• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/reconintra.h"
13 
14 #include "av1/encoder/encoder.h"
15 #include "av1/encoder/encodeframe_utils.h"
16 #include "av1/encoder/partition_strategy.h"
17 #include "av1/encoder/rdopt.h"
18 
av1_set_ssim_rdmult(const AV1_COMP * const cpi,int * errorperbit,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)19 void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
20                          const BLOCK_SIZE bsize, const int mi_row,
21                          const int mi_col, int *const rdmult) {
22   const AV1_COMMON *const cm = &cpi->common;
23 
24   const int bsize_base = BLOCK_16X16;
25   const int num_mi_w = mi_size_wide[bsize_base];
26   const int num_mi_h = mi_size_high[bsize_base];
27   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
28   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
29   const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
30   const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
31   int row, col;
32   double num_of_mi = 0.0;
33   double geom_mean_of_scale = 0.0;
34 
35   assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);
36 
37   for (row = mi_row / num_mi_w;
38        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
39     for (col = mi_col / num_mi_h;
40          col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
41       const int index = row * num_cols + col;
42       geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]);
43       num_of_mi += 1.0;
44     }
45   }
46   geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
47 
48   *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
49   *rdmult = AOMMAX(*rdmult, 0);
50   av1_set_error_per_bit(errorperbit, *rdmult);
51 }
52 
53 // TODO(angiebird): Move these function to tpl_model.c
54 #if !CONFIG_REALTIME_ONLY
set_deltaq_rdmult(const AV1_COMP * const cpi,const MACROBLOCK * const x)55 static AOM_INLINE int set_deltaq_rdmult(const AV1_COMP *const cpi,
56                                         const MACROBLOCK *const x) {
57   const AV1_COMMON *const cm = &cpi->common;
58   const CommonQuantParams *quant_params = &cm->quant_params;
59   return av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex +
60                                       quant_params->y_dc_delta_q);
61 }
62 
63 // Return the end column for the current superblock, in unit of TPL blocks.
get_superblock_tpl_column_end(const AV1_COMMON * const cm,int mi_col,int num_mi_w)64 static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col,
65                                          int num_mi_w) {
66   // Find the start column of this superblock.
67   const int sb_mi_col_start = (mi_col >> cm->seq_params->mib_size_log2)
68                               << cm->seq_params->mib_size_log2;
69   // Same but in superres upscaled dimension.
70   const int sb_mi_col_start_sr =
71       coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator);
72   // Width of this superblock in mi units.
73   const int sb_mi_width = mi_size_wide[cm->seq_params->sb_size];
74   // Same but in superres upscaled dimension.
75   const int sb_mi_width_sr =
76       coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator);
77   // Superblock end in mi units.
78   const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr;
79   // Superblock end in TPL units.
80   return (sb_mi_end + num_mi_w - 1) / num_mi_w;
81 }
82 
av1_get_hier_tpl_rdmult(const AV1_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int orig_rdmult)83 int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
84                             const BLOCK_SIZE bsize, const int mi_row,
85                             const int mi_col, int orig_rdmult) {
86   const AV1_COMMON *const cm = &cpi->common;
87   const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
88   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
89                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
90   const int tpl_idx = cpi->gf_frame_index;
91   const int deltaq_rdmult = set_deltaq_rdmult(cpi, x);
92   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
93   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index))
94     return deltaq_rdmult;
95   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
96 
97   const int mi_col_sr =
98       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
99   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
100   const int block_mi_width_sr =
101       coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator);
102 
103   const int bsize_base = BLOCK_16X16;
104   const int num_mi_w = mi_size_wide[bsize_base];
105   const int num_mi_h = mi_size_high[bsize_base];
106   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w;
107   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
108   const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w;
109   const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
110   // This is required because the end col of superblock may be off by 1 in case
111   // of superres.
112   const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w);
113   int row, col;
114   double base_block_count = 0.0;
115   double geom_mean_of_scale = 0.0;
116   for (row = mi_row / num_mi_w;
117        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
118     for (col = mi_col_sr / num_mi_h;
119          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols &&
120          col < sb_bcol_end;
121          ++col) {
122       const int index = row * num_cols + col;
123       geom_mean_of_scale += log(cpi->ppi->tpl_sb_rdmult_scaling_factors[index]);
124       base_block_count += 1.0;
125     }
126   }
127   geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count);
128   int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5);
129   rdmult = AOMMAX(rdmult, 0);
130   av1_set_error_per_bit(&x->errorperbit, rdmult);
131 #if !CONFIG_RD_COMMAND
132   if (bsize == cm->seq_params->sb_size) {
133     const int rdmult_sb = set_deltaq_rdmult(cpi, x);
134     assert(rdmult_sb == rdmult);
135     (void)rdmult_sb;
136   }
137 #endif  // !CONFIG_RD_COMMAND
138   return rdmult;
139 }
140 #endif  // !CONFIG_REALTIME_ONLY
141 
update_filter_type_count(FRAME_COUNTS * counts,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)142 static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts,
143                                                 const MACROBLOCKD *xd,
144                                                 const MB_MODE_INFO *mbmi) {
145   int dir;
146   for (dir = 0; dir < 2; ++dir) {
147     const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
148     InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
149     ++counts->switchable_interp[ctx][filter];
150   }
151 }
152 
reset_tx_size(MACROBLOCK * x,MB_MODE_INFO * mbmi,const TX_MODE tx_mode)153 static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
154                           const TX_MODE tx_mode) {
155   MACROBLOCKD *const xd = &x->e_mbd;
156   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
157   if (xd->lossless[mbmi->segment_id]) {
