• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_config.h"
13 #include "config/aom_scale_rtcd.h"
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "aom_mem/aom_mem.h"
17 #include "av1/common/av1_loopfilter.h"
18 #include "av1/common/entropymode.h"
19 #include "av1/common/thread_common.h"
20 #include "av1/common/reconinter.h"
21 
22 // Set up nsync by width.
get_sync_range(int width)23 static INLINE int get_sync_range(int width) {
24   // nsync numbers are picked by testing. For example, for 4k
25   // video, using 4 gives best performance.
26   if (width < 640)
27     return 1;
28   else if (width <= 1280)
29     return 2;
30   else if (width <= 4096)
31     return 4;
32   else
33     return 8;
34 }
35 
36 #if !CONFIG_REALTIME_ONLY
get_lr_sync_range(int width)37 static INLINE int get_lr_sync_range(int width) {
38 #if 0
39   // nsync numbers are picked by testing. For example, for 4k
40   // video, using 4 gives best performance.
41   if (width < 640)
42     return 1;
43   else if (width <= 1280)
44     return 2;
45   else if (width <= 4096)
46     return 4;
47   else
48     return 8;
49 #else
50   (void)width;
51   return 1;
52 #endif
53 }
54 #endif
55 
56 // Allocate memory for lf row synchronization
av1_loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)57 void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
58                            int width, int num_workers) {
59   lf_sync->rows = rows;
60 #if CONFIG_MULTITHREAD
61   {
62     int i, j;
63 
64     for (j = 0; j < MAX_MB_PLANE; j++) {
65       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
66                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
67       if (lf_sync->mutex_[j]) {
68         for (i = 0; i < rows; ++i) {
69           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
70         }
71       }
72 
73       CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
74                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
75       if (lf_sync->cond_[j]) {
76         for (i = 0; i < rows; ++i) {
77           pthread_cond_init(&lf_sync->cond_[j][i], NULL);
78         }
79       }
80     }
81 
82     CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
83                     aom_malloc(sizeof(*(lf_sync->job_mutex))));
84     if (lf_sync->job_mutex) {
85       pthread_mutex_init(lf_sync->job_mutex, NULL);
86     }
87   }
88 #endif  // CONFIG_MULTITHREAD
89   CHECK_MEM_ERROR(cm, lf_sync->lfdata,
90                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
91   lf_sync->num_workers = num_workers;
92 
93   for (int j = 0; j < MAX_MB_PLANE; j++) {
94     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
95                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
96   }
97   CHECK_MEM_ERROR(
98       cm, lf_sync->job_queue,
99       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
100   // Set up nsync.
101   lf_sync->sync_range = get_sync_range(width);
102 }
103 
104 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)105 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
106   if (lf_sync != NULL) {
107     int j;
108 #if CONFIG_MULTITHREAD
109     int i;
110     for (j = 0; j < MAX_MB_PLANE; j++) {
111       if (lf_sync->mutex_[j] != NULL) {
112         for (i = 0; i < lf_sync->rows; ++i) {
113           pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
114         }
115         aom_free(lf_sync->mutex_[j]);
116       }
117       if (lf_sync->cond_[j] != NULL) {
118         for (i = 0; i < lf_sync->rows; ++i) {
119           pthread_cond_destroy(&lf_sync->cond_[j][i]);
120         }
121         aom_free(lf_sync->cond_[j]);
122       }
123     }
124     if (lf_sync->job_mutex != NULL) {
125       pthread_mutex_destroy(lf_sync->job_mutex);
126       aom_free(lf_sync->job_mutex);
127     }
128 #endif  // CONFIG_MULTITHREAD
129     aom_free(lf_sync->lfdata);
130     for (j = 0; j < MAX_MB_PLANE; j++) {
131       aom_free(lf_sync->cur_sb_col[j]);
132     }
133 
134     aom_free(lf_sync->job_queue);
135     // clear the structure as the source of this call may be a resize in which
136     // case this call will be followed by an _alloc() which may fail.
