1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdio.h>
15
16 #include "aom/aom_encoder.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/binary_codes_writer.h"
19 #include "aom_dsp/bitwriter_buffer.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/bitops.h"
22 #include "aom_ports/mem_ops.h"
23 #if CONFIG_BITSTREAM_DEBUG
24 #include "aom_util/debug_util.h"
25 #endif // CONFIG_BITSTREAM_DEBUG
26
27 #include "av1/common/cdef.h"
28 #include "av1/common/cfl.h"
29 #include "av1/common/entropy.h"
30 #include "av1/common/entropymode.h"
31 #include "av1/common/entropymv.h"
32 #include "av1/common/mvref_common.h"
33 #include "av1/common/pred_common.h"
34 #include "av1/common/reconinter.h"
35 #include "av1/common/reconintra.h"
36 #include "av1/common/seg_common.h"
37 #include "av1/common/tile_common.h"
38
39 #include "av1/encoder/bitstream.h"
40 #include "av1/encoder/cost.h"
41 #include "av1/encoder/encodemv.h"
42 #include "av1/encoder/encodetxb.h"
43 #include "av1/encoder/ethread.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/palette.h"
46 #include "av1/encoder/segmentation.h"
47 #include "av1/encoder/tokenize.h"
48
49 #define ENC_MISMATCH_DEBUG 0
50 #define SETUP_TIME_OH_CONST 5 // Setup time overhead constant per worker
51 #define JOB_DISP_TIME_OH_CONST 1 // Job dispatch time overhead per tile
52
write_uniform(aom_writer * w,int n,int v)53 static INLINE void write_uniform(aom_writer *w, int n, int v) {
54 const int l = get_unsigned_bits(n);
55 const int m = (1 << l) - n;
56 if (l == 0) return;
57 if (v < m) {
58 aom_write_literal(w, v, l - 1);
59 } else {
60 aom_write_literal(w, m + ((v - m) >> 1), l - 1);
61 aom_write_literal(w, (v - m) & 1, 1);
62 }
63 }
64
65 #if !CONFIG_REALTIME_ONLY
66 static AOM_INLINE void loop_restoration_write_sb_coeffs(
67 const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
68 aom_writer *const w, int plane, FRAME_COUNTS *counts);
69 #endif
70
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)71 static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
72 const MB_MODE_INFO *mi,
73 const MB_MODE_INFO *above_mi,
74 const MB_MODE_INFO *left_mi,
75 PREDICTION_MODE mode,
76 aom_writer *w) {
77 assert(!is_intrabc_block(mi));
78 (void)mi;
79 aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
80 INTRA_MODES);
81 }
82
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)83 static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
84 FRAME_CONTEXT *ec_ctx,
85 const int16_t mode_ctx) {
86 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
87
88 aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
89
90 if (mode != NEWMV) {
91 const int16_t zeromv_ctx =
92 (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
93 aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
94
95 if (mode != GLOBALMV) {
96 int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
97 aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
98 }
99 }
100 }
101
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)102 static AOM_INLINE void write_drl_idx(
103 FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
104 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
105 assert(mbmi->ref_mv_idx < 3);
106
107 const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
108 if (new_mv) {
109 int idx;
110 for (idx = 0; idx < 2; ++idx) {
111 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
112 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
113
114 aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
115 2);
116 if (mbmi->ref_mv_idx == idx) return;
117 }
118 }
119 return;
120 }
121
122 if (have_nearmv_in_inter_mode(mbmi->mode)) {
123 int idx;
124 // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
125 for (idx = 1; idx < 3; ++idx) {
126 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
127 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
128 aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
129 ec_ctx->drl_cdf[drl_ctx], 2);
130 if (mbmi->ref_mv_idx == (idx - 1)) return;
131 }
132 }
133 return;
134 }
135 }
136
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)137 static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
138 PREDICTION_MODE mode,
139 const int16_t mode_ctx) {
140 assert(is_inter_compound_mode(mode));
141 aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
142 xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
143 INTER_COMPOUND_MODES);
144 }
145
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)146 static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
147 const MB_MODE_INFO *mbmi,
148 TX_SIZE tx_size, int depth,
149 int blk_row, int blk_col,
150 aom_writer *w) {
151 FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
152 const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
153 const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
154
155 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
156
157 if (depth == MAX_VARTX_DEPTH) {
158 txfm_partition_update(xd->above_txfm_context + blk_col,
159 xd->left_txfm_context + blk_row, tx_size, tx_size);
160 return;
161 }
162
163 const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
164 xd->left_txfm_context + blk_row,
165 mbmi->bsize, tx_size);
166 const int txb_size_index =
167 av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
168 const int write_txfm_partition =
169 tx_size == mbmi->inter_tx_size[txb_size_index];
170 if (write_txfm_partition) {
171 aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
172
173 txfm_partition_update(xd->above_txfm_context + blk_col,
174 xd->left_txfm_context + blk_row, tx_size, tx_size);
175 // TODO(yuec): set correct txfm partition update for qttx
176 } else {
177 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
178 const int bsw = tx_size_wide_unit[sub_txs];
179 const int bsh = tx_size_high_unit[sub_txs];
180
181 aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
182
183 if (sub_txs == TX_4X4) {
184 txfm_partition_update(xd->above_txfm_context + blk_col,
185 xd->left_txfm_context + blk_row, sub_txs, tx_size);
186 return;
187 }
188
189 assert(bsw > 0 && bsh > 0);
190 for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
191 const int offsetr = blk_row + row;
192 for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
193 const int offsetc = blk_col + col;
194 write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
195 }
196 }
197 }
198 }
199
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)200 static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
201 aom_writer *w) {
202 const MB_MODE_INFO *const mbmi = xd->mi[0];
203 const BLOCK_SIZE bsize = mbmi->bsize;
204 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
205 if (block_signals_txsize(bsize)) {
206 const TX_SIZE tx_size = mbmi->tx_size;
207 const int tx_size_ctx = get_tx_size_context(xd);
208 const int depth = tx_size_to_depth(tx_size, bsize);
209 const int max_depths = bsize_to_max_depth(bsize);
210 const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
211
212 assert(depth >= 0 && depth <= max_depths);
213 assert(!is_inter_block(mbmi));
214 assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
215
216 aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
217 max_depths + 1);
218 }
219 }
220
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MB_MODE_INFO * mi,aom_writer * w)221 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
222 int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
223 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
224 return 1;
225 } else {
226 const int skip_txfm = mi->skip_txfm;
227 const int ctx = av1_get_skip_txfm_context(xd);
228 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
229 aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
230 return skip_txfm;
231 }
232 }
233
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MB_MODE_INFO * mi,aom_writer * w)234 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
235 int segment_id, const MB_MODE_INFO *mi,
236 aom_writer *w) {
237 if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
238 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
239 return 0;
240 }
241 const int skip_mode = mi->skip_mode;
242 if (!is_comp_ref_allowed(mi->bsize)) {
243 assert(!skip_mode);
244 return 0;
245 }
246 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
247 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
248 // These features imply single-reference mode, while skip mode implies
249 // compound reference. Hence, the two are mutually exclusive.
250 // In other words, skip_mode is implicitly 0 here.
251 assert(!skip_mode);
252 return 0;
253 }
254 const int ctx = av1_get_skip_mode_context(xd);
255 aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
256 return skip_mode;
257 }
258
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,aom_writer * w,const int is_inter)259 static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
260 const MACROBLOCKD *xd, int segment_id,
261 aom_writer *w, const int is_inter) {
262 if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
263 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
264 assert(is_inter);
265 return;
266 }
267 const int ctx = av1_get_intra_inter_context(xd);
268 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
269 aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
270 }
271 }
272
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)273 static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
274 const MB_MODE_INFO *mbmi,
275 aom_writer *w) {
276 MOTION_MODE last_motion_mode_allowed =
277 cm->features.switchable_motion_mode
278 ? motion_mode_allowed(cm->global_motion, xd, mbmi,
279 cm->features.allow_warped_motion)
280 : SIMPLE_TRANSLATION;
281 assert(mbmi->motion_mode <= last_motion_mode_allowed);
282 switch (last_motion_mode_allowed) {
283 case SIMPLE_TRANSLATION: break;
284 case OBMC_CAUSAL:
285 aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
286 xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
287 break;
288 default:
289 aom_write_symbol(w, mbmi->motion_mode,
290 xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
291 MOTION_MODES);
292 }
293 }
294
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)295 static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
296 int delta_qindex, aom_writer *w) {
297 int sign = delta_qindex < 0;
298 int abs = sign ? -delta_qindex : delta_qindex;
299 int rem_bits, thr;
300 int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
301 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
302
303 aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
304 DELTA_Q_PROBS + 1);
305
306 if (!smallval) {
307 rem_bits = get_msb(abs - 1);
308 thr = (1 << rem_bits) + 1;
309 aom_write_literal(w, rem_bits - 1, 3);
310 aom_write_literal(w, abs - thr, rem_bits);
311 }
312 if (abs > 0) {
313 aom_write_bit(w, sign);
314 }
315 }
316
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)317 static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
318 const MACROBLOCKD *xd, int lf_id,
319 int delta_lflevel,
320 int delta_lf_multi, aom_writer *w) {
321 int sign = delta_lflevel < 0;
322 int abs = sign ? -delta_lflevel : delta_lflevel;
323 int rem_bits, thr;
324 int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
325 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
326 (void)cm;
327
328 if (delta_lf_multi) {
329 assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
330 : FRAME_LF_COUNT - 2));
331 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
332 ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
333 } else {
334 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
335 DELTA_LF_PROBS + 1);
336 }
337
338 if (!smallval) {
339 rem_bits = get_msb(abs - 1);
340 thr = (1 << rem_bits) + 1;
341 aom_write_literal(w, rem_bits - 1, 3);
342 aom_write_literal(w, abs - thr, rem_bits);
343 }
344 if (abs > 0) {
345 aom_write_bit(w, sign);
346 }
347 }
348
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)349 static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
350 int n, int num, MapCdf map_pb_cdf) {
351 const TokenExtra *p = *tp;
352 const int palette_size_idx = n - PALETTE_MIN_SIZE;
353 write_uniform(w, n, p->token); // The first color index.
354 ++p;
355 --num;
356 for (int i = 0; i < num; ++i) {
357 assert((p->color_ctx >= 0) &&
358 (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
359 aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
360 aom_write_symbol(w, p->token, color_map_cdf, n);
361 ++p;
362 }
363 *tp = p;
364 }
365
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)366 static AOM_INLINE void pack_txb_tokens(
367 aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
368 const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
369 int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
370 int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
371 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
372 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
373
374 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
375
376 const struct macroblockd_plane *const pd = &xd->plane[plane];
377 const TX_SIZE plane_tx_size =
378 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
379 pd->subsampling_y)
380 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
381 blk_col)];
382
383 if (tx_size == plane_tx_size || plane) {
384 av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
385 #if CONFIG_RD_DEBUG
386 TOKEN_STATS tmp_token_stats;
387 init_token_stats(&tmp_token_stats);
388 token_stats->cost += tmp_token_stats.cost;
389 #endif
390 } else {
391 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
392 const int bsw = tx_size_wide_unit[sub_txs];
393 const int bsh = tx_size_high_unit[sub_txs];
394 const int step = bsh * bsw;
395 const int row_end =
396 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
397 const int col_end =
398 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
399
400 assert(bsw > 0 && bsh > 0);
401
402 for (int r = 0; r < row_end; r += bsh) {
403 const int offsetr = blk_row + r;
404 for (int c = 0; c < col_end; c += bsw) {
405 const int offsetc = blk_col + c;
406 pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
407 bit_depth, block, offsetr, offsetc, sub_txs,
408 token_stats);
409 block += step;
410 }
411 }
412 }
413 }
414
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,int segment_id)415 static INLINE void set_spatial_segment_id(
416 const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
417 BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) {
418 const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
419 const int bw = mi_size_wide[bsize];
420 const int bh = mi_size_high[bsize];
421 const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
422 const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
423
424 for (int y = 0; y < ymis; ++y) {
425 for (int x = 0; x < xmis; ++x) {
426 segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id;
427 }
428 }
429 }
430
av1_neg_interleave(int x,int ref,int max)431 int av1_neg_interleave(int x, int ref, int max) {
432 assert(x < max);
433 const int diff = x - ref;
434 if (!ref) return x;
435 if (ref >= (max - 1)) return -x + max - 1;
436 if (2 * ref < max) {
437 if (abs(diff) <= ref) {
438 if (diff > 0)
439 return (diff << 1) - 1;
440 else
441 return ((-diff) << 1);
442 }
443 return x;
444 } else {
445 if (abs(diff) < (max - ref)) {
446 if (diff > 0)
447 return (diff << 1) - 1;
448 else
449 return ((-diff) << 1);
450 }
451 return (max - x) - 1;
452 }
453 }
454
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)455 static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
456 const MB_MODE_INFO *const mbmi,
457 aom_writer *w,
458 const struct segmentation *seg,
459 struct segmentation_probs *segp,
460 int skip_txfm) {
461 if (!seg->enabled || !seg->update_map) return;
462
463 AV1_COMMON *const cm = &cpi->common;
464 int cdf_num;
465 const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
466 const int mi_row = xd->mi_row;
467 const int mi_col = xd->mi_col;
468
469 if (skip_txfm) {
470 // Still need to transmit tx size for intra blocks even if skip_txfm is
471 // true. Changing segment_id may make the tx size become invalid, e.g
472 // changing from lossless to lossy.
473 assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
474
475 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
476 mi_row, mi_col, pred);
477 set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
478 mi_row, mi_col, pred);
479 /* mbmi is read only but we need to update segment_id */
480 ((MB_MODE_INFO *)mbmi)->segment_id = pred;
481 return;
482 }
483
484 const int coded_id =
485 av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
486 aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
487 aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
488 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
489 mi_row, mi_col, mbmi->segment_id);
490 }
491
492 #define WRITE_REF_BIT(bname, pname) \
493 aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
494
495 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)496 static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
497 const MACROBLOCKD *xd, aom_writer *w) {
498 const MB_MODE_INFO *const mbmi = xd->mi[0];
499 const int is_compound = has_second_ref(mbmi);
500 const int segment_id = mbmi->segment_id;
501
502 // If segment level coding of this signal is disabled...
