1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include "config/aom_config.h"
13 #include "config/av1_rtcd.h"
14 #include "config/aom_dsp_rtcd.h"
15
16 #include "aom_dsp/bitwriter.h"
17 #include "aom_dsp/quantize.h"
18 #include "aom_mem/aom_mem.h"
19 #include "aom_ports/mem.h"
20
21 #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
22 #include "aom_util/debug_util.h"
23 #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
24
25 #include "av1/common/cfl.h"
26 #include "av1/common/idct.h"
27 #include "av1/common/reconinter.h"
28 #include "av1/common/reconintra.h"
29 #include "av1/common/scan.h"
30
31 #include "av1/encoder/av1_quantize.h"
32 #include "av1/encoder/encodemb.h"
33 #include "av1/encoder/hybrid_fwd_txfm.h"
34 #include "av1/encoder/txb_rdopt.h"
35 #include "av1/encoder/rd.h"
36 #include "av1/encoder/rdopt.h"
37
av1_subtract_block(BitDepthInfo bd_info,int rows,int cols,int16_t * diff,ptrdiff_t diff_stride,const uint8_t * src8,ptrdiff_t src_stride,const uint8_t * pred8,ptrdiff_t pred_stride)38 void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff,
39 ptrdiff_t diff_stride, const uint8_t *src8,
40 ptrdiff_t src_stride, const uint8_t *pred8,
41 ptrdiff_t pred_stride) {
42 assert(rows >= 4 && cols >= 4);
43 #if CONFIG_AV1_HIGHBITDEPTH
44 if (bd_info.use_highbitdepth_buf) {
45 aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
46 pred8, pred_stride, bd_info.bit_depth);
47 return;
48 }
49 #endif
50 (void)bd_info;
51 aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
52 pred_stride);
53 }
54
av1_subtract_txb(MACROBLOCK * x,int plane,BLOCK_SIZE plane_bsize,int blk_col,int blk_row,TX_SIZE tx_size)55 void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
56 int blk_col, int blk_row, TX_SIZE tx_size) {
57 MACROBLOCKD *const xd = &x->e_mbd;
58 const BitDepthInfo bd_info = get_bit_depth_info(xd);
59 struct macroblock_plane *const p = &x->plane[plane];
60 const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
61 const int diff_stride = block_size_wide[plane_bsize];
62 const int src_stride = p->src.stride;
63 const int dst_stride = pd->dst.stride;
64 const int tx1d_width = tx_size_wide[tx_size];
65 const int tx1d_height = tx_size_high[tx_size];
66 uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
67 uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
68 int16_t *src_diff =
69 &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
70 av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride,
71 src, src_stride, dst, dst_stride);
72 }
73
av1_subtract_plane(MACROBLOCK * x,BLOCK_SIZE plane_bsize,int plane)74 void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
75 struct macroblock_plane *const p = &x->plane[plane];
76 const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
77 assert(plane_bsize < BLOCK_SIZES_ALL);
78 const int bw = block_size_wide[plane_bsize];
79 const int bh = block_size_high[plane_bsize];
80 const MACROBLOCKD *xd = &x->e_mbd;
81 const BitDepthInfo bd_info = get_bit_depth_info(xd);
82
83 av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf,
84 p->src.stride, pd->dst.buf, pd->dst.stride);
85 }
86
av1_optimize_b(const struct AV1_COMP * cpi,MACROBLOCK * x,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,const TXB_CTX * const txb_ctx,int * rate_cost)87 int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
88 int block, TX_SIZE tx_size, TX_TYPE tx_type,
89 const TXB_CTX *const txb_ctx, int *rate_cost) {
90 MACROBLOCKD *const xd = &x->e_mbd;
91 struct macroblock_plane *const p = &x->plane[plane];
92 const int eob = p->eobs[block];
93 const int segment_id = xd->mi[0]->segment_id;
94
95 if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
96 xd->lossless[segment_id]) {
97 *rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size);
98 return eob;
99 }
100
101 return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
102 rate_cost, cpi->oxcf.algo_cfg.sharpness);
103 }
104
105 // Hyper-parameters for dropout optimization, based on following logics.
106 // TODO(yjshen): These settings are tuned by experiments. They may still be
107 // optimized for better performance.
108 // (1) Coefficients which are large enough will ALWAYS be kept.
109 const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient.
