primitive::Type type = GetParamPrimitiveType();
1995 switch (type) {
1996 case Primitive::kPrimLong: {
1997 jlong long_arg;
1998 if (IsSplitLongOrDouble()) {
1999 long_arg = ReadSplitLongParam();
2000 } else {
2001 long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2002 }
2003 sm_.AdvanceLong(long_arg);
2004 current_vreg_ += 2u;
2005 break;
2006 }
2007 case Primitive::kPrimDouble: {
2008 uint64_t double_arg;
2009 if (IsSplitLongOrDouble()) {
2010 // Read into union so that we don't case to a double.
2011 double_arg = ReadSplitLongParam();
2012 } else {
2013 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2014 }
2015 sm_.AdvanceDouble(double_arg);
2016 current_vreg_ += 2u;
2017 break;
2018 }
2019 case Primitive::kPrimNot: {
2020 mirror::Object* obj =
2021 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress())->AsMirrorPtr();
2022 StackReference<mirror::Object>* spill_ref =
2023 reinterpret_cast<StackReference<mirror::Object>*>(current_vreg_);
2024 spill_ref->Assign(obj);
2025 sm_.AdvancePointer(obj != nullptr ? spill_ref : nullptr);
2026 current_vreg_ += 1u;
2027 break;
2028 }
2029 case Primitive::kPrimFloat:
2030 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2031 current_vreg_ += 1u;
2032 break;
2033 case Primitive::kPrimBoolean: // Fall-through.
2034 case Primitive::kPrimByte: // Fall-through.
2035 case Primitive::kPrimChar: // Fall-through.
2036 case Primitive::kPrimShort: // Fall-through.
2037 case Primitive::kPrimInt: // Fall-through.
2038 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2039 current_vreg_ += 1u;
2040 break;
2041 case Primitive::kPrimVoid:
2042 LOG(FATAL) << "UNREACHABLE";
2043 UNREACHABLE();
2044 }
2045 }
2046
2047 /*
2048 * Initializes the reserved area assumed to be directly below `managed_sp` for a native call:
2049 *
2050 * On entry, the stack has a standard callee-save frame above `managed_sp`,
2051 * and the reserved area below it. Starting below `managed_sp`, we reserve space
2052 * for local reference cookie (not present for @CriticalNative), HandleScope
2053 * (not present for @CriticalNative) and stack args (if args do not fit into
2054 * registers). At the bottom of the reserved area, there is space for register
2055 * arguments, hidden arg (for @CriticalNative) and the SP for the native call
2056 * (i.e. pointer to the stack args area), which the calling stub shall load
2057 * to perform the native call. We fill all these fields, perform class init
2058 * check (for static methods) and/or locking (for synchronized methods) if
2059 * needed and return to the stub.
2060 *
2061 * The return value is the pointer to the native code, null on failure.
2062 *
2063 * NO_THREAD_SAFETY_ANALYSIS: Depending on the use case, the trampoline may
2064 * or may not lock a synchronization object and transition out of Runnable.
2065 */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** managed_sp,uintptr_t * reserved_area)2066 extern "C" const void* artQuickGenericJniTrampoline(Thread* self,
2067 ArtMethod** managed_sp,
2068 uintptr_t* reserved_area)
2069 REQUIRES_SHARED(Locks::mutator_lock_) NO_THREAD_SAFETY_ANALYSIS {
2070 // Note: We cannot walk the stack properly until fixed up below.
2071 ArtMethod* called = *managed_sp;
2072 DCHECK(called->IsNative()) << called->PrettyMethod(true);
2073 Runtime* runtime = Runtime::Current();
2074 uint32_t shorty_len = 0;
2075 const char* shorty = called->GetShorty(&shorty_len);
2076 bool critical_native = called->IsCriticalNative();
2077 bool fast_native = called->IsFastNative();
2078 bool normal_native = !critical_native && !fast_native;
2079
2080 // Run the visitor and update sp.
