1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <math.h>
14 #include <string.h>
15
16 #include "config/aom_scale_rtcd.h"
17
18 #include "aom/aom_integer.h"
19 #include "av1/common/av1_common_int.h"
20 #include "av1/common/cdef.h"
21 #include "av1/common/cdef_block.h"
22 #include "av1/common/reconinter.h"
23
is_8x8_block_skip(MB_MODE_INFO ** grid,int mi_row,int mi_col,int mi_stride)24 static int is_8x8_block_skip(MB_MODE_INFO **grid, int mi_row, int mi_col,
25 int mi_stride) {
26 MB_MODE_INFO **mbmi = grid + mi_row * mi_stride + mi_col;
27 for (int r = 0; r < mi_size_high[BLOCK_8X8]; ++r, mbmi += mi_stride) {
28 for (int c = 0; c < mi_size_wide[BLOCK_8X8]; ++c) {
29 if (!mbmi[c]->skip_txfm) return 0;
30 }
31 }
32
33 return 1;
34 }
35
av1_cdef_compute_sb_list(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col,cdef_list * dlist,BLOCK_SIZE bs)36 int av1_cdef_compute_sb_list(const CommonModeInfoParams *const mi_params,
37 int mi_row, int mi_col, cdef_list *dlist,
38 BLOCK_SIZE bs) {
39 MB_MODE_INFO **grid = mi_params->mi_grid_base;
40 int maxc = mi_params->mi_cols - mi_col;
41 int maxr = mi_params->mi_rows - mi_row;
42
43 if (bs == BLOCK_128X128 || bs == BLOCK_128X64)
44 maxc = AOMMIN(maxc, MI_SIZE_128X128);
45 else
46 maxc = AOMMIN(maxc, MI_SIZE_64X64);
47 if (bs == BLOCK_128X128 || bs == BLOCK_64X128)
48 maxr = AOMMIN(maxr, MI_SIZE_128X128);
49 else
50 maxr = AOMMIN(maxr, MI_SIZE_64X64);
51
52 const int r_step = 2; // mi_size_high[BLOCK_8X8]
53 const int c_step = 2; // mi_size_wide[BLOCK_8X8]
54 const int r_shift = 1;
55 const int c_shift = 1;
56 int count = 0;
57 for (int r = 0; r < maxr; r += r_step) {
58 for (int c = 0; c < maxc; c += c_step) {
59 if (!is_8x8_block_skip(grid, mi_row + r, mi_col + c,
60 mi_params->mi_stride)) {
61 dlist[count].by = r >> r_shift;
62 dlist[count].bx = c >> c_shift;
63 count++;
64 }
65 }
66 }
67 return count;
68 }
69
cdef_copy_rect8_8bit_to_16bit_c(uint16_t * dst,int dstride,const uint8_t * src,int sstride,int v,int h)70 void cdef_copy_rect8_8bit_to_16bit_c(uint16_t *dst, int dstride,
71 const uint8_t *src, int sstride, int v,
72 int h) {
73 for (int i = 0; i < v; i++) {
74 for (int j = 0; j < h; j++) {
75 dst[i * dstride + j] = src[i * sstride + j];
76 }
77 }
78 }
79
cdef_copy_rect8_16bit_to_16bit_c(uint16_t * dst,int dstride,const uint16_t * src,int sstride,int v,int h)80 void cdef_copy_rect8_16bit_to_16bit_c(uint16_t *dst, int dstride,
81 const uint16_t *src, int sstride, int v,
82 int h) {
83 for (int i = 0; i < v; i++) {
84 for (int j = 0; j < h; j++) {
85 dst[i * dstride + j] = src[i * sstride + j];
86 }
87 }
88 }
89
av1_cdef_copy_sb8_16(const AV1_COMMON * const cm,uint16_t * const dst,int dstride,const uint8_t * src,int src_voffset,int src_hoffset,int sstride,int vsize,int hsize)90 void av1_cdef_copy_sb8_16(const AV1_COMMON *const cm, uint16_t *const dst,
91 int dstride, const uint8_t *src, int src_voffset,
92 int src_hoffset, int sstride, int vsize, int hsize) {
93 if (cm->seq_params->use_highbitdepth) {
94 const uint16_t *base =
95 &CONVERT_TO_SHORTPTR(src)[src_voffset * sstride + src_hoffset];
96 cdef_copy_rect8_16bit_to_16bit(dst, dstride, base, sstride, vsize, hsize);
97 } else {
98 const uint8_t *base = &src[src_voffset * sstride + src_hoffset];