110 // (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
111 // NOT required. For example, `5 0 0 0 7` is treated as two continuous
112 // coefficients if three zeros do not fulfill the dropout condition.
113 const int DROPOUT_CONTINUITY_MAX = 2; // Max dropout-able continuous coeff.
114 // (3) Dropout operation is NOT applicable to blocks with large or small
115 // quantization index.
116 const int DROPOUT_Q_MAX = 128;
117 const int DROPOUT_Q_MIN = 16;
118 // (4) Recall that dropout optimization will forcibly set some quantized
119 // coefficients to zero. The key logic on determining whether a coefficient
120 // should be dropped is to check the number of continuous zeros before AND
121 // after this coefficient. The exact number of zeros for judgement depends
122 // on block size and quantization index. More concretely, block size
123 // determines the base number of zeros, while quantization index determines
124 // the multiplier. Intuitively, larger block requires more zeros and larger
125 // quantization index also requires more zeros (more information is lost
126 // when using larger quantization index).
127 const int DROPOUT_BEFORE_BASE_MAX = 32; // Max base number for leading zeros.
128 const int DROPOUT_BEFORE_BASE_MIN = 16; // Min base number for leading zeros.
129 const int DROPOUT_AFTER_BASE_MAX = 32; // Max base number for trailing zeros.
130 const int DROPOUT_AFTER_BASE_MIN = 16; // Min base number for trailing zeros.
131 const int DROPOUT_MULTIPLIER_MAX = 8; // Max multiplier on number of zeros.
132 const int DROPOUT_MULTIPLIER_MIN = 2; // Min multiplier on number of zeros.
133 const int DROPOUT_MULTIPLIER_Q_BASE = 32; // Base Q to compute multiplier.
134
av1_dropout_qcoeff(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int qindex)135 void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
136 TX_TYPE tx_type, int qindex) {
137 const int tx_width = tx_size_wide[tx_size];
138 const int tx_height = tx_size_high[tx_size];
139
140 // Early return if `qindex` is out of range.
141 if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
142 return;
143 }
144
145 // Compute number of zeros used for dropout judgement.
146 const int base_size = AOMMAX(tx_width, tx_height);
147 const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
148 DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
149 const int dropout_num_before =
150 multiplier *
151 CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
152 const int dropout_num_after =
153 multiplier *
154 CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
155
156 av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before,
157 dropout_num_after);
158 }
159
av1_dropout_qcoeff_num(MACROBLOCK * mb,int plane,int block,TX_SIZE tx_size,TX_TYPE tx_type,int dropout_num_before,int dropout_num_after)160 void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block,
161 TX_SIZE tx_size, TX_TYPE tx_type,
162 int dropout_num_before, int dropout_num_after) {
163 const struct macroblock_plane *const p = &mb->plane[plane];
164 tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
165 tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
166 const int max_eob = av1_get_max_eob(tx_size);
167 const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
168
169 // Early return if there are not enough non-zero coefficients.
170 if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before) {
171 return;
172 }
173
174 int count_zeros_before = 0;
175 int count_zeros_after = 0;
176 int count_nonzeros = 0;
177 // Index of the first non-zero coefficient after sufficient number of
178 // continuous zeros. If equals to `-1`, it means number of leading zeros
179 // hasn't reach `dropout_num_before`.
180 int idx = -1;
181 int eob = 0; // New end of block.
182
183 for (int i = 0; i < p->eobs[block]; ++i) {
184 const int scan_idx = scan_order->scan[i];
185 if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) {
186 // Keep large coefficients.
187 count_zeros_before = 0;
188 count_zeros_after = 0;
189 idx = -1;
190 eob = i + 1;
191 } else if (qcoeff[scan_idx] == 0) { // Count zeros.
192 if (idx == -1) {
193 ++count_zeros_before;
194 } else {
195 ++count_zeros_after;
196 }
197 } else { // Count non-zeros.
198 if (count_zeros_before >= dropout_num_before) {
199 idx = (idx == -1) ? i : idx;
200 ++count_nonzeros;
201 } else {
202 count_zeros_before = 0;
203 eob = i + 1;
204 }
205 }
206
207 // Handle continuity.
208 if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
209 count_zeros_before = 0;
210 count_zeros_after = 0;
211 count_nonzeros = 0;
212 idx = -1;
213 eob = i + 1;
214 }
215
216 // Handle the trailing zeros after original end of block.