503 // or the segment allows multiple reference frame options
504 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
505 assert(!is_compound);
506 assert(mbmi->ref_frame[0] ==
507 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
508 } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
509 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
510 assert(!is_compound);
511 assert(mbmi->ref_frame[0] == LAST_FRAME);
512 } else {
513 // does the feature use compound prediction or not
514 // (if not specified at the frame/segment level)
515 if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
516 if (is_comp_ref_allowed(mbmi->bsize))
517 aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
518 } else {
519 assert((!is_compound) ==
520 (cm->current_frame.reference_mode == SINGLE_REFERENCE));
521 }
522
523 if (is_compound) {
524 const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
525 ? UNIDIR_COMP_REFERENCE
526 : BIDIR_COMP_REFERENCE;
527 aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
528 2);
529
530 if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
531 const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
532 WRITE_REF_BIT(bit, uni_comp_ref_p);
533
534 if (!bit) {
535 assert(mbmi->ref_frame[0] == LAST_FRAME);
536 const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
537 mbmi->ref_frame[1] == GOLDEN_FRAME;
538 WRITE_REF_BIT(bit1, uni_comp_ref_p1);
539 if (bit1) {
540 const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
541 WRITE_REF_BIT(bit2, uni_comp_ref_p2);
542 }
543 } else {
544 assert(mbmi->ref_frame[1] == ALTREF_FRAME);
545 }
546
547 return;
548 }
549
550 assert(comp_ref_type == BIDIR_COMP_REFERENCE);
551
552 const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
553 mbmi->ref_frame[0] == LAST3_FRAME);
554 WRITE_REF_BIT(bit, comp_ref_p);
555
556 if (!bit) {
557 const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
558 WRITE_REF_BIT(bit1, comp_ref_p1);
559 } else {
560 const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
561 WRITE_REF_BIT(bit2, comp_ref_p2);
562 }
563
564 const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
565 WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
566
567 if (!bit_bwd) {
568 WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
569 }
570
571 } else {
572 const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
573 mbmi->ref_frame[0] >= BWDREF_FRAME);
574 WRITE_REF_BIT(bit0, single_ref_p1);
575
576 if (bit0) {
577 const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
578 WRITE_REF_BIT(bit1, single_ref_p2);
579
580 if (!bit1) {
581 WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
582 }
583 } else {
584 const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
585 mbmi->ref_frame[0] == GOLDEN_FRAME);
586 WRITE_REF_BIT(bit2, single_ref_p3);
587
588 if (!bit2) {
589 const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
590 WRITE_REF_BIT(bit3, single_ref_p4);
591 } else {
592 const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
593 WRITE_REF_BIT(bit4, single_ref_p5);
594 }
595 }
596 }
597 }
598 }
599
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)600 static AOM_INLINE void write_filter_intra_mode_info(
601 const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
602 aom_writer *w) {
603 if (av1_filter_intra_allowed(cm, mbmi)) {
604 aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
605 xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
606 if (mbmi->filter_intra_mode_info.use_filter_intra) {
607 const FILTER_INTRA_MODE mode =
608 mbmi->filter_intra_mode_info.filter_intra_mode;
609 aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
610 FILTER_INTRA_MODES);
611 }
612 }
613 }
614
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)615 static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
616 aom_cdf_prob *cdf) {
617 aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
618 2 * MAX_ANGLE_DELTA + 1);
619 }
620
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)621 static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
622 ThreadData *td, aom_writer *w) {
623 const MACROBLOCKD *xd = &td->mb.e_mbd;
624 const MB_MODE_INFO *const mbmi = xd->mi[0];
625 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
626
627 if (!av1_is_interp_needed(xd)) {
628 int_interpfilters filters = av1_broadcast_interp_filter(
629 av1_unswitchable_filter(cm->features.interp_filter));
630 assert(mbmi->interp_filters.as_int == filters.as_int);
631 (void)filters;
632 return;
633 }
634 if (cm->features.interp_filter == SWITCHABLE) {
635 int dir;
636 for (dir = 0; dir < 2; ++dir) {
637 const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
638 InterpFilter filter =
639 av1_extract_interp_filter(mbmi->interp_filters, dir);
640 aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
641 SWITCHABLE_FILTERS);
642 ++td->interp_filter_selected[filter];
643 if (cm->seq_params->enable_dual_filter == 0) return;
644 }
645 }
646 }
647
648 // Transmit color values with delta encoding. Write the first value as
649 // literal, and the deltas between each value and the previous one. "min_val" is
650 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)651 static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
652 int bit_depth, int min_val,
653 aom_writer *w) {
654 if (num <= 0) return;
655 assert(colors[0] < (1 << bit_depth));
656 aom_write_literal(w, colors[0], bit_depth);
657 if (num == 1) return;
658 int max_delta = 0;
659 int deltas[PALETTE_MAX_SIZE];
660 memset(deltas, 0, sizeof(deltas));
661 for (int i = 1; i < num; ++i) {
662 assert(colors[i] < (1 << bit_depth));
663 const int delta = colors[i] - colors[i - 1];
664 deltas[i - 1] = delta;
665 assert(delta >= min_val);
666 if (delta > max_delta) max_delta = delta;
667 }
668 const int min_bits = bit_depth - 3;
669 int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
670 assert(bits <= bit_depth);
671 int range = (1 << bit_depth) - colors[0] - min_val;
672 aom_write_literal(w, bits - min_bits, 2);
673 for (int i = 0; i < num - 1; ++i) {
674 aom_write_literal(w, deltas[i] - min_val, bits);
675 range -= deltas[i];
676 bits = AOMMIN(bits, av1_ceil_log2(range));
677 }
678 }
679
680 // Transmit luma palette color values. First signal if each color in the color
681 // cache is used. Those colors that are not in the cache are transmitted with
682 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)683 static AOM_INLINE void write_palette_colors_y(
684 const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
685 int bit_depth, aom_writer *w) {
686 const int n = pmi->palette_size[0];
687 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
688 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
689 int out_cache_colors[PALETTE_MAX_SIZE];
690 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
691 const int n_out_cache =
692 av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
693 cache_color_found, out_cache_colors);
694 int n_in_cache = 0;
695 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
696 const int found = cache_color_found[i];
697 aom_write_bit(w, found);
698 n_in_cache += found;
699 }
700 assert(n_in_cache + n_out_cache == n);
701 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
702 }
703
704 // Write chroma palette color values. U channel is handled similarly to the luma
705 // channel. For v channel, either use delta encoding or transmit raw values
706 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)707 static AOM_INLINE void write_palette_colors_uv(
708 const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
709 int bit_depth, aom_writer *w) {
710 const int n = pmi->palette_size[1];
711 const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
712 const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
713 // U channel colors.
714 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
715 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
716 int out_cache_colors[PALETTE_MAX_SIZE];
717 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
718 const int n_out_cache = av1_index_color_cache(
719 color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
720 int n_in_cache = 0;
721 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
722 const int found = cache_color_found[i];
723 aom_write_bit(w, found);
724 n_in_cache += found;
725 }
726 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
727
728 // V channel colors. Don't use color cache as the colors are not sorted.
729 const int max_val = 1 << bit_depth;
730 int zero_count = 0, min_bits_v = 0;
731 int bits_v =
732 av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
733 const int rate_using_delta =
734 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
735 const int rate_using_raw = bit_depth * n;
736 if (rate_using_delta < rate_using_raw) { // delta encoding
737 assert(colors_v[0] < (1 << bit_depth));
738 aom_write_bit(w, 1);
739 aom_write_literal(w, bits_v - min_bits_v, 2);
740 aom_write_literal(w, colors_v[0], bit_depth);
741 for (int i = 1; i < n; ++i) {
742 assert(colors_v[i] < (1 << bit_depth));
743 if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
744 aom_write_literal(w, 0, bits_v);
745 continue;
746 }
747 const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
748 const int sign_bit = colors_v[i] < colors_v[i - 1];
749 if (delta <= max_val - delta) {
750 aom_write_literal(w, delta, bits_v);
751 aom_write_bit(w, sign_bit);
752 } else {
753 aom_write_literal(w, max_val - delta, bits_v);
754 aom_write_bit(w, !sign_bit);
755 }
756 }
757 } else { // Transmit raw values.
758 aom_write_bit(w, 0);
759 for (int i = 0; i < n; ++i) {
760 assert(colors_v[i] < (1 << bit_depth));
761 aom_write_literal(w, colors_v[i], bit_depth);
762 }
763 }
764 }
765
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)766 static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
767 const MACROBLOCKD *xd,
768 const MB_MODE_INFO *const mbmi,
769 aom_writer *w) {
770 const int num_planes = av1_num_planes(cm);
771 const BLOCK_SIZE bsize = mbmi->bsize;
772 assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
773 const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
774 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
775
776 if (mbmi->mode == DC_PRED) {
777 const int n = pmi->palette_size[0];
778 const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
779 aom_write_symbol(
780 w, n > 0,
781 xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
782 if (n > 0) {
783 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
784 xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
785 PALETTE_SIZES);
786 write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
787 }
788 }
789
790 const int uv_dc_pred =
791 num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
792 if (uv_dc_pred) {
793 const int n = pmi->palette_size[1];
794 const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
795 aom_write_symbol(w, n > 0,
796 xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
797 if (n > 0) {
798 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
799 xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
800 PALETTE_SIZES);
801 write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
802 }
803 }
804 }
805
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)806 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
807 TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
808 MB_MODE_INFO *mbmi = xd->mi[0];
809 const FeatureFlags *const features = &cm->features;
810 const int is_inter = is_inter_block(mbmi);
811 if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
812 ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
813 (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
814 !mbmi->skip_txfm &&
815 !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
816 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
817 const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
818 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
819 tx_size, is_inter, features->reduced_tx_set_used);
820 const int eset =
821 get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
822 // eset == 0 should correspond to a set with only DCT_DCT and there
823 // is no need to send the tx_type
824 assert(eset > 0);
825 assert(av1_ext_tx_used[tx_set_type][tx_type]);
826 if (is_inter) {
827 aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
828 ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
829 av1_num_ext_tx_set[tx_set_type]);
830 } else {
831 PREDICTION_MODE intra_dir;
832 if (mbmi->filter_intra_mode_info.use_filter_intra)
833 intra_dir =
834 fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
835 else
836 intra_dir = mbmi->mode;
837 aom_write_symbol(
838 w, av1_ext_tx_ind[tx_set_type][tx_type],
839 ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
840 av1_num_ext_tx_set[tx_set_type]);
841 }
842 }
843 }
844
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)845 static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
846 BLOCK_SIZE bsize,
847 PREDICTION_MODE mode,
848 aom_writer *w) {
849 aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
850 INTRA_MODES);
851 }
852
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)853 static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
854 UV_PREDICTION_MODE uv_mode,
855 PREDICTION_MODE y_mode,
856 CFL_ALLOWED_TYPE cfl_allowed,
857 aom_writer *w) {
858 aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
859 UV_INTRA_MODES - !cfl_allowed);
860 }
861
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)862 static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
863 uint8_t idx, int8_t joint_sign,
864 aom_writer *w) {
865 aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
866 // Magnitudes are only signaled for nonzero codes.
867 if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
868 aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
869 aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
870 }
871 if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
872 aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
873 aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
874 }
875 }
876
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)877 static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
878 aom_writer *w, int skip) {
879 if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
880
881 // At the start of a superblock, mark that we haven't yet written CDEF
882 // strengths for any of the CDEF units contained in this superblock.
883 const int sb_mask = (cm->seq_params->mib_size - 1);
884 const int mi_row_in_sb = (xd->mi_row & sb_mask);
885 const int mi_col_in_sb = (xd->mi_col & sb_mask);
886 if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
887 xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
888 xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
889 }
890
891 // CDEF unit size is 64x64 irrespective of the superblock size.
892 const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
893
894 // Find index of this CDEF unit in this superblock.
895 const int index_mask = cdef_size;
896 const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
897 const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
898 const int index = (cm->seq_params->sb_size == BLOCK_128X128)
899 ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
900 : 0;
901
902 // Write CDEF strength to the first non-skip coding block in this CDEF unit.
903 if (!xd->cdef_transmitted[index] && !skip) {
904 // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
905 // of the 1st block in this CDEF unit.
906 const int first_block_mask = ~(cdef_size - 1);
907 const CommonModeInfoParams *const mi_params = &cm->mi_params;
908 const int grid_idx =
909 get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
910 xd->mi_col & first_block_mask);
911 const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
912 aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
913 xd->cdef_transmitted[index] = true;
914 }
915 }
916
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)917 static AOM_INLINE void write_inter_segment_id(
918 AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
919 const struct segmentation *const seg, struct segmentation_probs *const segp,
920 int skip, int preskip) {
921 MB_MODE_INFO *const mbmi = xd->mi[0];
922 AV1_COMMON *const cm = &cpi->common;
923 const int mi_row = xd->mi_row;
924 const int mi_col = xd->mi_col;
925
926 if (seg->update_map) {
927 if (preskip) {
928 if (!seg->segid_preskip) return;
929 } else {
930 if (seg->segid_preskip) return;
931 if (skip) {
932 write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
933 if (seg->temporal_update) mbmi->seg_id_predicted = 0;
934 return;
935 }
936 }
937 if (seg->temporal_update) {
938 const int pred_flag = mbmi->seg_id_predicted;
939 aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
940 aom_write_symbol(w, pred_flag, pred_cdf, 2);
941 if (!pred_flag) {
942 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
943 }
944 if (pred_flag) {
945 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
946 mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
947 }
948 } else {
949 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
950 }
951 }
952 }
953
954 // If delta q is present, writes delta_q index.
955 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)956 static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
957 MACROBLOCKD *const xd, int skip,
958 aom_writer *w) {
959 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
960
961 if (delta_q_info->delta_q_present_flag) {
962 const MB_MODE_INFO *const mbmi = xd->mi[0];
963 const BLOCK_SIZE bsize = mbmi->bsize;
964 const int super_block_upper_left =
965 ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
966 ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
967
968 if ((bsize != cm->seq_params->sb_size || skip == 0) &&
969 super_block_upper_left) {
970 assert(mbmi->current_qindex > 0);
971 const int reduced_delta_qindex =
972 (mbmi->current_qindex - xd->current_base_qindex) /
973 delta_q_info->delta_q_res;
974 write_delta_qindex(xd, reduced_delta_qindex, w);
975 xd->current_base_qindex = mbmi->current_qindex;
976 if (delta_q_info->delta_lf_present_flag) {
977 if (delta_q_info->delta_lf_multi) {
978 const int frame_lf_count =
979 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
980 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
981 int reduced_delta_lflevel =
982 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
983 delta_q_info->delta_lf_res;
984 write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
985 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
986 }
987 } else {
988 int reduced_delta_lflevel =
989 (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
990 delta_q_info->delta_lf_res;
991 write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
992 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
993 }
994 }
995 }
996 }
997 }
998
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)999 static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
1000 MACROBLOCKD *const xd,
1001 int is_keyframe,
1002 aom_writer *w) {
1003 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1004 const MB_MODE_INFO *const mbmi = xd->mi[0];
1005 const PREDICTION_MODE mode = mbmi->mode;
1006 const BLOCK_SIZE bsize = mbmi->bsize;
1007
1008 // Y mode.
1009 if (is_keyframe) {
1010 const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1011 const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1012 write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1013 } else {
1014 write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1015 }
1016
1017 // Y angle delta.
1018 const int use_angle_delta = av1_use_angle_delta(bsize);
1019 if (use_angle_delta && av1_is_directional_mode(mode)) {
1020 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1021 ec_ctx->angle_delta_cdf[mode - V_PRED]);
1022 }
1023
1024 // UV mode and UV angle delta.
1025 if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1026 const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1027 write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1028 if (uv_mode == UV_CFL_PRED)
1029 write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1030 if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
1031 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1032 ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
1033 }
1034 }
1035
1036 // Palette.
1037 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1038 write_palette_mode_info(cm, xd, mbmi, w);
1039 }
1040
1041 // Filter intra.
1042 write_filter_intra_mode_info(cm, xd, mbmi, w);
1043 }
1044
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1045 static INLINE int16_t mode_context_analyzer(
1046 const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1047 if (rf[1] <= INTRA_FRAME) return mode_context;
1048
1049 const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1050 const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1051
1052 const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1053 newmv_ctx, COMP_NEWMV_CTXS - 1)];
1054 return comp_ctx;
1055 }
1056
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1057 static INLINE int_mv get_ref_mv_from_stack(
1058 int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1059 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1060 const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1061 const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1062
1063 if (ref_frame[1] > INTRA_FRAME) {
1064 assert(ref_idx == 0 || ref_idx == 1);
1065 return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1066 : curr_ref_mv_stack[ref_mv_idx].this_mv;
1067 }
1068
1069 assert(ref_idx == 0);
1070 return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1071 ? curr_ref_mv_stack[ref_mv_idx].this_mv
1072 : mbmi_ext_frame->global_mvs[ref_frame_type];
1073 }
1074
get_ref_mv(const MACROBLOCK * x,int ref_idx)1075 static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1076 const MACROBLOCKD *xd = &x->e_mbd;
1077 const MB_MODE_INFO *mbmi = xd->mi[0];
1078 int ref_mv_idx = mbmi->ref_mv_idx;
1079 if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1080 assert(has_second_ref(mbmi));
1081 ref_mv_idx += 1;
1082 }
1083 return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1084 x->mbmi_ext_frame);
1085 }
1086
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1087 static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1088 aom_writer *w) {
1089 AV1_COMMON *const cm = &cpi->common;
1090 MACROBLOCK *const x = &td->mb;
1091 MACROBLOCKD *const xd = &x->e_mbd;
1092 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1093 const struct segmentation *const seg = &cm->seg;
1094 struct segmentation_probs *const segp = &ec_ctx->seg;
1095 const MB_MODE_INFO *const mbmi = xd->mi[0];
1096 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1097 const PREDICTION_MODE mode = mbmi->mode;
1098 const int segment_id = mbmi->segment_id;
1099 const BLOCK_SIZE bsize = mbmi->bsize;
1100 const int allow_hp = cm->features.allow_high_precision_mv;
1101 const int is_inter = is_inter_block(mbmi);
1102 const int is_compound = has_second_ref(mbmi);
1103 int ref;
1104
1105 write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1106
1107 write_skip_mode(cm, xd, segment_id, mbmi, w);
1108
1109 assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1110 const int skip =
1111 mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1112
1113 write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1114
1115 write_cdef(cm, xd, w, skip);
1116
1117 write_delta_q_params(cm, xd, skip, w);
1118
1119 if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1120
1121 if (mbmi->skip_mode) return;
1122
1123 if (!is_inter) {
1124 write_intra_prediction_modes(cm, xd, 0, w);
1125 } else {
1126 int16_t mode_ctx;
1127
1128 av1_collect_neighbors_ref_counts(xd);
1129
1130 write_ref_frames(cm, xd, w);
1131
1132 mode_ctx =
1133 mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1134
1135 // If segment skip is not enabled code the mode.
