• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdio.h>
15 
16 #include "aom/aom_encoder.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/binary_codes_writer.h"
19 #include "aom_dsp/bitwriter_buffer.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/bitops.h"
22 #include "aom_ports/mem_ops.h"
23 #if CONFIG_BITSTREAM_DEBUG
24 #include "aom_util/debug_util.h"
25 #endif  // CONFIG_BITSTREAM_DEBUG
26 
27 #include "av1/common/cdef.h"
28 #include "av1/common/cfl.h"
29 #include "av1/common/entropy.h"
30 #include "av1/common/entropymode.h"
31 #include "av1/common/entropymv.h"
32 #include "av1/common/mvref_common.h"
33 #include "av1/common/pred_common.h"
34 #include "av1/common/reconinter.h"
35 #include "av1/common/reconintra.h"
36 #include "av1/common/seg_common.h"
37 #include "av1/common/tile_common.h"
38 
39 #include "av1/encoder/bitstream.h"
40 #include "av1/encoder/cost.h"
41 #include "av1/encoder/encodemv.h"
42 #include "av1/encoder/encodetxb.h"
43 #include "av1/encoder/ethread.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/palette.h"
46 #include "av1/encoder/segmentation.h"
47 #include "av1/encoder/tokenize.h"
48 
49 #define ENC_MISMATCH_DEBUG 0
50 #define SETUP_TIME_OH_CONST 5     // Setup time overhead constant per worker
51 #define JOB_DISP_TIME_OH_CONST 1  // Job dispatch time overhead per tile
52 
write_uniform(aom_writer * w,int n,int v)53 static INLINE void write_uniform(aom_writer *w, int n, int v) {
54   const int l = get_unsigned_bits(n);
55   const int m = (1 << l) - n;
56   if (l == 0) return;
57   if (v < m) {
58     aom_write_literal(w, v, l - 1);
59   } else {
60     aom_write_literal(w, m + ((v - m) >> 1), l - 1);
61     aom_write_literal(w, (v - m) & 1, 1);
62   }
63 }
64 
65 #if !CONFIG_REALTIME_ONLY
66 static AOM_INLINE void loop_restoration_write_sb_coeffs(
67     const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
68     aom_writer *const w, int plane, FRAME_COUNTS *counts);
69 #endif
70 
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)71 static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
72                                              const MB_MODE_INFO *mi,
73                                              const MB_MODE_INFO *above_mi,
74                                              const MB_MODE_INFO *left_mi,
75                                              PREDICTION_MODE mode,
76                                              aom_writer *w) {
77   assert(!is_intrabc_block(mi));
78   (void)mi;
79   aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
80                    INTRA_MODES);
81 }
82 
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)83 static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
84                                         FRAME_CONTEXT *ec_ctx,
85                                         const int16_t mode_ctx) {
86   const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
87 
88   aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
89 
90   if (mode != NEWMV) {
91     const int16_t zeromv_ctx =
92         (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
93     aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
94 
95     if (mode != GLOBALMV) {
96       int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
97       aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
98     }
99   }
100 }
101 
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)102 static AOM_INLINE void write_drl_idx(
103     FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
104     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
105   assert(mbmi->ref_mv_idx < 3);
106 
107   const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
108   if (new_mv) {
109     int idx;
110     for (idx = 0; idx < 2; ++idx) {
111       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
112         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
113 
114         aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
115                          2);
116         if (mbmi->ref_mv_idx == idx) return;
117       }
118     }
119     return;
120   }
121 
122   if (have_nearmv_in_inter_mode(mbmi->mode)) {
123     int idx;
124     // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
125     for (idx = 1; idx < 3; ++idx) {
126       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
127         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
128         aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
129                          ec_ctx->drl_cdf[drl_ctx], 2);
130         if (mbmi->ref_mv_idx == (idx - 1)) return;
131       }
132     }
133     return;
134   }
135 }
136 
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)137 static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
138                                                  PREDICTION_MODE mode,
139                                                  const int16_t mode_ctx) {
140   assert(is_inter_compound_mode(mode));
141   aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
142                    xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
143                    INTER_COMPOUND_MODES);
144 }
145 
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)146 static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
147                                            const MB_MODE_INFO *mbmi,
148                                            TX_SIZE tx_size, int depth,
149                                            int blk_row, int blk_col,
150                                            aom_writer *w) {
151   FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
152   const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
153   const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
154 
155   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
156 
157   if (depth == MAX_VARTX_DEPTH) {
158     txfm_partition_update(xd->above_txfm_context + blk_col,
159                           xd->left_txfm_context + blk_row, tx_size, tx_size);
160     return;
161   }
162 
163   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
164                                          xd->left_txfm_context + blk_row,
165                                          mbmi->bsize, tx_size);
166   const int txb_size_index =
167       av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
168   const int write_txfm_partition =
169       tx_size == mbmi->inter_tx_size[txb_size_index];
170   if (write_txfm_partition) {
171     aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
172 
173     txfm_partition_update(xd->above_txfm_context + blk_col,
174                           xd->left_txfm_context + blk_row, tx_size, tx_size);
175     // TODO(yuec): set correct txfm partition update for qttx
176   } else {
177     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
178     const int bsw = tx_size_wide_unit[sub_txs];
179     const int bsh = tx_size_high_unit[sub_txs];
180 
181     aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
182 
183     if (sub_txs == TX_4X4) {
184       txfm_partition_update(xd->above_txfm_context + blk_col,
185                             xd->left_txfm_context + blk_row, sub_txs, tx_size);
186       return;
187     }
188 
189     assert(bsw > 0 && bsh > 0);
190     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
191       const int offsetr = blk_row + row;
192       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
193         const int offsetc = blk_col + col;
194         write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
195       }
196     }
197   }
198 }
199 
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)200 static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
201                                               aom_writer *w) {
202   const MB_MODE_INFO *const mbmi = xd->mi[0];
203   const BLOCK_SIZE bsize = mbmi->bsize;
204   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
205   if (block_signals_txsize(bsize)) {
206     const TX_SIZE tx_size = mbmi->tx_size;
207     const int tx_size_ctx = get_tx_size_context(xd);
208     const int depth = tx_size_to_depth(tx_size, bsize);
209     const int max_depths = bsize_to_max_depth(bsize);
210     const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
211 
212     assert(depth >= 0 && depth <= max_depths);
213     assert(!is_inter_block(mbmi));
214     assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
215 
216     aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
217                      max_depths + 1);
218   }
219 }
220 
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MB_MODE_INFO * mi,aom_writer * w)221 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
222                       int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
223   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
224     return 1;
225   } else {
226     const int skip_txfm = mi->skip_txfm;
227     const int ctx = av1_get_skip_txfm_context(xd);
228     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
229     aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
230     return skip_txfm;
231   }
232 }
233 
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MB_MODE_INFO * mi,aom_writer * w)234 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
235                            int segment_id, const MB_MODE_INFO *mi,
236                            aom_writer *w) {
237   if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
238   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
239     return 0;
240   }
241   const int skip_mode = mi->skip_mode;
242   if (!is_comp_ref_allowed(mi->bsize)) {
243     assert(!skip_mode);
244     return 0;
245   }
246   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
247       segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
248     // These features imply single-reference mode, while skip mode implies
249     // compound reference. Hence, the two are mutually exclusive.