158     mbmi->tx_size = TX_4X4;
159   } else if (tx_mode != TX_MODE_SELECT) {
160     mbmi->tx_size = tx_size_from_tx_mode(mbmi->bsize, tx_mode);
161   } else {
162     const BLOCK_SIZE bsize = mbmi->bsize;
163     const TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
164     if (tx_size_wide[min_tx_size] > tx_size_wide[mbmi->tx_size] ||
165         tx_size_high[min_tx_size] > tx_size_high[mbmi->tx_size])
166       mbmi->tx_size = min_tx_size;
167 
168     const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
169     if (tx_size_wide[max_tx_size] < tx_size_wide[mbmi->tx_size] ||
170         tx_size_high[max_tx_size] < tx_size_high[mbmi->tx_size])
171       mbmi->tx_size = max_tx_size;
172   }
173   if (is_inter_block(mbmi)) {
174     memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
175   }
176   const int stride = xd->tx_type_map_stride;
177   const int bw = mi_size_wide[mbmi->bsize];
178   for (int row = 0; row < mi_size_high[mbmi->bsize]; ++row) {
179     memset(xd->tx_type_map + row * stride, DCT_DCT,
180            bw * sizeof(xd->tx_type_map[0]));
181   }
182   av1_zero(txfm_info->blk_skip);
183   txfm_info->skip_txfm = 0;
184 }
185 
186 // This function will copy the best reference mode information from
187 // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
copy_mbmi_ext_frame_to_mbmi_ext(MB_MODE_INFO_EXT * mbmi_ext,const MB_MODE_INFO_EXT_FRAME * const mbmi_ext_best,uint8_t ref_frame_type)188 static INLINE void copy_mbmi_ext_frame_to_mbmi_ext(
189     MB_MODE_INFO_EXT *mbmi_ext,
190     const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
191   memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
192          sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
193   memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
194          sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
195   mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
196   mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
197   memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
198          sizeof(mbmi_ext->global_mvs));
199 }
200 
av1_update_state(const AV1_COMP * const cpi,ThreadData * td,const PICK_MODE_CONTEXT * const ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,RUN_TYPE dry_run)201 void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
202                       const PICK_MODE_CONTEXT *const ctx, int mi_row,
203                       int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
204   int i, x_idx, y;
205   const AV1_COMMON *const cm = &cpi->common;
206   const CommonModeInfoParams *const mi_params = &cm->mi_params;
207   const int num_planes = av1_num_planes(cm);
208   RD_COUNTS *const rdc = &td->rd_counts;
209   MACROBLOCK *const x = &td->mb;
210   MACROBLOCKD *const xd = &x->e_mbd;
211   struct macroblock_plane *const p = x->plane;
212   struct macroblockd_plane *const pd = xd->plane;
213   const MB_MODE_INFO *const mi = &ctx->mic;
214   MB_MODE_INFO *const mi_addr = xd->mi[0];
215   const struct segmentation *const seg = &cm->seg;
216   assert(bsize < BLOCK_SIZES_ALL);
217   const int bw = mi_size_wide[mi->bsize];
218   const int bh = mi_size_high[mi->bsize];
219   const int mis = mi_params->mi_stride;
220   const int mi_width = mi_size_wide[bsize];
221   const int mi_height = mi_size_high[bsize];
222   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
223 
224   assert(mi->bsize == bsize);
225 
226   *mi_addr = *mi;
227   copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
228                                   av1_ref_frame_type(ctx->mic.ref_frame));
229 
230   memcpy(txfm_info->blk_skip, ctx->blk_skip,
231          sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
232 
233   txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
234 
235   xd->tx_type_map = ctx->tx_type_map;
236   xd->tx_type_map_stride = mi_size_wide[bsize];
237   // If not dry_run, copy the transform type data into the frame level buffer.
238   // Encoder will fetch tx types when writing bitstream.
239   if (!dry_run) {
240     const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
241     uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
242     const int mi_stride = mi_params->mi_stride;
243     for (int blk_row = 0; blk_row < bh; ++blk_row) {
244       av1_copy_array(tx_type_map + blk_row * mi_stride,
245                      xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
246     }
247     xd->tx_type_map = tx_type_map;
248     xd->tx_type_map_stride = mi_stride;
249   }
250 
251   // If segmentation in use
252   if (seg->enabled) {
253     // For in frame complexity AQ copy the segment id from the segment map.
254     if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
255       const uint8_t *const map =
256           seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
257       mi_addr->segment_id =
258           map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
259       reset_tx_size(x, mi_addr, x->txfm_search_params.tx_mode_search_type);
260     }
261     // Else for cyclic refresh mode update the segment map, set the segment id
262     // and then update the quantizer.
263     if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) {
264       av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
265                                         ctx->rd_stats.rate, ctx->rd_stats.dist,
266                                         txfm_info->skip_txfm, dry_run);
267     }
268     if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
269       mi_addr->uv_mode = UV_DC_PRED;
270   }
271 
272   // Count zero motion vector.
273   if (!dry_run && cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
274       !frame_is_intra_only(cm)) {
275     const MV mv = mi->mv[0].as_mv;
276     if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
277         abs(mv.row) < 8 && abs(mv.col) < 8) {
278       const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
279       // Accumulate low_content_frame.
280       for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
281     }
282   }
283 
284   for (i = 0; i < num_planes; ++i) {
285     p[i].coeff = ctx->coeff[i];
286     p[i].qcoeff = ctx->qcoeff[i];
287     p[i].dqcoeff = ctx->dqcoeff[i];
288     p[i].eobs = ctx->eobs[i];
289     p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
290   }
291   for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
292   // Restore the coding context of the MB to that that was in place
293   // when the mode was picked for it
294   for (y = 0; y < mi_height; y++) {
295     for (x_idx = 0; x_idx < mi_width; x_idx++) {
296       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
297           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
298         xd->mi[x_idx + y * mis] = mi_addr;
299       }
300     }
301   }
302 
303   if (cpi->oxcf.q_cfg.aq_mode)
304     av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);
305 
306   if (dry_run) return;
307 
308 #if CONFIG_INTERNAL_STATS
309   {
310     unsigned int *const mode_chosen_counts =
311         (unsigned int *)cpi->mode_chosen_counts;  // Cast const away.