1136 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1137 if (is_inter_compound_mode(mode))
1138 write_inter_compound_mode(xd, w, mode, mode_ctx);
1139 else if (is_inter_singleref_mode(mode))
1140 write_inter_mode(w, mode, ec_ctx, mode_ctx);
1141
1142 if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1143 write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1144 else
1145 assert(mbmi->ref_mv_idx == 0);
1146 }
1147
1148 if (mode == NEWMV || mode == NEW_NEWMV) {
1149 for (ref = 0; ref < 1 + is_compound; ++ref) {
1150 nmv_context *nmvc = &ec_ctx->nmvc;
1151 const int_mv ref_mv = get_ref_mv(x, ref);
1152 av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1153 allow_hp);
1154 }
1155 } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1156 nmv_context *nmvc = &ec_ctx->nmvc;
1157 const int_mv ref_mv = get_ref_mv(x, 1);
1158 av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1159 allow_hp);
1160 } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1161 nmv_context *nmvc = &ec_ctx->nmvc;
1162 const int_mv ref_mv = get_ref_mv(x, 0);
1163 av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1164 allow_hp);
1165 }
1166
1167 if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1168 cpi->common.seq_params->enable_interintra_compound &&
1169 is_interintra_allowed(mbmi)) {
1170 const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1171 const int bsize_group = size_group_lookup[bsize];
1172 aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1173 if (interintra) {
1174 aom_write_symbol(w, mbmi->interintra_mode,
1175 ec_ctx->interintra_mode_cdf[bsize_group],
1176 INTERINTRA_MODES);
1177 if (av1_is_wedge_used(bsize)) {
1178 aom_write_symbol(w, mbmi->use_wedge_interintra,
1179 ec_ctx->wedge_interintra_cdf[bsize], 2);
1180 if (mbmi->use_wedge_interintra) {
1181 aom_write_symbol(w, mbmi->interintra_wedge_index,
1182 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1183 }
1184 }
1185 }
1186 }
1187
1188 if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1189
1190 // First write idx to indicate current compound inter prediction mode group
1191 // Group A (0): dist_wtd_comp, compound_average
1192 // Group B (1): interintra, compound_diffwtd, wedge
1193 if (has_second_ref(mbmi)) {
1194 const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1195 cm->seq_params->enable_masked_compound;
1196
1197 if (masked_compound_used) {
1198 const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1199 aom_write_symbol(w, mbmi->comp_group_idx,
1200 ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1201 } else {
1202 assert(mbmi->comp_group_idx == 0);
1203 }
1204
1205 if (mbmi->comp_group_idx == 0) {
1206 if (mbmi->compound_idx)
1207 assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1208
1209 if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1210 const int comp_index_ctx = get_comp_index_context(cm, xd);
1211 aom_write_symbol(w, mbmi->compound_idx,
1212 ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1213 } else {
1214 assert(mbmi->compound_idx == 1);
1215 }
1216 } else {
1217 assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1218 is_inter_compound_mode(mbmi->mode) &&
1219 mbmi->motion_mode == SIMPLE_TRANSLATION);
1220 assert(masked_compound_used);
1221 // compound_diffwtd, wedge
1222 assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1223 mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1224
1225 if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1226 aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1227 ec_ctx->compound_type_cdf[bsize],
1228 MASKED_COMPOUND_TYPES);
1229
1230 if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1231 assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1232 aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1233 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1234 aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1235 } else {
1236 assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1237 aom_write_literal(w, mbmi->interinter_comp.mask_type,
1238 MAX_DIFFWTD_MASK_BITS);
1239 }
1240 }
1241 }
1242 write_mb_interp_filter(cm, td, w);
1243 }
1244 }
1245
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1246 static AOM_INLINE void write_intrabc_info(
1247 MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1248 aom_writer *w) {
1249 const MB_MODE_INFO *const mbmi = xd->mi[0];
1250 int use_intrabc = is_intrabc_block(mbmi);
1251 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1252 aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1253 if (use_intrabc) {
1254 assert(mbmi->mode == DC_PRED);
1255 assert(mbmi->uv_mode == UV_DC_PRED);
1256 assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1257 int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1258 av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1259 }
1260 }
1261
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1262 static AOM_INLINE void write_mb_modes_kf(
1263 AV1_COMP *cpi, MACROBLOCKD *xd,
1264 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1265 AV1_COMMON *const cm = &cpi->common;
1266 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1267 const struct segmentation *const seg = &cm->seg;
1268 struct segmentation_probs *const segp = &ec_ctx->seg;
1269 const MB_MODE_INFO *const mbmi = xd->mi[0];
1270
1271 if (seg->segid_preskip && seg->update_map)
1272 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1273
1274 const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1275
1276 if (!seg->segid_preskip && seg->update_map)
1277 write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1278
1279 write_cdef(cm, xd, w, skip);
1280
1281 write_delta_q_params(cm, xd, skip, w);
1282
1283 if (av1_allow_intrabc(cm)) {
1284 write_intrabc_info(xd, mbmi_ext_frame, w);
1285 if (is_intrabc_block(mbmi)) return;
1286 }
1287
1288 write_intra_prediction_modes(cm, xd, 1, w);
1289 }
1290
1291 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1292 static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
1293 printf("\nmi->mi_row == %d\n", mi->mi_row);
1294 printf("&& mi->mi_col == %d\n", mi->mi_col);
1295 printf("&& mi->bsize == %d\n", mi->bsize);
1296 printf("&& mi->tx_size == %d\n", mi->tx_size);
1297 printf("&& mi->mode == %d\n", mi->mode);
1298 }
1299
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1300 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1301 int plane) {
1302 if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1303 printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1304 plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1305 return 1;
1306 }
1307 return 0;
1308 }
1309 #endif
1310
1311 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1312 static AOM_INLINE void enc_dump_logs(
1313 const AV1_COMMON *const cm,
1314 const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1315 const MB_MODE_INFO *const mbmi = *(
1316 cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1317 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1318 mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1319 cm->mi_params.mi_alloc_bsize,
1320 mbmi_ext_info->stride);
1321 if (is_inter_block(mbmi)) {
1322 #define FRAME_TO_CHECK 11
1323 if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1324 cm->show_frame == 1) {
1325 const BLOCK_SIZE bsize = mbmi->bsize;
1326
1327 int_mv mv[2] = { 0 };
1328 const int is_comp_ref = has_second_ref(mbmi);
1329
1330 for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1331 mv[ref].as_mv = mbmi->mv[ref].as_mv;
1332
1333 if (!is_comp_ref) {
1334 mv[1].as_int = 0;
1335 }
1336
1337 const int16_t mode_ctx =
1338 is_comp_ref ? 0
1339 : mode_context_analyzer(mbmi_ext_frame->mode_context,
1340 mbmi->ref_frame);
1341
1342 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1343 int16_t zeromv_ctx = -1;
1344 int16_t refmv_ctx = -1;
1345
1346 if (mbmi->mode != NEWMV) {
1347 zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1348 if (mbmi->mode != GLOBALMV)
1349 refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1350 }
1351
1352 printf(
1353 "=== ENCODER ===: "
1354 "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1355 "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1356 "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1357 "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1358 cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1359 mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1360 mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1361 mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1362 zeromv_ctx, refmv_ctx, mbmi->tx_size);
1363 }
1364 }
1365 }
1366 #endif // ENC_MISMATCH_DEBUG
1367
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1368 static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1369 aom_writer *w) {
1370 AV1_COMMON *const cm = &cpi->common;
1371 MACROBLOCKD *const xd = &td->mb.e_mbd;
1372 MB_MODE_INFO *m = xd->mi[0];
1373
1374 if (frame_is_intra_only(cm)) {
1375 write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1376 } else {
1377 // has_subpel_mv_component needs the ref frame buffers set up to look
1378 // up if they are scaled. has_subpel_mv_component is in turn needed by
1379 // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1380 set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1381
1382 #if ENC_MISMATCH_DEBUG
1383 enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1384 #endif // ENC_MISMATCH_DEBUG
1385
1386 pack_inter_mode_mvs(cpi, td, w);
1387 }
1388 }
1389
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1390 static AOM_INLINE void write_inter_txb_coeff(
1391 AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1392 aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1393 TOKEN_STATS *token_stats, const int row, const int col, int *block,
1394 const int plane) {
1395 MACROBLOCKD *const xd = &x->e_mbd;
1396 const struct macroblockd_plane *const pd = &xd->plane[plane];
1397 const BLOCK_SIZE bsize = mbmi->bsize;
1398 assert(bsize < BLOCK_SIZES_ALL);
1399 const int ss_x = pd->subsampling_x;
1400 const int ss_y = pd->subsampling_y;
1401 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1402 assert(plane_bsize < BLOCK_SIZES_ALL);
1403 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1404 const int step =
1405 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1406 const int bkw = tx_size_wide_unit[max_tx_size];
1407 const int bkh = tx_size_high_unit[max_tx_size];
1408 const BLOCK_SIZE max_unit_bsize =
1409 get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1410 const int num_4x4_w = mi_size_wide[plane_bsize];
1411 const int num_4x4_h = mi_size_high[plane_bsize];
1412 const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1413 const int mu_blocks_high = mi_size_high[max_unit_bsize];
1414 const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1415 const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1416 for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1417 for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1418 pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1419 cm->seq_params->bit_depth, *block, blk_row, blk_col,
1420 max_tx_size, token_stats);
1421 *block += step;
1422 }
1423 }
1424 }
1425
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1426 static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1427 aom_writer *w, const TokenExtra **tok,
1428 const TokenExtra *const tok_end) {
1429 AV1_COMMON *const cm = &cpi->common;
1430 MACROBLOCKD *const xd = &x->e_mbd;
1431 MB_MODE_INFO *const mbmi = xd->mi[0];
1432 const BLOCK_SIZE bsize = mbmi->bsize;
1433
1434 assert(!mbmi->skip_txfm);
1435
1436 const int is_inter = is_inter_block(mbmi);
1437 if (!is_inter) {
1438 av1_write_intra_coeffs_mb(cm, x, w, bsize);
1439 } else {
1440 int block[MAX_MB_PLANE] = { 0 };
1441 assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1442 xd->plane[0].subsampling_y));
1443 const int num_4x4_w = mi_size_wide[bsize];
1444 const int num_4x4_h = mi_size_high[bsize];
1445 TOKEN_STATS token_stats;
1446 init_token_stats(&token_stats);
1447
1448 const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1449 assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1450 xd->plane[0].subsampling_x,
1451 xd->plane[0].subsampling_y));
1452 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1453 int mu_blocks_high = mi_size_high[max_unit_bsize];
1454 mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1455 mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1456
1457 const int num_planes = av1_num_planes(cm);
1458 for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1459 for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1460 for (int plane = 0; plane < num_planes; ++plane) {
1461 if (plane && !xd->is_chroma_ref) break;
1462 write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1463 col, &block[plane], plane);
1464 }
1465 }
1466 }
1467 #if CONFIG_RD_DEBUG
1468 for (int plane = 0; plane < num_planes; ++plane) {
1469 if (mbmi->bsize >= BLOCK_8X8 &&
1470 rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1471 dump_mode_info(mbmi);
1472 assert(0);
1473 }
1474 }
1475 #endif // CONFIG_RD_DEBUG
1476 }
1477 }
1478
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1479 static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1480 const TileInfo *const tile, aom_writer *w,
1481 const TokenExtra **tok,
1482 const TokenExtra *const tok_end,
1483 int mi_row, int mi_col) {
1484 const AV1_COMMON *cm = &cpi->common;
1485 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1486 MACROBLOCKD *xd = &td->mb.e_mbd;
1487 FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1488 const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1489 xd->mi = mi_params->mi_grid_base + grid_idx;
1490 td->mb.mbmi_ext_frame =
1491 cpi->mbmi_ext_info.frame_base +
1492 get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1493 cpi->mbmi_ext_info.stride);
1494 xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1495 xd->tx_type_map_stride = mi_params->mi_stride;
1496
1497 const MB_MODE_INFO *mbmi = xd->mi[0];
1498 const BLOCK_SIZE bsize = mbmi->bsize;
1499 assert(bsize <= cm->seq_params->sb_size ||
1500 (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1501
1502 const int bh = mi_size_high[bsize];
1503 const int bw = mi_size_wide[bsize];
1504 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1505 mi_params->mi_cols);
1506
1507 xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1508 xd->left_txfm_context =
1509 xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1510
1511 write_mbmi_b(cpi, td, w);
1512
1513 for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1514 const uint8_t palette_size_plane =
1515 mbmi->palette_mode_info.palette_size[plane];
1516 assert(!mbmi->skip_mode || !palette_size_plane);
1517 if (palette_size_plane > 0) {
1518 assert(mbmi->use_intrabc == 0);
1519 assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1520 mbmi->bsize));
1521 assert(!plane || xd->is_chroma_ref);
1522 int rows, cols;
1523 av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1524 &cols);
1525 assert(*tok < tok_end);
1526 MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1527 : tile_ctx->palette_y_color_index_cdf;
1528 pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1529 }
1530 }
1531
1532 const int is_inter_tx = is_inter_block(mbmi);
1533 const int skip_txfm = mbmi->skip_txfm;
1534 const int segment_id = mbmi->segment_id;
1535 if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1536 !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1537 if (is_inter_tx) { // This implies skip flag is 0.