99 cdef_copy_rect8_8bit_to_16bit(dst, dstride, base, sstride, vsize, hsize);
100 }
101 }
102
fill_rect(uint16_t * dst,int dstride,int v,int h,uint16_t x)103 static INLINE void fill_rect(uint16_t *dst, int dstride, int v, int h,
104 uint16_t x) {
105 for (int i = 0; i < v; i++) {
106 for (int j = 0; j < h; j++) {
107 dst[i * dstride + j] = x;
108 }
109 }
110 }
111
copy_rect(uint16_t * dst,int dstride,const uint16_t * src,int sstride,int v,int h)112 static INLINE void copy_rect(uint16_t *dst, int dstride, const uint16_t *src,
113 int sstride, int v, int h) {
114 for (int i = 0; i < v; i++) {
115 for (int j = 0; j < h; j++) {
116 dst[i * dstride + j] = src[i * sstride + j];
117 }
118 }
119 }
120
121 // Prepares intermediate input buffer for CDEF.
122 // Inputs:
123 // cm: Pointer to common structure.
124 // fb_info: Pointer to the CDEF block-level parameter structure.
125 // colbuf: Left column buffer for CDEF.
126 // cdef_left: Left block is filtered or not.
127 // fbc, fbr: col and row index of a block.
128 // plane: plane index Y/CB/CR.
129 // Returns:
130 // Nothing will be returned.
cdef_prepare_fb(const AV1_COMMON * const cm,CdefBlockInfo * fb_info,uint16_t ** const colbuf,const int * cdef_left,int fbc,int fbr,int plane)131 static void cdef_prepare_fb(const AV1_COMMON *const cm, CdefBlockInfo *fb_info,
132 uint16_t **const colbuf, const int *cdef_left,
133 int fbc, int fbr, int plane) {
134 const CommonModeInfoParams *const mi_params = &cm->mi_params;
135 uint16_t *src = fb_info->src;
136 const int luma_stride =
137 ALIGN_POWER_OF_TWO(mi_params->mi_cols << MI_SIZE_LOG2, 4);
138 const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
139 const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
140 int cstart = 0;
141 if (!*cdef_left) cstart = -CDEF_HBORDER;
142 int rend, cend;
143 const int nhb =
144 AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
145 const int nvb =
146 AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
147 const int hsize = nhb << fb_info->mi_wide_l2;
148 const int vsize = nvb << fb_info->mi_high_l2;
149 const uint16_t *top_linebuf = fb_info->top_linebuf[plane];
150 const uint16_t *bot_linebuf = fb_info->bot_linebuf[plane];
151 const int bot_offset = (vsize + CDEF_VBORDER) * CDEF_BSTRIDE;
152 const int stride =
153 luma_stride >> (plane == AOM_PLANE_Y ? 0 : cm->seq_params->subsampling_x);
154
155 if (fbc == nhfb - 1)
156 cend = hsize;
157 else
158 cend = hsize + CDEF_HBORDER;
159
160 if (fbr == nvfb - 1)
161 rend = vsize;
162 else
163 rend = vsize + CDEF_VBORDER;
164
165 /* Copy in the pixels we need from the current superblock for
166 deringing.*/
167 av1_cdef_copy_sb8_16(
168 cm, &src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER + cstart],
169 CDEF_BSTRIDE, fb_info->dst, fb_info->roffset, fb_info->coffset + cstart,
170 fb_info->dst_stride, vsize, cend - cstart);
171
172 /* Copy in the pixels we need for the current superblock from bottom buffer.*/
173 if (fbr < nvfb - 1) {
174 copy_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE,
175 &bot_linebuf[fb_info->coffset], stride, CDEF_VBORDER, hsize);
176 } else {
177 fill_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
178 hsize, CDEF_VERY_LARGE);
179 }
180 if (fbr < nvfb - 1 && fbc > 0) {
