• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/pred_common.h"
13 #include "av1/encoder/compound_type.h"
14 #include "av1/encoder/encoder_alloc.h"
15 #include "av1/encoder/model_rd.h"
16 #include "av1/encoder/motion_search_facade.h"
17 #include "av1/encoder/rdopt_utils.h"
18 #include "av1/encoder/reconinter_enc.h"
19 #include "av1/encoder/tx_search.h"
20 
21 typedef int64_t (*pick_interinter_mask_type)(
22     const AV1_COMP *const cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
23     const uint8_t *const p0, const uint8_t *const p1,
24     const int16_t *const residual1, const int16_t *const diff10,
25     uint64_t *best_sse);
26 
27 // Checks if characteristics of search match
is_comp_rd_match(const AV1_COMP * const cpi,const MACROBLOCK * const x,const COMP_RD_STATS * st,const MB_MODE_INFO * const mi,int32_t * comp_rate,int64_t * comp_dist,int32_t * comp_model_rate,int64_t * comp_model_dist,int * comp_rs2)28 static INLINE int is_comp_rd_match(const AV1_COMP *const cpi,
29                                    const MACROBLOCK *const x,
30                                    const COMP_RD_STATS *st,
31                                    const MB_MODE_INFO *const mi,
32                                    int32_t *comp_rate, int64_t *comp_dist,
33                                    int32_t *comp_model_rate,
34                                    int64_t *comp_model_dist, int *comp_rs2) {
35   // TODO(ranjit): Ensure that compound type search use regular filter always
36   // and check if following check can be removed
37   // Check if interp filter matches with previous case
38   if (st->filter.as_int != mi->interp_filters.as_int) return 0;
39 
40   const MACROBLOCKD *const xd = &x->e_mbd;
41   // Match MV and reference indices
42   for (int i = 0; i < 2; ++i) {
43     if ((st->ref_frames[i] != mi->ref_frame[i]) ||
44         (st->mv[i].as_int != mi->mv[i].as_int)) {
45       return 0;
46     }
47     const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[i]];
48     if (is_global_mv_block(mi, wm->wmtype) != st->is_global[i]) return 0;
49   }
50 
51   int reuse_data[COMPOUND_TYPES] = { 1, 1, 0, 0 };
52   // For compound wedge, reuse data if newmv search is disabled when NEWMV is
53   // present or if NEWMV is not present in either of the directions
54   if ((!have_newmv_in_inter_mode(mi->mode) &&
55        !have_newmv_in_inter_mode(st->mode)) ||
56       (cpi->sf.inter_sf.disable_interinter_wedge_newmv_search))
57     reuse_data[COMPOUND_WEDGE] = 1;
58   // For compound diffwtd, reuse data if fast search is enabled (no newmv search
59   // when NEWMV is present) or if NEWMV is not present in either of the
60   // directions
61   if (cpi->sf.inter_sf.enable_fast_compound_mode_search ||
62       (!have_newmv_in_inter_mode(mi->mode) &&
63        !have_newmv_in_inter_mode(st->mode)))
64     reuse_data[COMPOUND_DIFFWTD] = 1;
65 
66   // Store the stats for the different compound types
67   for (int comp_type = COMPOUND_AVERAGE; comp_type < COMPOUND_TYPES;
68        comp_type++) {
69     if (reuse_data[comp_type]) {
70       comp_rate[comp_type] = st->rate[comp_type];
71       comp_dist[comp_type] = st->dist[comp_type];
72       comp_model_rate[comp_type] = st->model_rate[comp_type];
73       comp_model_dist[comp_type] = st->model_dist[comp_type];
74       comp_rs2[comp_type] = st->comp_rs2[comp_type];
75     }
76   }
77   return 1;
78 }
79 
80 // Checks if similar compound type search case is accounted earlier
81 // If found, returns relevant rd data
find_comp_rd_in_stats(const AV1_COMP * const cpi,const MACROBLOCK * x,const MB_MODE_INFO * const mbmi,int32_t * comp_rate,int64_t * comp_dist,int32_t * comp_model_rate,int64_t * comp_model_dist,int * comp_rs2,int * match_index)82 static INLINE int find_comp_rd_in_stats(const AV1_COMP *const cpi,
83                                         const MACROBLOCK *x,
84                                         const MB_MODE_INFO *const mbmi,
85                                         int32_t *comp_rate, int64_t *comp_dist,
86                                         int32_t *comp_model_rate,
87                                         int64_t *comp_model_dist, int *comp_rs2,
88                                         int *match_index) {
89   for (int j = 0; j < x->comp_rd_stats_idx; ++j) {
90     if (is_comp_rd_match(cpi, x, &x->comp_rd_stats[j], mbmi, comp_rate,
91                          comp_dist, comp_model_rate, comp_model_dist,
92                          comp_rs2)) {
93       *match_index = j;
94       return 1;
95     }
96   }
97   return 0;  // no match result found
98 }
99 
enable_wedge_search(MACROBLOCK * const x,const unsigned int disable_wedge_var_thresh)100 static INLINE bool enable_wedge_search(
101     MACROBLOCK *const x, const unsigned int disable_wedge_var_thresh) {
102   // Enable wedge search if source variance and edge strength are above
103   // the thresholds.
104   return x->source_variance > disable_wedge_var_thresh;
105 }
106 
enable_wedge_interinter_search(MACROBLOCK * const x,const AV1_COMP * const cpi)107 static INLINE bool enable_wedge_interinter_search(MACROBLOCK *const x,
108                                                   const AV1_COMP *const cpi) {
109   return enable_wedge_search(
110              x, cpi->sf.inter_sf.disable_interinter_wedge_var_thresh) &&
111          cpi->oxcf.comp_type_cfg.enable_interinter_wedge;
112 }
113 
enable_wedge_interintra_search(MACROBLOCK * const x,const AV1_COMP * const cpi)114 static INLINE bool enable_wedge_interintra_search(MACROBLOCK *const x,
115                                                   const AV1_COMP *const cpi) {
116   return enable_wedge_search(
117              x, cpi->sf.inter_sf.disable_interintra_wedge_var_thresh) &&
118          cpi->oxcf.comp_type_cfg.enable_interintra_wedge;
119 }
120 
estimate_wedge_sign(const AV1_COMP * cpi,const MACROBLOCK * x,const BLOCK_SIZE bsize,const uint8_t * pred0,int stride0,const uint8_t * pred1,int stride1)121 static int8_t estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x,
122                                   const BLOCK_SIZE bsize, const uint8_t *pred0,
123                                   int stride0, const uint8_t *pred1,
124                                   int stride1) {
125   static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = {
126     //                            4X4
127     BLOCK_INVALID,
128     // 4X8,        8X4,           8X8
129     BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4,
130     // 8X16,       16X8,          16X16
131     BLOCK_4X8, BLOCK_8X4, BLOCK_8X8,
132     // 16X32,      32X16,         32X32
133     BLOCK_8X16, BLOCK_16X8, BLOCK_16X16,
134     // 32X64,      64X32,         64X64
135     BLOCK_16X32, BLOCK_32X16, BLOCK_32X32,
136     // 64x128,     128x64,        128x128
137     BLOCK_32X64, BLOCK_64X32, BLOCK_64X64,
138     // 4X16,       16X4,          8X32
139     BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16,
140     // 32X8,       16X64,         64X16
141     BLOCK_16X4, BLOCK_8X32, BLOCK_32X8
142   };
143   const struct macroblock_plane *const p = &x->plane[0];
144   const uint8_t *src = p->src.buf;
145   int src_stride = p->src.stride;
146   const int bw = block_size_wide[bsize];
147   const int bh = block_size_high[bsize];
148   const int bw_by2 = bw >> 1;
149   const int bh_by2 = bh >> 1;
150   uint32_t esq[2][2];
151   int64_t tl, br;
152 
153   const BLOCK_SIZE f_index = split_qtr[bsize];
154   assert(f_index != BLOCK_INVALID);
155 
156   if (is_cur_buf_hbd(&x->e_mbd)) {
157     pred0 = CONVERT_TO_BYTEPTR(pred0);
158     pred1 = CONVERT_TO_BYTEPTR(pred1);
159   }
160 
161   // Residual variance computation over relevant quandrants in order to
162   // find TL + BR, TL = sum(1st,2nd,3rd) quadrants of (pred0 - pred1),
163   // BR = sum(2nd,3rd,4th) quadrants of (pred1 - pred0)
164   // The 2nd and 3rd quadrants cancel out in TL + BR
165   // Hence TL + BR = 1st quadrant of (pred0-pred1) + 4th of (pred1-pred0)
166   // TODO(nithya): Sign estimation assumes 45 degrees (1st and 4th quadrants)
167   // for all codebooks; experiment with other quadrant combinations for
168   // 0, 90 and 135 degrees also.