1538 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1539 const int txbh = tx_size_high_unit[max_tx_size];
1540 const int txbw = tx_size_wide_unit[max_tx_size];
1541 const int width = mi_size_wide[bsize];
1542 const int height = mi_size_high[bsize];
1543 for (int idy = 0; idy < height; idy += txbh) {
1544 for (int idx = 0; idx < width; idx += txbw) {
1545 write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1546 }
1547 }
1548 } else {
1549 write_selected_tx_size(xd, w);
1550 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1551 }
1552 } else {
1553 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1554 skip_txfm && is_inter_tx, xd);
1555 }
1556
1557 if (!mbmi->skip_txfm) {
1558 int start = aom_tell_size(w);
1559
1560 write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1561
1562 const int end = aom_tell_size(w);
1563 td->coefficient_size += end - start;
1564 }
1565 }
1566
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1567 static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
1568 const MACROBLOCKD *const xd, int hbs,
1569 int mi_row, int mi_col, PARTITION_TYPE p,
1570 BLOCK_SIZE bsize, aom_writer *w) {
1571 const int is_partition_point = bsize >= BLOCK_8X8;
1572
1573 if (!is_partition_point) return;
1574
1575 const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1576 const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1577 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1578 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1579
1580 if (!has_rows && !has_cols) {
1581 assert(p == PARTITION_SPLIT);
1582 return;
1583 }
1584
1585 if (has_rows && has_cols) {
1586 aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1587 partition_cdf_length(bsize));
1588 } else if (!has_rows && has_cols) {
1589 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1590 assert(bsize > BLOCK_8X8);
1591 aom_cdf_prob cdf[2];
1592 partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1593 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1594 } else {
1595 assert(has_rows && !has_cols);
1596 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1597 assert(bsize > BLOCK_8X8);
1598 aom_cdf_prob cdf[2];
1599 partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1600 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1601 }
1602 }
1603
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1604 static AOM_INLINE void write_modes_sb(
1605 AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
1606 aom_writer *const w, const TokenExtra **tok,
1607 const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
1608 const AV1_COMMON *const cm = &cpi->common;
1609 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1610 MACROBLOCKD *const xd = &td->mb.e_mbd;
1611 assert(bsize < BLOCK_SIZES_ALL);
1612 const int hbs = mi_size_wide[bsize] / 2;
1613 const int quarter_step = mi_size_wide[bsize] / 4;
1614 int i;
1615 const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1616 const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1617
1618 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1619
1620 #if !CONFIG_REALTIME_ONLY
1621 const int num_planes = av1_num_planes(cm);
1622 for (int plane = 0; plane < num_planes; ++plane) {
1623 int rcol0, rcol1, rrow0, rrow1;
1624 if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1625 &rcol0, &rcol1, &rrow0, &rrow1)) {
1626 const int rstride = cm->rst_info[plane].horz_units_per_tile;
1627 for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1628 for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1629 const int runit_idx = rcol + rrow * rstride;
1630 const RestorationUnitInfo *rui =
1631 &cm->rst_info[plane].unit_info[runit_idx];
1632 loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, td->counts);
1633 }
1634 }
1635 }
1636 }
1637 #endif
1638
1639 write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1640 switch (partition) {
1641 case PARTITION_NONE:
1642 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1643 break;
1644 case PARTITION_HORZ:
1645 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1646 if (mi_row + hbs < mi_params->mi_rows)
1647 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1648 break;
1649 case PARTITION_VERT:
1650 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1651 if (mi_col + hbs < mi_params->mi_cols)
1652 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1653 break;
1654 case PARTITION_SPLIT:
1655 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1656 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1657 subsize);
1658 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1659 subsize);
1660 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1661 subsize);
1662 break;
1663 case PARTITION_HORZ_A:
1664 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1665 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1666 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1667 break;
1668 case PARTITION_HORZ_B:
1669 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1670 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1671 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1672 break;
1673 case PARTITION_VERT_A:
1674 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1675 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1677 break;
1678 case PARTITION_VERT_B:
1679 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1680 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1681 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1682 break;
1683 case PARTITION_HORZ_4:
1684 for (i = 0; i < 4; ++i) {
1685 int this_mi_row = mi_row + i * quarter_step;
1686 if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1687
1688 write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1689 }
1690 break;
1691 case PARTITION_VERT_4:
1692 for (i = 0; i < 4; ++i) {
1693 int this_mi_col = mi_col + i * quarter_step;
1694 if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1695
1696 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1697 }
1698 break;
1699 default: assert(0);
1700 }
1701
1702 // update partition context
1703 update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1704 }
1705
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1706 static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1707 const TileInfo *const tile,
1708 aom_writer *const w, int tile_row,
1709 int tile_col) {
1710 AV1_COMMON *const cm = &cpi->common;
1711 MACROBLOCKD *const xd = &td->mb.e_mbd;
1712 const int mi_row_start = tile->mi_row_start;
1713 const int mi_row_end = tile->mi_row_end;
1714 const int mi_col_start = tile->mi_col_start;
1715 const int mi_col_end = tile->mi_col_end;
1716 const int num_planes = av1_num_planes(cm);
1717
1718 av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1719 av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1720
1721 if (cpi->common.delta_q_info.delta_q_present_flag) {
1722 xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1723 if (cpi->common.delta_q_info.delta_lf_present_flag) {
1724 av1_reset_loop_filter_delta(xd, num_planes);
1725 }
1726 }
1727
1728 for (int mi_row = mi_row_start; mi_row < mi_row_end;
1729 mi_row += cm->seq_params->mib_size) {
1730 const int sb_row_in_tile =
1731 (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1732 const TokenExtra *tok =
1733 cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start;
1734 const TokenExtra *tok_end =
1735 tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count;
1736
1737 av1_zero_left_context(xd);
1738
1739 for (int mi_col = mi_col_start; mi_col < mi_col_end;
1740 mi_col += cm->seq_params->mib_size) {
1741 td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1742 write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1743 cm->seq_params->sb_size);
1744 }
1745 assert(tok == tok_end);
1746 }
1747 }
1748
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1749 static AOM_INLINE void encode_restoration_mode(
1750 AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
1751 assert(!cm->features.all_lossless);
1752 if (!cm->seq_params->enable_restoration) return;
1753 if (cm->features.allow_intrabc) return;
1754 const int num_planes = av1_num_planes(cm);
1755 int all_none = 1, chroma_none = 1;
1756 for (int p = 0; p < num_planes; ++p) {
1757 RestorationInfo *rsi = &cm->rst_info[p];
1758 if (rsi->frame_restoration_type != RESTORE_NONE) {
1759 all_none = 0;
1760 chroma_none &= p == 0;
1761 }
1762 switch (rsi->frame_restoration_type) {
1763 case RESTORE_NONE:
1764 aom_wb_write_bit(wb, 0);
1765 aom_wb_write_bit(wb, 0);
1766 break;
1767 case RESTORE_WIENER:
1768 aom_wb_write_bit(wb, 1);
1769 aom_wb_write_bit(wb, 0);
1770 break;
1771 case RESTORE_SGRPROJ:
1772 aom_wb_write_bit(wb, 1);
1773 aom_wb_write_bit(wb, 1);
1774 break;
1775 case RESTORE_SWITCHABLE:
1776 aom_wb_write_bit(wb, 0);
1777 aom_wb_write_bit(wb, 1);
1778 break;
1779 default: assert(0);
1780 }
1781 }
1782 if (!all_none) {
1783 assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1784 cm->seq_params->sb_size == BLOCK_128X128);
1785 const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1786
1787 RestorationInfo *rsi = &cm->rst_info[0];
1788
1789 assert(rsi->restoration_unit_size >= sb_size);
1790 assert(RESTORATION_UNITSIZE_MAX == 256);
1791
1792 if (sb_size == 64) {
1793 aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1794 }
1795 if (rsi->restoration_unit_size > 64) {
1796 aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1797 }
1798 }
1799
1800 if (num_planes > 1) {
1801 int s =
1802 AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1803 if (s && !chroma_none) {
1804 aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1805 cm->rst_info[0].restoration_unit_size);
1806 assert(cm->rst_info[1].restoration_unit_size ==
1807 cm->rst_info[0].restoration_unit_size ||
1808 cm->rst_info[1].restoration_unit_size ==
1809 (cm->rst_info[0].restoration_unit_size >> s));
1810 assert(cm->rst_info[2].restoration_unit_size ==
1811 cm->rst_info[1].restoration_unit_size);
1812 } else if (!s) {
1813 assert(cm->rst_info[1].restoration_unit_size ==
1814 cm->rst_info[0].restoration_unit_size);
1815 assert(cm->rst_info[2].restoration_unit_size ==
1816 cm->rst_info[1].restoration_unit_size);
1817 }
1818 }
1819 }
1820
1821 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1822 static AOM_INLINE void write_wiener_filter(int wiener_win,
1823 const WienerInfo *wiener_info,
1824 WienerInfo *ref_wiener_info,
1825 aom_writer *wb) {
1826 if (wiener_win == WIENER_WIN)
1827 aom_write_primitive_refsubexpfin(
1828 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1829 WIENER_FILT_TAP0_SUBEXP_K,
1830 ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1831 wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1832 else
1833 assert(wiener_info->vfilter[0] == 0 &&
1834 wiener_info->vfilter[WIENER_WIN - 1] == 0);
1835 aom_write_primitive_refsubexpfin(
1836 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1837 WIENER_FILT_TAP1_SUBEXP_K,
1838 ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1839 wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1840 aom_write_primitive_refsubexpfin(
1841 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1842 WIENER_FILT_TAP2_SUBEXP_K,
1843 ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1844 wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1845 if (wiener_win == WIENER_WIN)
1846 aom_write_primitive_refsubexpfin(
1847 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1848 WIENER_FILT_TAP0_SUBEXP_K,
1849 ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1850 wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1851 else
1852 assert(wiener_info->hfilter[0] == 0 &&
1853 wiener_info->hfilter[WIENER_WIN - 1] == 0);
1854 aom_write_primitive_refsubexpfin(
1855 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1856 WIENER_FILT_TAP1_SUBEXP_K,
1857 ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1858 wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1859 aom_write_primitive_refsubexpfin(
1860 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1861 WIENER_FILT_TAP2_SUBEXP_K,
1862 ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1863 wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1864 memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1865 }
1866
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1867 static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1868 SgrprojInfo *ref_sgrproj_info,
1869 aom_writer *wb) {
1870 aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1871 const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1872
1873 if (params->r[0] == 0) {
1874 assert(sgrproj_info->xqd[0] == 0);
1875 aom_write_primitive_refsubexpfin(
1876 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1877 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1878 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1879 } else if (params->r[1] == 0) {
1880 aom_write_primitive_refsubexpfin(
1881 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1882 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1883 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1884 } else {
1885 aom_write_primitive_refsubexpfin(
1886 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1887 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1888 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1889 aom_write_primitive_refsubexpfin(
1890 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1891 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1892 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1893 }
1894
1895 memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1896 }
1897
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,const RestorationUnitInfo * rui,aom_writer * const w,int plane,FRAME_COUNTS * counts)1898 static AOM_INLINE void loop_restoration_write_sb_coeffs(
1899 const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
1900 aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1901 const RestorationInfo *rsi = cm->rst_info + plane;
1902 RestorationType frame_rtype = rsi->frame_restoration_type;
1903 assert(frame_rtype != RESTORE_NONE);
1904
1905 (void)counts;
1906 assert(!cm->features.all_lossless);
1907
1908 const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1909 WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1910 SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1911 RestorationType unit_rtype = rui->restoration_type;
1912
1913 if (frame_rtype == RESTORE_SWITCHABLE) {
1914 aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1915 RESTORE_SWITCHABLE_TYPES);
1916 #if CONFIG_ENTROPY_STATS
1917 ++counts->switchable_restore[unit_rtype];
1918 #endif
1919 switch (unit_rtype) {
1920 case RESTORE_WIENER:
1921 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1922 break;
1923 case RESTORE_SGRPROJ:
1924 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1925 break;
1926 default: assert(unit_rtype == RESTORE_NONE); break;
1927 }
1928 } else if (frame_rtype == RESTORE_WIENER) {
1929 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1930 xd->tile_ctx->wiener_restore_cdf, 2);
1931 #if CONFIG_ENTROPY_STATS
1932 ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1933 #endif
1934 if (unit_rtype != RESTORE_NONE) {
1935 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1936 }
1937 } else if (frame_rtype == RESTORE_SGRPROJ) {
1938 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1939 xd->tile_ctx->sgrproj_restore_cdf, 2);
1940 #if CONFIG_ENTROPY_STATS
1941 ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1942 #endif
1943 if (unit_rtype != RESTORE_NONE) {
1944 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1945 }
1946 }
1947 }
1948 #endif // !CONFIG_REALTIME_ONLY
1949
1950 // Only write out the ref delta section if any of the elements
1951 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)1952 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
1953 struct loopfilter *lf = &cm->lf;
1954 if (!lf->mode_ref_delta_update) {
1955 return 0;
1956 }
1957 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
1958 int8_t last_ref_deltas[REF_FRAMES];
1959 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
1960 if (buf == NULL) {
1961 av1_set_default_ref_deltas(last_ref_deltas);
1962 av1_set_default_mode_deltas(last_mode_deltas);
1963 } else {
1964 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
1965 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
1966 }
1967 for (int i = 0; i < REF_FRAMES; i++) {
1968 if (lf->ref_deltas[i] != last_ref_deltas[i]) {
1969 return true;
1970 }
1971 }
1972 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
1973 if (lf->mode_deltas[i] != last_mode_deltas[i]) {
1974 return true;
1975 }
1976 }
1977 return false;
1978 }
1979
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1980 static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
1981 struct aom_write_bit_buffer *wb) {
1982 assert(!cm->features.coded_lossless);
1983 if (cm->features.allow_intrabc) return;
1984 const int num_planes = av1_num_planes(cm);
1985 struct loopfilter *lf = &cm->lf;
1986
1987 // Encode the loop filter level and type
1988 aom_wb_write_literal(wb, lf->filter_level[0], 6);
1989 aom_wb_write_literal(wb, lf->filter_level[1], 6);
1990 if (num_planes > 1) {
1991 if (lf->filter_level[0] || lf->filter_level[1]) {
1992 aom_wb_write_literal(wb, lf->filter_level_u, 6);
1993 aom_wb_write_literal(wb, lf->filter_level_v, 6);
1994 }
1995 }
1996 aom_wb_write_literal(wb, lf->sharpness_level, 3);
1997
1998 aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
1999
2000 // Write out loop filter deltas applied at the MB level based on mode or
2001 // ref frame (if they are enabled), only if there is information to write.
2002 int meaningful = is_mode_ref_delta_meaningful(cm);
2003 aom_wb_write_bit(wb, meaningful);
2004 if (!meaningful) {
2005 return;
2006 }
2007
2008 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2009 int8_t last_ref_deltas[REF_FRAMES];
2010 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2011 if (buf == NULL) {
2012 av1_set_default_ref_deltas(last_ref_deltas);
2013 av1_set_default_mode_deltas(last_mode_deltas);
2014 } else {
2015 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2016 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2017 }
2018 for (int i = 0; i < REF_FRAMES; i++) {
2019 const int delta = lf->ref_deltas[i];
2020 const int changed = delta != last_ref_deltas[i];
2021 aom_wb_write_bit(wb, changed);
2022 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2023 }
2024 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2025 const int delta = lf->mode_deltas[i];
2026 const int changed = delta != last_mode_deltas[i];
2027 aom_wb_write_bit(wb, changed);
2028 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2029 }
2030 }
2031
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2032 static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
2033 struct aom_write_bit_buffer *wb) {
2034 assert(!cm->features.coded_lossless);
2035 if (!cm->seq_params->enable_cdef) return;
2036 if (cm->features.allow_intrabc) return;
2037 const int num_planes = av1_num_planes(cm);
2038 int i;
2039 aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2040 aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2041 for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2042 aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2043 CDEF_STRENGTH_BITS);
2044 if (num_planes > 1)
2045 aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2046 CDEF_STRENGTH_BITS);
2047 }
2048 }
2049
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2050 static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
2051 int delta_q) {
2052 if (delta_q != 0) {
2053 aom_wb_write_bit(wb, 1);
2054 aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2055 } else {
2056 aom_wb_write_bit(wb, 0);
2057 }
2058 }
2059
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2060 static AOM_INLINE void encode_quantization(
2061 const CommonQuantParams *const quant_params, int num_planes,
2062 bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2063 aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2064 write_delta_q(wb, quant_params->y_dc_delta_q);
2065 if (num_planes > 1) {
2066 int diff_uv_delta =
2067 (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2068 (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2069 if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2070 write_delta_q(wb, quant_params->u_dc_delta_q);
2071 write_delta_q(wb, quant_params->u_ac_delta_q);
2072 if (diff_uv_delta) {
2073 write_delta_q(wb, quant_params->v_dc_delta_q);
2074 write_delta_q(wb, quant_params->v_ac_delta_q);
2075 }
2076 }
2077 aom_wb_write_bit(wb, quant_params->using_qmatrix);
2078 if (quant_params->using_qmatrix) {
2079 aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2080 aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2081 if (!separate_uv_delta_q)
2082 assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2083 else
2084 aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2085 }
2086 }
2087
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2088 static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
2089 struct aom_write_bit_buffer *wb) {
2090 int i, j;
2091 struct segmentation *seg = &cm->seg;
2092
2093 aom_wb_write_bit(wb, seg->enabled);
2094 if (!seg->enabled) return;
2095
2096 // Write update flags
2097 if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2098 aom_wb_write_bit(wb, seg->update_map);
2099 if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2100 aom_wb_write_bit(wb, seg->update_data);
2101 }
2102
2103 // Segmentation data
2104 if (seg->update_data) {
2105 for (i = 0; i < MAX_SEGMENTS; i++) {
2106 for (j = 0; j < SEG_LVL_MAX; j++) {
2107 const int active = segfeature_active(seg, i, j);
2108 aom_wb_write_bit(wb, active);
2109 if (active) {
2110 const int data_max = av1_seg_feature_data_max(j);
2111 const int data_min = -data_max;
2112 const int ubits = get_unsigned_bits(data_max);
2113 const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2114
2115 if (av1_is_segfeature_signed(j)) {
2116 aom_wb_write_inv_signed_literal(wb, data, ubits);
2117 } else {
2118 aom_wb_write_literal(wb, data, ubits);
2119 }
2120 }
2121 }
2122 }
2123 }
2124 }
2125
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2126 static AOM_INLINE void write_frame_interp_filter(
2127 InterpFilter filter, struct aom_write_bit_buffer *wb) {
2128 aom_wb_write_bit(wb, filter == SWITCHABLE);
2129 if (filter != SWITCHABLE)
2130 aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2131 }
2132
2133 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2134 static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2135 int v) {
2136 const int l = get_unsigned_bits(n);
2137 const int m = (1 << l) - n;
2138 if (l == 0) return;
2139 if (v < m) {
2140 aom_wb_write_literal(wb, v, l - 1);
2141 } else {
2142 aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2143 aom_wb_write_literal(wb, (v - m) & 1, 1);
2144 }
2145 }
2146
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2147 static AOM_INLINE void write_tile_info_max_tile(
2148 const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2149 int width_mi =
2150 ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2151 int height_mi =
2152 ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2153 int width_sb = width_mi >> cm->seq_params->mib_size_log2;
2154 int height_sb = height_mi >> cm->seq_params->mib_size_log2;
2155 int size_sb, i;
2156 const CommonTileParams *const tiles = &cm->tiles;
2157
2158 aom_wb_write_bit(wb, tiles->uniform_spacing);
2159
2160 if (tiles->uniform_spacing) {
2161 int ones = tiles->log2_cols - tiles->min_log2_cols;
2162 while (ones--) {
2163 aom_wb_write_bit(wb, 1);
2164 }
2165 if (tiles->log2_cols < tiles->max_log2_cols) {
2166 aom_wb_write_bit(wb, 0);
2167 }
2168
2169 // rows
2170 ones = tiles->log2_rows - tiles->min_log2_rows;
2171 while (ones--) {
2172 aom_wb_write_bit(wb, 1);
2173 }
2174 if (tiles->log2_rows < tiles->max_log2_rows) {
2175 aom_wb_write_bit(wb, 0);
2176 }
2177 } else {
2178 // Explicit tiles with configurable tile widths and heights
2179 // columns
2180 for (i = 0; i < tiles->cols; i++) {
2181 size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2182 wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2183 width_sb -= size_sb;
2184 }
2185 assert(width_sb == 0);
2186
2187 // rows
2188 for (i = 0; i < tiles->rows; i++) {
2189 size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2190 wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2191 size_sb - 1);
2192 height_sb -= size_sb;
2193 }
2194 assert(height_sb == 0);
2195 }
2196 }
2197
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2198 static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
2199 struct aom_write_bit_buffer *saved_wb,
2200 struct aom_write_bit_buffer *wb) {
2201 write_tile_info_max_tile(cm, wb);
2202
2203 *saved_wb = *wb;
2204 if (cm->tiles.rows * cm->tiles.cols > 1) {
2205 // tile id used for cdf update
2206 aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2207 // Number of bytes in tile size - 1
2208 aom_wb_write_literal(wb, 3, 2);
2209 }
2210 }
2211
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2212 static AOM_INLINE void write_ext_tile_info(
2213 const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
2214 struct aom_write_bit_buffer *wb) {
2215 // This information is stored as a separate byte.