217 if (idx != -1 && i == p->eobs[block] - 1) {
218 count_zeros_after += (max_eob - p->eobs[block]);
219 }
220
221 // Set redundant coefficients to zeros if needed.
222 if (count_zeros_after >= dropout_num_after) {
223 for (int j = idx; j <= i; ++j) {
224 qcoeff[scan_order->scan[j]] = 0;
225 dqcoeff[scan_order->scan[j]] = 0;
226 }
227 count_zeros_before += (i - idx + 1);
228 count_zeros_after = 0;
229 count_nonzeros = 0;
230 } else if (i == p->eobs[block] - 1) {
231 eob = i + 1;
232 }
233 }
234
235 if (eob != p->eobs[block]) {
236 p->eobs[block] = eob;
237 p->txb_entropy_ctx[block] =
238 av1_get_txb_entropy_context(qcoeff, scan_order, eob);
239 }
240 }
241
242 // Settings for optimization type. NOTE: To set optimization type for all intra
243 // frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
244 // TODO(yjshen): These settings are hard-coded and look okay for now. They
245 // should be made configurable later.
246 // Blocks of key frames ONLY.
247 const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
248 // Blocks of intra frames (key frames EXCLUSIVE).
249 const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
250 // Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
251 // if trellis optimization is on for inter frames.)
252 const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
253
254 enum {
255 QUANT_FUNC_LOWBD = 0,
256 QUANT_FUNC_HIGHBD = 1,
257 QUANT_FUNC_TYPES = 2
258 } UENUM1BYTE(QUANT_FUNC);
259
260 #if CONFIG_AV1_HIGHBITDEPTH
261 static AV1_QUANT_FACADE
262 quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
263 { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
264 { av1_quantize_b_facade, av1_highbd_quantize_b_facade },
265 { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
266 { NULL, NULL }
267 };
268 #else
269 static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
270 av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL
271 };
272 #endif
273
274 // Computes the transform for DC only blocks
av1_xform_dc_only(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,int64_t per_px_mean)275 void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
276 TxfmParam *txfm_param, int64_t per_px_mean) {
277 assert(per_px_mean != INT64_MAX);
278 const struct macroblock_plane *const p = &x->plane[plane];
279 const int block_offset = BLOCK_OFFSET(block);
280 tran_low_t *const coeff = p->coeff + block_offset;
281 const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
282 memset(coeff, 0, sizeof(*coeff) * n_coeffs);
283 coeff[0] =
284 (tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
285 }
286
av1_xform_quant(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param,QUANT_PARAM * qparam)287 void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
288 int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param,
289 QUANT_PARAM *qparam) {
290 av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param);
291 av1_quant(x, plane, block, txfm_param, qparam);
292 }
293
av1_xform(MACROBLOCK * x,int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TxfmParam * txfm_param)294 void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
295 BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) {
296 const struct macroblock_plane *const p = &x->plane[plane];
297 const int block_offset = BLOCK_OFFSET(block);
298 tran_low_t *const coeff = p->coeff + block_offset;
299 const int diff_stride = block_size_wide[plane_bsize];
300
301 const int src_offset = (blk_row * diff_stride + blk_col);
302 const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
303
304 av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
305 }
306
av1_quant(MACROBLOCK * x,int plane,int block,TxfmParam * txfm_param,QUANT_PARAM * qparam)307 void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
308 QUANT_PARAM *qparam) {
309 const struct macroblock_plane *const p = &x->plane[plane];
310 const SCAN_ORDER *const scan_order =
311 get_scan(txfm_param->tx_size, txfm_param->tx_type);
312 const int block_offset = BLOCK_OFFSET(block);
313 tran_low_t *const coeff = p->coeff + block_offset;
314 tran_low_t *const qcoeff = p->qcoeff + block_offset;
315 tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
316 uint16_t *const eob = &p->eobs[block];
317
318 if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
319 const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
320 if (LIKELY(!x->seg_skip_block)) {
321 #if CONFIG_AV1_HIGHBITDEPTH