137     av1_zero(*lf_sync);
138   }
139 }
140 
loop_filter_data_reset(LFWorkerData * lf_data,YV12_BUFFER_CONFIG * frame_buffer,struct AV1Common * cm,MACROBLOCKD * xd)141 static void loop_filter_data_reset(LFWorkerData *lf_data,
142                                    YV12_BUFFER_CONFIG *frame_buffer,
143                                    struct AV1Common *cm, MACROBLOCKD *xd) {
144   struct macroblockd_plane *pd = xd->plane;
145   lf_data->frame_buffer = frame_buffer;
146   lf_data->cm = cm;
147   lf_data->xd = xd;
148   for (int i = 0; i < MAX_MB_PLANE; i++) {
149     memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
150     lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
151     lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
152   }
153 }
154 
av1_alloc_cdef_sync(AV1_COMMON * const cm,AV1CdefSync * cdef_sync,int num_workers)155 void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync,
156                          int num_workers) {
157   if (num_workers < 1) return;
158 #if CONFIG_MULTITHREAD
159   if (cdef_sync->mutex_ == NULL) {
160     CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
161                     aom_malloc(sizeof(*(cdef_sync->mutex_))));
162     if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
163   }
164 #else
165   (void)cm;
166   (void)cdef_sync;
167 #endif  // CONFIG_MULTITHREAD
168 }
169 
av1_free_cdef_sync(AV1CdefSync * cdef_sync)170 void av1_free_cdef_sync(AV1CdefSync *cdef_sync) {
171   if (cdef_sync == NULL) return;
172 #if CONFIG_MULTITHREAD
173   if (cdef_sync->mutex_ != NULL) {
174     pthread_mutex_destroy(cdef_sync->mutex_);
175     aom_free(cdef_sync->mutex_);
176   }
177 #endif  // CONFIG_MULTITHREAD
178 }
179 
cdef_row_mt_sync_read(AV1CdefSync * const cdef_sync,int row)180 static INLINE void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync,
181                                          int row) {
182   if (!row) return;
183 #if CONFIG_MULTITHREAD
184   AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
185   pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_);
186   while (cdef_row_mt[row - 1].is_row_done != 1)
187     pthread_cond_wait(cdef_row_mt[row - 1].row_cond_,
188                       cdef_row_mt[row - 1].row_mutex_);
189   cdef_row_mt[row - 1].is_row_done = 0;
190   pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_);
191 #else
192   (void)cdef_sync;
193 #endif  // CONFIG_MULTITHREAD
194 }
195 
cdef_row_mt_sync_write(AV1CdefSync * const cdef_sync,int row)196 static INLINE void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync,
197                                           int row) {
198 #if CONFIG_MULTITHREAD
199   AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt;
200   pthread_mutex_lock(cdef_row_mt[row].row_mutex_);
201   pthread_cond_signal(cdef_row_mt[row].row_cond_);
202   cdef_row_mt[row].is_row_done = 1;
203   pthread_mutex_unlock(cdef_row_mt[row].row_mutex_);
204 #else
205   (void)cdef_sync;
206   (void)row;
207 #endif  // CONFIG_MULTITHREAD
208 }
209 
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)210 static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
211                              int plane) {
212 #if CONFIG_MULTITHREAD
213   const int nsync = lf_sync->sync_range;
214 
215   if (r && !(c & (nsync - 1))) {
216     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
217     pthread_mutex_lock(mutex);
218 
219     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
220       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
221     }
222     pthread_mutex_unlock(mutex);
223   }
224 #else
225   (void)lf_sync;
226   (void)r;
227   (void)c;
228   (void)plane;
229 #endif  // CONFIG_MULTITHREAD
230 }
231 
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)232 static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
233                               const int sb_cols, int plane) {
234 #if CONFIG_MULTITHREAD
235   const int nsync = lf_sync->sync_range;
236   int cur;
237   // Only signal when there are enough filtered SB for next row to run.
238   int sig = 1;
239 
240   if (c < sb_cols - 1) {
241     cur = c;
242     if (c % nsync) sig = 0;
243   } else {
244     cur = sb_cols + nsync;
245   }
246 
247   if (sig) {
248     pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
249 
250     lf_sync->cur_sb_col[plane][r] = cur;
251 
252     pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
253     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
254   }
255 #else
256   (void)lf_sync;
257   (void)r;
258   (void)c;
259   (void)sb_cols;
260   (void)plane;
261 #endif  // CONFIG_MULTITHREAD
262 }
263 
enqueue_lf_jobs(AV1LfSync * lf_sync,int start,int stop,const int planes_to_lf[3],int is_realtime)264 static void enqueue_lf_jobs(AV1LfSync *lf_sync, int start, int stop,
265                             const int planes_to_lf[3], int is_realtime) {
266   int mi_row, plane, dir;
267   AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
268   lf_sync->jobs_enqueued = 0;
269   lf_sync->jobs_dequeued = 0;
270 
271   // Launch all vertical jobs first, as they are blocking the horizontal ones.
272   // Launch top row jobs for all planes first, in case the output can be
273   // partially reconstructed row by row.