181 copy_rect(&src[bot_offset], CDEF_BSTRIDE,
182 &bot_linebuf[fb_info->coffset - CDEF_HBORDER], stride,
183 CDEF_VBORDER, CDEF_HBORDER);
184 } else {
185 fill_rect(&src[bot_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
186 CDEF_VERY_LARGE);
187 }
188 if (fbr < nvfb - 1 && fbc < nhfb - 1) {
189 copy_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE,
190 &bot_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
191 CDEF_HBORDER);
192 } else {
193 fill_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE,
194 CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
195 }
196
197 /* Copy in the pixels we need from the current superblock from top buffer.*/
198 if (fbr > 0) {
199 copy_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, &top_linebuf[fb_info->coffset],
200 stride, CDEF_VBORDER, hsize);
201 } else {
202 fill_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hsize,
203 CDEF_VERY_LARGE);
204 }
205 if (fbr > 0 && fbc > 0) {
206 copy_rect(src, CDEF_BSTRIDE, &top_linebuf[fb_info->coffset - CDEF_HBORDER],
207 stride, CDEF_VBORDER, CDEF_HBORDER);
208 } else {
209 fill_rect(src, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
210 }
211 if (fbr > 0 && fbc < nhfb - 1) {
212 copy_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
213 &top_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
214 CDEF_HBORDER);
215 } else {
216 fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
217 CDEF_HBORDER, CDEF_VERY_LARGE);
218 }
219 if (*cdef_left) {
220 /* If we deringed the superblock on the left then we need to copy in
221 saved pixels. */
222 copy_rect(src, CDEF_BSTRIDE, colbuf[plane], CDEF_HBORDER,
223 rend + CDEF_VBORDER, CDEF_HBORDER);
224 }
225 /* Saving pixels in case we need to dering the superblock on the
226 right. */
227 copy_rect(colbuf[plane], CDEF_HBORDER, src + hsize, CDEF_BSTRIDE,
228 rend + CDEF_VBORDER, CDEF_HBORDER);
229
230 if (fb_info->frame_boundary[LEFT]) {
231 fill_rect(src, CDEF_BSTRIDE, vsize + 2 * CDEF_VBORDER, CDEF_HBORDER,
232 CDEF_VERY_LARGE);
233 }
234 if (fb_info->frame_boundary[RIGHT]) {
235 fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
236 vsize + 2 * CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
237 }
238 }
239
cdef_filter_fb(CdefBlockInfo * const fb_info,int plane,uint8_t use_highbitdepth)240 static INLINE void cdef_filter_fb(CdefBlockInfo *const fb_info, int plane,
241 uint8_t use_highbitdepth) {
242 int offset = fb_info->dst_stride * fb_info->roffset + fb_info->coffset;
243 if (use_highbitdepth) {
244 av1_cdef_filter_fb(
245 NULL, CONVERT_TO_SHORTPTR(fb_info->dst + offset), fb_info->dst_stride,
246 &fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
247 fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
248 fb_info->dlist, fb_info->cdef_count, fb_info->level,
249 fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
250 } else {
251 av1_cdef_filter_fb(
252 fb_info->dst + offset, NULL, fb_info->dst_stride,
253 &fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
254 fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
255 fb_info->dlist, fb_info->cdef_count, fb_info->level,
256 fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
257 }
258 }
259
260 // Initializes block-level parameters for CDEF.