2216 int mod = wb->bit_offset % CHAR_BIT;
2217 if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2218 assert(aom_wb_is_byte_aligned(wb));
2219
2220 *saved_wb = *wb;
2221 if (cm->tiles.rows * cm->tiles.cols > 1) {
2222 // Note that the last item in the uncompressed header is the data
2223 // describing tile configuration.
2224 // Number of bytes in tile column size - 1
2225 aom_wb_write_literal(wb, 0, 2);
2226 // Number of bytes in tile size - 1
2227 aom_wb_write_literal(wb, 0, 2);
2228 }
2229 }
2230
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2231 static INLINE int find_identical_tile(
2232 const int tile_row, const int tile_col,
2233 TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2234 const MV32 candidate_offset[1] = { { 1, 0 } };
2235 const uint8_t *const cur_tile_data =
2236 tile_buffers[tile_row][tile_col].data + 4;
2237 const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2238
2239 int i;
2240
2241 if (tile_row == 0) return 0;
2242
2243 // (TODO: yunqingwang) For now, only above tile is checked and used.
2244 // More candidates such as left tile can be added later.
2245 for (i = 0; i < 1; i++) {
2246 int row_offset = candidate_offset[0].row;
2247 int col_offset = candidate_offset[0].col;
2248 int row = tile_row - row_offset;
2249 int col = tile_col - col_offset;
2250 const uint8_t *tile_data;
2251 TileBufferEnc *candidate;
2252
2253 if (row < 0 || col < 0) continue;
2254
2255 const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2256
2257 // Read out tile-copy-mode bit:
2258 if ((tile_hdr >> 31) == 1) {
2259 // The candidate is a copy tile itself: the offset is stored in bits
2260 // 30 through 24 inclusive.
2261 row_offset += (tile_hdr >> 24) & 0x7f;
2262 row = tile_row - row_offset;
2263 }
2264
2265 candidate = &tile_buffers[row][col];
2266
2267 if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2268
2269 tile_data = candidate->data + 4;
2270
2271 if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2272
2273 // Identical tile found
2274 assert(row_offset > 0);
2275 return row_offset;
2276 }
2277
2278 // No identical tile found
2279 return 0;
2280 }
2281
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2282 static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
2283 struct aom_write_bit_buffer *wb) {
2284 const int scaling_active = av1_resize_scaled(cm);
2285 aom_wb_write_bit(wb, scaling_active);
2286 if (scaling_active) {
2287 aom_wb_write_literal(wb, cm->render_width - 1, 16);
2288 aom_wb_write_literal(wb, cm->render_height - 1, 16);
2289 }
2290 }
2291
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2292 static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
2293 struct aom_write_bit_buffer *wb) {
2294 const SequenceHeader *const seq_params = cm->seq_params;
2295 if (!seq_params->enable_superres) {
2296 assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2297 return;
2298 }
2299
2300 // First bit is whether to to scale or not
2301 if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2302 aom_wb_write_bit(wb, 0); // no scaling
2303 } else {
2304 aom_wb_write_bit(wb, 1); // scaling, write scale factor
2305 assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2306 assert(cm->superres_scale_denominator <
2307 SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2308 aom_wb_write_literal(
2309 wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2310 SUPERRES_SCALE_BITS);
2311 }
2312 }
2313
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2314 static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
2315 int frame_size_override,
2316 struct aom_write_bit_buffer *wb) {
2317 const int coded_width = cm->superres_upscaled_width - 1;
2318 const int coded_height = cm->superres_upscaled_height - 1;
2319
2320 if (frame_size_override) {
2321 const SequenceHeader *seq_params = cm->seq_params;
2322 int num_bits_width = seq_params->num_bits_width;
2323 int num_bits_height = seq_params->num_bits_height;
2324 aom_wb_write_literal(wb, coded_width, num_bits_width);
2325 aom_wb_write_literal(wb, coded_height, num_bits_height);
2326 }
2327
2328 write_superres_scale(cm, wb);
2329 write_render_size(cm, wb);
2330 }
2331
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2332 static AOM_INLINE void write_frame_size_with_refs(
2333 const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2334 int found = 0;
2335
2336 MV_REFERENCE_FRAME ref_frame;
2337 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2338 const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2339
2340 if (cfg != NULL) {
2341 found = cm->superres_upscaled_width == cfg->y_crop_width &&
2342 cm->superres_upscaled_height == cfg->y_crop_height;
2343 found &= cm->render_width == cfg->render_width &&
2344 cm->render_height == cfg->render_height;
2345 }
2346 aom_wb_write_bit(wb, found);
2347 if (found) {
2348 write_superres_scale(cm, wb);
2349 break;
2350 }
2351 }
2352
2353 if (!found) {
2354 int frame_size_override = 1; // Always equal to 1 in this function
2355 write_frame_size(cm, frame_size_override, wb);
2356 }
2357 }
2358
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2359 static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
2360 struct aom_write_bit_buffer *wb) {
2361 assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2362 aom_wb_write_literal(wb, profile, PROFILE_BITS);
2363 }
2364
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2365 static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
2366 struct aom_write_bit_buffer *wb) {
2367 // Profile 0/1: [0] for 8 bit, [1] 10-bit
2368 // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2369 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2370 if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2371 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2372 }
2373 }
2374
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2375 static AOM_INLINE void write_color_config(
2376 const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2377 write_bitdepth(seq_params, wb);
2378 const int is_monochrome = seq_params->monochrome;
2379 // monochrome bit
2380 if (seq_params->profile != PROFILE_1)
2381 aom_wb_write_bit(wb, is_monochrome);
2382 else
2383 assert(!is_monochrome);
2384 if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2385 seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2386 seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2387 aom_wb_write_bit(wb, 0); // No color description present
2388 } else {
2389 aom_wb_write_bit(wb, 1); // Color description present
2390 aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2391 aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2392 aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2393 }
2394 if (is_monochrome) {
2395 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2396 aom_wb_write_bit(wb, seq_params->color_range);
2397 return;
2398 }
2399 if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2400 seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2401 seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2402 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2403 assert(seq_params->profile == PROFILE_1 ||
2404 (seq_params->profile == PROFILE_2 &&
2405 seq_params->bit_depth == AOM_BITS_12));
2406 } else {
2407 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2408 aom_wb_write_bit(wb, seq_params->color_range);
2409 if (seq_params->profile == PROFILE_0) {
2410 // 420 only
2411 assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2412 } else if (seq_params->profile == PROFILE_1) {
2413 // 444 only
2414 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2415 } else if (seq_params->profile == PROFILE_2) {
2416 if (seq_params->bit_depth == AOM_BITS_12) {
2417 // 420, 444 or 422
2418 aom_wb_write_bit(wb, seq_params->subsampling_x);
2419 if (seq_params->subsampling_x == 0) {
2420 assert(seq_params->subsampling_y == 0 &&
2421 "4:4:0 subsampling not allowed in AV1");
2422 } else {
2423 aom_wb_write_bit(wb, seq_params->subsampling_y);
2424 }
2425 } else {
2426 // 422 only
2427 assert(seq_params->subsampling_x == 1 &&
2428 seq_params->subsampling_y == 0);
2429 }
2430 }
2431 if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2432 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2433 }
2434 if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2435 aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2436 }
2437 }
2438 aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2439 }
2440
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2441 static AOM_INLINE void write_timing_info_header(
2442 const aom_timing_info_t *const timing_info,
2443 struct aom_write_bit_buffer *wb) {
2444 aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2445 aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2446 aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2447 if (timing_info->equal_picture_interval) {
2448 aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2449 }
2450 }
2451
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2452 static AOM_INLINE void write_decoder_model_info(
2453 const aom_dec_model_info_t *const decoder_model_info,
2454 struct aom_write_bit_buffer *wb) {
2455 aom_wb_write_literal(
2456 wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2457 aom_wb_write_unsigned_literal(
2458 wb, decoder_model_info->num_units_in_decoding_tick, 32);
2459 aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2460 5);
2461 aom_wb_write_literal(
2462 wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2463 }
2464
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2465 static AOM_INLINE void write_dec_model_op_parameters(
2466 const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2467 struct aom_write_bit_buffer *wb) {
2468 aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2469 buffer_delay_length);
2470 aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2471 buffer_delay_length);
2472 aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2473 }
2474
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2475 static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
2476 struct aom_write_bit_buffer *wb) {
2477 aom_wb_write_unsigned_literal(
2478 wb, cm->frame_presentation_time,
2479 cm->seq_params->decoder_model_info.frame_presentation_time_length);
2480 }
2481
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2482 static AOM_INLINE void write_film_grain_params(
2483 const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
2484 const AV1_COMMON *const cm = &cpi->common;
2485 const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2486 aom_wb_write_bit(wb, pars->apply_grain);
2487 if (!pars->apply_grain) return;
2488
2489 aom_wb_write_literal(wb, pars->random_seed, 16);
2490
2491 if (cm->current_frame.frame_type == INTER_FRAME)
2492 aom_wb_write_bit(wb, pars->update_parameters);
2493
2494 if (!pars->update_parameters) {
2495 int ref_frame, ref_idx;
2496 for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2497 ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2498 assert(ref_idx != INVALID_IDX);
2499 const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2500 if (buf->film_grain_params_present &&
2501 aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2502 break;
2503 }
2504 }
2505 assert(ref_frame < REF_FRAMES);
2506 aom_wb_write_literal(wb, ref_idx, 3);
2507 return;
2508 }
2509
2510 // Scaling functions parameters
2511 aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
2512 for (int i = 0; i < pars->num_y_points; i++) {
2513 aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2514 aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2515 }
2516
2517 if (!cm->seq_params->monochrome) {
2518 aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2519 } else {
2520 assert(!pars->chroma_scaling_from_luma);
2521 }
2522
2523 if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2524 ((cm->seq_params->subsampling_x == 1) &&
2525 (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2526 assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2527 } else {
2528 aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
2529 for (int i = 0; i < pars->num_cb_points; i++) {
2530 aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2531 aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2532 }
2533
2534 aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
2535 for (int i = 0; i < pars->num_cr_points; i++) {
2536 aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2537 aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2538 }
2539 }
2540
2541 aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
2542
2543 // AR coefficients
2544 // Only sent if the corresponsing scaling function has
2545 // more than 0 points
2546
2547 aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2548
2549 int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2550 int num_pos_chroma = num_pos_luma;
2551 if (pars->num_y_points > 0) ++num_pos_chroma;
2552
2553 if (pars->num_y_points)
2554 for (int i = 0; i < num_pos_luma; i++)
2555 aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2556
2557 if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2558 for (int i = 0; i < num_pos_chroma; i++)
2559 aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2560
2561 if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2562 for (int i = 0; i < num_pos_chroma; i++)
2563 aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2564
2565 aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
2566
2567 aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2568
2569 if (pars->num_cb_points) {
2570 aom_wb_write_literal(wb, pars->cb_mult, 8);
2571 aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2572 aom_wb_write_literal(wb, pars->cb_offset, 9);
2573 }
2574
2575 if (pars->num_cr_points) {
2576 aom_wb_write_literal(wb, pars->cr_mult, 8);
2577 aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2578 aom_wb_write_literal(wb, pars->cr_offset, 9);
2579 }
2580
2581 aom_wb_write_bit(wb, pars->overlap_flag);
2582
2583 aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2584 }
2585
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2586 static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
2587 struct aom_write_bit_buffer *wb) {
2588 (void)seq_params;
2589 (void)wb;
2590 assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2591 assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2592 assert(seq_params->sb_size == BLOCK_128X128 ||
2593 seq_params->sb_size == BLOCK_64X64);
2594 aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2595 }
2596
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2597 static AOM_INLINE void write_sequence_header(
2598 const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2599 aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2600 aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2601 aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2602 seq_params->num_bits_width);
2603 aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2604 seq_params->num_bits_height);
2605
2606 if (!seq_params->reduced_still_picture_hdr) {
2607 aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2608 if (seq_params->frame_id_numbers_present_flag) {
2609 // We must always have delta_frame_id_length < frame_id_length,
2610 // in order for a frame to be referenced with a unique delta.
2611 // Avoid wasting bits by using a coding that enforces this restriction.
2612 aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2613 aom_wb_write_literal(
2614 wb,
2615 seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2616 3);
2617 }
2618 }
2619
2620 write_sb_size(seq_params, wb);
2621
2622 aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2623 aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2624
2625 if (!seq_params->reduced_still_picture_hdr) {
2626 aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2627 aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2628 aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2629 aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2630
2631 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2632
2633 if (seq_params->order_hint_info.enable_order_hint) {
2634 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2635 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2636 }
2637 if (seq_params->force_screen_content_tools == 2) {
2638 aom_wb_write_bit(wb, 1);
2639 } else {
2640 aom_wb_write_bit(wb, 0);
2641 aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2642 }
2643 if (seq_params->force_screen_content_tools > 0) {
2644 if (seq_params->force_integer_mv == 2) {
2645 aom_wb_write_bit(wb, 1);
2646 } else {
2647 aom_wb_write_bit(wb, 0);
2648 aom_wb_write_bit(wb, seq_params->force_integer_mv);
2649 }
2650 } else {
2651 assert(seq_params->force_integer_mv == 2);
2652 }
2653 if (seq_params->order_hint_info.enable_order_hint)
2654 aom_wb_write_literal(
2655 wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2656 }
2657
2658 aom_wb_write_bit(wb, seq_params->enable_superres);
2659 aom_wb_write_bit(wb, seq_params->enable_cdef);
2660 aom_wb_write_bit(wb, seq_params->enable_restoration);
2661 }
2662
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2663 static AOM_INLINE void write_global_motion_params(
2664 const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2665 struct aom_write_bit_buffer *wb, int allow_hp) {
2666 const TransformationType type = params->wmtype;
2667
2668 aom_wb_write_bit(wb, type != IDENTITY);
2669 if (type != IDENTITY) {
2670 aom_wb_write_bit(wb, type == ROTZOOM);
2671 if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2672 }
2673
2674 if (type >= ROTZOOM) {
2675 aom_wb_write_signed_primitive_refsubexpfin(
2676 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2677 (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2678 (1 << GM_ALPHA_PREC_BITS),
2679 (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2680 aom_wb_write_signed_primitive_refsubexpfin(
2681 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2682 (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2683 (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2684 }
2685
2686 if (type >= AFFINE) {
2687 aom_wb_write_signed_primitive_refsubexpfin(
2688 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2689 (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2690 (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2691 aom_wb_write_signed_primitive_refsubexpfin(
2692 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2693 (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2694 (1 << GM_ALPHA_PREC_BITS),
2695 (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2696 }
2697
2698 if (type >= TRANSLATION) {
2699 const int trans_bits = (type == TRANSLATION)
2700 ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2701 : GM_ABS_TRANS_BITS;
2702 const int trans_prec_diff = (type == TRANSLATION)
2703 ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2704 : GM_TRANS_PREC_DIFF;
2705 aom_wb_write_signed_primitive_refsubexpfin(
2706 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2707 (ref_params->wmmat[0] >> trans_prec_diff),
2708 (params->wmmat[0] >> trans_prec_diff));
2709 aom_wb_write_signed_primitive_refsubexpfin(
2710 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2711 (ref_params->wmmat[1] >> trans_prec_diff),
2712 (params->wmmat[1] >> trans_prec_diff));
2713 }
2714 }
2715
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2716 static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
2717 struct aom_write_bit_buffer *wb) {
2718 AV1_COMMON *const cm = &cpi->common;
2719 int frame;
2720 for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2721 const WarpedMotionParams *ref_params =
2722 cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2723 : &default_warp_params;
2724 write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2725 cm->features.allow_high_precision_mv);
2726 // TODO(sarahparker, debargha): The logic in the commented out code below
2727 // does not work currently and causes mismatches when resize is on.