169   cpi->ppi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]);
170   cpi->ppi->fn_ptr[f_index].vf(src + bh_by2 * src_stride + bw_by2, src_stride,
171                                pred0 + bh_by2 * stride0 + bw_by2, stride0,
172                                &esq[0][1]);
173   cpi->ppi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]);
174   cpi->ppi->fn_ptr[f_index].vf(src + bh_by2 * src_stride + bw_by2, src_stride,
175                                pred1 + bh_by2 * stride1 + bw_by2, stride0,
176                                &esq[1][1]);
177 
178   tl = ((int64_t)esq[0][0]) - ((int64_t)esq[1][0]);
179   br = ((int64_t)esq[1][1]) - ((int64_t)esq[0][1]);
180   return (tl + br > 0);
181 }
182 
183 // Choose the best wedge index and sign
pick_wedge(const AV1_COMP * const cpi,const MACROBLOCK * const x,const BLOCK_SIZE bsize,const uint8_t * const p0,const int16_t * const residual1,const int16_t * const diff10,int8_t * const best_wedge_sign,int8_t * const best_wedge_index,uint64_t * best_sse)184 static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x,
185                           const BLOCK_SIZE bsize, const uint8_t *const p0,
186                           const int16_t *const residual1,
187                           const int16_t *const diff10,
188                           int8_t *const best_wedge_sign,
189                           int8_t *const best_wedge_index, uint64_t *best_sse) {
190   const MACROBLOCKD *const xd = &x->e_mbd;
191   const struct buf_2d *const src = &x->plane[0].src;
192   const int bw = block_size_wide[bsize];
193   const int bh = block_size_high[bsize];
194   const int N = bw * bh;
195   assert(N >= 64);
196   int rate;
197   int64_t dist;
198   int64_t rd, best_rd = INT64_MAX;
199   int8_t wedge_index;
200   int8_t wedge_sign;
201   const int8_t wedge_types = get_wedge_types_lookup(bsize);
202   const uint8_t *mask;
203   uint64_t sse;
204   const int hbd = is_cur_buf_hbd(xd);
205   const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
206 
207   DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]);  // src - pred0
208 #if CONFIG_AV1_HIGHBITDEPTH
209   if (hbd) {
210     aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride,
211                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
212   } else {
213     aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw);
214   }
215 #else
216   (void)hbd;
217   aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw);
218 #endif
219 
220   int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) -
221                         (int64_t)aom_sum_squares_i16(residual1, N)) *
222                        (1 << WEDGE_WEIGHT_BITS) / 2;
223   int16_t *ds = residual0;
224 
225   av1_wedge_compute_delta_squares(ds, residual0, residual1, N);
226 
227   for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
228     mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize);
229 
230     wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit);
231 
232     mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
233     sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
234     sse = ROUND_POWER_OF_TWO(sse, bd_round);
235 
236     model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
237                                                   &rate, &dist);
238     // int rate2;
239     // int64_t dist2;
240     // model_rd_with_curvfit(cpi, x, bsize, 0, sse, N, &rate2, &dist2);
241     // printf("sse %"PRId64": leagacy: %d %"PRId64", curvfit %d %"PRId64"\n",
242     // sse, rate, dist, rate2, dist2); dist = dist2;
243     // rate = rate2;
244 
245     rate += x->mode_costs.wedge_idx_cost[bsize][wedge_index];
246     rd = RDCOST(x->rdmult, rate, dist);
247 
248     if (rd < best_rd) {
249       *best_wedge_index = wedge_index;
250       *best_wedge_sign = wedge_sign;
251       best_rd = rd;
252       *best_sse = sse;
253     }
254   }
255 
256   return best_rd -
257          RDCOST(x->rdmult,
258                 x->mode_costs.wedge_idx_cost[bsize][*best_wedge_index], 0);
259 }
260 
261 // Choose the best wedge index the specified sign
pick_wedge_fixed_sign(const AV1_COMP * const cpi,const MACROBLOCK * const x,const BLOCK_SIZE bsize,const int16_t * const residual1,const int16_t * const diff10,const int8_t wedge_sign,int8_t * const best_wedge_index,uint64_t * best_sse)262 static int64_t pick_wedge_fixed_sign(
263     const AV1_COMP *const cpi, const MACROBLOCK *const x,
264     const BLOCK_SIZE bsize, const int16_t *const residual1,
265     const int16_t *const diff10, const int8_t wedge_sign,
266     int8_t *const best_wedge_index, uint64_t *best_sse) {
267   const MACROBLOCKD *const xd = &x->e_mbd;
268 
269   const int bw = block_size_wide[bsize];
270   const int bh = block_size_high[bsize];
271   const int N = bw * bh;
272   assert(N >= 64);
273   int rate;
274   int64_t dist;
275   int64_t rd, best_rd = INT64_MAX;
276   int8_t wedge_index;
277   const int8_t wedge_types = get_wedge_types_lookup(bsize);
278   const uint8_t *mask;
279   uint64_t sse;
280   const int hbd = is_cur_buf_hbd(xd);
281   const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
282   for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
283     mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
284     sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
285     sse = ROUND_POWER_OF_TWO(sse, bd_round);
286 
287     model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
288                                                   &rate, &dist);
289     rate += x->mode_costs.wedge_idx_cost[bsize][wedge_index];
290     rd = RDCOST(x->rdmult, rate, dist);
291 
292     if (rd < best_rd) {
293       *best_wedge_index = wedge_index;
294       best_rd = rd;
295       *best_sse = sse;
296     }
297   }
298   return best_rd -
299          RDCOST(x->rdmult,
300                 x->mode_costs.wedge_idx_cost[bsize][*best_wedge_index], 0);
301 }
302 
pick_interinter_wedge(const AV1_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const uint8_t * const p0,const uint8_t * const p1,const int16_t * const residual1,const int16_t * const diff10,uint64_t * best_sse)303 static int64_t pick_interinter_wedge(
304     const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize,
305     const uint8_t *const p0, const uint8_t *const p1,
306     const int16_t *const residual1, const int16_t *const diff10,
307     uint64_t *best_sse) {
308   MACROBLOCKD *const xd = &x->e_mbd;
309   MB_MODE_INFO *const mbmi = xd->mi[0];
310   const int bw = block_size_wide[bsize];
311 
312   int64_t rd;
313   int8_t wedge_index = -1;
314   int8_t wedge_sign = 0;
315 
316   assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
317   assert(cpi->common.seq_params->enable_masked_compound);
318 
319   if (cpi->sf.inter_sf.fast_wedge_sign_estimate) {
320     wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
321     rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign,
322                                &wedge_index, best_sse);
323   } else {
324     rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign,
325                     &wedge_index, best_sse);
326   }
327 
328   mbmi->interinter_comp.wedge_sign = wedge_sign;
329   mbmi->interinter_comp.wedge_index = wedge_index;
330   return rd;
331 }
332 
pick_interinter_seg(const AV1_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const uint8_t * const p0,const uint8_t * const p1,const int16_t * const residual1,const int16_t * const diff10,uint64_t * best_sse)333 static int64_t pick_interinter_seg(const AV1_COMP *const cpi,
334                                    MACROBLOCK *const x, const BLOCK_SIZE bsize,
335                                    const uint8_t *const p0,
336                                    const uint8_t *const p1,
337                                    const int16_t *const residual1,
338                                    const int16_t *const diff10,
339                                    uint64_t *best_sse) {
340   MACROBLOCKD *const xd = &x->e_mbd;
341   MB_MODE_INFO *const mbmi = xd->mi[0];
342   const int bw = block_size_wide[bsize];
343   const int bh = block_size_high[bsize];
344   const int N = 1 << num_pels_log2_lookup[bsize];
345   int rate;
346   int64_t dist;
347   DIFFWTD_MASK_TYPE cur_mask_type;
348   int64_t best_rd = INT64_MAX;
349   DIFFWTD_MASK_TYPE best_mask_type = 0;
350   const int hbd = is_cur_buf_hbd(xd);
351   const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
352   DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
353   uint8_t *tmp_mask[2] = { xd->seg_mask, seg_mask };
354   // try each mask type and its inverse
355   for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) {
356     // build mask and inverse
357     if (hbd)
358       av1_build_compound_diffwtd_mask_highbd(
359           tmp_mask[cur_mask_type], cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw,
360           CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd);
361     else
362       av1_build_compound_diffwtd_mask(tmp_mask[cur_mask_type], cur_mask_type,
363                                       p0, bw, p1, bw, bh, bw);
364 
365     // compute rd for mask
366     uint64_t sse = av1_wedge_sse_from_residuals(residual1, diff10,
367                                                 tmp_mask[cur_mask_type], N);
368     sse = ROUND_POWER_OF_TWO(sse, bd_round);
369 
370     model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N,
371                                                   &rate, &dist);
372     const int64_t rd0 = RDCOST(x->rdmult, rate, dist);
373 
374     if (rd0 < best_rd) {
375       best_mask_type = cur_mask_type;
376       best_rd = rd0;
377       *best_sse = sse;
378     }
379   }
380   mbmi->interinter_comp.mask_type = best_mask_type;
381   if (best_mask_type == DIFFWTD_38_INV) {
382     memcpy(xd->seg_mask, seg_mask, N * 2);
383   }
384   return best_rd;
385 }
386 
pick_interintra_wedge(const AV1_COMP * const cpi,const MACROBLOCK * const x,const BLOCK_SIZE bsize,const uint8_t * const p0,const uint8_t * const p1)387 static int64_t pick_interintra_wedge(const AV1_COMP *const cpi,
388                                      const MACROBLOCK *const x,
389                                      const BLOCK_SIZE bsize,
390                                      const uint8_t *const p0,
391                                      const uint8_t *const p1) {
392   const MACROBLOCKD *const xd = &x->e_mbd;
393   MB_MODE_INFO *const mbmi = xd->mi[0];
394   assert(av1_is_wedge_used(bsize));
395   assert(cpi->common.seq_params->enable_interintra_compound);
396 
397   const struct buf_2d *const src = &x->plane[0].src;
398   const int bw = block_size_wide[bsize];
399   const int bh = block_size_high[bsize];
400   DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]);  // src - pred1
401   DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]);     // pred1 - pred0
402 #if CONFIG_AV1_HIGHBITDEPTH
403   if (is_cur_buf_hbd(xd)) {
404     aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
405                               CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
406     aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw,
407                               CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
408   } else {
409     aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw);
410     aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw);
411   }
412 #else
413   aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw);
414   aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw);
415 #endif
416   int8_t wedge_index = -1;
417   uint64_t sse;
418   int64_t rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0,
419                                      &wedge_index, &sse);
420 
421   mbmi->interintra_wedge_index = wedge_index;
422   return rd;
423 }
424 
get_inter_predictors_masked_compound(MACROBLOCK * x,const BLOCK_SIZE bsize,uint8_t ** preds0,uint8_t ** preds1,int16_t * residual1,int16_t * diff10,int * strides)425 static AOM_INLINE void get_inter_predictors_masked_compound(
426     MACROBLOCK *x, const BLOCK_SIZE bsize, uint8_t **preds0, uint8_t **preds1,
427     int16_t *residual1, int16_t *diff10, int *strides) {
428   MACROBLOCKD *xd = &x->e_mbd;
429   const int bw = block_size_wide[bsize];
430   const int bh = block_size_high[bsize];
431   // get inter predictors to use for masked compound modes
432   av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 0, preds0,
433                                                    strides);
434   av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 1, preds1,
435                                                    strides);
436   const struct buf_2d *const src = &x->plane[0].src;
437 #if CONFIG_AV1_HIGHBITDEPTH
438   if (is_cur_buf_hbd(xd)) {
439     aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
440                               CONVERT_TO_BYTEPTR(*preds1), bw, xd->bd);
441     aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(*preds1),
442                               bw, CONVERT_TO_BYTEPTR(*preds0), bw, xd->bd);
443   } else {
444     aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1,
445                        bw);
446     aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw);
447   }
448 #else
449   aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1, bw);
450   aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw);
451 #endif
452 }
453 
454 // Computes the rd cost for the given interintra mode and updates the best
compute_best_interintra_mode(const AV1_COMP * const cpi,MB_MODE_INFO * mbmi,MACROBLOCKD * xd,MACROBLOCK * const x,const int * const interintra_mode_cost,const BUFFER_SET * orig_dst,uint8_t * intrapred,const uint8_t * tmp_buf,INTERINTRA_MODE * best_interintra_mode,int64_t * best_interintra_rd,INTERINTRA_MODE interintra_mode,BLOCK_SIZE bsize)455 static INLINE void compute_best_interintra_mode(
456     const AV1_COMP *const cpi, MB_MODE_INFO *mbmi, MACROBLOCKD *xd,
457     MACROBLOCK *const x, const int *const interintra_mode_cost,
458     const BUFFER_SET *orig_dst, uint8_t *intrapred, const uint8_t *tmp_buf,
459     INTERINTRA_MODE *best_interintra_mode, int64_t *best_interintra_rd,
460     INTERINTRA_MODE interintra_mode, BLOCK_SIZE bsize) {
461   const AV1_COMMON *const cm = &cpi->common;
462   int rate, skip_txfm_sb;
463   int64_t dist, skip_sse_sb;
464   const int bw = block_size_wide[bsize];
465   mbmi->interintra_mode = interintra_mode;
466   int rmode = interintra_mode_cost[interintra_mode];
467   av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
468                                             intrapred, bw);
469   av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
470   model_rd_sb_fn[MODELRD_TYPE_INTERINTRA](cpi, bsize, x, xd, 0, 0, &rate, &dist,
471                                           &skip_txfm_sb, &skip_sse_sb, NULL,
472                                           NULL, NULL);
473   int64_t rd = RDCOST(x->rdmult, rate + rmode, dist);
474   if (rd < *best_interintra_rd) {
475     *best_interintra_rd = rd;
476     *best_interintra_mode = mbmi->interintra_mode;
477   }
478 }
479 
estimate_yrd_for_sb(const AV1_COMP * const cpi,BLOCK_SIZE bs,MACROBLOCK * x,int64_t ref_best_rd,RD_STATS * rd_stats)480 static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs,
481                                    MACROBLOCK *x, int64_t ref_best_rd,
482                                    RD_STATS *rd_stats) {
483   MACROBLOCKD *const xd = &x->e_mbd;
484   if (ref_best_rd < 0) return INT64_MAX;
485   av1_subtract_plane(x, bs, 0);
486   const int64_t rd = av1_estimate_txfm_yrd(cpi, x, rd_stats, ref_best_rd, bs,
487                                            max_txsize_rect_lookup[bs]);
488   if (rd != INT64_MAX) {
489     const int skip_ctx = av1_get_skip_txfm_context(xd);
490     if (rd_stats->skip_txfm) {
491       const int s1 = x->mode_costs.skip_txfm_cost[skip_ctx][1];
492       rd_stats->rate = s1;
493     } else {
494       const int s0 = x->mode_costs.skip_txfm_cost[skip_ctx][0];
495       rd_stats->rate += s0;
496     }
497   }
498   return rd;
499 }
500 
501 // Computes the rd_threshold for smooth interintra rd search.