312     if (frame_is_intra_only(cm)) {
313       static const int kf_mode_index[] = {
314         THR_DC /*DC_PRED*/,
315         THR_V_PRED /*V_PRED*/,
316         THR_H_PRED /*H_PRED*/,
317         THR_D45_PRED /*D45_PRED*/,
318         THR_D135_PRED /*D135_PRED*/,
319         THR_D113_PRED /*D113_PRED*/,
320         THR_D157_PRED /*D157_PRED*/,
321         THR_D203_PRED /*D203_PRED*/,
322         THR_D67_PRED /*D67_PRED*/,
323         THR_SMOOTH,   /*SMOOTH_PRED*/
324         THR_SMOOTH_V, /*SMOOTH_V_PRED*/
325         THR_SMOOTH_H, /*SMOOTH_H_PRED*/
326         THR_PAETH /*PAETH_PRED*/,
327       };
328       ++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
329     } else {
330       // Note how often each mode chosen as best
331       ++mode_chosen_counts[ctx->best_mode_index];
332     }
333   }
334 #endif
335   if (!frame_is_intra_only(cm)) {
336     if (cm->features.interp_filter == SWITCHABLE &&
337         mi_addr->motion_mode != WARPED_CAUSAL &&
338         !is_nontrans_global_motion(xd, xd->mi[0])) {
339       update_filter_type_count(td->counts, xd, mi_addr);
340     }
341 
342     rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
343     rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
344     rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
345   }
346 
347   const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
348   const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
349   if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
350     av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
351 }
352 
av1_update_inter_mode_stats(FRAME_CONTEXT * fc,FRAME_COUNTS * counts,PREDICTION_MODE mode,int16_t mode_context)353 void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
354                                  PREDICTION_MODE mode, int16_t mode_context) {
355   (void)counts;
356 
357   int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
358   if (mode == NEWMV) {
359 #if CONFIG_ENTROPY_STATS
360     ++counts->newmv_mode[mode_ctx][0];
361 #endif
362     update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
363     return;
364   }
365 
366 #if CONFIG_ENTROPY_STATS
367   ++counts->newmv_mode[mode_ctx][1];
368 #endif
369   update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
370 
371   mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
372   if (mode == GLOBALMV) {
373 #if CONFIG_ENTROPY_STATS
374     ++counts->zeromv_mode[mode_ctx][0];
375 #endif
376     update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
377     return;
378   }
379 
380 #if CONFIG_ENTROPY_STATS
381   ++counts->zeromv_mode[mode_ctx][1];
382 #endif
383   update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
384 
385   mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
386 #if CONFIG_ENTROPY_STATS
387   ++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
388 #endif
389   update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
390 }
391 
update_palette_cdf(MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,FRAME_COUNTS * counts)392 static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
393                                FRAME_COUNTS *counts) {
394   FRAME_CONTEXT *fc = xd->tile_ctx;
395   const BLOCK_SIZE bsize = mbmi->bsize;
396   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
397   const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
398 
399   (void)counts;
400 
401   if (mbmi->mode == DC_PRED) {
402     const int n = pmi->palette_size[0];
403     const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
404 
405 #if CONFIG_ENTROPY_STATS
406     ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
407 #endif
408     update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
409                n > 0, 2);
410     if (n > 0) {
411 #if CONFIG_ENTROPY_STATS
412       ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
413 #endif
414       update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
415                  n - PALETTE_MIN_SIZE, PALETTE_SIZES);
416     }
417   }
418 
419   if (mbmi->uv_mode == UV_DC_PRED) {
420     const int n = pmi->palette_size[1];
421     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
422 
423 #if CONFIG_ENTROPY_STATS
424     ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
425 #endif
426     update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
427 
428     if (n > 0) {
429 #if CONFIG_ENTROPY_STATS
430       ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
431 #endif
432       update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
433                  n - PALETTE_MIN_SIZE, PALETTE_SIZES);
434     }
435   }
436 }
437 
av1_sum_intra_stats(const AV1_COMMON * const cm,FRAME_COUNTS * counts,MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,const int intraonly)438 void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
439                          MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
440                          const MB_MODE_INFO *above_mi,
441                          const MB_MODE_INFO *left_mi, const int intraonly) {
442   FRAME_CONTEXT *fc = xd->tile_ctx;
443   const PREDICTION_MODE y_mode = mbmi->mode;
444   (void)counts;
445   const BLOCK_SIZE bsize = mbmi->bsize;
446 
447   if (intraonly) {
448 #if CONFIG_ENTROPY_STATS
449     const PREDICTION_MODE above = av1_above_block_mode(above_mi);
450     const PREDICTION_MODE left = av1_left_block_mode(left_mi);
451     const int above_ctx = intra_mode_context[above];
452     const int left_ctx = intra_mode_context[left];
453     ++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
454 #endif  // CONFIG_ENTROPY_STATS
455     update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
456   } else {
457 #if CONFIG_ENTROPY_STATS
458     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
459 #endif  // CONFIG_ENTROPY_STATS
460     update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
461   }
462 
463   if (av1_filter_intra_allowed(cm, mbmi)) {
464     const int use_filter_intra_mode =
465         mbmi->filter_intra_mode_info.use_filter_intra;
466 #if CONFIG_ENTROPY_STATS
467     ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
468     if (use_filter_intra_mode) {
469       ++counts
470             ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
471     }
472 #endif  // CONFIG_ENTROPY_STATS
473     update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
474     if (use_filter_intra_mode) {
475       update_cdf(fc->filter_intra_mode_cdf,
476                  mbmi->filter_intra_mode_info.filter_intra_mode,
477                  FILTER_INTRA_MODES);
478     }
479   }
480   if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
481 #if CONFIG_ENTROPY_STATS
482     ++counts->angle_delta[mbmi->mode - V_PRED]
483                          [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
484 #endif
485     update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
486                mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
487                2 * MAX_ANGLE_DELTA + 1);
488   }
489 
490   if (!xd->is_chroma_ref) return;
491 
492   const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
493   const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
494 #if CONFIG_ENTROPY_STATS
495   ++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
496 #endif  // CONFIG_ENTROPY_STATS
497   update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
498              UV_INTRA_MODES - !cfl_allowed);
499   if (uv_mode == UV_CFL_PRED) {
500     const int8_t joint_sign = mbmi->cfl_alpha_signs;
501     const uint8_t idx = mbmi->cfl_alpha_idx;
502 
503 #if CONFIG_ENTROPY_STATS
504     ++counts->cfl_sign[joint_sign];
505 #endif
506     update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
507     if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
508       aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
509 
510 #if CONFIG_ENTROPY_STATS
511       ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
512 #endif
513       update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
514     }
515     if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
516       aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
517 
518 #if CONFIG_ENTROPY_STATS
519       ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
520 #endif
521       update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
522     }
523   }
524   if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
525       av1_use_angle_delta(bsize)) {
526 #if CONFIG_ENTROPY_STATS
527     ++counts->angle_delta[uv_mode - UV_V_PRED]
528                          [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
529 #endif
530     update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED],
531                mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
532                2 * MAX_ANGLE_DELTA + 1);
533   }
534   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
535     update_palette_cdf(xd, mbmi, counts);
536   }
537 }
538 
av1_restore_context(MACROBLOCK * x,const RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)539 void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
540                          int mi_row, int mi_col, BLOCK_SIZE bsize,
541                          const int num_planes) {
542   MACROBLOCKD *xd = &x->e_mbd;
543   int p;
544   const int num_4x4_blocks_wide = mi_size_wide[bsize];
545   const int num_4x4_blocks_high = mi_size_high[bsize];
546   int mi_width = mi_size_wide[bsize];
547   int mi_height = mi_size_high[bsize];
548   for (p = 0; p < num_planes; p++) {
549     int tx_col = mi_col;
550     int tx_row = mi_row & MAX_MIB_MASK;
551     memcpy(
552         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
553         ctx->a + num_4x4_blocks_wide * p,
554         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
555             xd->plane[p].subsampling_x);
556     memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
557            ctx->l + num_4x4_blocks_high * p,
558            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
559                xd->plane[p].subsampling_y);
560   }
561   memcpy(xd->above_partition_context + mi_col, ctx->sa,
562          sizeof(*xd->above_partition_context) * mi_width);
563   memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
564          sizeof(xd->left_partition_context[0]) * mi_height);
565   xd->above_txfm_context = ctx->p_ta;
566   xd->left_txfm_context = ctx->p_tl;
567   memcpy(xd->above_txfm_context, ctx->ta,
568          sizeof(*xd->above_txfm_context) * mi_width);
569   memcpy(xd->left_txfm_context, ctx->tl,
570          sizeof(*xd->left_txfm_context) * mi_height);
571 }
572 
av1_save_context(const MACROBLOCK * x,RD_SEARCH_MACROBLOCK_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,const int num_planes)573 void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
574                       int mi_row, int mi_col, BLOCK_SIZE bsize,
575                       const int num_planes) {
576   const MACROBLOCKD *xd = &x->e_mbd;
577   int p;
578   int mi_width = mi_size_wide[bsize];
579   int mi_height = mi_size_high[bsize];
580 
581   // buffer the above/left context information of the block in search.