274   for (dir = 0; dir < 2; ++dir) {
275     for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
276       for (plane = 0; plane < 3; ++plane) {
277         if (!planes_to_lf[plane]) continue;
278         lf_job_queue->mi_row = mi_row;
279         lf_job_queue->plane = plane;
280         lf_job_queue->dir = dir;
281         lf_job_queue->is_realtime = is_realtime;
282         lf_job_queue++;
283         lf_sync->jobs_enqueued++;
284       }
285     }
286   }
287 }
288 
get_lf_job_info(AV1LfSync * lf_sync)289 static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
290   AV1LfMTInfo *cur_job_info = NULL;
291 
292 #if CONFIG_MULTITHREAD
293   pthread_mutex_lock(lf_sync->job_mutex);
294 
295   if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
296     cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
297     lf_sync->jobs_dequeued++;
298   }
299 
300   pthread_mutex_unlock(lf_sync->job_mutex);
301 #else
302   (void)lf_sync;
303 #endif
304 
305   return cur_job_info;
306 }
307 
308 // One job of row loopfiltering.
thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,int mi_row,int plane,int dir,int is_realtime,AV1LfSync * const lf_sync)309 static INLINE void thread_loop_filter_rows(
310     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
311     struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane,
312     int dir, int is_realtime, AV1LfSync *const lf_sync) {
313   const int sb_cols =
314       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2) >>
315       MAX_MIB_SIZE_LOG2;
316   const int r = mi_row >> MAX_MIB_SIZE_LOG2;
317   int mi_col, c;
318 
319   if (dir == 0) {
320     for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
321       c = mi_col >> MAX_MIB_SIZE_LOG2;
322 
323       av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
324                            mi_row, mi_col, plane, plane + 1);
325 #if CONFIG_AV1_HIGHBITDEPTH
326       (void)is_realtime;
327       av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
328                                   mi_col);
329 #else
330       if (is_realtime) {
331         av1_filter_block_plane_vert_rt(cm, xd, plane, &planes[plane], mi_row,
332                                        mi_col);
333 
334       } else {
335         av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
336                                     mi_col);
337       }
338 #endif
339       if (lf_sync != NULL) sync_write(lf_sync, r, c, sb_cols, plane);
340     }
341   } else if (dir == 1) {
342     for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) {
343       c = mi_col >> MAX_MIB_SIZE_LOG2;
344 
345       if (lf_sync != NULL) {
346         // Wait for vertical edge filtering of the top-right block to be
347         // completed
348         sync_read(lf_sync, r, c, plane);
349 
350         // Wait for vertical edge filtering of the right block to be completed
351         sync_read(lf_sync, r + 1, c, plane);
352       }
353 
354       av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer,
355                            mi_row, mi_col, plane, plane + 1);
356 #if CONFIG_AV1_HIGHBITDEPTH
357       (void)is_realtime;
358       av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
359                                   mi_col);
360 #else
361       if (is_realtime) {
362         av1_filter_block_plane_horz_rt(cm, xd, plane, &planes[plane], mi_row,
363                                        mi_col);
364       } else {
365         av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
366                                     mi_col);
367       }
368 #endif
369     }
370   }
371 }
372 
373 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)374 static int loop_filter_row_worker(void *arg1, void *arg2) {
375   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
376   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
377   AV1LfMTInfo *cur_job_info;
378   while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
379     const int is_realtime = cur_job_info->is_realtime && !cur_job_info->plane;
380     thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
381                             lf_data->xd, cur_job_info->mi_row,
382                             cur_job_info->plane, cur_job_info->dir, is_realtime,
383                             lf_sync);
384   }
385   return 1;
386 }
387 
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[3],AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int is_realtime)388 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
389                                 MACROBLOCKD *xd, int start, int stop,
390                                 const int planes_to_lf[3], AVxWorker *workers,
391                                 int num_workers, AV1LfSync *lf_sync,
392                                 int is_realtime) {
393   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
394   // Number of superblock rows and cols
395   const int sb_rows =
396       ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
397       MAX_MIB_SIZE_LOG2;
398   int i;
399 
400   if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
401       num_workers > lf_sync->num_workers) {
402     av1_loop_filter_dealloc(lf_sync);
403     av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
404   }
405 
406   // Initialize cur_sb_col to -1 for all SB rows.
407   for (i = 0; i < MAX_MB_PLANE; i++) {
408     memset(lf_sync->cur_sb_col[i], -1,
409            sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
410   }
411 
412   enqueue_lf_jobs(lf_sync, start, stop, planes_to_lf, is_realtime);
413 
414   // Set up loopfilter thread data.