250     // In other words, skip_mode is implicitly 0 here.
251     assert(!skip_mode);
252     return 0;
253   }
254   const int ctx = av1_get_skip_mode_context(xd);
255   aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
256   return skip_mode;
257 }
258 
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,aom_writer * w,const int is_inter)259 static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
260                                       const MACROBLOCKD *xd, int segment_id,
261                                       aom_writer *w, const int is_inter) {
262   if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
263     if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
264       assert(is_inter);
265       return;
266     }
267     const int ctx = av1_get_intra_inter_context(xd);
268     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
269     aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
270   }
271 }
272 
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)273 static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
274                                          const MB_MODE_INFO *mbmi,
275                                          aom_writer *w) {
276   MOTION_MODE last_motion_mode_allowed =
277       cm->features.switchable_motion_mode
278           ? motion_mode_allowed(cm->global_motion, xd, mbmi,
279                                 cm->features.allow_warped_motion)
280           : SIMPLE_TRANSLATION;
281   assert(mbmi->motion_mode <= last_motion_mode_allowed);
282   switch (last_motion_mode_allowed) {
283     case SIMPLE_TRANSLATION: break;
284     case OBMC_CAUSAL:
285       aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
286                        xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
287       break;
288     default:
289       aom_write_symbol(w, mbmi->motion_mode,
290                        xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
291                        MOTION_MODES);
292   }
293 }
294 
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)295 static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
296                                           int delta_qindex, aom_writer *w) {
297   int sign = delta_qindex < 0;
298   int abs = sign ? -delta_qindex : delta_qindex;
299   int rem_bits, thr;
300   int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
301   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
302 
303   aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
304                    DELTA_Q_PROBS + 1);
305 
306   if (!smallval) {
307     rem_bits = get_msb(abs - 1);
308     thr = (1 << rem_bits) + 1;
309     aom_write_literal(w, rem_bits - 1, 3);
310     aom_write_literal(w, abs - thr, rem_bits);
311   }
312   if (abs > 0) {
313     aom_write_bit(w, sign);
314   }
315 }
316 
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)317 static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
318                                            const MACROBLOCKD *xd, int lf_id,
319                                            int delta_lflevel,
320                                            int delta_lf_multi, aom_writer *w) {
321   int sign = delta_lflevel < 0;
322   int abs = sign ? -delta_lflevel : delta_lflevel;
323   int rem_bits, thr;
324   int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
325   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
326   (void)cm;
327 
328   if (delta_lf_multi) {
329     assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
330                                                          : FRAME_LF_COUNT - 2));
331     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
332                      ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
333   } else {
334     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
335                      DELTA_LF_PROBS + 1);
336   }
337 
338   if (!smallval) {
339     rem_bits = get_msb(abs - 1);
340     thr = (1 << rem_bits) + 1;
341     aom_write_literal(w, rem_bits - 1, 3);
342     aom_write_literal(w, abs - thr, rem_bits);
343   }
344   if (abs > 0) {
345     aom_write_bit(w, sign);
346   }
347 }
348 
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)349 static AOM_INLINE void pack_map_tokens(aom_writer *w, const TokenExtra **tp,
350                                        int n, int num, MapCdf map_pb_cdf) {
351   const TokenExtra *p = *tp;
352   const int palette_size_idx = n - PALETTE_MIN_SIZE;
353   write_uniform(w, n, p->token);  // The first color index.
354   ++p;
355   --num;
356   for (int i = 0; i < num; ++i) {
357     assert((p->color_ctx >= 0) &&
358            (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
359     aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
360     aom_write_symbol(w, p->token, color_map_cdf, n);
361     ++p;
362   }
363   *tp = p;
364 }
365 
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)366 static AOM_INLINE void pack_txb_tokens(
367     aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
368     const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
369     int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
370     int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
371   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
372   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
373 
374   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
375 
376   const struct macroblockd_plane *const pd = &xd->plane[plane];
377   const TX_SIZE plane_tx_size =
378       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
379                                     pd->subsampling_y)
380             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
381                                                          blk_col)];
382 
383   if (tx_size == plane_tx_size || plane) {
384     av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
385 #if CONFIG_RD_DEBUG
386     TOKEN_STATS tmp_token_stats;
387     init_token_stats(&tmp_token_stats);
388     token_stats->cost += tmp_token_stats.cost;
389 #endif
390   } else {
391     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
392     const int bsw = tx_size_wide_unit[sub_txs];
393     const int bsh = tx_size_high_unit[sub_txs];
394     const int step = bsh * bsw;
395     const int row_end =
396         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
397     const int col_end =
398         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
399 
400     assert(bsw > 0 && bsh > 0);
401 
402     for (int r = 0; r < row_end; r += bsh) {
403       const int offsetr = blk_row + r;
404       for (int c = 0; c < col_end; c += bsw) {
405         const int offsetc = blk_col + c;
406         pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
407                         bit_depth, block, offsetr, offsetc, sub_txs,
408                         token_stats);
409         block += step;
410       }
411     }
412   }
413 }
414 
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,int segment_id)415 static INLINE void set_spatial_segment_id(
416     const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
417     BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) {
418   const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
419   const int bw = mi_size_wide[bsize];
420   const int bh = mi_size_high[bsize];
421   const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
422   const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
423 
424   for (int y = 0; y < ymis; ++y) {
425     for (int x = 0; x < xmis; ++x) {
426       segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id;
427     }
428   }
429 }
430 
av1_neg_interleave(int x,int ref,int max)431 int av1_neg_interleave(int x, int ref, int max) {
432   assert(x < max);
433   const int diff = x - ref;
434   if (!ref) return x;
435   if (ref >= (max - 1)) return -x + max - 1;
436   if (2 * ref < max) {
437     if (abs(diff) <= ref) {
438       if (diff > 0)
439         return (diff << 1) - 1;
440       else
441         return ((-diff) << 1);
442     }
443     return x;
444   } else {
445     if (abs(diff) < (max - ref)) {
446       if (diff > 0)
447         return (diff << 1) - 1;
448       else
449         return ((-diff) << 1);
450     }
451     return (max - x) - 1;
452   }
453 }
454 
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)455 static AOM_INLINE void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
456                                         const MB_MODE_INFO *const mbmi,
457                                         aom_writer *w,
458                                         const struct segmentation *seg,
459                                         struct segmentation_probs *segp,
460                                         int skip_txfm) {
461   if (!seg->enabled || !seg->update_map) return;
462 
463   AV1_COMMON *const cm = &cpi->common;
464   int cdf_num;
465   const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
466   const int mi_row = xd->mi_row;
467   const int mi_col = xd->mi_col;
468 
469   if (skip_txfm) {
470     // Still need to transmit tx size for intra blocks even if skip_txfm is
471     // true. Changing segment_id may make the tx size become invalid, e.g
472     // changing from lossless to lossy.