compute_rd_thresh(MACROBLOCK * const x,int total_mode_rate,int64_t ref_best_rd)502 static AOM_INLINE int64_t compute_rd_thresh(MACROBLOCK *const x,
503                                             int total_mode_rate,
504                                             int64_t ref_best_rd) {
505   const int64_t rd_thresh = get_rd_thresh_from_best_rd(
506       ref_best_rd, (1 << INTER_INTRA_RD_THRESH_SHIFT),
507       INTER_INTRA_RD_THRESH_SCALE);
508   const int64_t mode_rd = RDCOST(x->rdmult, total_mode_rate, 0);
509   return (rd_thresh - mode_rd);
510 }
511 
512 // Computes the best wedge interintra mode
compute_best_wedge_interintra(const AV1_COMP * const cpi,MB_MODE_INFO * mbmi,MACROBLOCKD * xd,MACROBLOCK * const x,const int * const interintra_mode_cost,const BUFFER_SET * orig_dst,uint8_t * intrapred_,uint8_t * tmp_buf_,int * best_mode,int * best_wedge_index,BLOCK_SIZE bsize)513 static AOM_INLINE int64_t compute_best_wedge_interintra(
514     const AV1_COMP *const cpi, MB_MODE_INFO *mbmi, MACROBLOCKD *xd,
515     MACROBLOCK *const x, const int *const interintra_mode_cost,
516     const BUFFER_SET *orig_dst, uint8_t *intrapred_, uint8_t *tmp_buf_,
517     int *best_mode, int *best_wedge_index, BLOCK_SIZE bsize) {
518   const AV1_COMMON *const cm = &cpi->common;
519   const int bw = block_size_wide[bsize];
520   int64_t best_interintra_rd_wedge = INT64_MAX;
521   int64_t best_total_rd = INT64_MAX;
522   uint8_t *intrapred = get_buf_by_bd(xd, intrapred_);
523   for (INTERINTRA_MODE mode = 0; mode < INTERINTRA_MODES; ++mode) {
524     mbmi->interintra_mode = mode;
525     av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
526                                               intrapred, bw);
527     int64_t rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
528     const int rate_overhead =
529         interintra_mode_cost[mode] +
530         x->mode_costs.wedge_idx_cost[bsize][mbmi->interintra_wedge_index];
531     const int64_t total_rd = rd + RDCOST(x->rdmult, rate_overhead, 0);
532     if (total_rd < best_total_rd) {
533       best_total_rd = total_rd;
534       best_interintra_rd_wedge = rd;
535       *best_mode = mbmi->interintra_mode;
536       *best_wedge_index = mbmi->interintra_wedge_index;
537     }
538   }
539   return best_interintra_rd_wedge;
540 }
541 
handle_smooth_inter_intra_mode(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,MB_MODE_INFO * mbmi,int64_t ref_best_rd,int * rate_mv,INTERINTRA_MODE * best_interintra_mode,int64_t * best_rd,int * best_mode_rate,const BUFFER_SET * orig_dst,uint8_t * tmp_buf,uint8_t * intrapred,HandleInterModeArgs * args)542 static int handle_smooth_inter_intra_mode(
543     const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
544     MB_MODE_INFO *mbmi, int64_t ref_best_rd, int *rate_mv,
545     INTERINTRA_MODE *best_interintra_mode, int64_t *best_rd,
546     int *best_mode_rate, const BUFFER_SET *orig_dst, uint8_t *tmp_buf,
547     uint8_t *intrapred, HandleInterModeArgs *args) {
548   MACROBLOCKD *xd = &x->e_mbd;
549   const ModeCosts *mode_costs = &x->mode_costs;
550   const int *const interintra_mode_cost =
551       mode_costs->interintra_mode_cost[size_group_lookup[bsize]];
552   const AV1_COMMON *const cm = &cpi->common;
553   const int bw = block_size_wide[bsize];
554 
555   mbmi->use_wedge_interintra = 0;
556 
557   if (cpi->sf.inter_sf.reuse_inter_intra_mode == 0 ||
558       *best_interintra_mode == INTERINTRA_MODES) {
559     int64_t best_interintra_rd = INT64_MAX;
560     for (INTERINTRA_MODE cur_mode = 0; cur_mode < INTERINTRA_MODES;
561          ++cur_mode) {
562       if ((!cpi->oxcf.intra_mode_cfg.enable_smooth_intra ||
563            cpi->sf.intra_sf.disable_smooth_intra) &&
564           cur_mode == II_SMOOTH_PRED)
565         continue;
566       compute_best_interintra_mode(
567           cpi, mbmi, xd, x, interintra_mode_cost, orig_dst, intrapred, tmp_buf,
568           best_interintra_mode, &best_interintra_rd, cur_mode, bsize);
569     }
570     args->inter_intra_mode[mbmi->ref_frame[0]] = *best_interintra_mode;
571   }
572   assert(IMPLIES(!cpi->oxcf.comp_type_cfg.enable_smooth_interintra,
573                  *best_interintra_mode != II_SMOOTH_PRED));
574   // Recompute prediction if required
575   bool interintra_mode_reuse = cpi->sf.inter_sf.reuse_inter_intra_mode ||
576                                *best_interintra_mode != INTERINTRA_MODES;
577   if (interintra_mode_reuse || *best_interintra_mode != INTERINTRA_MODES - 1) {
578     mbmi->interintra_mode = *best_interintra_mode;
579     av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
580                                               intrapred, bw);
581     av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
582   }
583 
584   // Compute rd cost for best smooth_interintra
585   RD_STATS rd_stats;
586   const int is_wedge_used = av1_is_wedge_used(bsize);
587   const int rmode =
588       interintra_mode_cost[*best_interintra_mode] +
589       (is_wedge_used ? mode_costs->wedge_interintra_cost[bsize][0] : 0);
590   const int total_mode_rate = rmode + *rate_mv;
591   const int64_t rd_thresh = compute_rd_thresh(x, total_mode_rate, ref_best_rd);
592   int64_t rd = estimate_yrd_for_sb(cpi, bsize, x, rd_thresh, &rd_stats);
593   if (rd != INT64_MAX) {
594     rd = RDCOST(x->rdmult, total_mode_rate + rd_stats.rate, rd_stats.dist);
595   } else {
596     return IGNORE_MODE;
597   }
598   *best_rd = rd;
599   *best_mode_rate = rmode;
600   // Return early if best rd not good enough
601   if (ref_best_rd < INT64_MAX &&
602       (*best_rd >> INTER_INTRA_RD_THRESH_SHIFT) * INTER_INTRA_RD_THRESH_SCALE >
603           ref_best_rd) {
604     return IGNORE_MODE;
605   }
606   return 0;
607 }
608 
handle_wedge_inter_intra_mode(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,MB_MODE_INFO * mbmi,int * rate_mv,INTERINTRA_MODE * best_interintra_mode,int64_t * best_rd,const BUFFER_SET * orig_dst,uint8_t * tmp_buf_,uint8_t * tmp_buf,uint8_t * intrapred_,uint8_t * intrapred,HandleInterModeArgs * args,int * tmp_rate_mv,int * rate_overhead,int_mv * tmp_mv,int64_t best_rd_no_wedge)609 static int handle_wedge_inter_intra_mode(
610     const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
611     MB_MODE_INFO *mbmi, int *rate_mv, INTERINTRA_MODE *best_interintra_mode,
612     int64_t *best_rd, const BUFFER_SET *orig_dst, uint8_t *tmp_buf_,
613     uint8_t *tmp_buf, uint8_t *intrapred_, uint8_t *intrapred,
614     HandleInterModeArgs *args, int *tmp_rate_mv, int *rate_overhead,
615     int_mv *tmp_mv, int64_t best_rd_no_wedge) {
616   MACROBLOCKD *xd = &x->e_mbd;
617   const ModeCosts *mode_costs = &x->mode_costs;
618   const int *const interintra_mode_cost =
619       mode_costs->interintra_mode_cost[size_group_lookup[bsize]];
620   const AV1_COMMON *const cm = &cpi->common;
621   const int bw = block_size_wide[bsize];
622   const int try_smooth_interintra =
623       cpi->oxcf.comp_type_cfg.enable_smooth_interintra;
624 
625   mbmi->use_wedge_interintra = 1;
626 
627   if (!cpi->sf.inter_sf.fast_interintra_wedge_search) {
628     // Exhaustive search of all wedge and mode combinations.