582   for (p = 0; p < num_planes; ++p) {
583     int tx_col = mi_col;
584     int tx_row = mi_row & MAX_MIB_MASK;
585     memcpy(
586         ctx->a + mi_width * p,
587         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
588         (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
589     memcpy(ctx->l + mi_height * p,
590            xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
591            (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
592   }
593   memcpy(ctx->sa, xd->above_partition_context + mi_col,
594          sizeof(*xd->above_partition_context) * mi_width);
595   memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
596          sizeof(xd->left_partition_context[0]) * mi_height);
597   memcpy(ctx->ta, xd->above_txfm_context,
598          sizeof(*xd->above_txfm_context) * mi_width);
599   memcpy(ctx->tl, xd->left_txfm_context,
600          sizeof(*xd->left_txfm_context) * mi_height);
601   ctx->p_ta = xd->above_txfm_context;
602   ctx->p_tl = xd->left_txfm_context;
603 }
604 
set_partial_sb_partition(const AV1_COMMON * const cm,MB_MODE_INFO * mi,int bh_in,int bw_in,int mi_rows_remaining,int mi_cols_remaining,BLOCK_SIZE bsize,MB_MODE_INFO ** mib)605 static void set_partial_sb_partition(const AV1_COMMON *const cm,
606                                      MB_MODE_INFO *mi, int bh_in, int bw_in,
607                                      int mi_rows_remaining,
608                                      int mi_cols_remaining, BLOCK_SIZE bsize,
609                                      MB_MODE_INFO **mib) {
610   int bh = bh_in;
611   int r, c;
612   for (r = 0; r < cm->seq_params->mib_size; r += bh) {
613     int bw = bw_in;
614     for (c = 0; c < cm->seq_params->mib_size; c += bw) {
615       const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
616       const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
617       mib[grid_index] = mi + mi_index;
618       mib[grid_index]->bsize = find_partition_size(
619           bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
620     }
621   }
622 }
623 
624 // This function attempts to set all mode info entries in a given superblock
625 // to the same block partition size.
626 // However, at the bottom and right borders of the image the requested size
627 // may not be allowed in which case this code attempts to choose the largest
628 // allowable partition.
av1_set_fixed_partitioning(AV1_COMP * cpi,const TileInfo * const tile,MB_MODE_INFO ** mib,int mi_row,int mi_col,BLOCK_SIZE bsize)629 void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
630                                 MB_MODE_INFO **mib, int mi_row, int mi_col,
631                                 BLOCK_SIZE bsize) {
632   AV1_COMMON *const cm = &cpi->common;
633   const CommonModeInfoParams *const mi_params = &cm->mi_params;
634   const int mi_rows_remaining = tile->mi_row_end - mi_row;
635   const int mi_cols_remaining = tile->mi_col_end - mi_col;
636   MB_MODE_INFO *const mi_upper_left =
637       mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
638   int bh = mi_size_high[bsize];
639   int bw = mi_size_wide[bsize];
640 
641   assert(bsize >= mi_params->mi_alloc_bsize &&
642          "Attempted to use bsize < mi_params->mi_alloc_bsize");
643   assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
644 
645   // Apply the requested partition size to the SB if it is all "in image"
646   if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
647       (mi_rows_remaining >= cm->seq_params->mib_size)) {
648     for (int block_row = 0; block_row < cm->seq_params->mib_size;
649          block_row += bh) {
650       for (int block_col = 0; block_col < cm->seq_params->mib_size;
651            block_col += bw) {
652         const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
653         const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
654         mib[grid_index] = mi_upper_left + mi_index;
655         mib[grid_index]->bsize = bsize;
656       }
657     }
658   } else {
659     // Else this is a partial SB.