473     assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
474 
475     set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
476                            mi_row, mi_col, pred);
477     set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
478                            mi_row, mi_col, pred);
479     /* mbmi is read only but we need to update segment_id */
480     ((MB_MODE_INFO *)mbmi)->segment_id = pred;
481     return;
482   }
483 
484   const int coded_id =
485       av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
486   aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
487   aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
488   set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
489                          mi_row, mi_col, mbmi->segment_id);
490 }
491 
492 #define WRITE_REF_BIT(bname, pname) \
493   aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
494 
495 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)496 static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
497                                         const MACROBLOCKD *xd, aom_writer *w) {
498   const MB_MODE_INFO *const mbmi = xd->mi[0];
499   const int is_compound = has_second_ref(mbmi);
500   const int segment_id = mbmi->segment_id;
501 
502   // If segment level coding of this signal is disabled...
503   // or the segment allows multiple reference frame options
504   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
505     assert(!is_compound);
506     assert(mbmi->ref_frame[0] ==
507            get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
508   } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
509              segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
510     assert(!is_compound);
511     assert(mbmi->ref_frame[0] == LAST_FRAME);
512   } else {
513     // does the feature use compound prediction or not
514     // (if not specified at the frame/segment level)
515     if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
516       if (is_comp_ref_allowed(mbmi->bsize))
517         aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
518     } else {
519       assert((!is_compound) ==
520              (cm->current_frame.reference_mode == SINGLE_REFERENCE));
521     }
522 
523     if (is_compound) {
524       const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
525                                                     ? UNIDIR_COMP_REFERENCE
526                                                     : BIDIR_COMP_REFERENCE;
527       aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
528                        2);
529 
530       if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
531         const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
532         WRITE_REF_BIT(bit, uni_comp_ref_p);
533 
534         if (!bit) {
535           assert(mbmi->ref_frame[0] == LAST_FRAME);
536           const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
537                            mbmi->ref_frame[1] == GOLDEN_FRAME;
538           WRITE_REF_BIT(bit1, uni_comp_ref_p1);
539           if (bit1) {
540             const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
541             WRITE_REF_BIT(bit2, uni_comp_ref_p2);
542           }
543         } else {
544           assert(mbmi->ref_frame[1] == ALTREF_FRAME);
545         }
546 
547         return;
548       }
549 
550       assert(comp_ref_type == BIDIR_COMP_REFERENCE);
551 
552       const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
553                        mbmi->ref_frame[0] == LAST3_FRAME);
554       WRITE_REF_BIT(bit, comp_ref_p);
555 
556       if (!bit) {
557         const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
558         WRITE_REF_BIT(bit1, comp_ref_p1);
559       } else {
560         const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
561         WRITE_REF_BIT(bit2, comp_ref_p2);
562       }
563 
564       const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
565       WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
566 
567       if (!bit_bwd) {
568         WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
569       }
570 
571     } else {
572       const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
573                         mbmi->ref_frame[0] >= BWDREF_FRAME);
574       WRITE_REF_BIT(bit0, single_ref_p1);
575 
576       if (bit0) {
577         const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
578         WRITE_REF_BIT(bit1, single_ref_p2);
579 
580         if (!bit1) {
581           WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
582         }
583       } else {
584         const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
585                           mbmi->ref_frame[0] == GOLDEN_FRAME);
586         WRITE_REF_BIT(bit2, single_ref_p3);
587 
588         if (!bit2) {
589           const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
590           WRITE_REF_BIT(bit3, single_ref_p4);
591         } else {
592           const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
593           WRITE_REF_BIT(bit4, single_ref_p5);
594         }
595       }
596     }
597   }
598 }
599 
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)600 static AOM_INLINE void write_filter_intra_mode_info(
601     const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
602     aom_writer *w) {
603   if (av1_filter_intra_allowed(cm, mbmi)) {
604     aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
605                      xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
606     if (mbmi->filter_intra_mode_info.use_filter_intra) {
607       const FILTER_INTRA_MODE mode =
608           mbmi->filter_intra_mode_info.filter_intra_mode;
609       aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
610                        FILTER_INTRA_MODES);
611     }
612   }
613 }
614 
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)615 static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
616                                          aom_cdf_prob *cdf) {
617   aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
618                    2 * MAX_ANGLE_DELTA + 1);
619 }
620 
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)621 static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
622                                               ThreadData *td, aom_writer *w) {
623   const MACROBLOCKD *xd = &td->mb.e_mbd;
624   const MB_MODE_INFO *const mbmi = xd->mi[0];
625   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
626 
627   if (!av1_is_interp_needed(xd)) {
628     int_interpfilters filters = av1_broadcast_interp_filter(
629         av1_unswitchable_filter(cm->features.interp_filter));
630     assert(mbmi->interp_filters.as_int == filters.as_int);
631     (void)filters;
632     return;
633   }
634   if (cm->features.interp_filter == SWITCHABLE) {
635     int dir;
636     for (dir = 0; dir < 2; ++dir) {
637       const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
638       InterpFilter filter =
639           av1_extract_interp_filter(mbmi->interp_filters, dir);
640       aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
641                        SWITCHABLE_FILTERS);
642       ++td->interp_filter_selected[filter];
643       if (cm->seq_params->enable_dual_filter == 0) return;
644     }
645   }
646 }
647 
648 // Transmit color values with delta encoding. Write the first value as
649 // literal, and the deltas between each value and the previous one. "min_val" is
650 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)651 static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
652                                                    int bit_depth, int min_val,
653                                                    aom_writer *w) {
654   if (num <= 0) return;
655   assert(colors[0] < (1 << bit_depth));
656   aom_write_literal(w, colors[0], bit_depth);
657   if (num == 1) return;
658   int max_delta = 0;
659   int deltas[PALETTE_MAX_SIZE];
660   memset(deltas, 0, sizeof(deltas));
661   for (int i = 1; i < num; ++i) {
662     assert(colors[i] < (1 << bit_depth));
663     const int delta = colors[i] - colors[i - 1];
664     deltas[i - 1] = delta;
665     assert(delta >= min_val);
666     if (delta > max_delta) max_delta = delta;
667   }
668   const int min_bits = bit_depth - 3;
669   int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
670   assert(bits <= bit_depth);
671   int range = (1 << bit_depth) - colors[0] - min_val;
672   aom_write_literal(w, bits - min_bits, 2);
673   for (int i = 0; i < num - 1; ++i) {
674     aom_write_literal(w, deltas[i] - min_val, bits);
675     range -= deltas[i];
676     bits = AOMMIN(bits, av1_ceil_log2(range));
677   }
678 }
679 
680 // Transmit luma palette color values. First signal if each color in the color