629     int best_mode = 0;
630     int best_wedge_index = 0;
631     *best_rd = compute_best_wedge_interintra(
632         cpi, mbmi, xd, x, interintra_mode_cost, orig_dst, intrapred_, tmp_buf_,
633         &best_mode, &best_wedge_index, bsize);
634     mbmi->interintra_mode = best_mode;
635     mbmi->interintra_wedge_index = best_wedge_index;
636     if (best_mode != INTERINTRA_MODES - 1) {
637       av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
638                                                 intrapred, bw);
639     }
640   } else if (!try_smooth_interintra) {
641     if (*best_interintra_mode == INTERINTRA_MODES) {
642       mbmi->interintra_mode = INTERINTRA_MODES - 1;
643       *best_interintra_mode = INTERINTRA_MODES - 1;
644       av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
645                                                 intrapred, bw);
646       // Pick wedge mask based on INTERINTRA_MODES - 1
647       *best_rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
648       // Find the best interintra mode for the chosen wedge mask
649       for (INTERINTRA_MODE cur_mode = 0; cur_mode < INTERINTRA_MODES;
650            ++cur_mode) {
651         compute_best_interintra_mode(
652             cpi, mbmi, xd, x, interintra_mode_cost, orig_dst, intrapred,
653             tmp_buf, best_interintra_mode, best_rd, cur_mode, bsize);
654       }
655       args->inter_intra_mode[mbmi->ref_frame[0]] = *best_interintra_mode;
656       mbmi->interintra_mode = *best_interintra_mode;
657 
658       // Recompute prediction if required
659       if (*best_interintra_mode != INTERINTRA_MODES - 1) {
660         av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
661                                                   intrapred, bw);
662       }
663     } else {
664       // Pick wedge mask for the best interintra mode (reused)
665       mbmi->interintra_mode = *best_interintra_mode;
666       av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
667                                                 intrapred, bw);
668       *best_rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
669     }
670   } else {
671     // Pick wedge mask for the best interintra mode from smooth_interintra
672     *best_rd = pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
673   }
674 
675   *rate_overhead =
676       interintra_mode_cost[mbmi->interintra_mode] +
677       mode_costs->wedge_idx_cost[bsize][mbmi->interintra_wedge_index] +
678       mode_costs->wedge_interintra_cost[bsize][1];
679   *best_rd += RDCOST(x->rdmult, *rate_overhead + *rate_mv, 0);
680 
681   int64_t rd = INT64_MAX;
682   const int_mv mv0 = mbmi->mv[0];
683   // Refine motion vector for NEWMV case.
684   if (have_newmv_in_inter_mode(mbmi->mode)) {
685     int rate_sum, skip_txfm_sb;
686     int64_t dist_sum, skip_sse_sb;
687     // get negative of mask
688     const uint8_t *mask =
689         av1_get_contiguous_soft_mask(mbmi->interintra_wedge_index, 1, bsize);
690     av1_compound_single_motion_search(cpi, x, bsize, &tmp_mv->as_mv, intrapred,
691                                       mask, bw, tmp_rate_mv, 0);
692     if (mbmi->mv[0].as_int != tmp_mv->as_int) {
693       mbmi->mv[0].as_int = tmp_mv->as_int;
694       // Set ref_frame[1] to NONE_FRAME temporarily so that the intra
695       // predictor is not calculated again in av1_enc_build_inter_predictor().
696       mbmi->ref_frame[1] = NONE_FRAME;
697       const int mi_row = xd->mi_row;
698       const int mi_col = xd->mi_col;
699       av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
700                                     AOM_PLANE_Y, AOM_PLANE_Y);
701       mbmi->ref_frame[1] = INTRA_FRAME;
702       av1_combine_interintra(xd, bsize, 0, xd->plane[AOM_PLANE_Y].dst.buf,
703                              xd->plane[AOM_PLANE_Y].dst.stride, intrapred, bw);
704       model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
705           cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &skip_txfm_sb,
706           &skip_sse_sb, NULL, NULL, NULL);
707       rd =
708           RDCOST(x->rdmult, *tmp_rate_mv + *rate_overhead + rate_sum, dist_sum);
709     }
710   }
711   if (rd >= *best_rd) {
712     tmp_mv->as_int = mv0.as_int;
713     *tmp_rate_mv = *rate_mv;
714     av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
715   }
716   // Evaluate closer to true rd
717   RD_STATS rd_stats;
718   const int64_t mode_rd = RDCOST(x->rdmult, *rate_overhead + *tmp_rate_mv, 0);
719   const int64_t tmp_rd_thresh = best_rd_no_wedge - mode_rd;
720   rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats);
721   if (rd != INT64_MAX) {
722     rd = RDCOST(x->rdmult, *rate_overhead + *tmp_rate_mv + rd_stats.rate,
723                 rd_stats.dist);
724   } else {
725     if (*best_rd == INT64_MAX) return IGNORE_MODE;
726   }
727   *best_rd = rd;
728   return 0;
729 }
730 
av1_handle_inter_intra_mode(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,MB_MODE_INFO * mbmi,HandleInterModeArgs * args,int64_t ref_best_rd,int * rate_mv,int * tmp_rate2,const BUFFER_SET * orig_dst)731 int av1_handle_inter_intra_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
732                                 BLOCK_SIZE bsize, MB_MODE_INFO *mbmi,
733                                 HandleInterModeArgs *args, int64_t ref_best_rd,
734                                 int *rate_mv, int *tmp_rate2,
735                                 const BUFFER_SET *orig_dst) {
736   const int try_smooth_interintra =
737       cpi->oxcf.comp_type_cfg.enable_smooth_interintra;
738 
739   const int is_wedge_used = av1_is_wedge_used(bsize);
740   const int try_wedge_interintra =
741       is_wedge_used && enable_wedge_interintra_search(x, cpi);
742 
743   const AV1_COMMON *const cm = &cpi->common;
744   MACROBLOCKD *xd = &x->e_mbd;
745   const int bw = block_size_wide[bsize];
746   DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]);
747   DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]);
748   uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_);
749   uint8_t *intrapred = get_buf_by_bd(xd, intrapred_);
750   const int mi_row = xd->mi_row;
751   const int mi_col = xd->mi_col;
752 
753   // Single reference inter prediction
754   mbmi->ref_frame[1] = NONE_FRAME;
755   xd->plane[0].dst.buf = tmp_buf;
756   xd->plane[0].dst.stride = bw;
757   av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
758                                 AOM_PLANE_Y, AOM_PLANE_Y);
759   const int num_planes = av1_num_planes(cm);
760 
761   // Restore the buffers for intra prediction
762   restore_dst_buf(xd, *orig_dst, num_planes);
763   mbmi->ref_frame[1] = INTRA_FRAME;
764   INTERINTRA_MODE best_interintra_mode =
765       args->inter_intra_mode[mbmi->ref_frame[0]];
766 
767   // Compute smooth_interintra
768   int64_t best_interintra_rd_nowedge = INT64_MAX;
769   int best_mode_rate = INT_MAX;
770   if (try_smooth_interintra) {
771     int ret = handle_smooth_inter_intra_mode(
772         cpi, x, bsize, mbmi, ref_best_rd, rate_mv, &best_interintra_mode,
773         &best_interintra_rd_nowedge, &best_mode_rate, orig_dst, tmp_buf,
774         intrapred, args);
775     if (ret == IGNORE_MODE) {
776       return IGNORE_MODE;
777     }
778   }
779 
780   // Compute wedge interintra
781   int64_t best_interintra_rd_wedge = INT64_MAX;
782   const int_mv mv0 = mbmi->mv[0];
783   int_mv tmp_mv = mv0;
784   int tmp_rate_mv = 0;
785   int rate_overhead = 0;
786   if (try_wedge_interintra) {
787     int ret = handle_wedge_inter_intra_mode(
788         cpi, x, bsize, mbmi, rate_mv, &best_interintra_mode,
789         &best_interintra_rd_wedge, orig_dst, tmp_buf_, tmp_buf, intrapred_,
790         intrapred, args, &tmp_rate_mv, &rate_overhead, &tmp_mv,
791         best_interintra_rd_nowedge);
792     if (ret == IGNORE_MODE) {
793       return IGNORE_MODE;
794     }
795   }
796 
797   if (best_interintra_rd_nowedge == INT64_MAX &&
798       best_interintra_rd_wedge == INT64_MAX) {
799     return IGNORE_MODE;
800   }
801   if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
802     mbmi->mv[0].as_int = tmp_mv.as_int;
803     *tmp_rate2 += tmp_rate_mv - *rate_mv;
804     *rate_mv = tmp_rate_mv;
805     best_mode_rate = rate_overhead;
806   } else if (try_smooth_interintra && try_wedge_interintra) {
807     // If smooth was best, but we over-wrote the values when evaluating the
808     // wedge mode, we need to recompute the smooth values.