2728 // Fix it before turning the optimization back on.
2729 /*
2730 YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2731 if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2732 cpi->source->y_crop_height == ref_buf->y_crop_height) {
2733 write_global_motion_params(&cm->global_motion[frame],
2734 &cm->prev_frame->global_motion[frame], wb,
2735 cm->features.allow_high_precision_mv);
2736 } else {
2737 assert(cm->global_motion[frame].wmtype == IDENTITY &&
2738 "Invalid warp type for frames of different resolutions");
2739 }
2740 */
2741 /*
2742 printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2743 cm->current_frame.frame_number, cm->show_frame, frame,
2744 cm->global_motion[frame].wmmat[0],
2745 cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2746 cm->global_motion[frame].wmmat[3]);
2747 */
2748 }
2749 }
2750
check_frame_refs_short_signaling(AV1_COMMON * const cm)2751 static int check_frame_refs_short_signaling(AV1_COMMON *const cm) {
2752 // Check whether all references are distinct frames.
2753 const RefCntBuffer *seen_bufs[FRAME_BUFFERS] = { NULL };
2754 int num_refs = 0;
2755 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2756 const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2757 if (buf != NULL) {
2758 int seen = 0;
2759 for (int i = 0; i < num_refs; i++) {
2760 if (seen_bufs[i] == buf) {
2761 seen = 1;
2762 break;
2763 }
2764 }
2765 if (!seen) seen_bufs[num_refs++] = buf;
2766 }
2767 }
2768
2769 // We only turn on frame_refs_short_signaling when all references are
2770 // distinct.
2771 if (num_refs < INTER_REFS_PER_FRAME) {
2772 // It indicates that there exist more than one reference frame pointing to
2773 // the same reference buffer, i.e. two or more references are duplicate.
2774 return 0;
2775 }
2776
2777 // Check whether the encoder side ref frame choices are aligned with that to
2778 // be derived at the decoder side.
2779 int remapped_ref_idx_decoder[REF_FRAMES];
2780
2781 const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2782 const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2783
2784 // Set up the frame refs mapping indexes according to the
2785 // frame_refs_short_signaling policy.
2786 av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2787
2788 // We only turn on frame_refs_short_signaling when the encoder side decision
2789 // on ref frames is identical to that at the decoder side.
2790 int frame_refs_short_signaling = 1;
2791 for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2792 // Compare the buffer index between two reference frames indexed
2793 // respectively by the encoder and the decoder side decisions.
2794 RefCntBuffer *ref_frame_buf_new = NULL;
2795 if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2796 ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2797 }
2798 if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2799 frame_refs_short_signaling = 0;
2800 break;
2801 }
2802 }
2803
2804 #if 0 // For debug
2805 printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2806 printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2807 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2808 printf("enc_ref(map_idx=%d)=%d, vs. "
2809 "dec_ref(map_idx=%d)=%d\n",
2810 get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2811 cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2812 ref_frame);
2813 }
2814 #endif // 0
2815
2816 return frame_refs_short_signaling;
2817 }
2818
2819 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2820 static AOM_INLINE void write_uncompressed_header_obu(
2821 AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2822 struct aom_write_bit_buffer *wb) {
2823 AV1_COMMON *const cm = &cpi->common;
2824 const SequenceHeader *const seq_params = cm->seq_params;
2825 const CommonQuantParams *quant_params = &cm->quant_params;
2826 CurrentFrame *const current_frame = &cm->current_frame;
2827 FeatureFlags *const features = &cm->features;
2828
2829 current_frame->frame_refs_short_signaling = 0;
2830
2831 if (seq_params->still_picture) {
2832 assert(cm->show_existing_frame == 0);
2833 assert(cm->show_frame == 1);
2834 assert(current_frame->frame_type == KEY_FRAME);
2835 }
2836 if (!seq_params->reduced_still_picture_hdr) {
2837 if (encode_show_existing_frame(cm)) {
2838 aom_wb_write_bit(wb, 1); // show_existing_frame
2839 aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2840
2841 if (seq_params->decoder_model_info_present_flag &&
2842 seq_params->timing_info.equal_picture_interval == 0) {
2843 write_tu_pts_info(cm, wb);
2844 }
2845 if (seq_params->frame_id_numbers_present_flag) {
2846 int frame_id_len = seq_params->frame_id_length;
2847 int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2848 aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2849 }
2850 return;
2851 } else {
2852 aom_wb_write_bit(wb, 0); // show_existing_frame
2853 }
2854
2855 aom_wb_write_literal(wb, current_frame->frame_type, 2);
2856
2857 aom_wb_write_bit(wb, cm->show_frame);
2858 if (cm->show_frame) {
2859 if (seq_params->decoder_model_info_present_flag &&
2860 seq_params->timing_info.equal_picture_interval == 0)
2861 write_tu_pts_info(cm, wb);
2862 } else {
2863 aom_wb_write_bit(wb, cm->showable_frame);
2864 }
2865 if (frame_is_sframe(cm)) {
2866 assert(features->error_resilient_mode);
2867 } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2868 aom_wb_write_bit(wb, features->error_resilient_mode);
2869 }
2870 }
2871 aom_wb_write_bit(wb, features->disable_cdf_update);
2872
2873 if (seq_params->force_screen_content_tools == 2) {
2874 aom_wb_write_bit(wb, features->allow_screen_content_tools);
2875 } else {
2876 assert(features->allow_screen_content_tools ==
2877 seq_params->force_screen_content_tools);
2878 }
2879
2880 if (features->allow_screen_content_tools) {
2881 if (seq_params->force_integer_mv == 2) {
2882 aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2883 } else {
2884 assert(features->cur_frame_force_integer_mv ==
2885 seq_params->force_integer_mv);
2886 }
2887 } else {
2888 assert(features->cur_frame_force_integer_mv == 0);
2889 }
2890
2891 int frame_size_override_flag = 0;
2892
2893 if (seq_params->reduced_still_picture_hdr) {
2894 assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2895 cm->superres_upscaled_height == seq_params->max_frame_height);
2896 } else {
2897 if (seq_params->frame_id_numbers_present_flag) {
2898 int frame_id_len = seq_params->frame_id_length;
2899 aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2900 }
2901
2902 if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2903 cm->superres_upscaled_height > seq_params->max_frame_height) {
2904 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2905 "Frame dimensions are larger than the maximum values");
2906 }
2907
2908 frame_size_override_flag =
2909 frame_is_sframe(cm)
2910 ? 1
2911 : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2912 cm->superres_upscaled_height != seq_params->max_frame_height);
2913 if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2914
2915 if (seq_params->order_hint_info.enable_order_hint)
2916 aom_wb_write_literal(
2917 wb, current_frame->order_hint,
2918 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2919
2920 if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
2921 aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
2922 }
2923 }
2924
2925 if (seq_params->decoder_model_info_present_flag) {
2926 aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
2927 if (cpi->ppi->buffer_removal_time_present) {
2928 for (int op_num = 0;
2929 op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
2930 if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
2931 if (seq_params->operating_point_idc[op_num] == 0 ||
2932 ((seq_params->operating_point_idc[op_num] >>
2933 cm->temporal_layer_id) &
2934 0x1 &&
2935 (seq_params->operating_point_idc[op_num] >>
2936 (cm->spatial_layer_id + 8)) &
2937 0x1)) {
2938 aom_wb_write_unsigned_literal(
2939 wb, cm->buffer_removal_times[op_num],
2940 seq_params->decoder_model_info.buffer_removal_time_length);
2941 cm->buffer_removal_times[op_num]++;
2942 if (cm->buffer_removal_times[op_num] == 0) {
2943 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2944 "buffer_removal_time overflowed");
2945 }
2946 }
2947 }
2948 }
2949 }
2950 }
2951
2952 // Shown keyframes and switch-frames automatically refreshes all reference
2953 // frames. For all other frame types, we need to write refresh_frame_flags.
2954 if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
2955 current_frame->frame_type == INTER_FRAME ||
2956 current_frame->frame_type == INTRA_ONLY_FRAME)
2957 aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
2958
2959 if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
2960 // Write all ref frame order hints if error_resilient_mode == 1
2961 if (features->error_resilient_mode &&
2962 seq_params->order_hint_info.enable_order_hint) {
2963 for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
2964 aom_wb_write_literal(
2965 wb, cm->ref_frame_map[ref_idx]->order_hint,
2966 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2967 }
2968 }
2969 }
2970
2971 if (current_frame->frame_type == KEY_FRAME) {
2972 write_frame_size(cm, frame_size_override_flag, wb);
2973 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
2974 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
2975 aom_wb_write_bit(wb, features->allow_intrabc);
2976 } else {
2977 if (current_frame->frame_type == INTRA_ONLY_FRAME) {
2978 write_frame_size(cm, frame_size_override_flag, wb);
2979 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
2980 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
2981 aom_wb_write_bit(wb, features->allow_intrabc);
2982 } else if (current_frame->frame_type == INTER_FRAME ||
2983 frame_is_sframe(cm)) {
2984 MV_REFERENCE_FRAME ref_frame;
2985
2986 // NOTE: Error resilient mode turns off frame_refs_short_signaling
2987 // automatically.
2988 #define FRAME_REFS_SHORT_SIGNALING 0
2989 #if FRAME_REFS_SHORT_SIGNALING
2990 current_frame->frame_refs_short_signaling =
2991 seq_params->order_hint_info.enable_order_hint;
2992 #endif // FRAME_REFS_SHORT_SIGNALING
2993
2994 if (current_frame->frame_refs_short_signaling) {
2995 // NOTE(zoeliu@google.com):
2996 // An example solution for encoder-side implementation on frame refs
2997 // short signaling, which is only turned on when the encoder side
2998 // decision on ref frames is identical to that at the decoder side.
2999 current_frame->frame_refs_short_signaling =
3000 check_frame_refs_short_signaling(cm);
3001 }
3002
3003 if (seq_params->order_hint_info.enable_order_hint)
3004 aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3005
3006 if (current_frame->frame_refs_short_signaling) {
3007 const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3008 aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3009
3010 const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3011 aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3012 }
3013
3014 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3015 assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3016 if (!current_frame->frame_refs_short_signaling)
3017 aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3018 REF_FRAMES_LOG2);
3019 if (seq_params->frame_id_numbers_present_flag) {
3020 int i = get_ref_frame_map_idx(cm, ref_frame);
3021 int frame_id_len = seq_params->frame_id_length;
3022 int diff_len = seq_params->delta_frame_id_length;
3023 int delta_frame_id_minus_1 =
3024 ((cm->current_frame_id - cm->ref_frame_id[i] +
3025 (1 << frame_id_len)) %
3026 (1 << frame_id_len)) -
3027 1;
3028 if (delta_frame_id_minus_1 < 0 ||
3029 delta_frame_id_minus_1 >= (1 << diff_len)) {
3030 aom_internal_error(cm->error, AOM_CODEC_ERROR,
3031 "Invalid delta_frame_id_minus_1");
3032 }
3033 aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3034 }
3035 }
3036
3037 if (!features->error_resilient_mode && frame_size_override_flag) {
3038 write_frame_size_with_refs(cm, wb);
3039 } else {
3040 write_frame_size(cm, frame_size_override_flag, wb);
3041 }
3042
3043 if (!features->cur_frame_force_integer_mv)
3044 aom_wb_write_bit(wb, features->allow_high_precision_mv);
3045 write_frame_interp_filter(features->interp_filter, wb);
3046 aom_wb_write_bit(wb, features->switchable_motion_mode);
3047 if (frame_might_allow_ref_frame_mvs(cm)) {
3048 aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3049 } else {
3050 assert(features->allow_ref_frame_mvs == 0);
3051 }
3052 }
3053 }
3054
3055 const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3056 !(features->disable_cdf_update);
3057 if (cm->tiles.large_scale)
3058 assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3059
3060 if (might_bwd_adapt) {
3061 aom_wb_write_bit(
3062 wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3063 }
3064
3065 write_tile_info(cm, saved_wb, wb);
3066 encode_quantization(quant_params, av1_num_planes(cm),
3067 cm->seq_params->separate_uv_delta_q, wb);
3068 encode_segmentation(cm, wb);
3069
3070 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3071 if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3072 if (quant_params->base_qindex > 0) {
3073 aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3074 if (delta_q_info->delta_q_present_flag) {
3075 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3076 xd->current_base_qindex = quant_params->base_qindex;
3077 if (features->allow_intrabc)
3078 assert(delta_q_info->delta_lf_present_flag == 0);
3079 else
3080 aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3081 if (delta_q_info->delta_lf_present_flag) {
3082 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3083 aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3084 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3085 }
3086 }
3087 }
3088
3089 if (features->all_lossless) {
3090 assert(!av1_superres_scaled(cm));
3091 } else {
3092 if (!features->coded_lossless) {
3093 encode_loopfilter(cm, wb);
3094 encode_cdef(cm, wb);
3095 }
3096 encode_restoration_mode(cm, wb);
3097 }
3098
3099 // Write TX mode
3100 if (features->coded_lossless)
3101 assert(features->tx_mode == ONLY_4X4);
3102 else
3103 aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3104
3105 if (!frame_is_intra_only(cm)) {
3106 const int use_hybrid_pred =
3107 current_frame->reference_mode == REFERENCE_MODE_SELECT;
3108
3109 aom_wb_write_bit(wb, use_hybrid_pred);
3110 }
3111
3112 if (current_frame->skip_mode_info.skip_mode_allowed)
3113 aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3114
3115 if (frame_might_allow_warped_motion(cm))
3116 aom_wb_write_bit(wb, features->allow_warped_motion);
3117 else
3118 assert(!features->allow_warped_motion);
3119
3120 aom_wb_write_bit(wb, features->reduced_tx_set_used);
3121
3122 if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3123
3124 if (seq_params->film_grain_params_present &&
3125 (cm->show_frame || cm->showable_frame))
3126 write_film_grain_params(cpi, wb);
3127
3128 if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3129 }
3130
choose_size_bytes(uint32_t size,int spare_msbs)3131 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3132 // Choose the number of bytes required to represent size, without
3133 // using the 'spare_msbs' number of most significant bits.
3134
3135 // Make sure we will fit in 4 bytes to start with..