681 // cache is used. Those colors that are not in the cache are transmitted with
682 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)683 static AOM_INLINE void write_palette_colors_y(
684     const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
685     int bit_depth, aom_writer *w) {
686   const int n = pmi->palette_size[0];
687   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
688   const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
689   int out_cache_colors[PALETTE_MAX_SIZE];
690   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
691   const int n_out_cache =
692       av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
693                             cache_color_found, out_cache_colors);
694   int n_in_cache = 0;
695   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
696     const int found = cache_color_found[i];
697     aom_write_bit(w, found);
698     n_in_cache += found;
699   }
700   assert(n_in_cache + n_out_cache == n);
701   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
702 }
703 
704 // Write chroma palette color values. U channel is handled similarly to the luma
705 // channel. For v channel, either use delta encoding or transmit raw values
706 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)707 static AOM_INLINE void write_palette_colors_uv(
708     const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
709     int bit_depth, aom_writer *w) {
710   const int n = pmi->palette_size[1];
711   const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
712   const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
713   // U channel colors.
714   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
715   const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
716   int out_cache_colors[PALETTE_MAX_SIZE];
717   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
718   const int n_out_cache = av1_index_color_cache(
719       color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
720   int n_in_cache = 0;
721   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
722     const int found = cache_color_found[i];
723     aom_write_bit(w, found);
724     n_in_cache += found;
725   }
726   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
727 
728   // V channel colors. Don't use color cache as the colors are not sorted.
729   const int max_val = 1 << bit_depth;
730   int zero_count = 0, min_bits_v = 0;
731   int bits_v =
732       av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
733   const int rate_using_delta =
734       2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
735   const int rate_using_raw = bit_depth * n;
736   if (rate_using_delta < rate_using_raw) {  // delta encoding
737     assert(colors_v[0] < (1 << bit_depth));
738     aom_write_bit(w, 1);
739     aom_write_literal(w, bits_v - min_bits_v, 2);
740     aom_write_literal(w, colors_v[0], bit_depth);
741     for (int i = 1; i < n; ++i) {
742       assert(colors_v[i] < (1 << bit_depth));
743       if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit.
744         aom_write_literal(w, 0, bits_v);
745         continue;
746       }
747       const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
748       const int sign_bit = colors_v[i] < colors_v[i - 1];
749       if (delta <= max_val - delta) {
750         aom_write_literal(w, delta, bits_v);
751         aom_write_bit(w, sign_bit);
752       } else {
753         aom_write_literal(w, max_val - delta, bits_v);
754         aom_write_bit(w, !sign_bit);
755       }
756     }
757   } else {  // Transmit raw values.
758     aom_write_bit(w, 0);
759     for (int i = 0; i < n; ++i) {
760       assert(colors_v[i] < (1 << bit_depth));
761       aom_write_literal(w, colors_v[i], bit_depth);
762     }
763   }
764 }
765 
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)766 static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
767                                                const MACROBLOCKD *xd,
768                                                const MB_MODE_INFO *const mbmi,
769                                                aom_writer *w) {
770   const int num_planes = av1_num_planes(cm);
771   const BLOCK_SIZE bsize = mbmi->bsize;
772   assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
773   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
774   const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
775 
776   if (mbmi->mode == DC_PRED) {
777     const int n = pmi->palette_size[0];
778     const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
779     aom_write_symbol(
780         w, n > 0,
781         xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
782     if (n > 0) {
783       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
784                        xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
785                        PALETTE_SIZES);
786       write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
787     }
788   }
789 
790   const int uv_dc_pred =
791       num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
792   if (uv_dc_pred) {
793     const int n = pmi->palette_size[1];
794     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
795     aom_write_symbol(w, n > 0,
796                      xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
797     if (n > 0) {
798       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
799                        xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
800                        PALETTE_SIZES);
801       write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
802     }
803   }
804 }
805 
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)806 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
807                        TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
808   MB_MODE_INFO *mbmi = xd->mi[0];
809   const FeatureFlags *const features = &cm->features;
810   const int is_inter = is_inter_block(mbmi);
811   if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
812       ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
813        (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
814       !mbmi->skip_txfm &&
815       !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
816     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
817     const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
818     const TxSetType tx_set_type = av1_get_ext_tx_set_type(
819         tx_size, is_inter, features->reduced_tx_set_used);
820     const int eset =
821         get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
822     // eset == 0 should correspond to a set with only DCT_DCT and there
823     // is no need to send the tx_type
824     assert(eset > 0);
825     assert(av1_ext_tx_used[tx_set_type][tx_type]);
826     if (is_inter) {
827       aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
828                        ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
829                        av1_num_ext_tx_set[tx_set_type]);
830     } else {
831       PREDICTION_MODE intra_dir;
832       if (mbmi->filter_intra_mode_info.use_filter_intra)
833         intra_dir =
834             fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
835       else
836         intra_dir = mbmi->mode;
837       aom_write_symbol(
838           w, av1_ext_tx_ind[tx_set_type][tx_type],
839           ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
840           av1_num_ext_tx_set[tx_set_type]);
841     }
842   }
843 }
844 
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)845 static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
846                                                 BLOCK_SIZE bsize,
847                                                 PREDICTION_MODE mode,
848                                                 aom_writer *w) {
849   aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
850                    INTRA_MODES);
851 }
852 
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)853 static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
854                                            UV_PREDICTION_MODE uv_mode,
855                                            PREDICTION_MODE y_mode,
856                                            CFL_ALLOWED_TYPE cfl_allowed,
857                                            aom_writer *w) {
858   aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
859                    UV_INTRA_MODES - !cfl_allowed);
860 }
861 
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)862 static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
863                                         uint8_t idx, int8_t joint_sign,
864                                         aom_writer *w) {
865   aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
866   // Magnitudes are only signaled for nonzero codes.