415   for (i = num_workers - 1; i >= 0; --i) {
416     AVxWorker *const worker = &workers[i];
417     LFWorkerData *const lf_data = &lf_sync->lfdata[i];
418 
419     worker->hook = loop_filter_row_worker;
420     worker->data1 = lf_sync;
421     worker->data2 = lf_data;
422 
423     // Loopfilter data
424     loop_filter_data_reset(lf_data, frame, cm, xd);
425 
426     // Start loopfiltering
427     if (i == 0) {
428       winterface->execute(worker);
429     } else {
430       winterface->launch(worker);
431     }
432   }
433 
434   // Wait till all rows are finished
435   for (i = 1; i < num_workers; ++i) {
436     winterface->sync(&workers[i]);
437   }
438 }
439 
loop_filter_rows(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,const int planes_to_lf[3],int is_realtime)440 static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
441                              MACROBLOCKD *xd, int start, int stop,
442                              const int planes_to_lf[3], int is_realtime) {
443   // Filter top rows of all planes first, in case the output can be partially
444   // reconstructed row by row.
445   int mi_row, plane, dir;
446   for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
447     for (plane = 0; plane < 3; ++plane) {
448       if (!planes_to_lf[plane]) continue;
449       for (dir = 0; dir < 2; ++dir) {
450         thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane, dir,
451                                 is_realtime && !plane, /*lf_sync=*/NULL);
452       }
453     }
454   }
455 }
456 
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync,int is_realtime)457 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
458                               MACROBLOCKD *xd, int plane_start, int plane_end,
459                               int partial_frame, AVxWorker *workers,
460                               int num_workers, AV1LfSync *lf_sync,
461                               int is_realtime) {
462   int start_mi_row, end_mi_row, mi_rows_to_filter;
463   int planes_to_lf[3];
464 
465   // For each luma and chroma plane, whether to filter it or not.
466   planes_to_lf[0] = (cm->lf.filter_level[0] || cm->lf.filter_level[1]) &&
467                     plane_start <= 0 && 0 < plane_end;
468   planes_to_lf[1] = cm->lf.filter_level_u && plane_start <= 1 && 1 < plane_end;
469   planes_to_lf[2] = cm->lf.filter_level_v && plane_start <= 2 && 2 < plane_end;
470   // If the luma plane is purposely not filtered, neither are the chroma planes.
471   if (!planes_to_lf[0] && plane_start <= 0 && 0 < plane_end) return;
472   // Early exit.
473   if (!planes_to_lf[0] && !planes_to_lf[1] && !planes_to_lf[2]) return;
474 
475   start_mi_row = 0;
476   mi_rows_to_filter = cm->mi_params.mi_rows;
477   if (partial_frame && cm->mi_params.mi_rows > 8) {
478     start_mi_row = cm->mi_params.mi_rows >> 1;
479     start_mi_row &= 0xfffffff8;
480     mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
481   }
482   end_mi_row = start_mi_row + mi_rows_to_filter;
483   av1_loop_filter_frame_init(cm, plane_start, plane_end);
484 
485   if (num_workers > 1) {
486     // Enqueue and execute loopfiltering jobs.
487     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
488                         workers, num_workers, lf_sync, is_realtime);
489   } else {
490     // Directly filter in the main thread.
491     loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf,
492                      is_realtime);
493   }
494 }
495 
496 #if !CONFIG_REALTIME_ONLY
lr_sync_read(void * const lr_sync,int r,int c,int plane)497 static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
498 #if CONFIG_MULTITHREAD
499   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
500   const int nsync = loop_res_sync->sync_range;
501 
502   if (r && !(c & (nsync - 1))) {
503     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
504     pthread_mutex_lock(mutex);
505 
506     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
507       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
508     }
509     pthread_mutex_unlock(mutex);
510   }
511 #else
512   (void)lr_sync;
513   (void)r;
514   (void)c;
515   (void)plane;
516 #endif  // CONFIG_MULTITHREAD
517 }
518 
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)519 static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
520                                  const int sb_cols, int plane) {
521 #if CONFIG_MULTITHREAD
522   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
523   const int nsync = loop_res_sync->sync_range;
524   int cur;
525   // Only signal when there are enough filtered SB for next row to run.