3136 if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3137
3138 // Normalise to 32 bits
3139 size <<= spare_msbs;
3140
3141 if (size >> 24 != 0)
3142 return 4;
3143 else if (size >> 16 != 0)
3144 return 3;
3145 else if (size >> 8 != 0)
3146 return 2;
3147 else
3148 return 1;
3149 }
3150
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3151 static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
3152 const int val) {
3153 switch (sz) {
3154 case 1: dst[0] = (uint8_t)(val & 0xff); break;
3155 case 2: mem_put_le16(dst, val); break;
3156 case 3: mem_put_le24(dst, val); break;
3157 case 4: mem_put_le32(dst, val); break;
3158 default: assert(0 && "Invalid size"); break;
3159 }
3160 }
3161
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3162 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3163 const uint32_t data_size, const uint32_t max_tile_size,
3164 const uint32_t max_tile_col_size,
3165 int *const tile_size_bytes,
3166 int *const tile_col_size_bytes) {
3167 // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3168 int tsb;
3169 int tcsb;
3170
3171 if (tiles->large_scale) {
3172 // The top bit in the tile size field indicates tile copy mode, so we
3173 // have 1 less bit to code the tile size
3174 tsb = choose_size_bytes(max_tile_size, 1);
3175 tcsb = choose_size_bytes(max_tile_col_size, 0);
3176 } else {
3177 tsb = choose_size_bytes(max_tile_size, 0);
3178 tcsb = 4; // This is ignored
3179 (void)max_tile_col_size;
3180 }
3181
3182 assert(tsb > 0);
3183 assert(tcsb > 0);
3184
3185 *tile_size_bytes = tsb;
3186 *tile_col_size_bytes = tcsb;
3187 if (tsb == 4 && tcsb == 4) return data_size;
3188
3189 uint32_t wpos = 0;
3190 uint32_t rpos = 0;
3191
3192 if (tiles->large_scale) {
3193 int tile_row;
3194 int tile_col;
3195
3196 for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3197 // All but the last column has a column header
3198 if (tile_col < tiles->cols - 1) {
3199 uint32_t tile_col_size = mem_get_le32(dst + rpos);
3200 rpos += 4;
3201
3202 // Adjust the tile column size by the number of bytes removed
3203 // from the tile size fields.
3204 tile_col_size -= (4 - tsb) * tiles->rows;
3205
3206 mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3207 wpos += tcsb;
3208 }
3209
3210 for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3211 // All, including the last row has a header
3212 uint32_t tile_header = mem_get_le32(dst + rpos);
3213 rpos += 4;
3214
3215 // If this is a copy tile, we need to shift the MSB to the
3216 // top bit of the new width, and there is no data to copy.
3217 if (tile_header >> 31 != 0) {
3218 if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3219 mem_put_varsize(dst + wpos, tsb, tile_header);
3220 wpos += tsb;
3221 } else {
3222 mem_put_varsize(dst + wpos, tsb, tile_header);
3223 wpos += tsb;
3224
3225 tile_header += AV1_MIN_TILE_SIZE_BYTES;
3226 memmove(dst + wpos, dst + rpos, tile_header);
3227 rpos += tile_header;
3228 wpos += tile_header;
3229 }
3230 }
3231 }
3232
3233 assert(rpos > wpos);
3234 assert(rpos == data_size);
3235
3236 return wpos;
3237 }
3238 const int n_tiles = tiles->cols * tiles->rows;
3239 int n;
3240
3241 for (n = 0; n < n_tiles; n++) {
3242 int tile_size;
3243
3244 if (n == n_tiles - 1) {
3245 tile_size = data_size - rpos;
3246 } else {
3247 tile_size = mem_get_le32(dst + rpos);
3248 rpos += 4;
3249 mem_put_varsize(dst + wpos, tsb, tile_size);
3250 tile_size += AV1_MIN_TILE_SIZE_BYTES;
3251 wpos += tsb;
3252 }
3253
3254 memmove(dst + wpos, dst + rpos, tile_size);
3255
3256 rpos += tile_size;
3257 wpos += tile_size;
3258 }
3259
3260 assert(rpos > wpos);
3261 assert(rpos == data_size);
3262
3263 return wpos;
3264 }
3265
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,int obu_extension,uint8_t * const dst)3266 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3267 int *frame_header_count, OBU_TYPE obu_type,
3268 int obu_extension, uint8_t *const dst) {
3269 if (level_params->keep_level_stats &&
3270 (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3271 ++(*frame_header_count);
3272
3273 struct aom_write_bit_buffer wb = { dst, 0 };
3274 uint32_t size = 0;
3275
3276 aom_wb_write_literal(&wb, 0, 1); // forbidden bit.
3277 aom_wb_write_literal(&wb, (int)obu_type, 4);
3278 aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
3279 aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field
3280 aom_wb_write_literal(&wb, 0, 1); // reserved
3281
3282 if (obu_extension) {
3283 aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
3284 }
3285
3286 size = aom_wb_bytes_written(&wb);
3287 return size;
3288 }
3289
av1_write_uleb_obu_size(size_t obu_header_size,size_t obu_payload_size,uint8_t * dest)3290 int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
3291 uint8_t *dest) {
3292 const size_t offset = obu_header_size;
3293 size_t coded_obu_size = 0;
3294 const uint32_t obu_size = (uint32_t)obu_payload_size;
3295 assert(obu_size == obu_payload_size);
3296
3297 if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
3298 &coded_obu_size) != 0) {
3299 return AOM_CODEC_ERROR;
3300 }
3301
3302 return AOM_CODEC_OK;
3303 }
3304
av1_obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3305 size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3306 uint8_t *data) {
3307 const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3308 const size_t move_dst_offset = length_field_size + obu_header_size;
3309 const size_t move_src_offset = obu_header_size;
3310 const size_t move_size = obu_payload_size;
3311 memmove(data + move_dst_offset, data + move_src_offset, move_size);
3312 return length_field_size;
3313 }
3314
add_trailing_bits(struct aom_write_bit_buffer * wb)3315 static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3316 if (aom_wb_is_byte_aligned(wb)) {
3317 aom_wb_write_literal(wb, 0x80, 8);
3318 } else {
3319 // assumes that the other bits are already 0s
3320 aom_wb_write_bit(wb, 1);
3321 }
3322 }
3323
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3324 static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
3325 struct aom_write_bit_buffer *wb) {
3326 assert(is_valid_seq_level_idx(seq_level_idx));
3327 aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3328 }
3329
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst)3330 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3331 uint8_t *const dst) {
3332 struct aom_write_bit_buffer wb = { dst, 0 };
3333 uint32_t size = 0;
3334
3335 write_profile(seq_params->profile, &wb);
3336
3337 // Still picture or not
3338 aom_wb_write_bit(&wb, seq_params->still_picture);
3339 assert(IMPLIES(!seq_params->still_picture,
3340 !seq_params->reduced_still_picture_hdr));
3341 // whether to use reduced still picture header
3342 aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3343
3344 if (seq_params->reduced_still_picture_hdr) {
3345 assert(seq_params->timing_info_present == 0);
3346 assert(seq_params->decoder_model_info_present_flag == 0);
3347 assert(seq_params->display_model_info_present_flag == 0);
3348 write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3349 } else {
3350 aom_wb_write_bit(
3351 &wb, seq_params->timing_info_present); // timing info present flag
3352
3353 if (seq_params->timing_info_present) {
3354 // timing_info
3355 write_timing_info_header(&seq_params->timing_info, &wb);
3356 aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3357 if (seq_params->decoder_model_info_present_flag) {
3358 write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3359 }
3360 }
3361 aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3362 aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3363 OP_POINTS_CNT_MINUS_1_BITS);
3364 int i;
3365 for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3366 aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3367 OP_POINTS_IDC_BITS);
3368 write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3369 if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3370 aom_wb_write_bit(&wb, seq_params->tier[i]);
3371 if (seq_params->decoder_model_info_present_flag) {
3372 aom_wb_write_bit(
3373 &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3374 if (seq_params->op_params[i].decoder_model_param_present_flag) {
3375 write_dec_model_op_parameters(
3376 &seq_params->op_params[i],
3377 seq_params->decoder_model_info
3378 .encoder_decoder_buffer_delay_length,
3379 &wb);
3380 }
3381 }
3382 if (seq_params->display_model_info_present_flag) {
3383 aom_wb_write_bit(
3384 &wb, seq_params->op_params[i].display_model_param_present_flag);
3385 if (seq_params->op_params[i].display_model_param_present_flag) {
3386 assert(seq_params->op_params[i].initial_display_delay <= 10);
3387 aom_wb_write_literal(
3388 &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3389 }
3390 }
3391 }
3392 }
3393 write_sequence_header(seq_params, &wb);
3394
3395 write_color_config(seq_params, &wb);
3396
3397 aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3398
3399 add_trailing_bits(&wb);
3400
3401 size = aom_wb_bytes_written(&wb);
3402 return size;
3403 }
3404
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3405 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3406 struct aom_write_bit_buffer *saved_wb,
3407 uint8_t *const dst,
3408 int append_trailing_bits) {
3409 struct aom_write_bit_buffer wb = { dst, 0 };
3410 write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3411 if (append_trailing_bits) add_trailing_bits(&wb);
3412 return aom_wb_bytes_written(&wb);
3413 }
3414
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3415 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3416 int end_tile, int tiles_log2,
3417 int tile_start_and_end_present_flag) {
3418 struct aom_write_bit_buffer wb = { dst, 0 };
3419 uint32_t size = 0;
3420
3421 if (!tiles_log2) return size;
3422
3423 aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3424
3425 if (tile_start_and_end_present_flag) {
3426 aom_wb_write_literal(&wb, start_tile, tiles_log2);
3427 aom_wb_write_literal(&wb, end_tile, tiles_log2);
3428 }
3429
3430 size = aom_wb_bytes_written(&wb);
3431 return size;
3432 }
3433
3434 extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
3435 const char *filename);
3436
3437 typedef struct {
3438 uint32_t tg_hdr_size;
3439 uint32_t frame_header_size;
3440 } LargeTileFrameOBU;
3441
3442 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * lst_obu)3443 static uint32_t init_large_scale_tile_obu_header(
3444 AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3445 LargeTileFrameOBU *lst_obu) {
3446 AV1LevelParams *const level_params = &cpi->ppi->level_params;
3447 CurrentFrame *const current_frame = &cpi->common.current_frame;
3448 // For large_scale_tile case, we always have only one tile group, so it can
3449 // be written as an OBU_FRAME.
3450 const OBU_TYPE obu_type = OBU_FRAME;
3451 lst_obu->tg_hdr_size = av1_write_obu_header(
3452 level_params, &cpi->frame_header_count, obu_type, 0, *data);
3453 *data += lst_obu->tg_hdr_size;
3454
3455 const uint32_t frame_header_size =
3456 write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3457 *data += frame_header_size;
3458 lst_obu->frame_header_size = frame_header_size;
3459 // (yunqing) This test ensures the correctness of large scale tile coding.
3460 if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3461 char fn[20] = "./fh";
3462 fn[4] = current_frame->frame_number / 100 + '0';
3463 fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3464 fn[6] = (current_frame->frame_number % 10) + '0';
3465 fn[7] = '\0';
3466 av1_print_uncompressed_frame_header(*data - frame_header_size,
3467 frame_header_size, fn);
3468 }
3469 return frame_header_size;
3470 }
3471
3472 // Write total buffer size and related information into the OBU header for large
3473 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3474 static void write_large_scale_tile_obu_size(
3475 const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3476 struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3477 int have_tiles, uint32_t *total_size, int max_tile_size,
3478 int max_tile_col_size) {
3479 int tile_size_bytes = 0;
3480 int tile_col_size_bytes = 0;
3481 if (have_tiles) {
3482 *total_size = remux_tiles(
3483 tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3484 max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3485 *total_size += lst_obu->frame_header_size;
3486 }
3487
3488 // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3489 // current tile group size before tile data(include tile column header).
3490 // Tile group size doesn't include the bytes storing tg size.
3491 *total_size += lst_obu->tg_hdr_size;
3492 const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3493 const size_t length_field_size =
3494 av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
3495 if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
3496 AOM_CODEC_OK)
3497 assert(0);
3498
3499 *total_size += (uint32_t)length_field_size;
3500 saved_wb->bit_buffer += length_field_size;
3501
3502 // Now fill in the gaps in the uncompressed header.
3503 if (have_tiles) {
3504 assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3505 aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3506
3507 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3508 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3509 }
3510 }
3511
3512 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3513 static void write_large_scale_tile_obu(
3514 AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3515 int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3516 unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3517 AV1_COMMON *const cm = &cpi->common;
3518 const CommonTileParams *const tiles = &cm->tiles;
3519
3520 TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3521 const int tile_cols = tiles->cols;
3522 const int tile_rows = tiles->rows;
3523 unsigned int tile_size = 0;
3524
3525 av1_reset_pack_bs_thread_data(&cpi->td);
3526 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3527 TileInfo tile_info;
3528 const int is_last_col = (tile_col == tile_cols - 1);
3529 const uint32_t col_offset = *total_size;
3530
3531 av1_tile_set_col(&tile_info, cm, tile_col);
3532
3533 // The last column does not have a column header
3534 if (!is_last_col) *total_size += 4;
3535
3536 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3537 TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3538 const int data_offset = have_tiles ? 4 : 0;
3539 const int tile_idx = tile_row * tile_cols + tile_col;
3540 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3541 av1_tile_set_row(&tile_info, cm, tile_row);
3542 aom_writer mode_bc;
3543
3544 buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3545
3546 // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3547 // even for the last one, unless no tiling is used at all.
3548 *total_size += data_offset;
3549 cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3550 mode_bc.allow_update_cdf = !tiles->large_scale;
3551 mode_bc.allow_update_cdf =
3552 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3553 aom_start_encode(&mode_bc, buf->data + data_offset);
3554 write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3555 aom_stop_encode(&mode_bc);
3556 tile_size = mode_bc.pos;
3557 buf->size = tile_size;
3558
3559 // Record the maximum tile size we see, so we can compact headers later.
3560 if (tile_size > *max_tile_size) {
3561 *max_tile_size = tile_size;
3562 *largest_tile_id = tile_cols * tile_row + tile_col;
3563 }
3564
3565 if (have_tiles) {
3566 // tile header: size of this tile, or copy offset
3567 uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3568 const int tile_copy_mode =
3569 ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3570 : 0;
3571
3572 // If tile_copy_mode = 1, check if this tile is a copy tile.
3573 // Very low chances to have copy tiles on the key frames, so don't
3574 // search on key frames to reduce unnecessary search.
3575 if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3576 const int identical_tile_offset =
3577 find_identical_tile(tile_row, tile_col, tile_buffers);
3578
3579 // Indicate a copy-tile by setting the most significant bit.
3580 // The row-offset to copy from is stored in the highest byte.
3581 // remux_tiles will move these around later
3582 if (identical_tile_offset > 0) {
3583 tile_size = 0;
3584 tile_header = identical_tile_offset | 0x80;
3585 tile_header <<= 24;
3586 }
3587 }
3588
3589 mem_put_le32(buf->data, tile_header);
3590 }
3591
3592 *total_size += tile_size;
3593 }
3594 if (!is_last_col) {
3595 uint32_t col_size = *total_size - col_offset - 4;
3596 mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3597
3598 // Record the maximum tile column size we see.
3599 *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3600 }
3601 }
3602 av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3603 }
3604
3605 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int * const largest_tile_id)3606 static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
3607 AV1_COMP *const cpi, uint8_t *const dst,
3608 struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
3609 AV1_COMMON *const cm = &cpi->common;
3610 const CommonTileParams *const tiles = &cm->tiles;
3611 uint32_t total_size = 0;
3612 unsigned int max_tile_size = 0;
3613 unsigned int max_tile_col_size = 0;
3614 const int have_tiles = tiles->cols * tiles->rows > 1;
3615 uint8_t *data = dst;
3616
3617 LargeTileFrameOBU lst_obu;
3618
3619 total_size +=
3620 init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);
3621
3622 write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3623 have_tiles, &max_tile_size, &max_tile_col_size);
3624
3625 write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3626 have_tiles, &total_size, max_tile_size,
3627 max_tile_col_size);
3628
3629 return total_size;
3630 }
3631
3632 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3633 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3634 PackBSParams *const pack_bs_params,
3635 const int tile_idx) {
3636 AV1_COMMON *const cm = &cpi->common;
3637 const CommonTileParams *const tiles = &cm->tiles;
3638 int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3639 const int tg_size =
3640 (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3641
3642 // Write Tile group, frame and OBU header
3643 // A new tile group begins at this tile. Write the obu header and
3644 // tile group header
3645 const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3646 *curr_tg_hdr_size = av1_write_obu_header(
3647 &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3648 pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3649 pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3650
3651 if (cpi->num_tg == 1)
3652 *curr_tg_hdr_size += write_frame_header_obu(
3653 cpi, xd, pack_bs_params->saved_wb,
3654 pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3655 *curr_tg_hdr_size += write_tile_group_header(
3656 pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3657 AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3658 (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3659 *pack_bs_params->total_size += *curr_tg_hdr_size;
3660 }
3661
3662 // Pack tile data in the bitstream with tile_group, frame
3663 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3664 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3665 PackBSParams *const pack_bs_params) {
3666 aom_writer mode_bc;
3667 AV1_COMMON *const cm = &cpi->common;
3668 int tile_row = pack_bs_params->tile_row;
3669 int tile_col = pack_bs_params->tile_col;
3670 uint32_t *const total_size = pack_bs_params->total_size;
3671 TileInfo tile_info;
3672 av1_tile_set_col(&tile_info, cm, tile_col);
3673 av1_tile_set_row(&tile_info, cm, tile_row);
3674 mode_bc.allow_update_cdf = 1;
3675 mode_bc.allow_update_cdf =
3676 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3677
3678 unsigned int tile_size;
3679
3680 const int num_planes = av1_num_planes(cm);
3681 av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3682
3683 pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3684
3685 // The last tile of the tile group does not have a header.