cdef_init_fb_col(const MACROBLOCKD * const xd,const CdefInfo * const cdef_info,CdefBlockInfo * const fb_info,int mbmi_cdef_strength,int fbc,int fbr,int plane)261 static INLINE void cdef_init_fb_col(const MACROBLOCKD *const xd,
262 const CdefInfo *const cdef_info,
263 CdefBlockInfo *const fb_info,
264 int mbmi_cdef_strength, int fbc, int fbr,
265 int plane) {
266 if (plane == AOM_PLANE_Y) {
267 fb_info->level =
268 cdef_info->cdef_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
269 fb_info->sec_strength =
270 cdef_info->cdef_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
271 fb_info->sec_strength += fb_info->sec_strength == 3;
272 int uv_level =
273 cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
274 int uv_sec_strength =
275 cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
276 uv_sec_strength += uv_sec_strength == 3;
277 fb_info->is_zero_level = (fb_info->level == 0) &&
278 (fb_info->sec_strength == 0) && (uv_level == 0) &&
279 (uv_sec_strength == 0);
280 } else {
281 fb_info->level =
282 cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
283 fb_info->sec_strength =
284 cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
285 fb_info->sec_strength += fb_info->sec_strength == 3;
286 }
287 fb_info->dst = xd->plane[plane].dst.buf;
288 fb_info->dst_stride = xd->plane[plane].dst.stride;
289
290 fb_info->xdec = xd->plane[plane].subsampling_x;
291 fb_info->ydec = xd->plane[plane].subsampling_y;
292 fb_info->mi_wide_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_x;
293 fb_info->mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
294 fb_info->roffset = MI_SIZE_64X64 * fbr << fb_info->mi_high_l2;
295 fb_info->coffset = MI_SIZE_64X64 * fbc << fb_info->mi_wide_l2;
296 }
297
cdef_fb_col(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const colbuf,int * cdef_left,int fbc,int fbr)298 static void cdef_fb_col(const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
299 CdefBlockInfo *const fb_info, uint16_t **const colbuf,
300 int *cdef_left, int fbc, int fbr) {
301 const CommonModeInfoParams *const mi_params = &cm->mi_params;
302 const int mbmi_cdef_strength =
303 mi_params
304 ->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
305 MI_SIZE_64X64 * fbc]
306 ->cdef_strength;
307 const int num_planes = av1_num_planes(cm);
308
309 if (mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
310 MI_SIZE_64X64 * fbc] == NULL ||
311 mbmi_cdef_strength == -1) {
312 *cdef_left = 0;
313 return;
314 }
315 for (int plane = 0; plane < num_planes; plane++) {
316 cdef_init_fb_col(xd, &cm->cdef_info, fb_info, mbmi_cdef_strength, fbc, fbr,
317 plane);
318 if (fb_info->is_zero_level ||
319 (fb_info->cdef_count = av1_cdef_compute_sb_list(
320 mi_params, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64,
321 fb_info->dlist, BLOCK_64X64)) == 0) {
322 *cdef_left = 0;
323 return;
324 }
325 cdef_prepare_fb(cm, fb_info, colbuf, cdef_left, fbc, fbr, plane);
326 cdef_filter_fb(fb_info, plane, cm->seq_params->use_highbitdepth);
327 }
328 *cdef_left = 1;
329 }
330
331 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)332 void av1_cdef_init_fb_row(const AV1_COMMON *const cm,
333 const MACROBLOCKD *const xd,
334 CdefBlockInfo *const fb_info,
335 uint16_t **const linebuf, uint16_t *const src,
336 struct AV1CdefSyncData *const cdef_sync, int fbr) {
337 (void)cdef_sync;
338 const int num_planes = av1_num_planes(cm);
339 const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
340 const int luma_stride =
341 ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
342 const bool ping_pong = fbr & 1;
343 // for the current filter block, it's top left corner mi structure (mi_tl)
344 // is first accessed to check whether the top and left boundaries are
345 // frame boundaries. Then bottom-left and top-right mi structures are
346 // accessed to check whether the bottom and right boundaries
347 // (respectively) are frame boundaries.
348 //
349 // Note that we can't just check the bottom-right mi structure - eg. if
350 // we're at the right-hand edge of the frame but not the bottom, then
351 // the bottom-right mi is NULL but the bottom-left is not.