660     set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
661                              mi_cols_remaining, bsize, mib);
662   }
663 }
664 
av1_is_leaf_split_partition(AV1_COMMON * cm,int mi_row,int mi_col,BLOCK_SIZE bsize)665 int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
666                                 BLOCK_SIZE bsize) {
667   const int bs = mi_size_wide[bsize];
668   const int hbs = bs / 2;
669   assert(bsize >= BLOCK_8X8);
670   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
671 
672   for (int i = 0; i < 4; i++) {
673     int x_idx = (i & 1) * hbs;
674     int y_idx = (i >> 1) * hbs;
675     if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
676         (mi_col + x_idx >= cm->mi_params.mi_cols))
677       return 0;
678     if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
679             PARTITION_NONE &&
680         subsize != BLOCK_8X8)
681       return 0;
682   }
683   return 1;
684 }
685 
686 #if !CONFIG_REALTIME_ONLY
av1_get_rdmult_delta(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)687 int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
688                          int mi_col, int orig_rdmult) {
689   AV1_COMMON *const cm = &cpi->common;
690   const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
691   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
692                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
693   const int tpl_idx = cpi->gf_frame_index;
694   TplParams *const tpl_data = &cpi->ppi->tpl_data;
695   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
696   int64_t intra_cost = 0;
697   int64_t mc_dep_cost = 0;
698   const int mi_wide = mi_size_wide[bsize];
699   const int mi_high = mi_size_high[bsize];
700 
701   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
702   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
703   int tpl_stride = tpl_frame->stride;
704 
705   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
706     return orig_rdmult;
707   }
708   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
709     return orig_rdmult;
710   }
711 
712   int mi_count = 0;
713   const int mi_col_sr =
714       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
715   const int mi_col_end_sr =
716       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
717   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
718   const int step = 1 << block_mis_log2;
719   const int row_step = step;
720   const int col_step_sr =
721       coded_to_superres_mi(step, cm->superres_scale_denominator);
722   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
723     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
724       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
725       TplDepStats *this_stats =
726           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
727       int64_t mc_dep_delta =
728           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
729                  this_stats->mc_dep_dist);
730       intra_cost += this_stats->recrf_dist << RDDIV_BITS;
731       mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
732       mi_count++;
733     }
734   }
735   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
736 
737   double beta = 1.0;
738   if (mc_dep_cost > 0 && intra_cost > 0) {
739     const double r0 = cpi->rd.r0;
740     const double rk = (double)intra_cost / mc_dep_cost;
741     beta = (r0 / rk);
742   }
743 
744   int rdmult = av1_get_adaptive_rdmult(cpi, beta);
745 
746   rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
747   rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
748 
749   rdmult = AOMMAX(1, rdmult);
750 
751   return rdmult;
752 }
753 
754 // Checks to see if a super block is on a horizontal image edge.
755 // In most cases this is the "real" edge unless there are formatting
756 // bars embedded in the stream.
av1_active_h_edge(const AV1_COMP * cpi,int mi_row,int mi_step)757 int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
758   int top_edge = 0;
759   int bottom_edge = cpi->common.mi_params.mi_rows;
760   int is_active_h_edge = 0;
761 
762   // For two pass account for any formatting bars detected.
763   if (is_stat_consumption_stage_twopass(cpi)) {
764     const AV1_COMMON *const cm = &cpi->common;
765     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
766         &cpi->ppi->twopass, cm->current_frame.display_order_hint);
767     if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
768 
769     // The inactive region is specified in MBs not mi units.
770     // The image edge is in the following MB row.
771     top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
772 
773     bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
774     bottom_edge = AOMMAX(top_edge, bottom_edge);
775   }
776 
777   if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
778       ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
779     is_active_h_edge = 1;
780   }
781   return is_active_h_edge;
782 }
783 
784 // Checks to see if a super block is on a vertical image edge.
785 // In most cases this is the "real" edge unless there are formatting
786 // bars embedded in the stream.
av1_active_v_edge(const AV1_COMP * cpi,int mi_col,int mi_step)787 int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
788   int left_edge = 0;
789   int right_edge = cpi->common.mi_params.mi_cols;
790   int is_active_v_edge = 0;
791 
792   // For two pass account for any formatting bars detected.
793   if (is_stat_consumption_stage_twopass(cpi)) {
794     const AV1_COMMON *const cm = &cpi->common;
795     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
796         &cpi->ppi->twopass, cm->current_frame.display_order_hint);
797     if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
798 
799     // The inactive region is specified in MBs not mi units.
800     // The image edge is in the following MB row.
801     left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
802 
803     right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
804     right_edge = AOMMAX(left_edge, right_edge);
805   }
806 
807   if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
808       ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
809     is_active_v_edge = 1;
810   }
811   return is_active_v_edge;
812 }
813 
av1_get_tpl_stats_sb(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,SuperBlockEnc * sb_enc)814 void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
815                           int mi_col, SuperBlockEnc *sb_enc) {
816   sb_enc->tpl_data_count = 0;
817 
818   if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
819   if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
820   const FRAME_UPDATE_TYPE update_type =
821       get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
822   if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
823     return;
824   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
825                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
826 
827   AV1_COMMON *const cm = &cpi->common;
828   const int gf_group_index = cpi->gf_frame_index;
829   TplParams *const tpl_data = &cpi->ppi->tpl_data;
830   if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
831   const int mi_wide = mi_size_wide[bsize];
832   const int mi_high = mi_size_high[bsize];
833 
834   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
835   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
836   int tpl_stride = tpl_frame->stride;
837 
838   int mi_count = 0;
839   int count = 0;
840   const int mi_col_sr =
841       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
842   const int mi_col_end_sr =
843       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
844   // mi_cols_sr is mi_cols at superres case.
845   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
846 
847   // TPL store unit size is not the same as the motion estimation unit size.
848   // Here always use motion estimation size to avoid getting repetitive inter/
849   // intra cost.
850   const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
851   assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
852   const int row_step = mi_size_high[tpl_bsize];
853   const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
854                                                cm->superres_scale_denominator);
855 
856   // Stride is only based on SB size, and we fill in values for every 16x16
857   // block in a SB.
858   sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
859 
860   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
861     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
862       assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
863       // Handle partial SB, so that no invalid values are used later.