2081 BuildGenericJniFrameVisitor visitor(self,
2082 called->IsStatic(),
2083 critical_native,
2084 shorty,
2085 shorty_len,
2086 managed_sp,
2087 reserved_area);
2088 {
2089 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2090 visitor.VisitArguments();
2091 }
2092
2093 // Fix up managed-stack things in Thread. After this we can walk the stack.
2094 self->SetTopOfStackTagged(managed_sp);
2095
2096 self->VerifyStack();
2097
2098 // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
2099 jit::Jit* jit = runtime->GetJit();
2100 if (jit != nullptr) {
2101 jit->MethodEntered(self, called);
2102 }
2103
2104 // We can set the entrypoint of a native method to generic JNI even when the
2105 // class hasn't been initialized, so we need to do the initialization check
2106 // before invoking the native code.
2107 if (NeedsClinitCheckBeforeCall(called)) {
2108 ObjPtr<mirror::Class> declaring_class = called->GetDeclaringClass();
2109 if (UNLIKELY(!declaring_class->IsVisiblyInitialized())) {
2110 // Ensure static method's class is initialized.
2111 StackHandleScope<1> hs(self);
2112 Handle<mirror::Class> h_class(hs.NewHandle(declaring_class));
2113 if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
2114 DCHECK(Thread::Current()->IsExceptionPending()) << called->PrettyMethod();
2115 return nullptr; // Report error.
2116 }
2117 }
2118 }
2119
2120 // Skip calling `artJniMethodStart()` for @CriticalNative and @FastNative.
2121 if (LIKELY(normal_native)) {
2122 // Start JNI.
2123 if (called->IsSynchronized()) {
2124 ObjPtr<mirror::Object> lock = GetGenericJniSynchronizationObject(self, called);
2125 DCHECK(lock != nullptr);
2126 lock->MonitorEnter(self);
2127 if (self->IsExceptionPending()) {
2128 return nullptr; // Report error.
2129 }
2130 }
2131 if (UNLIKELY(self->ReadFlag(ThreadFlag::kMonitorJniEntryExit))) {
2132 artJniMonitoredMethodStart(self);
2133 } else {
2134 artJniMethodStart(self);
2135 }
2136 } else {
2137 DCHECK(!called->IsSynchronized())
2138 << "@FastNative/@CriticalNative and synchronize is not supported";
2139 }
2140
2141 // Skip pushing IRT frame for @CriticalNative.
2142 if (LIKELY(!critical_native)) {
2143 // Push local reference frame.
2144 JNIEnvExt* env = self->GetJniEnv();
2145 DCHECK(env != nullptr);
2146 uint32_t cookie = bit_cast<uint32_t>(env->GetLocalRefCookie());
2147 env->SetLocalRefCookie(env->GetLocalsSegmentState());
2148
2149 // Save the cookie on the stack.
2150 uint32_t* sp32 = reinterpret_cast<uint32_t*>(managed_sp);
2151 *(sp32 - 1) = cookie;
2152 }
2153
2154 // Retrieve the stored native code.
2155 // Note that it may point to the lookup stub or trampoline.
2156 // FIXME: This is broken for @CriticalNative as the art_jni_dlsym_lookup_stub
2157 // does not handle that case. Calls from compiled stubs are also broken.
2158 void const* nativeCode = called->GetEntryPointFromJni();
2159
2160 VLOG(third_party_jni) << "GenericJNI: "
2161 << called->PrettyMethod()
2162 << " -> "
2163 << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2164
2165 // Return native code.
2166 return nativeCode;
2167 }
2168
2169 // Defined in quick_jni_entrypoints.cc.
2170 extern uint64_t GenericJniMethodEnd(Thread* self,
2171 uint32_t saved_local_ref_cookie,
2172 jvalue result,
2173 uint64_t result_f,
2174 ArtMethod* called);
2175
2176 /*
2177 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2178 * unlocking.
2179 */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2180 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2181 jvalue result,
2182 uint64_t result_f) {
2183 // We're here just back from a native call. We don't have the shared mutator lock at this point
2184 // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2185 // anything that requires a mutator lock before that would cause problems as GC may have the
2186 // exclusive mutator lock and may be moving objects, etc.