867   if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
868     aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
869     aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
870   }
871   if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
872     aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
873     aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
874   }
875 }
876 
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)877 static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
878                                   aom_writer *w, int skip) {
879   if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
880 
881   // At the start of a superblock, mark that we haven't yet written CDEF
882   // strengths for any of the CDEF units contained in this superblock.
883   const int sb_mask = (cm->seq_params->mib_size - 1);
884   const int mi_row_in_sb = (xd->mi_row & sb_mask);
885   const int mi_col_in_sb = (xd->mi_col & sb_mask);
886   if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
887     xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
888         xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
889   }
890 
891   // CDEF unit size is 64x64 irrespective of the superblock size.
892   const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
893 
894   // Find index of this CDEF unit in this superblock.
895   const int index_mask = cdef_size;
896   const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
897   const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
898   const int index = (cm->seq_params->sb_size == BLOCK_128X128)
899                         ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
900                         : 0;
901 
902   // Write CDEF strength to the first non-skip coding block in this CDEF unit.
903   if (!xd->cdef_transmitted[index] && !skip) {
904     // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
905     // of the 1st block in this CDEF unit.
906     const int first_block_mask = ~(cdef_size - 1);
907     const CommonModeInfoParams *const mi_params = &cm->mi_params;
908     const int grid_idx =
909         get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
910                         xd->mi_col & first_block_mask);
911     const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
912     aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
913     xd->cdef_transmitted[index] = true;
914   }
915 }
916 
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)917 static AOM_INLINE void write_inter_segment_id(
918     AV1_COMP *cpi, MACROBLOCKD *const xd, aom_writer *w,
919     const struct segmentation *const seg, struct segmentation_probs *const segp,
920     int skip, int preskip) {
921   MB_MODE_INFO *const mbmi = xd->mi[0];
922   AV1_COMMON *const cm = &cpi->common;
923   const int mi_row = xd->mi_row;
924   const int mi_col = xd->mi_col;
925 
926   if (seg->update_map) {
927     if (preskip) {
928       if (!seg->segid_preskip) return;
929     } else {
930       if (seg->segid_preskip) return;
931       if (skip) {
932         write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
933         if (seg->temporal_update) mbmi->seg_id_predicted = 0;
934         return;
935       }
936     }
937     if (seg->temporal_update) {
938       const int pred_flag = mbmi->seg_id_predicted;
939       aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
940       aom_write_symbol(w, pred_flag, pred_cdf, 2);
941       if (!pred_flag) {
942         write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
943       }
944       if (pred_flag) {
945         set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
946                                mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
947       }
948     } else {
949       write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
950     }
951   }
952 }
953 
954 // If delta q is present, writes delta_q index.
955 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)956 static AOM_INLINE void write_delta_q_params(AV1_COMMON *const cm,
957                                             MACROBLOCKD *const xd, int skip,
958                                             aom_writer *w) {
959   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
960 
961   if (delta_q_info->delta_q_present_flag) {
962     const MB_MODE_INFO *const mbmi = xd->mi[0];
963     const BLOCK_SIZE bsize = mbmi->bsize;
964     const int super_block_upper_left =
965         ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
966         ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
967 
968     if ((bsize != cm->seq_params->sb_size || skip == 0) &&
969         super_block_upper_left) {
970       assert(mbmi->current_qindex > 0);
971       const int reduced_delta_qindex =
972           (mbmi->current_qindex - xd->current_base_qindex) /
973           delta_q_info->delta_q_res;
974       write_delta_qindex(xd, reduced_delta_qindex, w);
975       xd->current_base_qindex = mbmi->current_qindex;
976       if (delta_q_info->delta_lf_present_flag) {
977         if (delta_q_info->delta_lf_multi) {
978           const int frame_lf_count =
979               av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
980           for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
981             int reduced_delta_lflevel =
982                 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
983                 delta_q_info->delta_lf_res;
984             write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
985             xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
986           }
987         } else {
988           int reduced_delta_lflevel =
989               (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
990               delta_q_info->delta_lf_res;
991           write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
992           xd->delta_lf_from_base = mbmi->delta_lf_from_base;
993         }
994       }
995     }
996   }
997 }
998 
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)999 static AOM_INLINE void write_intra_prediction_modes(const AV1_COMMON *cm,
1000                                                     MACROBLOCKD *const xd,
1001                                                     int is_keyframe,
1002                                                     aom_writer *w) {
1003   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1004   const MB_MODE_INFO *const mbmi = xd->mi[0];
1005   const PREDICTION_MODE mode = mbmi->mode;
1006   const BLOCK_SIZE bsize = mbmi->bsize;
1007 
1008   // Y mode.
1009   if (is_keyframe) {
1010     const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1011     const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1012     write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1013   } else {
1014     write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1015   }
1016 
1017   // Y angle delta.
1018   const int use_angle_delta = av1_use_angle_delta(bsize);
1019   if (use_angle_delta && av1_is_directional_mode(mode)) {
1020     write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1021                       ec_ctx->angle_delta_cdf[mode - V_PRED]);
1022   }
1023 
1024   // UV mode and UV angle delta.