864       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
865         sb_enc->tpl_inter_cost[count] = INT64_MAX;
866         sb_enc->tpl_intra_cost[count] = INT64_MAX;
867         for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
868           sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
869         }
870         count++;
871         continue;
872       }
873 
874       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
875           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
876       sb_enc->tpl_inter_cost[count] = this_stats->inter_cost;
877       sb_enc->tpl_intra_cost[count] = this_stats->intra_cost;
878       memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
879       mi_count++;
880       count++;
881     }
882   }
883 
884   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
885   sb_enc->tpl_data_count = mi_count;
886 }
887 
888 // analysis_type 0: Use mc_dep_cost and intra_cost
889 // analysis_type 1: Use count of best inter predictor chosen
890 // analysis_type 2: Use cost reduction from intra to inter for best inter
891 //                  predictor chosen
av1_get_q_for_deltaq_objective(AV1_COMP * const cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)892 int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize,
893                                    int mi_row, int mi_col) {
894   AV1_COMMON *const cm = &cpi->common;
895   const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
896   assert(IMPLIES(cpi->ppi->gf_group.size > 0,
897                  cpi->gf_frame_index < cpi->ppi->gf_group.size));
898   const int tpl_idx = cpi->gf_frame_index;
899   TplParams *const tpl_data = &cpi->ppi->tpl_data;
900   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
901   int64_t intra_cost = 0;
902   int64_t mc_dep_cost = 0;
903   const int mi_wide = mi_size_wide[bsize];
904   const int mi_high = mi_size_high[bsize];
905   const int base_qindex = cm->quant_params.base_qindex;
906 
907   if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;
908 
909   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
910   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
911   int tpl_stride = tpl_frame->stride;
912   if (!tpl_frame->is_valid) return base_qindex;
913 
914   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return base_qindex;
915 
916   int mi_count = 0;
917   const int mi_col_sr =
918       coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
919   const int mi_col_end_sr =
920       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
921   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
922   const int step = 1 << block_mis_log2;
923   const int row_step = step;
924   const int col_step_sr =
925       coded_to_superres_mi(step, cm->superres_scale_denominator);
926   for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
927     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
928       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
929       TplDepStats *this_stats =
930           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
931       int64_t mc_dep_delta =
932           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
933                  this_stats->mc_dep_dist);
934       intra_cost += this_stats->recrf_dist << RDDIV_BITS;
935       mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
936       mi_count++;
937     }
938   }
939   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
940 
941   int offset = 0;
942   double beta = 1.0;
943   if (mc_dep_cost > 0 && intra_cost > 0) {
944     const double r0 = cpi->rd.r0;
945     const double rk = (double)intra_cost / mc_dep_cost;
946     beta = (r0 / rk);
947     assert(beta > 0.0);
948   }
949   offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
950 
951   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
952   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
953   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
954   int qindex = cm->quant_params.base_qindex + offset;
955   qindex = AOMMIN(qindex, MAXQ);
956   qindex = AOMMAX(qindex, MINQ);
957 
958   return qindex;
959 }
960 #endif  // !CONFIG_REALTIME_ONLY
961 
av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE * sms_tree,BLOCK_SIZE bsize)962 void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
963                                             BLOCK_SIZE bsize) {
964   sms_tree->partitioning = PARTITION_NONE;
965 
966   if (bsize >= BLOCK_8X8) {
967     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
968     for (int idx = 0; idx < 4; ++idx)
969       av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
970   }
971 }
972 
973 // Record the ref frames that have been selected by square partition blocks.
av1_update_picked_ref_frames_mask(MACROBLOCK * const x,int ref_type,BLOCK_SIZE bsize,int mib_size,int mi_row,int mi_col)974 void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
975                                        BLOCK_SIZE bsize, int mib_size,
976                                        int mi_row, int mi_col) {
977   assert(mi_size_wide[bsize] == mi_size_high[bsize]);
978   const int sb_size_mask = mib_size - 1;
979   const int mi_row_in_sb = mi_row & sb_size_mask;
980   const int mi_col_in_sb = mi_col & sb_size_mask;
981   const int mi_size = mi_size_wide[bsize];
982   for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
983     for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
984       x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
985     }
986   }
987 }
988 
avg_cdf_symbol(aom_cdf_prob * cdf_ptr_left,aom_cdf_prob * cdf_ptr_tr,int num_cdfs,int cdf_stride,int nsymbs,int wt_left,int wt_tr)989 static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
990                            int num_cdfs, int cdf_stride, int nsymbs,
991                            int wt_left, int wt_tr) {
992   for (int i = 0; i < num_cdfs; i++) {
993     for (int j = 0; j <= nsymbs; j++) {
994       cdf_ptr_left[i * cdf_stride + j] =
995           (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
996                           (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
997                           ((wt_left + wt_tr) / 2)) /
998                          (wt_left + wt_tr));
999       assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
1000              cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
1001     }
1002   }
1003 }
1004 
1005 #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
1006   AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
1007 
1008 #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)           \
1009   do {                                                                     \
1010     aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left;               \
1011     aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr;                   \
1012     int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob);       \
1013     int num_cdfs = array_size / cdf_stride;                                \
1014     avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
1015                    wt_left, wt_tr);                                        \
1016   } while (0)
1017 
avg_nmv(nmv_context * nmv_left,nmv_context * nmv_tr,int wt_left,int wt_tr)1018 static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
1019                     int wt_tr) {
1020   AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
1021   for (int i = 0; i < 2; i++) {
1022     AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
1023                 MV_CLASSES);
1024     AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
1025                 nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
1026     AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
1027     AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
1028     AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
1029                 nmv_tr->comps[i].class0_hp_cdf, 2);
1030     AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
1031     AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
1032                 CLASS0_SIZE);
1033     AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
1034   }
1035 }
1036 
1037 // In case of row-based multi-threading of encoder, since we always
1038 // keep a top - right sync, we can average the top - right SB's CDFs and
1039 // the left SB's CDFs and use the same for current SB's encoding to
1040 // improve the performance. This function facilitates the averaging
1041 // of CDF and used only when row-mt is enabled in encoder.
av1_avg_cdf_symbols(FRAME_CONTEXT * ctx_left,FRAME_CONTEXT * ctx_tr,int wt_left,int wt_tr)1042 void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
1043                          int wt_left, int wt_tr) {
1044   AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
1045   AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
1046   AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
1047   AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
1048   AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
1049   AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
1050   AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
1051   AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
1052   AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
1053   AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
1054   AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
1055   AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
1056   AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
1057   AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
1058   AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
1059   AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
1060   AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
1061   AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
1062               ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
1063   AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
1064               MASKED_COMPOUND_TYPES);
1065   AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
1066   AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
1067   AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
1068   AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
1069               INTERINTRA_MODES);
1070   AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
1071   AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
1072   AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
1073               PALETTE_SIZES);
1074   AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
1075               PALETTE_SIZES);
1076   for (int j = 0; j < PALETTE_SIZES; j++) {
1077     int nsymbs = j + PALETTE_MIN_SIZE;
1078     AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
1079                    ctx_tr->palette_y_color_index_cdf[j], nsymbs,
1080                    CDF_SIZE(PALETTE_COLORS));
1081     AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
1082                    ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
1083                    CDF_SIZE(PALETTE_COLORS));
1084   }
1085   AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
1086   AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
1087   AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
1088   AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
1089   AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
1090   AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
1091   AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
1092   AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
1093   AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
1094   AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
1095   AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
1096   AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
1097   AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
1098   AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
1099   avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
1100   avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
1101   AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
1102   AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS);
1103   AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
1104   AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
1105               ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
1106   AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
1107   AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
1108               FILTER_INTRA_MODES);
1109   AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
1110               RESTORE_SWITCHABLE_TYPES);
1111   AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
1112   AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
1113   AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
1114   AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
1115                  UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
1116   AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
1117   for (int i = 0; i < PARTITION_CONTEXTS; i++) {
1118     if (i < 4) {
1119       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
1120                      CDF_SIZE(10));
1121     } else if (i < 16) {
1122       AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
1123     } else {
1124       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
1125                      CDF_SIZE(10));
1126     }
1127   }
1128   AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
1129               SWITCHABLE_FILTERS);
1130   AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
1131   AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
1132               2 * MAX_ANGLE_DELTA + 1);
1133   AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
1134                  CDF_SIZE(MAX_TX_DEPTH + 1));
1135   AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
1136               MAX_TX_DEPTH + 1);
1137   AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
1138               MAX_TX_DEPTH + 1);
1139   AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
1140               MAX_TX_DEPTH + 1);
1141   AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
1142   AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
1143   for (int i = 0; i < FRAME_LF_COUNT; i++) {
1144     AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
1145                 DELTA_LF_PROBS + 1);
1146   }
1147   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
1148                  CDF_SIZE(TX_TYPES));
1149   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
1150                  CDF_SIZE(TX_TYPES));
1151   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
1152                  CDF_SIZE(TX_TYPES));
1153   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
1154                  CDF_SIZE(TX_TYPES));
1155   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
1156                  CDF_SIZE(TX_TYPES));
1157   AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
1158   AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
1159               CFL_ALPHABET_SIZE);
1160 }
1161 
1162 // Grade the temporal variation of the source by comparing the current sb and
1163 // its collocated block in the last frame.