352 fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
353 if (fbr != nvfb - 1)
354 fb_info->frame_boundary[BOTTOM] =
355 (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
356 else
357 fb_info->frame_boundary[BOTTOM] = 1;
358
359 fb_info->src = src;
360 fb_info->damping = cm->cdef_info.cdef_damping;
361 fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
362 av1_zero(fb_info->dir);
363 av1_zero(fb_info->var);
364
365 for (int plane = 0; plane < num_planes; plane++) {
366 const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
367 const int offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
368 const int stride = luma_stride >> xd->plane[plane].subsampling_x;
369 // here ping-pong buffers are maintained for top linebuf
370 // to avoid linebuf over-write by consecutive row.
371 uint16_t *const top_linebuf =
372 &linebuf[plane][ping_pong * CDEF_VBORDER * stride];
373 fb_info->bot_linebuf[plane] = &linebuf[plane][(CDEF_VBORDER << 1) * stride];
374
375 if (fbr != nvfb - 1) // top line buffer copy
376 av1_cdef_copy_sb8_16(cm, top_linebuf, stride, xd->plane[plane].dst.buf,
377 offset - CDEF_VBORDER, 0,
378 xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
379 fb_info->top_linebuf[plane] =
380 &linebuf[plane][(!ping_pong) * CDEF_VBORDER * stride];
381
382 if (fbr != nvfb - 1) // bottom line buffer copy
383 av1_cdef_copy_sb8_16(cm, fb_info->bot_linebuf[plane], stride,
384 xd->plane[plane].dst.buf, offset, 0,
385 xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
386 }
387 }
388
av1_cdef_fb_row(const AV1_COMMON * const cm,MACROBLOCKD * xd,uint16_t ** const linebuf,uint16_t ** const colbuf,uint16_t * const src,int fbr,cdef_init_fb_row_t cdef_init_fb_row_fn,struct AV1CdefSyncData * const cdef_sync)389 void av1_cdef_fb_row(const AV1_COMMON *const cm, MACROBLOCKD *xd,
390 uint16_t **const linebuf, uint16_t **const colbuf,
391 uint16_t *const src, int fbr,
392 cdef_init_fb_row_t cdef_init_fb_row_fn,
393 struct AV1CdefSyncData *const cdef_sync) {
394 CdefBlockInfo fb_info;
395 int cdef_left = 1;
396 const int nhfb = (cm->mi_params.mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
397
398 cdef_init_fb_row_fn(cm, xd, &fb_info, linebuf, src, cdef_sync, fbr);
399 for (int fbc = 0; fbc < nhfb; fbc++) {
400 fb_info.frame_boundary[LEFT] = (MI_SIZE_64X64 * fbc == 0) ? 1 : 0;
401 if (fbc != nhfb - 1)
402 fb_info.frame_boundary[RIGHT] =
403 (MI_SIZE_64X64 * (fbc + 1) == cm->mi_params.mi_cols) ? 1 : 0;
404 else
405 fb_info.frame_boundary[RIGHT] = 1;
406 cdef_fb_col(cm, xd, &fb_info, colbuf, &cdef_left, fbc, fbr);
407 }
408 }
409
410 // Perform CDEF on input frame.
411 // Inputs:
412 // frame: Pointer to input frame buffer.
413 // cm: Pointer to common structure.
414 // xd: Pointer to common current coding block structure.
415 // Returns:
416 // Nothing will be returned.
av1_cdef_frame(YV12_BUFFER_CONFIG * frame,AV1_COMMON * const cm,MACROBLOCKD * xd,cdef_init_fb_row_t cdef_init_fb_row_fn)417 void av1_cdef_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *const cm,
418 MACROBLOCKD *xd, cdef_init_fb_row_t cdef_init_fb_row_fn) {
419 const int num_planes = av1_num_planes(cm);
420 const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
421
422 av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
423 num_planes);
424
425 for (int fbr = 0; fbr < nvfb; fbr++)
426 av1_cdef_fb_row(cm, xd, cm->cdef_info.linebuf, cm->cdef_info.colbuf,
427 cm->cdef_info.srcbuf, fbr, cdef_init_fb_row_fn, NULL);
428 }
429