526   int sig = 1;
527 
528   if (c < sb_cols - 1) {
529     cur = c;
530     if (c % nsync) sig = 0;
531   } else {
532     cur = sb_cols + nsync;
533   }
534 
535   if (sig) {
536     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
537 
538     loop_res_sync->cur_sb_col[plane][r] = cur;
539 
540     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
541     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
542   }
543 #else
544   (void)lr_sync;
545   (void)r;
546   (void)c;
547   (void)sb_cols;
548   (void)plane;
549 #endif  // CONFIG_MULTITHREAD
550 }
551 
552 // Allocate memory for loop restoration row synchronization
av1_loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)553 void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
554                                 int num_workers, int num_rows_lr,
555                                 int num_planes, int width) {
556   lr_sync->rows = num_rows_lr;
557   lr_sync->num_planes = num_planes;
558 #if CONFIG_MULTITHREAD
559   {
560     int i, j;
561 
562     for (j = 0; j < num_planes; j++) {
563       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
564                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
565       if (lr_sync->mutex_[j]) {
566         for (i = 0; i < num_rows_lr; ++i) {
567           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
568         }
569       }
570 
571       CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
572                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
573       if (lr_sync->cond_[j]) {
574         for (i = 0; i < num_rows_lr; ++i) {
575           pthread_cond_init(&lr_sync->cond_[j][i], NULL);
576         }
577       }
578     }
579 
580     CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
581                     aom_malloc(sizeof(*(lr_sync->job_mutex))));
582     if (lr_sync->job_mutex) {
583       pthread_mutex_init(lr_sync->job_mutex, NULL);
584     }
585   }
586 #endif  // CONFIG_MULTITHREAD
587   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
588                   aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
589 
590   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
591     if (worker_idx < num_workers - 1) {
592       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
593                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
594       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
595                       aom_malloc(sizeof(RestorationLineBuffers)));
596 
597     } else {
598       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
599       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
600     }
601   }
602 
603   lr_sync->num_workers = num_workers;
604 
605   for (int j = 0; j < num_planes; j++) {
606     CHECK_MEM_ERROR(
607         cm, lr_sync->cur_sb_col[j],
608         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
609   }
610   CHECK_MEM_ERROR(
611       cm, lr_sync->job_queue,
612       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
613   // Set up nsync.
614   lr_sync->sync_range = get_lr_sync_range(width);
615 }
616 
617 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync,int num_workers)618 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
619   if (lr_sync != NULL) {
620     int j;
621 #if CONFIG_MULTITHREAD
622     int i;
623     for (j = 0; j < MAX_MB_PLANE; j++) {
624       if (lr_sync->mutex_[j] != NULL) {
625         for (i = 0; i < lr_sync->rows; ++i) {
626           pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
627         }
628         aom_free(lr_sync->mutex_[j]);
629       }
630       if (lr_sync->cond_[j] != NULL) {
631         for (i = 0; i < lr_sync->rows; ++i) {
632           pthread_cond_destroy(&lr_sync->cond_[j][i]);
633         }
634         aom_free(lr_sync->cond_[j]);
635       }
636     }
637     if (lr_sync->job_mutex != NULL) {
638       pthread_mutex_destroy(lr_sync->job_mutex);
639       aom_free(lr_sync->job_mutex);
640     }
641 #endif  // CONFIG_MULTITHREAD
642     for (j = 0; j < MAX_MB_PLANE; j++) {
643       aom_free(lr_sync->cur_sb_col[j]);
644     }
645 
646     aom_free(lr_sync->job_queue);
647 
648     if (lr_sync->lrworkerdata) {
649       for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
650         LRWorkerData *const workerdata_data =
651             lr_sync->lrworkerdata + worker_idx;
652 
653         aom_free(workerdata_data->rst_tmpbuf);
654         aom_free(workerdata_data->rlbs);
655       }
656       aom_free(lr_sync->lrworkerdata);
657     }
658 
659     // clear the structure as the source of this call may be a resize in which
660     // case this call will be followed by an _alloc() which may fail.
661     av1_zero(*lr_sync);
662   }
663 }
664 
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)665 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
666                             AV1_COMMON *cm) {
667   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
668 
669   const int num_planes = av1_num_planes(cm);
670   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
671   int32_t lr_job_counter[2], num_even_lr_jobs = 0;
672   lr_sync->jobs_enqueued = 0;
673   lr_sync->jobs_dequeued = 0;
674 
675   for (int plane = 0; plane < num_planes; plane++) {
676     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
677     num_even_lr_jobs =
678         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
679   }
680   lr_job_counter[0] = 0;
681   lr_job_counter[1] = num_even_lr_jobs;
682 
683   for (int plane = 0; plane < num_planes; plane++) {
684     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
685     const int is_uv = plane > 0;
686     const int ss_y = is_uv && cm->seq_params->subsampling_y;
687 
688     AV1PixelRect tile_rect = ctxt[plane].tile_rect;
689     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
690 
691     const int tile_h = tile_rect.bottom - tile_rect.top;
692     const int ext_size = unit_size * 3 / 2;
693 
694     int y0 = 0, i = 0;
695     while (y0 < tile_h) {
696       int remaining_h = tile_h - y0;
697       int h = (remaining_h < ext_size) ? remaining_h : unit_size;
698 
699       RestorationTileLimits limits;
700       limits.v_start = tile_rect.top + y0;
701       limits.v_end = tile_rect.top + y0 + h;
702       assert(limits.v_end <= tile_rect.bottom);
703       // Offset the tile upwards to align with the restoration processing stripe