1025   if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1026     const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1027     write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1028     if (uv_mode == UV_CFL_PRED)
1029       write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1030     if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
1031       write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1032                         ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
1033     }
1034   }
1035 
1036   // Palette.
1037   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1038     write_palette_mode_info(cm, xd, mbmi, w);
1039   }
1040 
1041   // Filter intra.
1042   write_filter_intra_mode_info(cm, xd, mbmi, w);
1043 }
1044 
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1045 static INLINE int16_t mode_context_analyzer(
1046     const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1047   if (rf[1] <= INTRA_FRAME) return mode_context;
1048 
1049   const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1050   const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1051 
1052   const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1053       newmv_ctx, COMP_NEWMV_CTXS - 1)];
1054   return comp_ctx;
1055 }
1056 
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1057 static INLINE int_mv get_ref_mv_from_stack(
1058     int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1059     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1060   const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1061   const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1062 
1063   if (ref_frame[1] > INTRA_FRAME) {
1064     assert(ref_idx == 0 || ref_idx == 1);
1065     return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1066                    : curr_ref_mv_stack[ref_mv_idx].this_mv;
1067   }
1068 
1069   assert(ref_idx == 0);
1070   return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1071              ? curr_ref_mv_stack[ref_mv_idx].this_mv
1072              : mbmi_ext_frame->global_mvs[ref_frame_type];
1073 }
1074 
get_ref_mv(const MACROBLOCK * x,int ref_idx)1075 static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1076   const MACROBLOCKD *xd = &x->e_mbd;
1077   const MB_MODE_INFO *mbmi = xd->mi[0];
1078   int ref_mv_idx = mbmi->ref_mv_idx;
1079   if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1080     assert(has_second_ref(mbmi));
1081     ref_mv_idx += 1;
1082   }
1083   return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1084                                x->mbmi_ext_frame);
1085 }
1086 
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1087 static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1088                                            aom_writer *w) {
1089   AV1_COMMON *const cm = &cpi->common;
1090   MACROBLOCK *const x = &td->mb;
1091   MACROBLOCKD *const xd = &x->e_mbd;
1092   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1093   const struct segmentation *const seg = &cm->seg;
1094   struct segmentation_probs *const segp = &ec_ctx->seg;
1095   const MB_MODE_INFO *const mbmi = xd->mi[0];
1096   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1097   const PREDICTION_MODE mode = mbmi->mode;
1098   const int segment_id = mbmi->segment_id;
1099   const BLOCK_SIZE bsize = mbmi->bsize;
1100   const int allow_hp = cm->features.allow_high_precision_mv;
1101   const int is_inter = is_inter_block(mbmi);
1102   const int is_compound = has_second_ref(mbmi);
1103   int ref;
1104 
1105   write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1106 
1107   write_skip_mode(cm, xd, segment_id, mbmi, w);
1108 
1109   assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1110   const int skip =
1111       mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1112 
1113   write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1114 
1115   write_cdef(cm, xd, w, skip);
1116 
1117   write_delta_q_params(cm, xd, skip, w);
1118 
1119   if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1120 
1121   if (mbmi->skip_mode) return;
1122 
1123   if (!is_inter) {
1124     write_intra_prediction_modes(cm, xd, 0, w);
1125   } else {
1126     int16_t mode_ctx;
1127 
1128     av1_collect_neighbors_ref_counts(xd);
1129 
1130     write_ref_frames(cm, xd, w);
1131 
1132     mode_ctx =
1133         mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1134 
1135     // If segment skip is not enabled code the mode.
1136     if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1137       if (is_inter_compound_mode(mode))
1138         write_inter_compound_mode(xd, w, mode, mode_ctx);
1139       else if (is_inter_singleref_mode(mode))
1140         write_inter_mode(w, mode, ec_ctx, mode_ctx);
1141 
1142       if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1143         write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1144       else
1145         assert(mbmi->ref_mv_idx == 0);
1146     }
1147 
1148     if (mode == NEWMV || mode == NEW_NEWMV) {
1149       for (ref = 0; ref < 1 + is_compound; ++ref) {
1150         nmv_context *nmvc = &ec_ctx->nmvc;
1151         const int_mv ref_mv = get_ref_mv(x, ref);
1152         av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1153                       allow_hp);
1154       }
1155     } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1156       nmv_context *nmvc = &ec_ctx->nmvc;
1157       const int_mv ref_mv = get_ref_mv(x, 1);
1158       av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1159                     allow_hp);
1160     } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1161       nmv_context *nmvc = &ec_ctx->nmvc;
1162       const int_mv ref_mv = get_ref_mv(x, 0);
1163       av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1164                     allow_hp);
1165     }
1166 
1167     if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1168         cpi->common.seq_params->enable_interintra_compound &&
1169         is_interintra_allowed(mbmi)) {
1170       const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1171       const int bsize_group = size_group_lookup[bsize];
1172       aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1173       if (interintra) {
1174         aom_write_symbol(w, mbmi->interintra_mode,
1175                          ec_ctx->interintra_mode_cdf[bsize_group],
1176                          INTERINTRA_MODES);
1177         if (av1_is_wedge_used(bsize)) {
1178           aom_write_symbol(w, mbmi->use_wedge_interintra,
1179                            ec_ctx->wedge_interintra_cdf[bsize], 2);
1180           if (mbmi->use_wedge_interintra) {
1181             aom_write_symbol(w, mbmi->interintra_wedge_index,
1182                              ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1183           }
1184         }
1185       }
1186     }
1187 
1188     if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1189 
1190     // First write idx to indicate current compound inter prediction mode group
1191     // Group A (0): dist_wtd_comp, compound_average
1192     // Group B (1): interintra, compound_diffwtd, wedge
1193     if (has_second_ref(mbmi)) {
1194       const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1195                                        cm->seq_params->enable_masked_compound;
1196 
1197       if (masked_compound_used) {
1198         const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1199         aom_write_symbol(w, mbmi->comp_group_idx,
1200                          ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1201       } else {
1202         assert(mbmi->comp_group_idx == 0);
1203       }
1204 
1205       if (mbmi->comp_group_idx == 0) {
1206         if (mbmi->compound_idx)
1207           assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1208 
1209         if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1210           const int comp_index_ctx = get_comp_index_context(cm, xd);
1211           aom_write_symbol(w, mbmi->compound_idx,
1212                            ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1213         } else {
1214           assert(mbmi->compound_idx == 1);
1215         }
1216       } else {