2187 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2188 DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2189 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2190 ArtMethod* called = *sp;
2191 uint32_t cookie = *(sp32 - 1);
2192 return GenericJniMethodEnd(self, cookie, result, result_f, called);
2193 }
2194
2195 // Fast path method resolution that can't throw exceptions.
2196 template <InvokeType type>
FindMethodFast(uint32_t method_idx,ObjPtr<mirror::Object> this_object,ArtMethod * referrer)2197 inline ArtMethod* FindMethodFast(uint32_t method_idx,
2198 ObjPtr<mirror::Object> this_object,
2199 ArtMethod* referrer)
2200 REQUIRES_SHARED(Locks::mutator_lock_)
2201 REQUIRES(!Roles::uninterruptible_) {
2202 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2203 if (UNLIKELY(this_object == nullptr && type != kStatic)) {
2204 return nullptr;
2205 }
2206 ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
2207 ObjPtr<mirror::DexCache> dex_cache = referrer->GetDexCache();
2208 constexpr ClassLinker::ResolveMode resolve_mode = ClassLinker::ResolveMode::kCheckICCEAndIAE;
2209 ClassLinker* linker = Runtime::Current()->GetClassLinker();
2210 ArtMethod* resolved_method = linker->GetResolvedMethod<type, resolve_mode>(method_idx, referrer);
2211 if (UNLIKELY(resolved_method == nullptr)) {
2212 return nullptr;
2213 }
2214 if (type == kInterface) { // Most common form of slow path dispatch.
2215 return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method,
2216 kRuntimePointerSize);
2217 }
2218 if (type == kStatic || type == kDirect) {
2219 return resolved_method;
2220 }
2221
2222 if (type == kSuper) {
2223 // TODO This lookup is rather slow.
2224 dex::TypeIndex method_type_idx = dex_cache->GetDexFile()->GetMethodId(method_idx).class_idx_;
2225 ObjPtr<mirror::Class> method_reference_class = linker->LookupResolvedType(
2226 method_type_idx, dex_cache, referrer->GetClassLoader());
2227 if (method_reference_class == nullptr) {
2228 // Need to do full type resolution...
2229 return nullptr;
2230 }
2231
2232 // If the referring class is in the class hierarchy of the
2233 // referenced class in the bytecode, we use its super class. Otherwise, we cannot
2234 // resolve the method.
2235 if (!method_reference_class->IsAssignableFrom(referring_class)) {
2236 return nullptr;
2237 }
2238
2239 if (method_reference_class->IsInterface()) {
2240 return method_reference_class->FindVirtualMethodForInterfaceSuper(
2241 resolved_method, kRuntimePointerSize);
2242 }
2243
2244 ObjPtr<mirror::Class> super_class = referring_class->GetSuperClass();
2245 if (resolved_method->GetMethodIndex() >= super_class->GetVTableLength()) {
2246 // The super class does not have the method.
2247 return nullptr;
2248 }
2249 return super_class->GetVTableEntry(resolved_method->GetMethodIndex(), kRuntimePointerSize);
2250 }
2251
2252 DCHECK(type == kVirtual);
2253 return this_object->GetClass()->GetVTableEntry(
2254 resolved_method->GetMethodIndex(), kRuntimePointerSize);
2255 }
2256
2257 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2258 // for the method pointer.
2259 //
2260 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2261 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2262
2263 template <InvokeType type>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2264 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2265 ObjPtr<mirror::Object> this_object,
2266 Thread* self,
2267 ArtMethod** sp) {
2268 ScopedQuickEntrypointChecks sqec(self);
2269 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2270 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2271 ArtMethod* method = FindMethodFast<type>(method_idx, this_object, caller_method);
2272 if (UNLIKELY(method == nullptr)) {
2273 const DexFile* dex_file = caller_method->GetDexFile();
2274 uint32_t shorty_len;
2275 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2276 {
2277 // Remember the args in case a GC happens in FindMethodFromCode.