704       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
705       limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
706       if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
707 
708       assert(lr_job_counter[0] <= num_even_lr_jobs);
709 
710       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
711       lr_job_queue[lr_job_counter[i & 1]].plane = plane;
712       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
713       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
714       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
715       if ((i & 1) == 0) {
716         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
717             limits.v_start + RESTORATION_BORDER;
718         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
719             limits.v_end - RESTORATION_BORDER;
720         if (i == 0) {
721           assert(limits.v_start == tile_rect.top);
722           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
723         }
724         if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
725           assert(limits.v_end == tile_rect.bottom);
726           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
727         }
728       } else {
729         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
730             AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
731         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
732             AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
733       }
734       lr_job_counter[i & 1]++;
735       lr_sync->jobs_enqueued++;
736 
737       y0 += h;
738       ++i;
739     }
740   }
741 }
742 
get_lr_job_info(AV1LrSync * lr_sync)743 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
744   AV1LrMTInfo *cur_job_info = NULL;
745 
746 #if CONFIG_MULTITHREAD
747   pthread_mutex_lock(lr_sync->job_mutex);
748 
749   if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
750     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
751     lr_sync->jobs_dequeued++;
752   }
753 
754   pthread_mutex_unlock(lr_sync->job_mutex);
755 #else
756   (void)lr_sync;
757 #endif
758 
759   return cur_job_info;
760 }
761 
762 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)763 static int loop_restoration_row_worker(void *arg1, void *arg2) {
764   AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
765   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
766   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
767   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
768   int lr_unit_row;
769   int plane;
770   const int tile_row = LR_TILE_ROW;
771   const int tile_col = LR_TILE_COL;
772   const int tile_cols = LR_TILE_COLS;
773   const int tile_idx = tile_col + tile_row * tile_cols;
774   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
775                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
776                            int vstart, int vend);
777   static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
778                                          aom_yv12_partial_coloc_copy_u,
779                                          aom_yv12_partial_coloc_copy_v };
780 
781   while (1) {
782     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
783     if (cur_job_info != NULL) {
784       RestorationTileLimits limits;
785       sync_read_fn_t on_sync_read;
786       sync_write_fn_t on_sync_write;
787       limits.v_start = cur_job_info->v_start;
788       limits.v_end = cur_job_info->v_end;
789       lr_unit_row = cur_job_info->lr_unit_row;
790       plane = cur_job_info->plane;
791       const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
792 
793       // sync_mode == 1 implies only sync read is required in LR Multi-threading
794       // sync_mode == 0 implies only sync write is required.
795       on_sync_read =
796           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
797       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
798                                                    : av1_lr_sync_write_dummy;
799 
800       av1_foreach_rest_unit_in_row(
801           &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
802           ctxt[plane].rsi->restoration_unit_size, unit_idx0,
803           ctxt[plane].rsi->horz_units_per_tile,
804           ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
805           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
806           on_sync_write, lr_sync);
807 
808       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
809                        ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
810                        cur_job_info->v_copy_end);
811     } else {
812       break;
813     }
814   }
815   return 1;
816 }
817 
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int nworkers,AV1LrSync * lr_sync,AV1_COMMON * cm)818 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
819                                            AVxWorker *workers, int nworkers,
820                                            AV1LrSync *lr_sync, AV1_COMMON *cm) {
821   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
822 
823   const int num_planes = av1_num_planes(cm);
824 
825   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
826   int num_rows_lr = 0;
827 
828   for (int plane = 0; plane < num_planes; plane++) {
829     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
830 
831     const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
832     const int max_tile_h = tile_rect.bottom - tile_rect.top;
833 
834     const int unit_size = cm->rst_info[plane].restoration_unit_size;
835 
836     num_rows_lr =
837         AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
838   }
839 
840   const int num_workers = nworkers;
841   int i;
842   assert(MAX_MB_PLANE == 3);
843 
844   if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
845       num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) {
846     av1_loop_restoration_dealloc(lr_sync, num_workers);
847     av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr,
848                                num_planes, cm->width);
849   }
850 
851   // Initialize cur_sb_col to -1 for all SB rows.
852   for (i = 0; i < num_planes; i++) {
853     memset(lr_sync->cur_sb_col[i], -1,
854            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
855   }
856 
857   enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
858 
859   // Set up looprestoration thread data.