1217         assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1218                is_inter_compound_mode(mbmi->mode) &&
1219                mbmi->motion_mode == SIMPLE_TRANSLATION);
1220         assert(masked_compound_used);
1221         // compound_diffwtd, wedge
1222         assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1223                mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1224 
1225         if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1226           aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1227                            ec_ctx->compound_type_cdf[bsize],
1228                            MASKED_COMPOUND_TYPES);
1229 
1230         if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1231           assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1232           aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1233                            ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1234           aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1235         } else {
1236           assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1237           aom_write_literal(w, mbmi->interinter_comp.mask_type,
1238                             MAX_DIFFWTD_MASK_BITS);
1239         }
1240       }
1241     }
1242     write_mb_interp_filter(cm, td, w);
1243   }
1244 }
1245 
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1246 static AOM_INLINE void write_intrabc_info(
1247     MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1248     aom_writer *w) {
1249   const MB_MODE_INFO *const mbmi = xd->mi[0];
1250   int use_intrabc = is_intrabc_block(mbmi);
1251   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1252   aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1253   if (use_intrabc) {
1254     assert(mbmi->mode == DC_PRED);
1255     assert(mbmi->uv_mode == UV_DC_PRED);
1256     assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1257     int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1258     av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1259   }
1260 }
1261 
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1262 static AOM_INLINE void write_mb_modes_kf(
1263     AV1_COMP *cpi, MACROBLOCKD *xd,
1264     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1265   AV1_COMMON *const cm = &cpi->common;
1266   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1267   const struct segmentation *const seg = &cm->seg;
1268   struct segmentation_probs *const segp = &ec_ctx->seg;
1269   const MB_MODE_INFO *const mbmi = xd->mi[0];
1270 
1271   if (seg->segid_preskip && seg->update_map)
1272     write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1273 
1274   const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1275 
1276   if (!seg->segid_preskip && seg->update_map)
1277     write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1278 
1279   write_cdef(cm, xd, w, skip);
1280 
1281   write_delta_q_params(cm, xd, skip, w);
1282 
1283   if (av1_allow_intrabc(cm)) {
1284     write_intrabc_info(xd, mbmi_ext_frame, w);
1285     if (is_intrabc_block(mbmi)) return;
1286   }
1287 
1288   write_intra_prediction_modes(cm, xd, 1, w);
1289 }
1290 
1291 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1292 static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
1293   printf("\nmi->mi_row == %d\n", mi->mi_row);
1294   printf("&& mi->mi_col == %d\n", mi->mi_col);
1295   printf("&& mi->bsize == %d\n", mi->bsize);
1296   printf("&& mi->tx_size == %d\n", mi->tx_size);
1297   printf("&& mi->mode == %d\n", mi->mode);
1298 }
1299 
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1300 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1301                                    int plane) {
1302   if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1303     printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1304            plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1305     return 1;
1306   }
1307   return 0;
1308 }
1309 #endif
1310 
1311 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1312 static AOM_INLINE void enc_dump_logs(
1313     const AV1_COMMON *const cm,
1314     const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1315   const MB_MODE_INFO *const mbmi = *(
1316       cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1317   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1318       mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1319                                                  cm->mi_params.mi_alloc_bsize,
1320                                                  mbmi_ext_info->stride);
1321   if (is_inter_block(mbmi)) {
1322 #define FRAME_TO_CHECK 11
1323     if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1324         cm->show_frame == 1) {
1325       const BLOCK_SIZE bsize = mbmi->bsize;
1326 
1327       int_mv mv[2] = { 0 };
1328       const int is_comp_ref = has_second_ref(mbmi);
1329 
1330       for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1331         mv[ref].as_mv = mbmi->mv[ref].as_mv;
1332 
1333       if (!is_comp_ref) {
1334         mv[1].as_int = 0;
1335       }
1336 
1337       const int16_t mode_ctx =
1338           is_comp_ref ? 0
1339                       : mode_context_analyzer(mbmi_ext_frame->mode_context,
1340                                               mbmi->ref_frame);
1341 
1342       const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1343       int16_t zeromv_ctx = -1;
1344       int16_t refmv_ctx = -1;
1345 
1346       if (mbmi->mode != NEWMV) {
1347         zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1348         if (mbmi->mode != GLOBALMV)
1349           refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1350       }
1351 
1352       printf(
1353           "=== ENCODER ===: "
1354           "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1355           "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1356           "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1357           "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1358           cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1359           mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1360           mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1361           mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1362           zeromv_ctx, refmv_ctx, mbmi->tx_size);
1363     }
1364   }
1365 }
1366 #endif  // ENC_MISMATCH_DEBUG
1367 
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1368 static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1369                                     aom_writer *w) {
1370   AV1_COMMON *const cm = &cpi->common;
1371   MACROBLOCKD *const xd = &td->mb.e_mbd;
1372   MB_MODE_INFO *m = xd->mi[0];
1373 
1374   if (frame_is_intra_only(cm)) {
1375     write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1376   } else {
1377     // has_subpel_mv_component needs the ref frame buffers set up to look
1378     // up if they are scaled. has_subpel_mv_component is in turn needed by
1379     // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1380     set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1381 
1382 #if ENC_MISMATCH_DEBUG
1383     enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1384 #endif  // ENC_MISMATCH_DEBUG
1385 
1386     pack_inter_mode_mvs(cpi, td, w);
1387   }
1388 }
1389 
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1390 static AOM_INLINE void write_inter_txb_coeff(
1391     AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1392     aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1393     TOKEN_STATS *token_stats, const int row, const int col, int *block,
1394     const int plane) {
1395   MACROBLOCKD *const xd = &x->e_mbd;
1396   const struct macroblockd_plane *const pd = &xd->plane[plane];
1397   const BLOCK_SIZE bsize = mbmi->bsize;
1398   assert(bsize < BLOCK_SIZES_ALL);
1399   const int ss_x = pd->subsampling_x;
1400   const int ss_y = pd->subsampling_y;
1401   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1402   assert(plane_bsize < BLOCK_SIZES_ALL);
1403   const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1404   const int step =
1405       tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1406   const int bkw = tx_size_wide_unit[max_tx_size];