2278 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2279 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2280 visitor.VisitArguments();
2281 method = FindMethodFromCode<type, /*access_check=*/true>(
2282 method_idx, &this_object, caller_method, self);
2283 visitor.FixupReferences();
2284 }
2285
2286 if (UNLIKELY(method == nullptr)) {
2287 CHECK(self->IsExceptionPending());
2288 return GetTwoWordFailureValue(); // Failure.
2289 }
2290 }
2291 DCHECK(!self->IsExceptionPending());
2292 const void* code = method->GetEntryPointFromQuickCompiledCode();
2293
2294 // When we return, the caller will branch to this address, so it had better not be 0!
2295 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2296 << " location: "
2297 << method->GetDexFile()->GetLocation();
2298
2299 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2300 reinterpret_cast<uintptr_t>(method));
2301 }
2302
2303 // Explicit artInvokeCommon template function declarations to please analysis tool.
2304 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type) \
2305 template REQUIRES_SHARED(Locks::mutator_lock_) \
2306 TwoWordReturn artInvokeCommon<type>( \
2307 uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2308
2309 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual);
2310 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface);
2311 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect);
2312 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic);
2313 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper);
2314 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2315
2316 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2317 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2318 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2319 REQUIRES_SHARED(Locks::mutator_lock_) {
2320 return artInvokeCommon<kInterface>(method_idx, this_object, self, sp);
2321 }
2322
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2323 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2324 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2325 REQUIRES_SHARED(Locks::mutator_lock_) {
2326 return artInvokeCommon<kDirect>(method_idx, this_object, self, sp);
2327 }
2328
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2329 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2330 uint32_t method_idx,
2331 mirror::Object* this_object ATTRIBUTE_UNUSED,
2332 Thread* self,
2333 ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2334 // For static, this_object is not required and may be random garbage. Don't pass it down so that
2335 // it doesn't cause ObjPtr alignment failure check.
2336 return artInvokeCommon<kStatic>(method_idx, nullptr, self, sp);
2337 }
2338
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2339 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2340 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2341 REQUIRES_SHARED(Locks::mutator_lock_) {
2342 return artInvokeCommon<kSuper>(method_idx, this_object, self, sp);
2343 }
2344
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2345 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2346 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2347 REQUIRES_SHARED(Locks::mutator_lock_) {
2348 return artInvokeCommon<kVirtual>(method_idx, this_object, self, sp);
2349 }
2350
2351 // Determine target of interface dispatch. The interface method and this object are known non-null.
2352 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2353 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2354 mirror::Object* raw_this_object,
2355 Thread* self,
2356 ArtMethod** sp)
2357 REQUIRES_SHARED(Locks::mutator_lock_) {
2358 ScopedQuickEntrypointChecks sqec(self);
2359
2360 Runtime* runtime = Runtime::Current();
2361 bool resolve_method = ((interface_method == nullptr) || interface_method->IsRuntimeMethod());
2362 if (UNLIKELY(resolve_method)) {
2363 // The interface method is unresolved, so resolve it in the dex file of the caller.
2364 // Fetch the dex_method_idx of the target interface method from the caller.
2365 StackHandleScope<1> hs(self);
2366 Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2367 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2368 uint32_t dex_method_idx;
2369 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2370 const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2371 Instruction::Code instr_code = instr.Opcode();
2372 DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2373 instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2374 << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2375 if (instr_code == Instruction::INVOKE_INTERFACE) {
2376 dex_method_idx = instr.VRegB_35c();
2377 } else {
2378 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2379 dex_method_idx = instr.VRegB_3rc();
2380 }
2381
2382 const DexFile& dex_file = *caller_method->GetDexFile();
2383 uint32_t shorty_len;
2384 const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2385 &shorty_len);
2386 {
2387 // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2388 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2389 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2390 visitor.VisitArguments();
2391 ClassLinker* class_linker = runtime->GetClassLinker();
2392 interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2393 self, dex_method_idx, caller_method, kInterface);
2394 visitor.FixupReferences();
2395 }
2396
2397 if (UNLIKELY(interface_method == nullptr)) {
2398 CHECK(self->IsExceptionPending());
2399 return GetTwoWordFailureValue(); // Failure.