809     mbmi->use_wedge_interintra = 0;
810     mbmi->interintra_mode = best_interintra_mode;
811     mbmi->mv[0].as_int = mv0.as_int;
812     av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
813                                   AOM_PLANE_Y, AOM_PLANE_Y);
814   }
815   *tmp_rate2 += best_mode_rate;
816 
817   if (num_planes > 1) {
818     av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
819                                   AOM_PLANE_U, num_planes - 1);
820   }
821   return 0;
822 }
823 
824 // Computes the valid compound_types to be evaluated
compute_valid_comp_types(MACROBLOCK * x,const AV1_COMP * const cpi,BLOCK_SIZE bsize,int masked_compound_used,int mode_search_mask,COMPOUND_TYPE * valid_comp_types)825 static INLINE int compute_valid_comp_types(MACROBLOCK *x,
826                                            const AV1_COMP *const cpi,
827                                            BLOCK_SIZE bsize,
828                                            int masked_compound_used,
829                                            int mode_search_mask,
830                                            COMPOUND_TYPE *valid_comp_types) {
831   const AV1_COMMON *cm = &cpi->common;
832   int valid_type_count = 0;
833   int comp_type, valid_check;
834   int8_t enable_masked_type[MASKED_COMPOUND_TYPES] = { 0, 0 };
835 
836   const int try_average_comp = (mode_search_mask & (1 << COMPOUND_AVERAGE));
837   const int try_distwtd_comp =
838       ((mode_search_mask & (1 << COMPOUND_DISTWTD)) &&
839        cm->seq_params->order_hint_info.enable_dist_wtd_comp == 1 &&
840        cpi->sf.inter_sf.use_dist_wtd_comp_flag != DIST_WTD_COMP_DISABLED);
841 
842   // Check if COMPOUND_AVERAGE and COMPOUND_DISTWTD are valid cases
843   for (comp_type = COMPOUND_AVERAGE; comp_type <= COMPOUND_DISTWTD;
844        comp_type++) {
845     valid_check =
846         (comp_type == COMPOUND_AVERAGE) ? try_average_comp : try_distwtd_comp;
847     if (valid_check && is_interinter_compound_used(comp_type, bsize))
848       valid_comp_types[valid_type_count++] = comp_type;
849   }
850   // Check if COMPOUND_WEDGE and COMPOUND_DIFFWTD are valid cases
851   if (masked_compound_used) {
852     // enable_masked_type[0] corresponds to COMPOUND_WEDGE
853     // enable_masked_type[1] corresponds to COMPOUND_DIFFWTD
854     enable_masked_type[0] = enable_wedge_interinter_search(x, cpi);
855     enable_masked_type[1] = cpi->oxcf.comp_type_cfg.enable_diff_wtd_comp;
856     for (comp_type = COMPOUND_WEDGE; comp_type <= COMPOUND_DIFFWTD;
857          comp_type++) {
858       if ((mode_search_mask & (1 << comp_type)) &&
859           is_interinter_compound_used(comp_type, bsize) &&
860           enable_masked_type[comp_type - COMPOUND_WEDGE])
861         valid_comp_types[valid_type_count++] = comp_type;
862     }
863   }
864   return valid_type_count;
865 }
866 
867 // Calculates the cost for compound type mask
calc_masked_type_cost(const ModeCosts * mode_costs,BLOCK_SIZE bsize,int comp_group_idx_ctx,int comp_index_ctx,int masked_compound_used,int * masked_type_cost)868 static INLINE void calc_masked_type_cost(
869     const ModeCosts *mode_costs, BLOCK_SIZE bsize, int comp_group_idx_ctx,
870     int comp_index_ctx, int masked_compound_used, int *masked_type_cost) {
871   av1_zero_array(masked_type_cost, COMPOUND_TYPES);
872   // Account for group index cost when wedge and/or diffwtd prediction are
873   // enabled
874   if (masked_compound_used) {
875     // Compound group index of average and distwtd is 0
876     // Compound group index of wedge and diffwtd is 1
877     masked_type_cost[COMPOUND_AVERAGE] +=
878         mode_costs->comp_group_idx_cost[comp_group_idx_ctx][0];
879     masked_type_cost[COMPOUND_DISTWTD] += masked_type_cost[COMPOUND_AVERAGE];
880     masked_type_cost[COMPOUND_WEDGE] +=
881         mode_costs->comp_group_idx_cost[comp_group_idx_ctx][1];
882     masked_type_cost[COMPOUND_DIFFWTD] += masked_type_cost[COMPOUND_WEDGE];
883   }
884 
885   // Compute the cost to signal compound index/type
886   masked_type_cost[COMPOUND_AVERAGE] +=
887       mode_costs->comp_idx_cost[comp_index_ctx][1];
888   masked_type_cost[COMPOUND_DISTWTD] +=
889       mode_costs->comp_idx_cost[comp_index_ctx][0];
890   masked_type_cost[COMPOUND_WEDGE] += mode_costs->compound_type_cost[bsize][0];
891   masked_type_cost[COMPOUND_DIFFWTD] +=
892       mode_costs->compound_type_cost[bsize][1];
893 }
894 
895 // Updates mbmi structure with the relevant compound type info
update_mbmi_for_compound_type(MB_MODE_INFO * mbmi,COMPOUND_TYPE cur_type)896 static INLINE void update_mbmi_for_compound_type(MB_MODE_INFO *mbmi,
897                                                  COMPOUND_TYPE cur_type) {
898   mbmi->interinter_comp.type = cur_type;
899   mbmi->comp_group_idx = (cur_type >= COMPOUND_WEDGE);
900   mbmi->compound_idx = (cur_type != COMPOUND_DISTWTD);
901 }
902 
903 // When match is found, populate the compound type data
904 // and calculate the rd cost using the stored stats and
905 // update the mbmi appropriately.
populate_reuse_comp_type_data(const MACROBLOCK * x,MB_MODE_INFO * mbmi,BEST_COMP_TYPE_STATS * best_type_stats,int_mv * cur_mv,int32_t * comp_rate,int64_t * comp_dist,int * comp_rs2,int * rate_mv,int64_t * rd,int match_index)906 static INLINE int populate_reuse_comp_type_data(
907     const MACROBLOCK *x, MB_MODE_INFO *mbmi,
908     BEST_COMP_TYPE_STATS *best_type_stats, int_mv *cur_mv, int32_t *comp_rate,
909     int64_t *comp_dist, int *comp_rs2, int *rate_mv, int64_t *rd,
910     int match_index) {
911   const int winner_comp_type =
912       x->comp_rd_stats[match_index].interinter_comp.type;
913   if (comp_rate[winner_comp_type] == INT_MAX)
914     return best_type_stats->best_compmode_interinter_cost;
915   update_mbmi_for_compound_type(mbmi, winner_comp_type);
916   mbmi->interinter_comp = x->comp_rd_stats[match_index].interinter_comp;
917   *rd = RDCOST(
918       x->rdmult,
919       comp_rs2[winner_comp_type] + *rate_mv + comp_rate[winner_comp_type],
920       comp_dist[winner_comp_type]);
921   mbmi->mv[0].as_int = cur_mv[0].as_int;
922   mbmi->mv[1].as_int = cur_mv[1].as_int;
923   return comp_rs2[winner_comp_type];
924 }
925 
926 // Updates rd cost and relevant compound type data for the best compound type
update_best_info(const MB_MODE_INFO * const mbmi,int64_t * rd,BEST_COMP_TYPE_STATS * best_type_stats,int64_t best_rd_cur,int64_t comp_model_rd_cur,int rs2)927 static INLINE void update_best_info(const MB_MODE_INFO *const mbmi, int64_t *rd,
928                                     BEST_COMP_TYPE_STATS *best_type_stats,
929                                     int64_t best_rd_cur,
930                                     int64_t comp_model_rd_cur, int rs2) {
931   *rd = best_rd_cur;
932   best_type_stats->comp_best_model_rd = comp_model_rd_cur;
933   best_type_stats->best_compound_data = mbmi->interinter_comp;
934   best_type_stats->best_compmode_interinter_cost = rs2;
935 }
936 
937 // Updates best_mv for masked compound types
update_mask_best_mv(const MB_MODE_INFO * const mbmi,int_mv * best_mv,int * best_tmp_rate_mv,int tmp_rate_mv)938 static INLINE void update_mask_best_mv(const MB_MODE_INFO *const mbmi,
939                                        int_mv *best_mv, int *best_tmp_rate_mv,
940                                        int tmp_rate_mv) {
941   *best_tmp_rate_mv = tmp_rate_mv;
942   best_mv[0].as_int = mbmi->mv[0].as_int;
943   best_mv[1].as_int = mbmi->mv[1].as_int;
944 }
945 
save_comp_rd_search_stat(MACROBLOCK * x,const MB_MODE_INFO * const mbmi,const int32_t * comp_rate,const int64_t * comp_dist,const int32_t * comp_model_rate,const int64_t * comp_model_dist,const int_mv * cur_mv,const int * comp_rs2)946 static INLINE void save_comp_rd_search_stat(
947     MACROBLOCK *x, const MB_MODE_INFO *const mbmi, const int32_t *comp_rate,
948     const int64_t *comp_dist, const int32_t *comp_model_rate,
949     const int64_t *comp_model_dist, const int_mv *cur_mv, const int *comp_rs2) {
950   const int offset = x->comp_rd_stats_idx;
951   if (offset < MAX_COMP_RD_STATS) {
952     COMP_RD_STATS *const rd_stats = x->comp_rd_stats + offset;
953     memcpy(rd_stats->rate, comp_rate, sizeof(rd_stats->rate));
954     memcpy(rd_stats->dist, comp_dist, sizeof(rd_stats->dist));
955     memcpy(rd_stats->model_rate, comp_model_rate, sizeof(rd_stats->model_rate));
956     memcpy(rd_stats->model_dist, comp_model_dist, sizeof(rd_stats->model_dist));
957     memcpy(rd_stats->comp_rs2, comp_rs2, sizeof(rd_stats->comp_rs2));
958     memcpy(rd_stats->mv, cur_mv, sizeof(rd_stats->mv));
959     memcpy(rd_stats->ref_frames, mbmi->ref_frame, sizeof(rd_stats->ref_frames));
960     rd_stats->mode = mbmi->mode;
961     rd_stats->filter = mbmi->interp_filters;
962     rd_stats->ref_mv_idx = mbmi->ref_mv_idx;
963     const MACROBLOCKD *const xd = &x->e_mbd;
964     for (int i = 0; i < 2; ++i) {
965       const WarpedMotionParams *const wm =
966           &xd->global_motion[mbmi->ref_frame[i]];
967       rd_stats->is_global[i] = is_global_mv_block(mbmi, wm->wmtype);
968     }
969     memcpy(&rd_stats->interinter_comp, &mbmi->interinter_comp,
970            sizeof(rd_stats->interinter_comp));
971     ++x->comp_rd_stats_idx;
972   }
973 }
974 
get_interinter_compound_mask_rate(const ModeCosts * const mode_costs,const MB_MODE_INFO * const mbmi)975 static INLINE int get_interinter_compound_mask_rate(
976     const ModeCosts *const mode_costs, const MB_MODE_INFO *const mbmi) {
977   const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type;
978   // This function will be called only for COMPOUND_WEDGE and COMPOUND_DIFFWTD
979   if (compound_type == COMPOUND_WEDGE) {
980     return av1_is_wedge_used(mbmi->bsize)
981                ? av1_cost_literal(1) +
982                      mode_costs
983                          ->wedge_idx_cost[mbmi->bsize]
984                                          [mbmi->interinter_comp.wedge_index]
985                : 0;
986   } else {
987     assert(compound_type == COMPOUND_DIFFWTD);
988     return av1_cost_literal(1);
989   }
990 }
991 
992 // Takes a backup of rate, distortion and model_rd for future reuse
backup_stats(COMPOUND_TYPE cur_type,int32_t * comp_rate,int64_t * comp_dist,int32_t * comp_model_rate,int64_t * comp_model_dist,int rate_sum,int64_t dist_sum,RD_STATS * rd_stats,int * comp_rs2,int rs2)993 static INLINE void backup_stats(COMPOUND_TYPE cur_type, int32_t *comp_rate,
994                                 int64_t *comp_dist, int32_t *comp_model_rate,
995                                 int64_t *comp_model_dist, int rate_sum,
996                                 int64_t dist_sum, RD_STATS *rd_stats,
997                                 int *comp_rs2, int rs2) {
998   comp_rate[cur_type] = rd_stats->rate;
999   comp_dist[cur_type] = rd_stats->dist;
1000   comp_model_rate[cur_type] = rate_sum;
1001   comp_model_dist[cur_type] = dist_sum;
1002   comp_rs2[cur_type] = rs2;
1003 }
1004 
save_mask_search_results(const PREDICTION_MODE this_mode,const int reuse_level)1005 static INLINE int save_mask_search_results(const PREDICTION_MODE this_mode,
1006                                            const int reuse_level) {
1007   if (reuse_level || (this_mode == NEW_NEWMV))
1008     return 1;
1009   else
1010     return 0;
1011 }
1012 
prune_mode_by_skip_rd(const AV1_COMP * const cpi,MACROBLOCK * x,MACROBLOCKD * xd,const BLOCK_SIZE bsize,int64_t ref_skip_rd,int mode_rate)1013 static INLINE int prune_mode_by_skip_rd(const AV1_COMP *const cpi,
1014                                         MACROBLOCK *x, MACROBLOCKD *xd,
1015                                         const BLOCK_SIZE bsize,
1016                                         int64_t ref_skip_rd, int mode_rate) {
1017   int eval_txfm = 1;
1018   // Check if the mode is good enough based on skip rd
1019   if (cpi->sf.inter_sf.txfm_rd_gate_level) {
1020     int64_t sse_y = compute_sse_plane(x, xd, PLANE_TYPE_Y, bsize);
1021     int64_t skip_rd = RDCOST(x->rdmult, mode_rate, (sse_y << 4));
1022     eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd, skip_rd,
1023                                 cpi->sf.inter_sf.txfm_rd_gate_level, 1);
1024   }
1025   return eval_txfm;
1026 }
1027 
masked_compound_type_rd(const AV1_COMP * const cpi,MACROBLOCK * x,const int_mv * const cur_mv,const BLOCK_SIZE bsize,const PREDICTION_MODE this_mode,int * rs2,int rate_mv,const BUFFER_SET * ctx,int * out_rate_mv,uint8_t ** preds0,uint8_t ** preds1,int16_t * residual1,int16_t * diff10,int * strides,int mode_rate,int64_t rd_thresh,int * calc_pred_masked_compound,int32_t * comp_rate,int64_t * comp_dist,int32_t * comp_model_rate,int64_t * comp_model_dist,const int64_t comp_best_model_rd,int64_t * const comp_model_rd_cur,int * comp_rs2,int64_t ref_skip_rd)1028 static int64_t masked_compound_type_rd(
1029     const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
1030     const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode, int *rs2,
1031     int rate_mv, const BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0,
1032     uint8_t **preds1, int16_t *residual1, int16_t *diff10, int *strides,
1033     int mode_rate, int64_t rd_thresh, int *calc_pred_masked_compound,
1034     int32_t *comp_rate, int64_t *comp_dist, int32_t *comp_model_rate,
1035     int64_t *comp_model_dist, const int64_t comp_best_model_rd,
1036     int64_t *const comp_model_rd_cur, int *comp_rs2, int64_t ref_skip_rd) {
1037   const AV1_COMMON *const cm = &cpi->common;
1038   MACROBLOCKD *xd = &x->e_mbd;
1039   MB_MODE_INFO *const mbmi = xd->mi[0];
1040   int64_t best_rd_cur = INT64_MAX;
1041   int64_t rd = INT64_MAX;
1042   const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type;
1043   // This function will be called only for COMPOUND_WEDGE and COMPOUND_DIFFWTD
1044   assert(compound_type == COMPOUND_WEDGE || compound_type == COMPOUND_DIFFWTD);
1045   int rate_sum, tmp_skip_txfm_sb;
1046   int64_t dist_sum, tmp_skip_sse_sb;
1047   pick_interinter_mask_type pick_interinter_mask[2] = { pick_interinter_wedge,
1048                                                         pick_interinter_seg };
1049 
1050   // TODO(any): Save pred and mask calculation as well into records. However
1051   // this may increase memory requirements as compound segment mask needs to be
1052   // stored in each record.