322 quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd](
323 coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
324 #else
325 quant_func_list[qparam->xform_quant_idx](
326 coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
327 #endif
328 } else {
329 av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
330 }
331 }
332 // use_optimize_b is true means av1_optimze_b will be called,
333 // thus cannot update entropy ctx now (performed in optimize_b)
334 if (qparam->use_optimize_b) {
335 p->txb_entropy_ctx[block] = 0;
336 } else {
337 p->txb_entropy_ctx[block] =
338 av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
339 }
340 }
341
av1_setup_xform(const AV1_COMMON * cm,MACROBLOCK * x,TX_SIZE tx_size,TX_TYPE tx_type,TxfmParam * txfm_param)342 void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size,
343 TX_TYPE tx_type, TxfmParam *txfm_param) {
344 MACROBLOCKD *const xd = &x->e_mbd;
345 MB_MODE_INFO *const mbmi = xd->mi[0];
346
347 txfm_param->tx_type = tx_type;
348 txfm_param->tx_size = tx_size;
349 txfm_param->lossless = xd->lossless[mbmi->segment_id];
350 txfm_param->tx_set_type = av1_get_ext_tx_set_type(
351 tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used);
352
353 txfm_param->bd = xd->bd;
354 txfm_param->is_hbd = is_cur_buf_hbd(xd);
355 }
av1_setup_quant(TX_SIZE tx_size,int use_optimize_b,int xform_quant_idx,int use_quant_b_adapt,QUANT_PARAM * qparam)356 void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
357 int use_quant_b_adapt, QUANT_PARAM *qparam) {
358 qparam->log_scale = av1_get_tx_scale(tx_size);
359 qparam->tx_size = tx_size;
360
361 qparam->use_quant_b_adapt = use_quant_b_adapt;
362
363 // TODO(bohanli): optimize_b and quantization idx has relationship,
364 // but is kind of buried and complicated in different encoding stages.
365 // Should have a unified function to derive quant_idx, rather than
366 // determine and pass in the quant_idx
367 qparam->use_optimize_b = use_optimize_b;
368 qparam->xform_quant_idx = xform_quant_idx;
369
370 qparam->qmatrix = NULL;
371 qparam->iqmatrix = NULL;
372 }
av1_setup_qmatrix(const CommonQuantParams * quant_params,const MACROBLOCKD * xd,int plane,TX_SIZE tx_size,TX_TYPE tx_type,QUANT_PARAM * qparam)373 void av1_setup_qmatrix(const CommonQuantParams *quant_params,
374 const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
375 TX_TYPE tx_type, QUANT_PARAM *qparam) {
376 qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
377 qparam->iqmatrix =
378 av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
379 }
380
encode_block(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)381 static void encode_block(int plane, int block, int blk_row, int blk_col,
382 BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
383 RUN_TYPE dry_run) {
384 (void)dry_run;
385 struct encode_b_args *const args = arg;
386 const AV1_COMP *const cpi = args->cpi;
387 const AV1_COMMON *const cm = &cpi->common;
388 MACROBLOCK *const x = args->x;
389 MACROBLOCKD *const xd = &x->e_mbd;
390 MB_MODE_INFO *mbmi = xd->mi[0];
391 struct macroblock_plane *const p = &x->plane[plane];
392 struct macroblockd_plane *const pd = &xd->plane[plane];
393 tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
394 uint8_t *dst;
395 ENTROPY_CONTEXT *a, *l;
396 int dummy_rate_cost = 0;
397
398 const int bw = mi_size_wide[plane_bsize];
399 dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
400
401 a = &args->ta[blk_col];
402 l = &args->tl[blk_row];
403
404 TX_TYPE tx_type = DCT_DCT;
405 if (!is_blk_skip(x->txfm_search_info.blk_skip, plane,
406 blk_row * bw + blk_col) &&
407 !mbmi->skip_mode) {
408 tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size,
409 cm->features.reduced_tx_set_used);
410 TxfmParam txfm_param;
411 QUANT_PARAM quant_param;
412 const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run);
413 int quant_idx;
414 if (use_trellis)
415 quant_idx = AV1_XFORM_QUANT_FP;
416 else
417 quant_idx =
418 USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
419 av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
420 av1_setup_quant(tx_size, use_trellis, quant_idx,
421 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
422 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
423 &quant_param);
424 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
425 &quant_param);
426
427 // Whether trellis or dropout optimization is required for inter frames.