2400 }
2401 ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
2402 MaybeUpdateBssMethodEntry(
2403 interface_method, MethodReference(&dex_file, dex_method_idx), outer_method);
2404
2405 // Refresh `raw_this_object` which may have changed after resolution.
2406 raw_this_object = this_object.Get();
2407 }
2408
2409 // The compiler and interpreter make sure the conflict trampoline is never
2410 // called on a method that resolves to j.l.Object.
2411 DCHECK(!interface_method->GetDeclaringClass()->IsObjectClass());
2412 DCHECK(interface_method->GetDeclaringClass()->IsInterface());
2413 DCHECK(!interface_method->IsRuntimeMethod());
2414 DCHECK(!interface_method->IsCopied());
2415
2416 ObjPtr<mirror::Object> obj_this = raw_this_object;
2417 ObjPtr<mirror::Class> cls = obj_this->GetClass();
2418 uint32_t imt_index = interface_method->GetImtIndex();
2419 ImTable* imt = cls->GetImt(kRuntimePointerSize);
2420 ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2421 DCHECK(conflict_method->IsRuntimeMethod());
2422
2423 if (UNLIKELY(resolve_method)) {
2424 // Now that we know the interface method, look it up in the conflict table.
2425 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2426 DCHECK(current_table != nullptr);
2427 ArtMethod* method = current_table->Lookup(interface_method, kRuntimePointerSize);
2428 if (method != nullptr) {
2429 return GetTwoWordSuccessValue(
2430 reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2431 reinterpret_cast<uintptr_t>(method));
2432 }
2433 // Interface method is not in the conflict table. Continue looking up in the
2434 // iftable.
2435 }
2436
2437 ArtMethod* method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2438 if (UNLIKELY(method == nullptr)) {
2439 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2440 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2441 interface_method, obj_this.Ptr(), caller_method);
2442 return GetTwoWordFailureValue();
2443 }
2444
2445 // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2446 // We create a new table with the new pair { interface_method, method }.
2447
2448 // Classes in the boot image should never need to update conflict methods in
2449 // their IMT.
2450 CHECK(!runtime->GetHeap()->ObjectIsInBootImageSpace(cls.Ptr())) << cls->PrettyClass();
2451 ArtMethod* new_conflict_method = runtime->GetClassLinker()->AddMethodToConflictTable(
2452 cls.Ptr(),
2453 conflict_method,
2454 interface_method,
2455 method);
2456 if (new_conflict_method != conflict_method) {
2457 // Update the IMT if we create a new conflict method. No fence needed here, as the
2458 // data is consistent.
2459 imt->Set(imt_index,
2460 new_conflict_method,
2461 kRuntimePointerSize);
2462 }
2463
2464 const void* code = method->GetEntryPointFromQuickCompiledCode();
2465
2466 // When we return, the caller will branch to this address, so it had better not be 0!
2467 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2468 << " location: " << method->GetDexFile()->GetLocation();
2469
2470 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2471 reinterpret_cast<uintptr_t>(method));
2472 }
2473
2474 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2475 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2476 REQUIRES_SHARED(Locks::mutator_lock_) {
2477 ScopedQuickEntrypointChecks sqec(self);
2478 DCHECK(raw_receiver != nullptr);
2479 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2480
2481 // Start new JNI local reference state
2482 JNIEnvExt* env = self->GetJniEnv();
2483 ScopedObjectAccessUnchecked soa(env);
2484 ScopedJniEnvLocalRefState env_state(env);
2485 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2486
2487 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2488 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2489 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2490 const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2491 DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2492 inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2493 const dex::ProtoIndex proto_idx(inst.VRegH());
2494 const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2495 const size_t shorty_length = strlen(shorty);
2496 static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
2497 RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2498 gc_visitor.VisitArguments();
2499
2500 // Wrap raw_receiver in a Handle for safety.