1053   if (*calc_pred_masked_compound) {
1054     get_inter_predictors_masked_compound(x, bsize, preds0, preds1, residual1,
1055                                          diff10, strides);
1056     *calc_pred_masked_compound = 0;
1057   }
1058   if (compound_type == COMPOUND_WEDGE) {
1059     unsigned int sse;
1060     if (is_cur_buf_hbd(xd))
1061       (void)cpi->ppi->fn_ptr[bsize].vf(CONVERT_TO_BYTEPTR(*preds0), *strides,
1062                                        CONVERT_TO_BYTEPTR(*preds1), *strides,
1063                                        &sse);
1064     else
1065       (void)cpi->ppi->fn_ptr[bsize].vf(*preds0, *strides, *preds1, *strides,
1066                                        &sse);
1067     const unsigned int mse =
1068         ROUND_POWER_OF_TWO(sse, num_pels_log2_lookup[bsize]);
1069     // If two predictors are very similar, skip wedge compound mode search
1070     if (mse < 8 || (!have_newmv_in_inter_mode(this_mode) && mse < 64)) {
1071       *comp_model_rd_cur = INT64_MAX;
1072       return INT64_MAX;
1073     }
1074   }
1075   // Function pointer to pick the appropriate mask
1076   // compound_type == COMPOUND_WEDGE, calls pick_interinter_wedge()
1077   // compound_type == COMPOUND_DIFFWTD, calls pick_interinter_seg()
1078   uint64_t cur_sse = UINT64_MAX;
1079   best_rd_cur = pick_interinter_mask[compound_type - COMPOUND_WEDGE](
1080       cpi, x, bsize, *preds0, *preds1, residual1, diff10, &cur_sse);
1081   *rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
1082   best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0);
1083   assert(cur_sse != UINT64_MAX);
1084   int64_t skip_rd_cur = RDCOST(x->rdmult, *rs2 + rate_mv, (cur_sse << 4));
1085 
1086   // Although the true rate_mv might be different after motion search, but it
1087   // is unlikely to be the best mode considering the transform rd cost and other
1088   // mode overhead cost
1089   int64_t mode_rd = RDCOST(x->rdmult, *rs2 + mode_rate, 0);
1090   if (mode_rd > rd_thresh) {
1091     *comp_model_rd_cur = INT64_MAX;
1092     return INT64_MAX;
1093   }
1094 
1095   // Check if the mode is good enough based on skip rd
1096   // TODO(nithya): Handle wedge_newmv_search if extending for lower speed
1097   // setting
1098   if (cpi->sf.inter_sf.txfm_rd_gate_level) {
1099     int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd, skip_rd_cur,
1100                                     cpi->sf.inter_sf.txfm_rd_gate_level, 1);
1101     if (!eval_txfm) {
1102       *comp_model_rd_cur = INT64_MAX;
1103       return INT64_MAX;
1104     }
1105   }
1106 
1107   // Compute cost if matching record not found, else, reuse data
1108   if (comp_rate[compound_type] == INT_MAX) {
1109     // Check whether new MV search for wedge is to be done
1110     int wedge_newmv_search =
1111         have_newmv_in_inter_mode(this_mode) &&
1112         (compound_type == COMPOUND_WEDGE) &&
1113         (!cpi->sf.inter_sf.disable_interinter_wedge_newmv_search);
1114 
1115     // Search for new MV if needed and build predictor
1116     if (wedge_newmv_search) {
1117       *out_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
1118                                                            bsize, this_mode);
1119       const int mi_row = xd->mi_row;
1120       const int mi_col = xd->mi_col;
1121       av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, ctx, bsize,
1122                                     AOM_PLANE_Y, AOM_PLANE_Y);
1123     } else {
1124       *out_rate_mv = rate_mv;
1125       av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
1126                                                preds1, strides);
1127     }
1128     // Get the RD cost from model RD
1129     model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
1130         cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, &tmp_skip_txfm_sb,
1131         &tmp_skip_sse_sb, NULL, NULL, NULL);
1132     rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum);
1133     *comp_model_rd_cur = rd;
1134     // Override with best if current is worse than best for new MV
1135     if (wedge_newmv_search) {
1136       if (rd >= best_rd_cur) {
1137         mbmi->mv[0].as_int = cur_mv[0].as_int;
1138         mbmi->mv[1].as_int = cur_mv[1].as_int;
1139         *out_rate_mv = rate_mv;
1140         av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0,
1141                                                  strides, preds1, strides);
1142         *comp_model_rd_cur = best_rd_cur;
1143       }
1144     }
1145     if (cpi->sf.inter_sf.prune_comp_type_by_model_rd &&
1146         (*comp_model_rd_cur > comp_best_model_rd) &&
1147         comp_best_model_rd != INT64_MAX) {
1148       *comp_model_rd_cur = INT64_MAX;
1149       return INT64_MAX;
1150     }
1151     // Compute RD cost for the current type
1152     RD_STATS rd_stats;
1153     const int64_t tmp_mode_rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv, 0);
1154     const int64_t tmp_rd_thresh = rd_thresh - tmp_mode_rd;
1155     rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats);
1156     if (rd != INT64_MAX) {
1157       rd =
1158           RDCOST(x->rdmult, *rs2 + *out_rate_mv + rd_stats.rate, rd_stats.dist);
1159       // Backup rate and distortion for future reuse
1160       backup_stats(compound_type, comp_rate, comp_dist, comp_model_rate,
1161                    comp_model_dist, rate_sum, dist_sum, &rd_stats, comp_rs2,
1162                    *rs2);
1163     }
1164   } else {
1165     // Reuse data as matching record is found
1166     assert(comp_dist[compound_type] != INT64_MAX);
1167     // When disable_interinter_wedge_newmv_search is set, motion refinement is
1168     // disabled. Hence rate and distortion can be reused in this case as well
1169     assert(IMPLIES((have_newmv_in_inter_mode(this_mode) &&
1170                     (compound_type == COMPOUND_WEDGE)),
1171                    cpi->sf.inter_sf.disable_interinter_wedge_newmv_search));
1172     assert(mbmi->mv[0].as_int == cur_mv[0].as_int);
1173     assert(mbmi->mv[1].as_int == cur_mv[1].as_int);
1174     *out_rate_mv = rate_mv;
1175     // Calculate RD cost based on stored stats
1176     rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + comp_rate[compound_type],
1177                 comp_dist[compound_type]);
1178     // Recalculate model rdcost with the updated rate
1179     *comp_model_rd_cur =
1180         RDCOST(x->rdmult, *rs2 + *out_rate_mv + comp_model_rate[compound_type],
1181                comp_model_dist[compound_type]);
1182   }
1183   return rd;
1184 }
1185 
1186 // scaling values to be used for gating wedge/compound segment based on best
1187 // approximate rd
1188 static int comp_type_rd_threshold_mul[3] = { 1, 11, 12 };
1189 static int comp_type_rd_threshold_div[3] = { 3, 16, 16 };
1190 
av1_compound_type_rd(const AV1_COMP * const cpi,MACROBLOCK * x,HandleInterModeArgs * args,BLOCK_SIZE bsize,int_mv * cur_mv,int mode_search_mask,int masked_compound_used,const BUFFER_SET * orig_dst,const BUFFER_SET * tmp_dst,const CompoundTypeRdBuffers * buffers,int * rate_mv,int64_t * rd,RD_STATS * rd_stats,int64_t ref_best_rd,int64_t ref_skip_rd,int * is_luma_interp_done,int64_t rd_thresh)1191 int av1_compound_type_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
1192                          HandleInterModeArgs *args, BLOCK_SIZE bsize,
1193                          int_mv *cur_mv, int mode_search_mask,
1194                          int masked_compound_used, const BUFFER_SET *orig_dst,
1195                          const BUFFER_SET *tmp_dst,
1196                          const CompoundTypeRdBuffers *buffers, int *rate_mv,
1197                          int64_t *rd, RD_STATS *rd_stats, int64_t ref_best_rd,
1198                          int64_t ref_skip_rd, int *is_luma_interp_done,
1199                          int64_t rd_thresh) {
1200   const AV1_COMMON *cm = &cpi->common;
1201   MACROBLOCKD *xd = &x->e_mbd;
1202   MB_MODE_INFO *mbmi = xd->mi[0];
1203   const PREDICTION_MODE this_mode = mbmi->mode;
1204   int ref_frame = av1_ref_frame_type(mbmi->ref_frame);
1205   const int bw = block_size_wide[bsize];
1206   int rs2;
1207   int_mv best_mv[2];
1208   int best_tmp_rate_mv = *rate_mv;
1209   BEST_COMP_TYPE_STATS best_type_stats;
1210   // Initializing BEST_COMP_TYPE_STATS
1211   best_type_stats.best_compound_data.type = COMPOUND_AVERAGE;
1212   best_type_stats.best_compmode_interinter_cost = 0;
1213   best_type_stats.comp_best_model_rd = INT64_MAX;
1214 
1215   uint8_t *preds0[1] = { buffers->pred0 };
1216   uint8_t *preds1[1] = { buffers->pred1 };
1217   int strides[1] = { bw };
1218   int tmp_rate_mv;
1219   COMPOUND_TYPE cur_type;
1220   // Local array to store the mask cost for different compound types
1221   int masked_type_cost[COMPOUND_TYPES];
1222 
1223   int calc_pred_masked_compound = 1;
1224   int64_t comp_dist[COMPOUND_TYPES] = { INT64_MAX, INT64_MAX, INT64_MAX,
1225                                         INT64_MAX };
1226   int32_t comp_rate[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1227   int comp_rs2[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1228   int32_t comp_model_rate[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX,
1229                                               INT_MAX };
1230   int64_t comp_model_dist[COMPOUND_TYPES] = { INT64_MAX, INT64_MAX, INT64_MAX,
1231                                               INT64_MAX };
1232   int match_index = 0;
1233   const int match_found =
1234       find_comp_rd_in_stats(cpi, x, mbmi, comp_rate, comp_dist, comp_model_rate,
1235                             comp_model_dist, comp_rs2, &match_index);
1236   best_mv[0].as_int = cur_mv[0].as_int;
1237   best_mv[1].as_int = cur_mv[1].as_int;
1238   *rd = INT64_MAX;
1239 
1240   // Local array to store the valid compound types to be evaluated in the core
1241   // loop
1242   COMPOUND_TYPE valid_comp_types[COMPOUND_TYPES] = {
1243     COMPOUND_AVERAGE, COMPOUND_DISTWTD, COMPOUND_WEDGE, COMPOUND_DIFFWTD
1244   };
1245   int valid_type_count = 0;
1246   // compute_valid_comp_types() returns the number of valid compound types to be
1247   // evaluated and populates the same in the local array valid_comp_types[].