av1_source_content_sb(AV1_COMP * cpi,MACROBLOCK * x,int offset)1164 void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, int offset) {
1165   unsigned int tmp_sse;
1166   unsigned int tmp_variance;
1167   const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
1168   uint8_t *src_y = cpi->source->y_buffer;
1169   int src_ystride = cpi->source->y_stride;
1170   uint8_t *last_src_y = cpi->last_source->y_buffer;
1171   int last_src_ystride = cpi->last_source->y_stride;
1172   uint64_t avg_source_sse_threshold = 100000;        // ~5*5*(64*64)
1173   uint64_t avg_source_sse_threshold_high = 1000000;  // ~15*15*(64*64)
1174   uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5
1175 #if CONFIG_AV1_HIGHBITDEPTH
1176   MACROBLOCKD *xd = &x->e_mbd;
1177   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
1178 #endif
1179   src_y += offset;
1180   last_src_y += offset;
1181   tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
1182                                             last_src_ystride, &tmp_sse);
1183   if (tmp_sse < avg_source_sse_threshold)
1184     x->content_state_sb.source_sad = kLowSad;
1185   else if (tmp_sse > avg_source_sse_threshold_high)
1186     x->content_state_sb.source_sad = kHighSad;
1187   // Detect large lighting change.
1188   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1189   if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
1190     x->content_state_sb.lighting_change = 1;
1191   if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
1192     x->content_state_sb.low_sumdiff = 1;
1193 }
1194 
1195 // Memset the mbmis at the current superblock to 0
av1_reset_mbmi(CommonModeInfoParams * const mi_params,BLOCK_SIZE sb_size,int mi_row,int mi_col)1196 void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
1197                     int mi_row, int mi_col) {
1198   // size of sb in unit of mi (BLOCK_4X4)
1199   const int sb_size_mi = mi_size_wide[sb_size];
1200   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1201   // size of sb in unit of allocated mi size
1202   const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
1203   assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
1204          "mi is not allocated as a multiple of sb!");
1205   assert(mi_params->mi_stride % sb_size_mi == 0 &&
1206          "mi_grid_base is not allocated as a multiple of sb!");
1207 
1208   const int mi_rows = mi_size_high[sb_size];
1209   for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
1210     assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
1211            mi_params->mi_stride);
1212     const int mi_grid_idx =
1213         get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
1214     const int alloc_mi_idx =
1215         get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
1216     memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
1217            sb_size_mi * sizeof(*mi_params->mi_grid_base));
1218     memset(&mi_params->tx_type_map[mi_grid_idx], 0,
1219            sb_size_mi * sizeof(*mi_params->tx_type_map));
1220     if (cur_mi_row % mi_alloc_size_1d == 0) {
1221       memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
1222              sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
1223     }
1224   }
1225 }
1226 
av1_backup_sb_state(SB_FIRST_PASS_STATS * sb_fp_stats,const AV1_COMP * cpi,ThreadData * td,const TileDataEnc * tile_data,int mi_row,int mi_col)1227 void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
1228                          ThreadData *td, const TileDataEnc *tile_data,
1229                          int mi_row, int mi_col) {
1230   MACROBLOCK *x = &td->mb;
1231   MACROBLOCKD *xd = &x->e_mbd;
1232   const TileInfo *tile_info = &tile_data->tile_info;
1233 
1234   const AV1_COMMON *cm = &cpi->common;
1235   const int num_planes = av1_num_planes(cm);
1236   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1237 
1238   xd->above_txfm_context =
1239       cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
1240   xd->left_txfm_context =
1241       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1242   av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
1243 
1244   sb_fp_stats->rd_count = cpi->td.rd_counts;
1245   sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
1246 
1247   sb_fp_stats->fc = *td->counts;
1248 
1249   memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
1250          sizeof(sb_fp_stats->inter_mode_rd_models));
1251 
1252   memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
1253          sizeof(sb_fp_stats->thresh_freq_fact));
1254 
1255   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1256   sb_fp_stats->current_qindex =
1257       cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
1258 
1259 #if CONFIG_INTERNAL_STATS
1260   memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
1261          sizeof(sb_fp_stats->mode_chosen_counts));
1262 #endif  // CONFIG_INTERNAL_STATS
1263 }
1264 
av1_restore_sb_state(const SB_FIRST_PASS_STATS * sb_fp_stats,AV1_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,int mi_col)1265 void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
1266                           ThreadData *td, TileDataEnc *tile_data, int mi_row,
1267                           int mi_col) {
1268   MACROBLOCK *x = &td->mb;
1269 
1270   const AV1_COMMON *cm = &cpi->common;
1271   const int num_planes = av1_num_planes(cm);
1272   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
1273 
1274   av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
1275                       num_planes);
1276 
1277   cpi->td.rd_counts = sb_fp_stats->rd_count;
1278   x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
1279 
1280   *td->counts = sb_fp_stats->fc;
1281 
1282   memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
1283          sizeof(sb_fp_stats->inter_mode_rd_models));
1284   memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
1285          sizeof(sb_fp_stats->thresh_freq_fact));
1286 
1287   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
1288   cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
1289       sb_fp_stats->current_qindex;
1290 
1291 #if CONFIG_INTERNAL_STATS
1292   memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
1293          sizeof(sb_fp_stats->mode_chosen_counts));
1294 #endif  // CONFIG_INTERNAL_STATS
1295 }
1296 
1297 /*! Checks whether to skip updating the entropy cost based on tile info.