2501 StackHandleScope<3> hs(self);
2502 Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2503 raw_receiver = nullptr;
2504 self->EndAssertNoThreadSuspension(old_cause);
2505
2506 // Resolve method.
2507 ClassLinker* linker = Runtime::Current()->GetClassLinker();
2508 ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2509 self, inst.VRegB(), caller_method, kVirtual);
2510
2511 Handle<mirror::MethodType> method_type(
2512 hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2513 if (UNLIKELY(method_type.IsNull())) {
2514 // This implies we couldn't resolve one or more types in this method handle.
2515 CHECK(self->IsExceptionPending());
2516 return 0UL;
2517 }
2518
2519 DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2520 DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2521
2522 // Fix references before constructing the shadow frame.
2523 gc_visitor.FixupReferences();
2524
2525 // Construct shadow frame placing arguments consecutively from |first_arg|.
2526 const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2527 const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2528 const size_t first_arg = 0;
2529 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2530 CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, resolved_method, dex_pc);
2531 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2532 ScopedStackedShadowFramePusher
2533 frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2534 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2535 kMethodIsStatic,
2536 shorty,
2537 strlen(shorty),
2538 shadow_frame,
2539 first_arg);
2540 shadow_frame_builder.VisitArguments();
2541
2542 // Push a transition back into managed code onto the linked list in thread.
2543 ManagedStack fragment;
2544 self->PushManagedStackFragment(&fragment);
2545
2546 // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2547 // consecutive order.
2548 RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2549 Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
2550 JValue result;
2551 bool success = false;
2552 if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2553 Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2554 ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2555 if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2556 success = MethodHandleInvokeExact(self,
2557 *shadow_frame,
2558 method_handle,
2559 method_type,
2560 &operands,
2561 &result);
2562 } else {
2563 DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2564 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2565 success = MethodHandleInvoke(self,
2566 *shadow_frame,
2567 method_handle,
2568 method_type,
2569 &operands,
2570 &result);
2571 }
2572 } else {
2573 DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2574 Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2575 ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2576 mirror::VarHandle::AccessMode access_mode =
2577 mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2578 success = VarHandleInvokeAccessor(self,
2579 *shadow_frame,
2580 var_handle,
2581 method_type,
2582 access_mode,
2583 &operands,
2584 &result);
2585 }
2586
2587 DCHECK(success || self->IsExceptionPending());
2588
2589 // Pop transition record.
2590 self->PopManagedStackFragment(fragment);
2591
2592 return result.GetJ();
2593 }
2594
2595 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2596 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2597 REQUIRES_SHARED(Locks::mutator_lock_) {
2598 ScopedQuickEntrypointChecks sqec(self);
2599 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2600
2601 // invoke-custom is effectively a static call (no receiver).
2602 static constexpr bool kMethodIsStatic = true;
2603
2604 // Start new JNI local reference state
2605 JNIEnvExt* env = self->GetJniEnv();
2606 ScopedObjectAccessUnchecked soa(env);
2607 ScopedJniEnvLocalRefState env_state(env);
2608
2609 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2610
2611 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2612 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2613 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2614 const DexFile* dex_file = caller_method->GetDexFile();
2615 const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2616 const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2617 const uint32_t shorty_len = strlen(shorty);
2618
2619 // Construct the shadow frame placing arguments consecutively from |first_arg|.
2620 const size_t first_arg = 0;
2621 const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2622 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2623 CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, caller_method, dex_pc);
2624 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2625 ScopedStackedShadowFramePusher
2626 frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2627 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2628 kMethodIsStatic,
2629 shorty,
2630 shorty_len,
2631 shadow_frame,
2632 first_arg);
2633 shadow_frame_builder.VisitArguments();
2634
2635 // Push a transition back into managed code onto the linked list in thread.
2636 ManagedStack fragment;
2637 self->PushManagedStackFragment(&fragment);
2638 self->EndAssertNoThreadSuspension(old_cause);
2639
2640 // Perform the invoke-custom operation.