860   for (i = num_workers - 1; i >= 0; --i) {
861     AVxWorker *const worker = &workers[i];
862     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
863     worker->hook = loop_restoration_row_worker;
864     worker->data1 = lr_sync;
865     worker->data2 = &lr_sync->lrworkerdata[i];
866 
867     // Start loop restoration
868     if (i == 0) {
869       winterface->execute(worker);
870     } else {
871       winterface->launch(worker);
872     }
873   }
874 
875   // Wait till all rows are finished
876   for (i = 1; i < num_workers; ++i) {
877     winterface->sync(&workers[i]);
878   }
879 }
880 
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt)881 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
882                                           AV1_COMMON *cm, int optimized_lr,
883                                           AVxWorker *workers, int num_workers,
884                                           AV1LrSync *lr_sync, void *lr_ctxt) {
885   assert(!cm->features.all_lossless);
886 
887   const int num_planes = av1_num_planes(cm);
888 
889   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
890 
891   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
892                                          optimized_lr, num_planes);
893 
894   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
895                                  cm);
896 }
897 #endif
898 
899 // Initializes cdef_sync parameters.
reset_cdef_job_info(AV1CdefSync * const cdef_sync)900 static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *const cdef_sync) {
901   cdef_sync->end_of_frame = 0;
902   cdef_sync->fbr = 0;
903   cdef_sync->fbc = 0;
904 }
905 
launch_cdef_workers(AVxWorker * const workers,int num_workers)906 static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers,
907                                            int num_workers) {
908   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
909   for (int i = num_workers - 1; i >= 0; i--) {
910     AVxWorker *const worker = &workers[i];
911     if (i == 0)
912       winterface->execute(worker);
913     else
914       winterface->launch(worker);
915   }
916 }
917 
sync_cdef_workers(AVxWorker * const workers,AV1_COMMON * const cm,int num_workers)918 static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers,
919                                          AV1_COMMON *const cm,
920                                          int num_workers) {
921   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
922   int had_error = 0;
923 
924   // Wait for completion of Cdef frame.
925   for (int i = num_workers - 1; i > 0; i--) {
926     AVxWorker *const worker = &workers[i];
927     had_error |= !winterface->sync(worker);
928   }
929   if (had_error)
930     aom_internal_error(cm->error, AOM_CODEC_ERROR,
931                        "Failed to process cdef frame");
932 }
933 
934 // Updates the row index of the next job to be processed.
935 // Also updates end_of_frame flag when the processing of all rows is complete.
update_cdef_row_next_job_info(AV1CdefSync * const cdef_sync,const int nvfb)936 static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync,
937                                           const int nvfb) {
938   cdef_sync->fbr++;
939   if (cdef_sync->fbr == nvfb) {
940     cdef_sync->end_of_frame = 1;
941   }
942 }
943 
944 // Checks if a job is available. If job is available,
945 // populates next job information and returns 1, else returns 0.
get_cdef_row_next_job(AV1CdefSync * const cdef_sync,int * cur_fbr,const int nvfb)946 static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *const cdef_sync,
947                                             int *cur_fbr, const int nvfb) {
948 #if CONFIG_MULTITHREAD
949   pthread_mutex_lock(cdef_sync->mutex_);
950 #endif  // CONFIG_MULTITHREAD
951   int do_next_row = 0;
952   // Populates information needed for current job and update the row
953   // index of the next row to be processed.
954   if (cdef_sync->end_of_frame == 0) {
955     do_next_row = 1;
956     *cur_fbr = cdef_sync->fbr;
957     update_cdef_row_next_job_info(cdef_sync, nvfb);
958   }
959 #if CONFIG_MULTITHREAD
960   pthread_mutex_unlock(cdef_sync->mutex_);
961 #endif  // CONFIG_MULTITHREAD
962   return do_next_row;
963 }
964 
965 // Hook function for each thread in CDEF multi-threading.
cdef_sb_row_worker_hook(void * arg1,void * arg2)966 static int cdef_sb_row_worker_hook(void *arg1, void *arg2) {
967   AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
968   AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2;
969   const int nvfb =
970       (cdef_worker->cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
971   int cur_fbr;
972   while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) {
973     av1_cdef_fb_row(cdef_worker->cm, cdef_worker->xd, cdef_worker->linebuf,
974                     cdef_worker->colbuf, cdef_worker->srcbuf, cur_fbr,
975                     cdef_worker->cdef_init_fb_row_fn, cdef_sync);
976   }
977   return 1;
978 }
979 
980 // Assigns CDEF hook function and thread data to each worker.