1248   // It also sets the flag 'try_average_and_distwtd_comp'
1249   valid_type_count = compute_valid_comp_types(
1250       x, cpi, bsize, masked_compound_used, mode_search_mask, valid_comp_types);
1251 
1252   // The following context indices are independent of compound type
1253   const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
1254   const int comp_index_ctx = get_comp_index_context(cm, xd);
1255 
1256   // Populates masked_type_cost local array for the 4 compound types
1257   calc_masked_type_cost(&x->mode_costs, bsize, comp_group_idx_ctx,
1258                         comp_index_ctx, masked_compound_used, masked_type_cost);
1259 
1260   int64_t comp_model_rd_cur = INT64_MAX;
1261   int64_t best_rd_cur = ref_best_rd;
1262   const int mi_row = xd->mi_row;
1263   const int mi_col = xd->mi_col;
1264 
1265   // If the match is found, calculate the rd cost using the
1266   // stored stats and update the mbmi appropriately.
1267   if (match_found && cpi->sf.inter_sf.reuse_compound_type_decision) {
1268     return populate_reuse_comp_type_data(x, mbmi, &best_type_stats, cur_mv,
1269                                          comp_rate, comp_dist, comp_rs2,
1270                                          rate_mv, rd, match_index);
1271   }
1272 
1273   // If COMPOUND_AVERAGE is not valid, use the spare buffer
1274   if (valid_comp_types[0] != COMPOUND_AVERAGE) restore_dst_buf(xd, *tmp_dst, 1);
1275 
1276   // Loop over valid compound types
1277   for (int i = 0; i < valid_type_count; i++) {
1278     cur_type = valid_comp_types[i];
1279 
1280     if (args->cmp_mode[ref_frame] == COMPOUND_AVERAGE) {
1281       if (cur_type == COMPOUND_WEDGE) continue;
1282     }
1283 
1284     comp_model_rd_cur = INT64_MAX;
1285     tmp_rate_mv = *rate_mv;
1286     best_rd_cur = INT64_MAX;
1287     ref_best_rd = AOMMIN(ref_best_rd, *rd);
1288     update_mbmi_for_compound_type(mbmi, cur_type);
1289     rs2 = masked_type_cost[cur_type];
1290 
1291     int64_t mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0);
1292     if (mode_rd >= ref_best_rd) continue;
1293 
1294     // Case COMPOUND_AVERAGE and COMPOUND_DISTWTD
1295     if (cur_type < COMPOUND_WEDGE) {
1296       if (cpi->sf.inter_sf.enable_fast_compound_mode_search == 2) {
1297         int rate_sum, tmp_skip_txfm_sb;
1298         int64_t dist_sum, tmp_skip_sse_sb;
1299 
1300         // Reuse data if matching record is found
1301         if (comp_rate[cur_type] == INT_MAX) {
1302           av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
1303                                         AOM_PLANE_Y, AOM_PLANE_Y);
1304           if (cur_type == COMPOUND_AVERAGE) *is_luma_interp_done = 1;
1305           // Compute RD cost for the current type
1306           RD_STATS est_rd_stats;
1307           const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh) - mode_rd;
1308           int64_t est_rd = INT64_MAX;
1309           int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
1310                                                 rs2 + *rate_mv);
1311           // Evaluate further if skip rd is low enough
1312           if (eval_txfm) {
1313             est_rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh,
1314                                          &est_rd_stats);
1315           }
1316           if (est_rd != INT64_MAX) {
1317             best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + est_rd_stats.rate,
1318                                  est_rd_stats.dist);
1319             model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND](
1320                 cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
1321                 &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
1322             comp_model_rd_cur =
1323                 RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum);
1324             // Backup rate and distortion for future reuse
1325             backup_stats(cur_type, comp_rate, comp_dist, comp_model_rate,
1326                          comp_model_dist, rate_sum, dist_sum, &est_rd_stats,
1327                          comp_rs2, rs2);
1328           }
1329         } else {
1330           // Calculate RD cost based on stored stats
1331           assert(comp_dist[cur_type] != INT64_MAX);
1332           best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + comp_rate[cur_type],
1333                                comp_dist[cur_type]);
1334           // Recalculate model rdcost with the updated rate
1335           comp_model_rd_cur =
1336               RDCOST(x->rdmult, rs2 + *rate_mv + comp_model_rate[cur_type],
1337                      comp_model_dist[cur_type]);
1338         }
1339       } else {
1340         tmp_rate_mv = *rate_mv;
1341         if (have_newmv_in_inter_mode(this_mode)) {
1342           InterPredParams inter_pred_params;
1343           av1_dist_wtd_comp_weight_assign(
1344               &cpi->common, mbmi, &inter_pred_params.conv_params.fwd_offset,
1345               &inter_pred_params.conv_params.bck_offset,
1346               &inter_pred_params.conv_params.use_dist_wtd_comp_avg, 1);
1347           int mask_value = inter_pred_params.conv_params.fwd_offset * 4;
1348           memset(xd->seg_mask, mask_value,
1349                  sizeof(xd->seg_mask[0]) * 2 * MAX_SB_SQUARE);
1350           tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
1351                                                               bsize, this_mode);
1352         }
1353         av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
1354                                       AOM_PLANE_Y, AOM_PLANE_Y);
1355         if (cur_type == COMPOUND_AVERAGE) *is_luma_interp_done = 1;
1356 
1357         int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
1358                                               rs2 + *rate_mv);
1359         if (eval_txfm) {
1360           RD_STATS est_rd_stats;
1361           estimate_yrd_for_sb(cpi, bsize, x, INT64_MAX, &est_rd_stats);
1362 
1363           best_rd_cur = RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
1364                                est_rd_stats.dist);
1365         }
1366       }
1367 
1368       // use spare buffer for following compound type try
1369       if (cur_type == COMPOUND_AVERAGE) restore_dst_buf(xd, *tmp_dst, 1);
1370     } else if (cur_type == COMPOUND_WEDGE) {
1371       int best_mask_index = 0;
1372       int best_wedge_sign = 0;
1373       int_mv tmp_mv[2] = { mbmi->mv[0], mbmi->mv[1] };
1374       int best_rs2 = 0;
1375       int best_rate_mv = *rate_mv;
1376       int wedge_mask_size = get_wedge_types_lookup(bsize);
1377       int need_mask_search = args->wedge_index == -1;
1378 
1379       if (need_mask_search && !have_newmv_in_inter_mode(this_mode)) {
1380         // short cut repeated single reference block build
1381         av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 0,
1382                                                          preds0, strides);
1383         av1_build_inter_predictors_for_planes_single_buf(xd, bsize, 0, 0, 1,
1384                                                          preds1, strides);
1385       }
1386 
1387       for (int wedge_mask = 0; wedge_mask < wedge_mask_size && need_mask_search;
1388            ++wedge_mask) {
1389         for (int wedge_sign = 0; wedge_sign < 2; ++wedge_sign) {
1390           tmp_rate_mv = *rate_mv;
1391           mbmi->interinter_comp.wedge_index = wedge_mask;
1392           mbmi->interinter_comp.wedge_sign = wedge_sign;
1393           rs2 = masked_type_cost[cur_type];
1394           rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
1395 
1396           mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0);
1397           if (mode_rd >= ref_best_rd / 2) continue;
1398 
1399           if (have_newmv_in_inter_mode(this_mode) &&
1400               !cpi->sf.inter_sf.disable_interinter_wedge_newmv_search) {
1401             tmp_rate_mv = av1_interinter_compound_motion_search(
1402                 cpi, x, cur_mv, bsize, this_mode);
1403             av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst,
1404                                           bsize, AOM_PLANE_Y, AOM_PLANE_Y);
1405           } else {
1406             av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0,
1407                                                      strides, preds1, strides);
1408           }
1409 
1410           RD_STATS est_rd_stats;
1411           int64_t this_rd_cur = INT64_MAX;
1412           int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
1413                                                 rs2 + *rate_mv);
1414           if (eval_txfm) {
1415             this_rd_cur = estimate_yrd_for_sb(
1416                 cpi, bsize, x, AOMMIN(best_rd_cur, ref_best_rd), &est_rd_stats);
1417           }
1418           if (this_rd_cur < INT64_MAX) {
1419             this_rd_cur =
1420                 RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
1421                        est_rd_stats.dist);
1422           }
1423           if (this_rd_cur < best_rd_cur) {
1424             best_mask_index = wedge_mask;
1425             best_wedge_sign = wedge_sign;
1426             best_rd_cur = this_rd_cur;
1427             tmp_mv[0] = mbmi->mv[0];
1428             tmp_mv[1] = mbmi->mv[1];
1429             best_rate_mv = tmp_rate_mv;
1430             best_rs2 = rs2;
1431           }
1432         }
1433         // Consider the asymmetric partitions for oblique angle only if the
1434         // corresponding symmetric partition is the best so far.