2641 RangeInstructionOperands operands(first_arg, num_vregs);
2642 JValue result;
2643 bool success =
2644 interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2645 DCHECK(success || self->IsExceptionPending());
2646
2647 // Pop transition record.
2648 self->PopManagedStackFragment(fragment);
2649
2650 return result.GetJ();
2651 }
2652
artMethodEntryHook(ArtMethod * method,Thread * self,ArtMethod ** sp ATTRIBUTE_UNUSED)2653 extern "C" void artMethodEntryHook(ArtMethod* method, Thread* self, ArtMethod** sp ATTRIBUTE_UNUSED)
2654 REQUIRES_SHARED(Locks::mutator_lock_) {
2655 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2656 instr->MethodEnterEvent(self, method);
2657 if (instr->IsDeoptimized(method)) {
2658 // Instrumentation can request deoptimizing only a particular method (for
2659 // ex: when there are break points on the method). In such cases deoptimize
2660 // only this method. FullFrame deoptimizations are handled on method exits.
2661 artDeoptimizeFromCompiledCode(DeoptimizationKind::kDebugging, self);
2662 }
2663 }
2664
artMethodExitHook(Thread * self,ArtMethod * method,uint64_t * gpr_result,uint64_t * fpr_result)2665 extern "C" int artMethodExitHook(Thread* self,
2666 ArtMethod* method,
2667 uint64_t* gpr_result,
2668 uint64_t* fpr_result)
2669 REQUIRES_SHARED(Locks::mutator_lock_) {
2670 DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
2671 CHECK(gpr_result != nullptr);
2672 CHECK(fpr_result != nullptr);
2673 // Instrumentation exit stub must not be entered with a pending exception.
2674 CHECK(!self->IsExceptionPending())
2675 << "Enter instrumentation exit stub with pending exception " << self->GetException()->Dump();
2676
2677 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2678 DCHECK(instr->AreExitStubsInstalled());
2679 bool is_ref;
2680 JValue return_value = instr->GetReturnValue(self, method, &is_ref, gpr_result, fpr_result);
2681 bool deoptimize = false;
2682 {
2683 StackHandleScope<1> hs(self);
2684 MutableHandle<mirror::Object> res(hs.NewHandle<mirror::Object>(nullptr));
2685 if (is_ref) {
2686 // Take a handle to the return value so we won't lose it if we suspend.
2687 res.Assign(return_value.GetL());
2688 }
2689 DCHECK(!method->IsRuntimeMethod());
2690
2691 // Deoptimize if the caller needs to continue execution in the interpreter. Do nothing if we get
2692 // back to an upcall.
2693 NthCallerVisitor visitor(self, 1, /*include_runtime_and_upcalls=*/false);
2694 visitor.WalkStack(true);
2695 deoptimize = instr->ShouldDeoptimizeMethod(self, visitor);
2696
2697 // If we need a deoptimization MethodExitEvent will be called by the interpreter when it
2698 // re-executes the return instruction.
2699 if (!deoptimize) {
2700 instr->MethodExitEvent(self,
2701 method,
2702 /* frame= */ {},
2703 return_value);
2704 }
2705
2706 if (is_ref) {
2707 // Restore the return value if it's a reference since it might have moved.
2708 *reinterpret_cast<mirror::Object**>(gpr_result) = res.Get();
2709 return_value.SetL(res.Get());
2710 }
2711 }
2712
2713 if (self->IsExceptionPending() || self->ObserveAsyncException()) {
2714 return 1;
2715 }
2716
2717 if (deoptimize) {
2718 DeoptimizationMethodType deopt_method_type = instr->GetDeoptimizationMethodType(method);
2719 self->PushDeoptimizationContext(return_value, is_ref, nullptr, false, deopt_method_type);
2720 artDeoptimize(self);
2721 UNREACHABLE();
2722 }
2723
2724 return 0;
2725 }
2726
2727 } // namespace art
2728