428 const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
429 INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
430 const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
431 INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
432
433 if (quant_param.use_optimize_b && do_trellis) {
434 TXB_CTX txb_ctx;
435 get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
436 av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
437 &dummy_rate_cost);
438 }
439 if (!quant_param.use_optimize_b && do_dropout) {
440 av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
441 cm->quant_params.base_qindex);
442 }
443 } else {
444 p->eobs[block] = 0;
445 p->txb_entropy_ctx[block] = 0;
446 }
447
448 av1_set_txb_context(x, plane, block, tx_size, a, l);
449
450 if (p->eobs[block]) {
451 *(args->skip) = 0;
452 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
453 pd->dst.stride, p->eobs[block],
454 cm->features.reduced_tx_set_used);
455 }
456
457 // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
458 // case. It is possible that certain collision in hash index would cause
459 // the assertion failure. To further optimize the rate-distortion
460 // performance, we need to re-visit this part and enable this assert
461 // again.
462 if (p->eobs[block] == 0 && plane == 0) {
463 #if 0
464 if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
465 args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
466 // TODO(jingning,angiebird,huisu@google.com): enable txk_check when
467 // enable_optimize_b is true to detect potential RD bug.
468 const uint8_t disable_txk_check = args->enable_optimize_b;
469 if (!disable_txk_check) {
470 assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
471 DCT_DCT);
472 }
473 }
474 #endif
475 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
476 }
477
478 #if CONFIG_MISMATCH_DEBUG
479 if (dry_run == OUTPUT_ENABLED) {
480 int pixel_c, pixel_r;
481 BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
482 int blk_w = block_size_wide[bsize];
483 int blk_h = block_size_high[bsize];
484 mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
485 blk_row, pd->subsampling_x, pd->subsampling_y);
486 mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
487 plane, pixel_c, pixel_r, blk_w, blk_h,
488 xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
489 }
490 #endif
491 }
492
encode_block_inter(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg,RUN_TYPE dry_run)493 static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
494 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
495 void *arg, RUN_TYPE dry_run) {
496 struct encode_b_args *const args = arg;
497 MACROBLOCK *const x = args->x;
498 MACROBLOCKD *const xd = &x->e_mbd;
499 MB_MODE_INFO *const mbmi = xd->mi[0];
500 const struct macroblockd_plane *const pd = &xd->plane[plane];
501 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
502 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
503
504 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
505
506 const TX_SIZE plane_tx_size =
507 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
508 pd->subsampling_y)
509 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
510 blk_col)];
511 if (!plane) {
512 assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
513 tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
514 }
515
516 if (tx_size == plane_tx_size || plane) {
517 encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
518 dry_run);
519 } else {
520 assert(tx_size < TX_SIZES_ALL);
521 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
522 assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
523 assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
524 // This is the square transform block partition entry point.
525 const int bsw = tx_size_wide_unit[sub_txs];
526 const int bsh = tx_size_high_unit[sub_txs];
527 const int step = bsh * bsw;
528 const int row_end =
529 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
530 const int col_end =
531 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
532 assert(bsw > 0 && bsh > 0);
533
534 for (int row = 0; row < row_end; row += bsh) {
535 const int offsetr = blk_row + row;
536 for (int col = 0; col < col_end; col += bsw) {
537 const int offsetc = blk_col + col;
538
539 encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
540 arg, dry_run);
541 block += step;
542 }
543 }
544 }
545 }
546
av1_foreach_transformed_block_in_plane(const MACROBLOCKD * const xd,BLOCK_SIZE plane_bsize,int plane,foreach_transformed_block_visitor visit,void * arg)547 void av1_foreach_transformed_block_in_plane(
548 const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
549 foreach_transformed_block_visitor visit, void *arg) {
550 const struct macroblockd_plane *const pd = &xd->plane[plane];
551 // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
552 // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
553 // transform size varies per plane, look it up in a common way.
554 const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
555 const uint8_t txw_unit = tx_size_wide_unit[tx_size];
556 const uint8_t txh_unit = tx_size_high_unit[tx_size];
557 const int step = txw_unit * txh_unit;
558
559 // If mb_to_right_edge is < 0 we are in a situation in which
560 // the current block size extends into the UMV and we won't
561 // visit the sub blocks that are wholly within the UMV.
562 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
563 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
564 const BLOCK_SIZE max_unit_bsize =
565 get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
566 const int mu_blocks_wide =
567 AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
568 const int mu_blocks_high =
569 AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
570
571 // Keep track of the row and column of the blocks we use so that we know
572 // if we are in the unrestricted motion border.