1298  *
1299  * This function contains codes common to both \ref skip_mv_cost_update and
1300  * \ref skip_dv_cost_update.
1301  */
skip_cost_update(const SequenceHeader * seq_params,const TileInfo * const tile_info,const int mi_row,const int mi_col,INTERNAL_COST_UPDATE_TYPE upd_level)1302 static int skip_cost_update(const SequenceHeader *seq_params,
1303                             const TileInfo *const tile_info, const int mi_row,
1304                             const int mi_col,
1305                             INTERNAL_COST_UPDATE_TYPE upd_level) {
1306   if (upd_level == INTERNAL_COST_UPD_SB) return 0;
1307   if (upd_level == INTERNAL_COST_UPD_OFF) return 1;
1308 
1309   // upd_level is at most as frequent as each sb_row in a tile.
1310   if (mi_col != tile_info->mi_col_start) return 1;
1311 
1312   if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
1313     const int mib_size_log2 = seq_params->mib_size_log2;
1314     const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
1315     const int sb_size = seq_params->mib_size * MI_SIZE;
1316     const int tile_height =
1317         (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
1318     // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
1319     // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
1320     // as the update will not be equally spaced in smaller resolutions making
1321     // it equally spaced by calculating (mv_num_rows_cost_update) the number of
1322     // rows after which the cost update should happen.
1323     const int sb_size_update_freq_map[2] = { 2, 4 };
1324     const int update_freq_sb_rows =
1325         sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
1326     const int update_freq_num_rows = sb_size * update_freq_sb_rows;
1327     // Round-up the division result to next integer.
1328     const int num_updates_per_tile =
1329         (tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
1330     const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
1331     // Round-up the division result to next integer.
1332     const int num_sb_rows_per_update =
1333         (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
1334     if ((sb_row % num_sb_rows_per_update) != 0) return 1;
1335   }
1336   return 0;
1337 }
1338 
1339 // Checks for skip status of mv cost update.
skip_mv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1340 static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1341                                const int mi_row, const int mi_col) {
1342   const AV1_COMMON *cm = &cpi->common;
1343   // For intra frames, mv cdfs are not updated during the encode. Hence, the mv
1344   // cost calculation is skipped in this case.
1345   if (frame_is_intra_only(cm)) return 1;
1346 
1347   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1348                           cpi->sf.inter_sf.mv_cost_upd_level);
1349 }
1350 
1351 // Checks for skip status of dv cost update.
skip_dv_cost_update(AV1_COMP * cpi,const TileInfo * const tile_info,const int mi_row,const int mi_col)1352 static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
1353                                const int mi_row, const int mi_col) {
1354   const AV1_COMMON *cm = &cpi->common;
1355   // Intrabc is only applicable to intra frames. So skip if intrabc is not
1356   // allowed.
1357   if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
1358     return 1;
1359   }
1360 
1361   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
1362                           cpi->sf.intra_sf.dv_cost_upd_level);
1363 }
1364 
1365 // Update the rate costs of some symbols according to the frequency directed
1366 // by speed features
av1_set_cost_upd_freq(AV1_COMP * cpi,ThreadData * td,const TileInfo * const tile_info,const int mi_row,const int mi_col)1367 void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
1368                            const TileInfo *const tile_info, const int mi_row,
1369                            const int mi_col) {
1370   AV1_COMMON *const cm = &cpi->common;
1371   const int num_planes = av1_num_planes(cm);
1372   MACROBLOCK *const x = &td->mb;
1373   MACROBLOCKD *const xd = &x->e_mbd;
1374 
1375   switch (cpi->oxcf.cost_upd_freq.coeff) {
1376     case COST_UPD_OFF:
1377     case COST_UPD_TILE:  // Tile level
1378       break;
1379     case COST_UPD_SBROW:  // SB row level in tile
1380       if (mi_col != tile_info->mi_col_start) break;
1381       AOM_FALLTHROUGH_INTENDED;
1382     case COST_UPD_SB:  // SB level
1383       if (cpi->sf.inter_sf.coeff_cost_upd_level == INTERNAL_COST_UPD_SBROW &&
1384           mi_col != tile_info->mi_col_start)
1385         break;
1386       av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
1387       break;
1388     default: assert(0);
1389   }
1390 
1391   switch (cpi->oxcf.cost_upd_freq.mode) {
1392     case COST_UPD_OFF:
1393     case COST_UPD_TILE:  // Tile level
1394       break;
1395     case COST_UPD_SBROW:  // SB row level in tile
1396       if (mi_col != tile_info->mi_col_start) break;
1397       AOM_FALLTHROUGH_INTENDED;
1398     case COST_UPD_SB:  // SB level
1399       if (cpi->sf.inter_sf.mode_cost_upd_level == INTERNAL_COST_UPD_SBROW &&
1400           mi_col != tile_info->mi_col_start)
1401         break;
1402       av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
1403       break;
1404     default: assert(0);
1405   }
1406   switch (cpi->oxcf.cost_upd_freq.mv) {
1407     case COST_UPD_OFF:
1408     case COST_UPD_TILE:  // Tile level
1409       break;
1410     case COST_UPD_SBROW:  // SB row level in tile
1411       if (mi_col != tile_info->mi_col_start) break;
1412       AOM_FALLTHROUGH_INTENDED;
1413     case COST_UPD_SB:  // SB level
1414       // Checks for skip status of mv cost update.
1415       if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1416       av1_fill_mv_costs(&xd->tile_ctx->nmvc,
1417                         cm->features.cur_frame_force_integer_mv,
1418                         cm->features.allow_high_precision_mv, x->mv_costs);
1419       break;
1420     default: assert(0);
1421   }
1422 
1423   switch (cpi->oxcf.cost_upd_freq.dv) {
1424     case COST_UPD_OFF:
1425     case COST_UPD_TILE:  // Tile level
1426       break;
1427     case COST_UPD_SBROW:  // SB row level in tile
1428       if (mi_col != tile_info->mi_col_start) break;
1429       AOM_FALLTHROUGH_INTENDED;
1430     case COST_UPD_SB:  // SB level
1431       // Checks for skip status of dv cost update.
1432       if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
1433       av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
1434       break;
1435     default: assert(0);
1436   }
1437 }
1438