prepare_cdef_frame_workers(AV1_COMMON * const cm,MACROBLOCKD * xd,AV1CdefWorkerData * const cdef_worker,AVxWorkerHook hook,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn)981 static void prepare_cdef_frame_workers(
982     AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker,
983     AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync,
984     int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn) {
985   const int num_planes = av1_num_planes(cm);
986 
987   cdef_worker[0].srcbuf = cm->cdef_info.srcbuf;
988   for (int plane = 0; plane < num_planes; plane++)
989     cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane];
990   for (int i = num_workers - 1; i >= 0; i--) {
991     AVxWorker *const worker = &workers[i];
992     cdef_worker[i].cm = cm;
993     cdef_worker[i].xd = xd;
994     cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn;
995     for (int plane = 0; plane < num_planes; plane++)
996       cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane];
997 
998     worker->hook = hook;
999     worker->data1 = cdef_sync;
1000     worker->data2 = &cdef_worker[i];
1001   }
1002 }
1003 
1004 // Initializes row-level parameters for CDEF frame.
av1_cdef_init_fb_row_mt(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,CdefBlockInfo * const fb_info,uint16_t ** const linebuf,uint16_t * const src,struct AV1CdefSyncData * const cdef_sync,int fbr)1005 void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm,
1006                              const MACROBLOCKD *const xd,
1007                              CdefBlockInfo *const fb_info,
1008                              uint16_t **const linebuf, uint16_t *const src,
1009                              struct AV1CdefSyncData *const cdef_sync, int fbr) {
1010   const int num_planes = av1_num_planes(cm);
1011   const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
1012   const int luma_stride =
1013       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
1014 
1015   // for the current filter block, it's top left corner mi structure (mi_tl)
1016   // is first accessed to check whether the top and left boundaries are
1017   // frame boundaries. Then bottom-left and top-right mi structures are
1018   // accessed to check whether the bottom and right boundaries
1019   // (respectively) are frame boundaries.
1020   //
1021   // Note that we can't just check the bottom-right mi structure - eg. if
1022   // we're at the right-hand edge of the frame but not the bottom, then
1023   // the bottom-right mi is NULL but the bottom-left is not.
1024   fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
1025   if (fbr != nvfb - 1)
1026     fb_info->frame_boundary[BOTTOM] =
1027         (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
1028   else
1029     fb_info->frame_boundary[BOTTOM] = 1;
1030 
1031   fb_info->src = src;
1032   fb_info->damping = cm->cdef_info.cdef_damping;
1033   fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
1034   av1_zero(fb_info->dir);
1035   av1_zero(fb_info->var);
1036 
1037   for (int plane = 0; plane < num_planes; plane++) {
1038     const int stride = luma_stride >> xd->plane[plane].subsampling_x;
1039     uint16_t *top_linebuf = &linebuf[plane][0];
1040     uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride];
1041     {
1042       const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
1043       const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1044       const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
1045 
1046       if (fbr != nvfb - 1)  // if (fbr != 0)  // top line buffer copy
1047         av1_cdef_copy_sb8_16(
1048             cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride,
1049             xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0,
1050             xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1051       if (fbr != nvfb - 1)  // bottom line buffer copy
1052         av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride],
1053                              stride, xd->plane[plane].dst.buf, bot_offset, 0,
1054                              xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
1055     }
1056 
1057     fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride];
1058     fb_info->bot_linebuf[plane] =
1059         &linebuf[plane]
1060                 [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)];
1061   }
1062 
1063   cdef_row_mt_sync_write(cdef_sync, fbr);
1064   cdef_row_mt_sync_read(cdef_sync, fbr);
1065 }
1066 
1067 // Implements multi-threading for CDEF.
1068 // Perform CDEF on input frame.
1069 // Inputs:
1070 //   frame: Pointer to input frame buffer.
1071 //   cm: Pointer to common structure.
1072 //   xd: Pointer to common current coding block structure.
1073 // Returns:
1074 //   Nothing will be returned.
av1_cdef_frame_mt(AV1_COMMON * const cm,MACROBLOCKD * const xd,AV1CdefWorkerData * const cdef_worker,AVxWorker * const workers,AV1CdefSync * const cdef_sync,int num_workers,cdef_init_fb_row_t cdef_init_fb_row_fn)1075 void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd,
1076                        AV1CdefWorkerData *const cdef_worker,
1077                        AVxWorker *const workers, AV1CdefSync *const cdef_sync,
1078                        int num_workers,
1079                        cdef_init_fb_row_t cdef_init_fb_row_fn) {
1080   YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf;
1081   const int num_planes = av1_num_planes(cm);
1082 
1083   av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
1084                        num_planes);
1085 
1086   reset_cdef_job_info(cdef_sync);
1087   prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook,
1088                              workers, cdef_sync, num_workers,
1089                              cdef_init_fb_row_fn);
1090   launch_cdef_workers(workers, num_workers);
1091   sync_cdef_workers(workers, cm, num_workers);
1092 }
1093