573 int i = 0;
574 for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
575 const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
576 // Skip visiting the sub blocks that are wholly within the UMV.
577 for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
578 const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
579 for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
580 for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
581 visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
582 i += step;
583 }
584 }
585 }
586 }
587 }
588
589 typedef struct encode_block_pass1_args {
590 AV1_COMP *cpi;
591 MACROBLOCK *x;
592 } encode_block_pass1_args;
593
encode_block_pass1(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)594 static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
595 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
596 void *arg) {
597 encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
598 AV1_COMP *cpi = args->cpi;
599 AV1_COMMON *cm = &cpi->common;
600 MACROBLOCK *const x = args->x;
601 MACROBLOCKD *const xd = &x->e_mbd;
602 struct macroblock_plane *const p = &x->plane[plane];
603 struct macroblockd_plane *const pd = &xd->plane[plane];
604 tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
605
606 uint8_t *dst;
607 dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
608
609 TxfmParam txfm_param;
610 QUANT_PARAM quant_param;
611
612 av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
613 av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
614 &quant_param);
615 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
616 &quant_param);
617
618 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
619 &quant_param);
620
621 if (p->eobs[block] > 0) {
622 txfm_param.eob = p->eobs[block];
623 if (txfm_param.is_hbd) {
624 av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
625 return;
626 }
627 av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
628 }
629 }
630
av1_encode_sby_pass1(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize)631 void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
632 encode_block_pass1_args args = { cpi, x };
633 av1_subtract_plane(x, bsize, 0);
634 av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
635 encode_block_pass1, &args);
636 }
637
av1_encode_sb(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,RUN_TYPE dry_run)638 void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
639 RUN_TYPE dry_run) {
640 assert(bsize < BLOCK_SIZES_ALL);
641 MACROBLOCKD *const xd = &x->e_mbd;
642 MB_MODE_INFO *mbmi = xd->mi[0];
643 mbmi->skip_txfm = 1;
644 if (x->txfm_search_info.skip_txfm) return;
645
646 struct optimize_ctx ctx;
647 struct encode_b_args arg = {
648 cpi, x, &ctx, &mbmi->skip_txfm,
649 NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
650 };
651 const AV1_COMMON *const cm = &cpi->common;
652 const int num_planes = av1_num_planes(cm);
653 for (int plane = 0; plane < num_planes; ++plane) {
654 const struct macroblockd_plane *const pd = &xd->plane[plane];
655 const int subsampling_x = pd->subsampling_x;
656 const int subsampling_y = pd->subsampling_y;
657 if (plane && !xd->is_chroma_ref) break;
658 const BLOCK_SIZE plane_bsize =
659 get_plane_block_size(bsize, subsampling_x, subsampling_y);
660 assert(plane_bsize < BLOCK_SIZES_ALL);
661 const int mi_width = mi_size_wide[plane_bsize];
662 const int mi_height = mi_size_high[plane_bsize];
663 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
664 const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
665 const int bw = mi_size_wide[txb_size];
666 const int bh = mi_size_high[txb_size];
667 int block = 0;
668 const int step =
669 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
670 av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
671 av1_subtract_plane(x, plane_bsize, plane);
672 arg.ta = ctx.ta[plane];
673 arg.tl = ctx.tl[plane];
674 const BLOCK_SIZE max_unit_bsize =
675 get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
676 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
677 int mu_blocks_high = mi_size_high[max_unit_bsize];
678 mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
679 mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
680
681 for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
682 for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
683 int blk_row, blk_col;
684 const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
685 const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
686 for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
687 for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
688 encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
689 max_tx_size, &arg, dry_run);
690 block += step;
691 }
692 }
693 }
694 }
695 }
696 }
697
encode_block_intra_and_set_context(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)698 static void encode_block_intra_and_set_context(int plane, int block,
699 int blk_row, int blk_col,
700 BLOCK_SIZE plane_bsize,
701 TX_SIZE tx_size, void *arg) {
702 av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
703 arg);
704
705 struct encode_b_args *const args = arg;
706 MACROBLOCK *x = args->x;
707 ENTROPY_CONTEXT *a = &args->ta[blk_col];
708 ENTROPY_CONTEXT *l = &args->tl[blk_row];
709 av1_set_txb_context(x, plane, block, tx_size, a, l);
710 }
711