1435         // Note: For horizontal and vertical types, both symmetric and
1436         // asymmetric partitions are always considered.
1437         if (cpi->sf.inter_sf.enable_fast_wedge_mask_search) {
1438           // The first 4 entries in wedge_codebook_16_heqw/hltw/hgtw[16]
1439           // correspond to symmetric partitions of the 4 oblique angles, the
1440           // next 4 entries correspond to the vertical/horizontal
1441           // symmetric/asymmetric partitions and the last 8 entries correspond
1442           // to the asymmetric partitions of oblique types.
1443           const int idx_before_asym_oblique = 7;
1444           const int last_oblique_sym_idx = 3;
1445           if (wedge_mask == idx_before_asym_oblique) {
1446             if (best_mask_index > last_oblique_sym_idx) {
1447               break;
1448             } else {
1449               // Asymmetric (Index-1) map for the corresponding oblique masks.
1450               // WEDGE_OBLIQUE27: sym - 0, asym - 8, 9
1451               // WEDGE_OBLIQUE63: sym - 1, asym - 12, 13
1452               // WEDGE_OBLIQUE117: sym - 2, asym - 14, 15
1453               // WEDGE_OBLIQUE153: sym - 3, asym - 10, 11
1454               const int asym_mask_idx[4] = { 7, 11, 13, 9 };
1455               wedge_mask = asym_mask_idx[best_mask_index];
1456               wedge_mask_size = wedge_mask + 3;
1457             }
1458           }
1459         }
1460       }
1461 
1462       if (need_mask_search) {
1463         if (save_mask_search_results(
1464                 this_mode, cpi->sf.inter_sf.reuse_mask_search_results)) {
1465           args->wedge_index = best_mask_index;
1466           args->wedge_sign = best_wedge_sign;
1467         }
1468       } else {
1469         mbmi->interinter_comp.wedge_index = args->wedge_index;
1470         mbmi->interinter_comp.wedge_sign = args->wedge_sign;
1471         rs2 = masked_type_cost[cur_type];
1472         rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
1473 
1474         if (have_newmv_in_inter_mode(this_mode) &&
1475             !cpi->sf.inter_sf.disable_interinter_wedge_newmv_search) {
1476           tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
1477                                                               bsize, this_mode);
1478         }
1479 
1480         best_mask_index = args->wedge_index;
1481         best_wedge_sign = args->wedge_sign;
1482         tmp_mv[0] = mbmi->mv[0];
1483         tmp_mv[1] = mbmi->mv[1];
1484         best_rate_mv = tmp_rate_mv;
1485         best_rs2 = masked_type_cost[cur_type];
1486         best_rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
1487         av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
1488                                       AOM_PLANE_Y, AOM_PLANE_Y);
1489         int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
1490                                               best_rs2 + *rate_mv);
1491         if (eval_txfm) {
1492           RD_STATS est_rd_stats;
1493           estimate_yrd_for_sb(cpi, bsize, x, INT64_MAX, &est_rd_stats);
1494           best_rd_cur =
1495               RDCOST(x->rdmult, best_rs2 + tmp_rate_mv + est_rd_stats.rate,
1496                      est_rd_stats.dist);
1497         }
1498       }
1499 
1500       mbmi->interinter_comp.wedge_index = best_mask_index;
1501       mbmi->interinter_comp.wedge_sign = best_wedge_sign;
1502       mbmi->mv[0] = tmp_mv[0];
1503       mbmi->mv[1] = tmp_mv[1];
1504       tmp_rate_mv = best_rate_mv;
1505       rs2 = best_rs2;
1506     } else if (!cpi->sf.inter_sf.enable_fast_compound_mode_search &&
1507                cur_type == COMPOUND_DIFFWTD) {
1508       int_mv tmp_mv[2];
1509       int best_mask_index = 0;
1510       rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
1511 
1512       int need_mask_search = args->diffwtd_index == -1;
1513 
1514       for (int mask_index = 0; mask_index < 2 && need_mask_search;
1515            ++mask_index) {
1516         tmp_rate_mv = *rate_mv;
1517         mbmi->interinter_comp.mask_type = mask_index;
1518         if (have_newmv_in_inter_mode(this_mode)) {
1519           // hard coded number for diff wtd
1520           int mask_value = mask_index == 0 ? 38 : 26;
1521           memset(xd->seg_mask, mask_value,
1522                  sizeof(xd->seg_mask[0]) * 2 * MAX_SB_SQUARE);
1523           tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
1524                                                               bsize, this_mode);
1525         }
1526         av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
1527                                       AOM_PLANE_Y, AOM_PLANE_Y);
1528         RD_STATS est_rd_stats;
1529         int64_t this_rd_cur = INT64_MAX;
1530         int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
1531                                               rs2 + *rate_mv);
1532         if (eval_txfm) {
1533           this_rd_cur =
1534               estimate_yrd_for_sb(cpi, bsize, x, ref_best_rd, &est_rd_stats);
1535         }
1536         if (this_rd_cur < INT64_MAX) {
1537           this_rd_cur = RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
1538                                est_rd_stats.dist);
1539         }
1540 
1541         if (this_rd_cur < best_rd_cur) {
1542           best_rd_cur = this_rd_cur;
1543           best_mask_index = mbmi->interinter_comp.mask_type;
1544           tmp_mv[0] = mbmi->mv[0];
1545           tmp_mv[1] = mbmi->mv[1];
1546         }
1547       }
1548 
1549       if (need_mask_search) {
1550         if (save_mask_search_results(
1551                 this_mode, cpi->sf.inter_sf.reuse_mask_search_results))
1552           args->diffwtd_index = best_mask_index;
1553       } else {
1554         mbmi->interinter_comp.mask_type = args->diffwtd_index;
1555         rs2 = masked_type_cost[cur_type];
1556         rs2 += get_interinter_compound_mask_rate(&x->mode_costs, mbmi);
1557 
1558         int mask_value = mbmi->interinter_comp.mask_type == 0 ? 38 : 26;
1559         memset(xd->seg_mask, mask_value,
1560                sizeof(xd->seg_mask[0]) * 2 * MAX_SB_SQUARE);
1561 
1562         if (have_newmv_in_inter_mode(this_mode)) {
1563           tmp_rate_mv = av1_interinter_compound_motion_search(cpi, x, cur_mv,
1564                                                               bsize, this_mode);
1565         }
1566         best_mask_index = mbmi->interinter_comp.mask_type;
1567         tmp_mv[0] = mbmi->mv[0];
1568         tmp_mv[1] = mbmi->mv[1];
1569         av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
1570                                       AOM_PLANE_Y, AOM_PLANE_Y);
1571         RD_STATS est_rd_stats;
1572         int64_t this_rd_cur = INT64_MAX;
1573         int eval_txfm = prune_mode_by_skip_rd(cpi, x, xd, bsize, ref_skip_rd,
1574                                               rs2 + *rate_mv);
1575         if (eval_txfm) {
1576           this_rd_cur =
1577               estimate_yrd_for_sb(cpi, bsize, x, ref_best_rd, &est_rd_stats);
1578         }
1579         if (this_rd_cur < INT64_MAX) {
1580           best_rd_cur = RDCOST(x->rdmult, rs2 + tmp_rate_mv + est_rd_stats.rate,
1581                                est_rd_stats.dist);
1582         }
1583       }
1584 
1585       mbmi->interinter_comp.mask_type = best_mask_index;
1586       mbmi->mv[0] = tmp_mv[0];
1587       mbmi->mv[1] = tmp_mv[1];
1588     } else {
1589       // Handle masked compound types
1590       // Factors to control gating of compound type selection based on best
1591       // approximate rd so far
1592       const int max_comp_type_rd_threshold_mul =
1593           comp_type_rd_threshold_mul[cpi->sf.inter_sf
1594                                          .prune_comp_type_by_comp_avg];
1595       const int max_comp_type_rd_threshold_div =
1596           comp_type_rd_threshold_div[cpi->sf.inter_sf
1597                                          .prune_comp_type_by_comp_avg];
1598       // Evaluate COMPOUND_WEDGE / COMPOUND_DIFFWTD if approximated cost is
1599       // within threshold
1600       int64_t approx_rd = ((*rd / max_comp_type_rd_threshold_div) *
1601                            max_comp_type_rd_threshold_mul);
1602 
1603       if (approx_rd < ref_best_rd) {
1604         const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh);
1605         best_rd_cur = masked_compound_type_rd(
1606             cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst,
1607             &tmp_rate_mv, preds0, preds1, buffers->residual1, buffers->diff10,
1608             strides, rd_stats->rate, tmp_rd_thresh, &calc_pred_masked_compound,
1609             comp_rate, comp_dist, comp_model_rate, comp_model_dist,
1610             best_type_stats.comp_best_model_rd, &comp_model_rd_cur, comp_rs2,
1611             ref_skip_rd);
1612       }
1613     }
1614 
1615     // Update stats for best compound type
1616     if (best_rd_cur < *rd) {
1617       update_best_info(mbmi, rd, &best_type_stats, best_rd_cur,
1618                        comp_model_rd_cur, rs2);
1619       if (have_newmv_in_inter_mode(this_mode))
1620         update_mask_best_mv(mbmi, best_mv, &best_tmp_rate_mv, tmp_rate_mv);
1621     }
1622     // reset to original mvs for next iteration
1623     mbmi->mv[0].as_int = cur_mv[0].as_int;
1624     mbmi->mv[1].as_int = cur_mv[1].as_int;
1625   }
1626 
1627   mbmi->comp_group_idx =
1628       (best_type_stats.best_compound_data.type < COMPOUND_WEDGE) ? 0 : 1;
1629   mbmi->compound_idx =
1630       !(best_type_stats.best_compound_data.type == COMPOUND_DISTWTD);
1631   mbmi->interinter_comp = best_type_stats.best_compound_data;
1632 
1633   if (have_newmv_in_inter_mode(this_mode)) {
1634     mbmi->mv[0].as_int = best_mv[0].as_int;
1635     mbmi->mv[1].as_int = best_mv[1].as_int;
1636     rd_stats->rate += best_tmp_rate_mv - *rate_mv;
1637     *rate_mv = best_tmp_rate_mv;
1638   }
1639 
1640   if (this_mode == NEW_NEWMV)
1641     args->cmp_mode[ref_frame] = mbmi->interinter_comp.type;
1642 
1643   restore_dst_buf(xd, *orig_dst, 1);
1644   if (!match_found)
1645     save_comp_rd_search_stat(x, mbmi, comp_rate, comp_dist, comp_model_rate,
1646                              comp_model_dist, cur_mv, comp_rs2);
1647   return best_type_stats.best_compmode_interinter_cost;
1648 }
1649