3686 if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3687
3688 // Pack tile data
3689 aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3690 write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3691 aom_stop_encode(&mode_bc);
3692 tile_size = mode_bc.pos;
3693 assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3694
3695 pack_bs_params->buf.size = tile_size;
3696
3697 // Write tile size
3698 if (!pack_bs_params->is_last_tile_in_tg) {
3699 // size of this tile
3700 mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3701 }
3702 }
3703
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3704 void av1_write_last_tile_info(
3705 AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3706 struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3707 uint8_t *curr_tg_start, uint32_t *const total_size,
3708 uint8_t **tile_data_start, int *const largest_tile_id,
3709 int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3710 // write current tile group size
3711 const uint32_t obu_payload_size =
3712 (uint32_t)(*curr_tg_data_size) - obu_header_size;
3713 const size_t length_field_size =
3714 av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
3715 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
3716 curr_tg_start) != AOM_CODEC_OK) {
3717 assert(0);
3718 }
3719 *curr_tg_data_size += (int)length_field_size;
3720 *total_size += (uint32_t)length_field_size;
3721 *tile_data_start += length_field_size;
3722 if (cpi->num_tg == 1) {
3723 // if this tg is combined with the frame header then update saved
3724 // frame header base offset according to length field size
3725 saved_wb->bit_buffer += length_field_size;
3726 }
3727
3728 if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3729 // Make room for a duplicate Frame Header OBU.
3730 memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3731 *curr_tg_data_size);
3732
3733 // Insert a copy of the Frame Header OBU.
3734 memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3735
3736 // Force context update tile to be the first tile in error
3737 // resilient mode as the duplicate frame headers will have
3738 // context_update_tile_id set to 0
3739 *largest_tile_id = 0;
3740
3741 // Rewrite the OBU header to change the OBU type to Redundant Frame
3742 // Header.
3743 av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
3744 OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
3745 &curr_tg_start[fh_info->obu_header_byte_offset]);
3746
3747 *curr_tg_data_size += (int)(fh_info->total_length);
3748 *total_size += (uint32_t)(fh_info->total_length);
3749 }
3750 *is_first_tg = 0;
3751 }
3752
av1_reset_pack_bs_thread_data(ThreadData * const td)3753 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3754 td->coefficient_size = 0;
3755 td->max_mv_magnitude = 0;
3756 av1_zero(td->interp_filter_selected);
3757 }
3758
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3759 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3760 ThreadData const *td) {
3761 int do_max_mv_magnitude_update = 1;
3762 cpi->rc.coefficient_size += td->coefficient_size;
3763
3764 #if CONFIG_FRAME_PARALLEL_ENCODE
3765 // Disable max_mv_magnitude update for parallel frames based on update flag.
3766 if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3767 #endif
3768
3769 if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3770 cpi->mv_search_params.max_mv_magnitude =
3771 AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3772
3773 for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3774 cpi->common.cur_frame->interp_filter_selected[filter] +=
3775 td->interp_filter_selected[filter];
3776 }
3777
3778 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3779 static void write_tile_obu(
3780 AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3781 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3782 const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3783 unsigned int *max_tile_size, uint32_t *const obu_header_size,
3784 uint8_t **tile_data_start) {
3785 AV1_COMMON *const cm = &cpi->common;
3786 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3787 const CommonTileParams *const tiles = &cm->tiles;
3788 const int tile_cols = tiles->cols;
3789 const int tile_rows = tiles->rows;
3790 // Fixed size tile groups for the moment
3791 const int num_tg_hdrs = cpi->num_tg;
3792 const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3793 int tile_count = 0;
3794 size_t curr_tg_data_size = 0;
3795 uint8_t *tile_data_curr = dst;
3796 int new_tg = 1;
3797 int is_first_tg = 1;
3798
3799 av1_reset_pack_bs_thread_data(&cpi->td);
3800 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3801 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3802 const int tile_idx = tile_row * tile_cols + tile_col;
3803 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3804
3805 int is_last_tile_in_tg = 0;
3806 if (new_tg) {
3807 tile_data_curr = dst + *total_size;
3808 tile_count = 0;
3809 }
3810 tile_count++;
3811
3812 if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3813 is_last_tile_in_tg = 1;
3814
3815 xd->tile_ctx = &this_tile->tctx;
3816
3817 // PackBSParams stores all parameters required to pack tile and header
3818 // info.
3819 PackBSParams pack_bs_params;
3820 pack_bs_params.dst = dst;
3821 pack_bs_params.curr_tg_hdr_size = 0;
3822 pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
3823 pack_bs_params.new_tg = new_tg;
3824 pack_bs_params.obu_extn_header = obu_extn_header;
3825 pack_bs_params.obu_header_size = 0;
3826 pack_bs_params.saved_wb = saved_wb;
3827 pack_bs_params.tile_col = tile_col;
3828 pack_bs_params.tile_row = tile_row;
3829 pack_bs_params.tile_data_curr = tile_data_curr;
3830 pack_bs_params.total_size = total_size;
3831
3832 if (new_tg)
3833 av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
3834
3835 av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
3836
3837 if (new_tg) {
3838 curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
3839 *tile_data_start += pack_bs_params.curr_tg_hdr_size;
3840 *obu_header_size = pack_bs_params.obu_header_size;
3841 new_tg = 0;
3842 }
3843 if (is_last_tile_in_tg) new_tg = 1;
3844
3845 curr_tg_data_size +=
3846 (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
3847
3848 if (pack_bs_params.buf.size > *max_tile_size) {
3849 *largest_tile_id = tile_idx;
3850 *max_tile_size = (unsigned int)pack_bs_params.buf.size;
3851 }
3852
3853 if (is_last_tile_in_tg)
3854 av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
3855 tile_data_curr, total_size, tile_data_start,
3856 largest_tile_id, &is_first_tg,
3857 *obu_header_size, obu_extn_header);
3858 *total_size += (uint32_t)pack_bs_params.buf.size;
3859 }
3860 }
3861 av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3862 }
3863
3864 // Write total buffer size and related information into the OBU header for
3865 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)3866 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
3867 struct aom_write_bit_buffer *saved_wb,
3868 int largest_tile_id, uint32_t *const total_size,
3869 unsigned int max_tile_size,
3870 uint32_t obu_header_size,
3871 uint8_t *tile_data_start) {
3872 const CommonTileParams *const tiles = &cpi->common.tiles;
3873
3874 // Fill in context_update_tile_id indicating the tile to use for the
3875 // cdf update. The encoder currently sets it to the largest tile
3876 // (but is up to the encoder)
3877 aom_wb_overwrite_literal(saved_wb, largest_tile_id,
3878 (tiles->log2_cols + tiles->log2_rows));
3879 // If more than one tile group. tile_size_bytes takes the default value 4
3880 // and does not need to be set. For a single tile group it is set in the
3881 // section below.
3882 if (cpi->num_tg != 1) return;
3883 int tile_size_bytes = 4, unused;
3884 const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
3885 const uint32_t tile_data_size = *total_size - tile_data_offset;
3886
3887 *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
3888 max_tile_size, 0, &tile_size_bytes, &unused);
3889 *total_size += tile_data_offset;
3890 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3891
3892 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3893
3894 // Update the OBU length if remux_tiles() reduced the size.
3895 uint64_t payload_size;
3896 size_t length_field_size;
3897 int res =
3898 aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
3899 &payload_size, &length_field_size);
3900 assert(res == 0);
3901 (void)res;
3902
3903 const uint64_t new_payload_size =
3904 *total_size - obu_header_size - length_field_size;
3905 if (new_payload_size != payload_size) {
3906 size_t new_length_field_size;
3907 res = aom_uleb_encode(new_payload_size, length_field_size,
3908 dst + obu_header_size, &new_length_field_size);
3909 assert(res == 0);
3910 if (new_length_field_size < length_field_size) {
3911 const size_t src_offset = obu_header_size + length_field_size;
3912 const size_t dst_offset = obu_header_size + new_length_field_size;
3913 memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
3914 *total_size -= (int)(length_field_size - new_length_field_size);
3915 }
3916 }
3917 }
3918
3919 // As per the experiments, single-thread bitstream packing is better for
3920 // frames with a smaller bitstream size. This behavior is due to setup time
3921 // overhead of multithread function would be more than that of time required
3922 // to pack the smaller bitstream of such frames. This function computes the
3923 // number of required number of workers based on setup time overhead and job
3924 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers)3925 int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
3926 int avail_workers) {
3927 if (AOMMIN(avail_workers, num_tiles) <= 1) return 1;
3928
3929 uint64_t frame_abs_sum_level = 0;
3930
3931 for (int idx = 0; idx < num_tiles; idx++)
3932 frame_abs_sum_level += tile_data[idx].abs_sum_level;
3933
3934 int ideal_num_workers = 1;
3935 const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
3936 float max_sum = 0.0;
3937
3938 for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
3939 const float fas_per_worker_const =
3940 ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
3941 const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
3942 const float this_sum = fas_per_worker_const - setup_time_const -
3943 job_disp_time_const / num_workers;
3944
3945 if (this_sum > max_sum) {
3946 max_sum = this_sum;
3947 ideal_num_workers = num_workers;
3948 }
3949 }
3950 return ideal_num_workers;
3951 }
3952
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)3953 static INLINE uint32_t pack_tiles_in_tg_obus(
3954 AV1_COMP *const cpi, uint8_t *const dst,
3955 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
3956 const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
3957 const CommonTileParams *const tiles = &cpi->common.tiles;
3958 uint32_t total_size = 0;
3959 unsigned int max_tile_size = 0;
3960 uint32_t obu_header_size = 0;
3961 uint8_t *tile_data_start = dst;
3962 const int tile_cols = tiles->cols;
3963 const int tile_rows = tiles->rows;
3964 const int num_tiles = tile_rows * tile_cols;
3965
3966 const int num_workers = calc_pack_bs_mt_workers(
3967 cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS]);
3968
3969 if (num_workers > 1) {
3970 av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
3971 fh_info, largest_tile_id, &max_tile_size,
3972 &obu_header_size, &tile_data_start, num_workers);
3973 } else {
3974 write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
3975 fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
3976 &tile_data_start);
3977 }
3978
3979 if (num_tiles > 1)
3980 write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
3981 max_tile_size, obu_header_size, tile_data_start);
3982 return total_size;
3983 }
3984
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)3985 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
3986 struct aom_write_bit_buffer *saved_wb,
3987 uint8_t obu_extension_header,
3988 const FrameHeaderInfo *fh_info,
3989 int *const largest_tile_id) {
3990 AV1_COMMON *const cm = &cpi->common;
3991 const CommonTileParams *const tiles = &cm->tiles;
3992 *largest_tile_id = 0;
3993
3994 // Select the coding strategy (temporal or spatial)
3995 if (cm->seg.enabled) av1_choose_segmap_coding_method(cm, &cpi->td.mb.e_mbd);
3996
3997 if (tiles->large_scale)
3998 return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
3999 largest_tile_id);
4000
4001 return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4002 fh_info, largest_tile_id);
4003 }
4004
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst)4005 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4006 uint8_t *const dst) {
4007 size_t coded_metadata_size = 0;
4008 const uint64_t metadata_type = (uint64_t)metadata->type;
4009 if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
4010 &coded_metadata_size) != 0) {
4011 return 0;
4012 }
4013 memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4014 // Add trailing bits.
4015 dst[coded_metadata_size + metadata->sz] = 0x80;
4016 return (uint32_t)(coded_metadata_size + metadata->sz + 1);
4017 }
4018
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst)4019 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
4020 if (!cpi->source) return 0;
4021 AV1_COMMON *const cm = &cpi->common;
4022 aom_metadata_array_t *arr = cpi->source->metadata;
4023 if (!arr) return 0;
4024 size_t obu_header_size = 0;
4025 size_t obu_payload_size = 0;
4026 size_t total_bytes_written = 0;
4027 size_t length_field_size = 0;
4028 for (size_t i = 0; i < arr->sz; i++) {
4029 aom_metadata_t *current_metadata = arr->metadata_array[i];
4030 if (current_metadata && current_metadata->payload) {
4031 if ((cm->current_frame.frame_type == KEY_FRAME &&
4032 current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4033 (cm->current_frame.frame_type != KEY_FRAME &&
4034 current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4035 current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4036 obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
4037 &cpi->frame_header_count,
4038 OBU_METADATA, 0, dst);
4039 obu_payload_size =
4040 av1_write_metadata_obu(current_metadata, dst + obu_header_size);
4041 length_field_size =
4042 av1_obu_memmove(obu_header_size, obu_payload_size, dst);
4043 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
4044 AOM_CODEC_OK) {
4045 const size_t obu_size = obu_header_size + obu_payload_size;
4046 dst += obu_size + length_field_size;
4047 total_bytes_written += obu_size + length_field_size;
4048 } else {
4049 aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4050 "Error writing metadata OBU size");
4051 }
4052 }
4053 }
4054 }
4055 return total_bytes_written;
4056 }
4057
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t * size,int * const largest_tile_id)4058 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
4059 int *const largest_tile_id) {
4060 uint8_t *data = dst;
4061 uint32_t data_size;
4062 AV1_COMMON *const cm = &cpi->common;
4063 AV1LevelParams *const level_params = &cpi->ppi->level_params;
4064 uint32_t obu_header_size = 0;
4065 uint32_t obu_payload_size = 0;
4066 FrameHeaderInfo fh_info = { NULL, 0, 0 };
4067 const uint8_t obu_extension_header =
4068 cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4069
4070 // If no non-zero delta_q has been used, reset delta_q_present_flag
4071 if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4072 cm->delta_q_info.delta_q_present_flag = 0;
4073 }
4074
4075 #if CONFIG_BITSTREAM_DEBUG
4076 bitstream_queue_reset_write();
4077 #endif
4078
4079 cpi->frame_header_count = 0;
4080
4081 // The TD is now written outside the frame encode loop
4082
4083 // write sequence header obu at each key frame, preceded by 4-byte size
4084 if (cm->current_frame.frame_type == KEY_FRAME &&
4085 cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
4086 obu_header_size = av1_write_obu_header(
4087 level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);
4088
4089 obu_payload_size =
4090 av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
4091 const size_t length_field_size =
4092 av1_obu_memmove(obu_header_size, obu_payload_size, data);
4093 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4094 AOM_CODEC_OK) {
4095 return AOM_CODEC_ERROR;
4096 }
4097
4098 data += obu_header_size + obu_payload_size + length_field_size;
4099 }
4100
4101 // write metadata obus before the frame obu that has the show_frame flag set
4102 if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
4103
4104 const int write_frame_header =
4105 (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4106 struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4107 size_t length_field = 0;
4108 if (write_frame_header) {
4109 // Write Frame Header OBU.
4110 fh_info.frame_header = data;
4111 obu_header_size =
4112 av1_write_obu_header(level_params, &cpi->frame_header_count,
4113 OBU_FRAME_HEADER, obu_extension_header, data);
4114 obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4115 data + obu_header_size, 1);
4116
4117 length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
4118 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4119 AOM_CODEC_OK) {
4120 return AOM_CODEC_ERROR;
4121 }
4122
4123 fh_info.obu_header_byte_offset = 0;
4124 fh_info.total_length = obu_header_size + obu_payload_size + length_field;
4125 data += fh_info.total_length;
4126 }
4127
4128 if (encode_show_existing_frame(cm)) {
4129 data_size = 0;
4130 } else {
4131 // Since length_field is determined adaptively after frame header
4132 // encoding, saved_wb must be adjusted accordingly.
4133 saved_wb.bit_buffer += length_field;
4134
4135 // Each tile group obu will be preceded by 4-byte size of the tile group
4136 // obu
4137 data_size = write_tiles_in_tg_obus(
4138 cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
4139 }
4140 data += data_size;
4141 *size = data - dst;
4142 return AOM_CODEC_OK;
4143 }
4144