av1_encode_block_intra(int plane,int block,int blk_row,int blk_col,BLOCK_SIZE plane_bsize,TX_SIZE tx_size,void * arg)712 void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
713 BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
714 void *arg) {
715 struct encode_b_args *const args = arg;
716 const AV1_COMP *const cpi = args->cpi;
717 const AV1_COMMON *const cm = &cpi->common;
718 MACROBLOCK *const x = args->x;
719 MACROBLOCKD *const xd = &x->e_mbd;
720 struct macroblock_plane *const p = &x->plane[plane];
721 struct macroblockd_plane *const pd = &xd->plane[plane];
722 tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
723 PLANE_TYPE plane_type = get_plane_type(plane);
724 uint16_t *eob = &p->eobs[block];
725 const int dst_stride = pd->dst.stride;
726 uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
727 int dummy_rate_cost = 0;
728
729 av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
730
731 TX_TYPE tx_type = DCT_DCT;
732 const int bw = mi_size_wide[plane_bsize];
733 if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
734 blk_row * bw + blk_col)) {
735 *eob = 0;
736 p->txb_entropy_ctx[block] = 0;
737 } else {
738 av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
739
740 const ENTROPY_CONTEXT *a = &args->ta[blk_col];
741 const ENTROPY_CONTEXT *l = &args->tl[blk_row];
742 tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
743 cm->features.reduced_tx_set_used);
744 TxfmParam txfm_param;
745 QUANT_PARAM quant_param;
746 const int use_trellis =
747 is_trellis_used(args->enable_optimize_b, args->dry_run);
748 int quant_idx;
749 if (use_trellis)
750 quant_idx = AV1_XFORM_QUANT_FP;
751 else
752 quant_idx =
753 USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
754
755 av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
756 av1_setup_quant(tx_size, use_trellis, quant_idx,
757 cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
758 av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
759 &quant_param);
760
761 av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
762 &quant_param);
763
764 // Whether trellis or dropout optimization is required for key frames and
765 // intra frames.
766 const bool do_trellis = (frame_is_intra_only(cm) &&
767 (KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
768 KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
769 (!frame_is_intra_only(cm) &&
770 (INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
771 INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
772 const bool do_dropout = (frame_is_intra_only(cm) &&
773 (KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
774 KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
775 (!frame_is_intra_only(cm) &&
776 (INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
777 INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
778
779 if (quant_param.use_optimize_b && do_trellis) {
780 TXB_CTX txb_ctx;
781 get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
782 av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
783 &dummy_rate_cost);
784 }
785 if (do_dropout) {
786 av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
787 cm->quant_params.base_qindex);
788 }
789 }
790
791 if (*eob) {
792 av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
793 dst_stride, *eob,
794 cm->features.reduced_tx_set_used);
795 }
796
797 // TODO(jingning): Temporarily disable txk_type check for eob=0 case.
798 // It is possible that certain collision in hash index would cause
799 // the assertion failure. To further optimize the rate-distortion
800 // performance, we need to re-visit this part and enable this assert
801 // again.
802 if (*eob == 0 && plane == 0) {
803 #if 0
804 if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
805 && args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
806 assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
807 DCT_DCT);
808 }
809 #endif
810 update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
811 }
812
813 // For intra mode, skipped blocks are so rare that transmitting skip=1 is
814 // very expensive.
815 *(args->skip) = 0;
816
817 if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
818 cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
819 }
820 }
821
av1_encode_intra_block_plane(const struct AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int plane,RUN_TYPE dry_run,TRELLIS_OPT_TYPE enable_optimize_b)822 void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
823 BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
824 TRELLIS_OPT_TYPE enable_optimize_b) {
825 assert(bsize < BLOCK_SIZES_ALL);
826 const MACROBLOCKD *const xd = &x->e_mbd;
827 if (plane && !xd->is_chroma_ref) return;
828
829 const struct macroblockd_plane *const pd = &xd->plane[plane];
830 const int ss_x = pd->subsampling_x;
831 const int ss_y = pd->subsampling_y;
832 ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
833 ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
834 struct encode_b_args arg = { cpi, x, NULL, &(xd->mi[0]->skip_txfm),
835 ta, tl, dry_run, enable_optimize_b };
836 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
837 if (enable_optimize_b) {
838 av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
839 }
840 av1_foreach_transformed_block_in_plane(
841 xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
842 }
843