1407   const int bkh = tx_size_high_unit[max_tx_size];
1408   const BLOCK_SIZE max_unit_bsize =
1409       get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1410   const int num_4x4_w = mi_size_wide[plane_bsize];
1411   const int num_4x4_h = mi_size_high[plane_bsize];
1412   const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1413   const int mu_blocks_high = mi_size_high[max_unit_bsize];
1414   const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1415   const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1416   for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1417     for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1418       pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1419                       cm->seq_params->bit_depth, *block, blk_row, blk_col,
1420                       max_tx_size, token_stats);
1421       *block += step;
1422     }
1423   }
1424 }
1425 
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1426 static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1427                                       aom_writer *w, const TokenExtra **tok,
1428                                       const TokenExtra *const tok_end) {
1429   AV1_COMMON *const cm = &cpi->common;
1430   MACROBLOCKD *const xd = &x->e_mbd;
1431   MB_MODE_INFO *const mbmi = xd->mi[0];
1432   const BLOCK_SIZE bsize = mbmi->bsize;
1433 
1434   assert(!mbmi->skip_txfm);
1435 
1436   const int is_inter = is_inter_block(mbmi);
1437   if (!is_inter) {
1438     av1_write_intra_coeffs_mb(cm, x, w, bsize);
1439   } else {
1440     int block[MAX_MB_PLANE] = { 0 };
1441     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1442                                          xd->plane[0].subsampling_y));
1443     const int num_4x4_w = mi_size_wide[bsize];
1444     const int num_4x4_h = mi_size_high[bsize];
1445     TOKEN_STATS token_stats;
1446     init_token_stats(&token_stats);
1447 
1448     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1449     assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1450                                                   xd->plane[0].subsampling_x,
1451                                                   xd->plane[0].subsampling_y));
1452     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1453     int mu_blocks_high = mi_size_high[max_unit_bsize];
1454     mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1455     mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1456 
1457     const int num_planes = av1_num_planes(cm);
1458     for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1459       for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1460         for (int plane = 0; plane < num_planes; ++plane) {
1461           if (plane && !xd->is_chroma_ref) break;
1462           write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1463                                 col, &block[plane], plane);
1464         }
1465       }
1466     }
1467 #if CONFIG_RD_DEBUG
1468     for (int plane = 0; plane < num_planes; ++plane) {
1469       if (mbmi->bsize >= BLOCK_8X8 &&
1470           rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1471         dump_mode_info(mbmi);
1472         assert(0);
1473       }
1474     }
1475 #endif  // CONFIG_RD_DEBUG
1476   }
1477 }
1478 
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1479 static AOM_INLINE void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1480                                      const TileInfo *const tile, aom_writer *w,
1481                                      const TokenExtra **tok,
1482                                      const TokenExtra *const tok_end,
1483                                      int mi_row, int mi_col) {
1484   const AV1_COMMON *cm = &cpi->common;
1485   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1486   MACROBLOCKD *xd = &td->mb.e_mbd;
1487   FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1488   const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1489   xd->mi = mi_params->mi_grid_base + grid_idx;
1490   td->mb.mbmi_ext_frame =
1491       cpi->mbmi_ext_info.frame_base +
1492       get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1493                      cpi->mbmi_ext_info.stride);
1494   xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1495   xd->tx_type_map_stride = mi_params->mi_stride;
1496 
1497   const MB_MODE_INFO *mbmi = xd->mi[0];
1498   const BLOCK_SIZE bsize = mbmi->bsize;
1499   assert(bsize <= cm->seq_params->sb_size ||
1500          (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1501 
1502   const int bh = mi_size_high[bsize];
1503   const int bw = mi_size_wide[bsize];
1504   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1505                  mi_params->mi_cols);
1506 
1507   xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1508   xd->left_txfm_context =
1509       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1510 
1511   write_mbmi_b(cpi, td, w);
1512 
1513   for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1514     const uint8_t palette_size_plane =
1515         mbmi->palette_mode_info.palette_size[plane];
1516     assert(!mbmi->skip_mode || !palette_size_plane);
1517     if (palette_size_plane > 0) {
1518       assert(mbmi->use_intrabc == 0);
1519       assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1520                                mbmi->bsize));
1521       assert(!plane || xd->is_chroma_ref);
1522       int rows, cols;
1523       av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1524                                &cols);
1525       assert(*tok < tok_end);
1526       MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1527                                 : tile_ctx->palette_y_color_index_cdf;
1528       pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1529     }
1530   }
1531 
1532   const int is_inter_tx = is_inter_block(mbmi);
1533   const int skip_txfm = mbmi->skip_txfm;
1534   const int segment_id = mbmi->segment_id;
1535   if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1536       !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1537     if (is_inter_tx) {  // This implies skip flag is 0.
1538       const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1539       const int txbh = tx_size_high_unit[max_tx_size];
1540       const int txbw = tx_size_wide_unit[max_tx_size];
1541       const int width = mi_size_wide[bsize];
1542       const int height = mi_size_high[bsize];
1543       for (int idy = 0; idy < height; idy += txbh) {
1544         for (int idx = 0; idx < width; idx += txbw) {
1545           write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1546         }
1547       }
1548     } else {
1549       write_selected_tx_size(xd, w);
1550       set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1551     }
1552   } else {
1553     set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1554                   skip_txfm && is_inter_tx, xd);
1555   }
1556 
1557   if (!mbmi->skip_txfm) {
1558     int start = aom_tell_size(w);
1559 
1560     write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1561 
1562     const int end = aom_tell_size(w);
1563     td->coefficient_size += end - start;
1564   }
1565 }
1566 
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1567 static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
1568                                        const MACROBLOCKD *const xd, int hbs,
1569                                        int mi_row, int mi_col, PARTITION_TYPE p,
1570                                        BLOCK_SIZE bsize, aom_writer *w) {
1571   const int is_partition_point = bsize >= BLOCK_8X8;
1572 
1573   if (!is_partition_point) return;
1574 
1575   const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1576   const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1577   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1578   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1579 
1580   if (!has_rows && !has_cols) {
1581     assert(p == PARTITION_SPLIT);
1582     return;
1583   }
1584 
1585   if (has_rows && has_cols) {
1586     aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1587                      partition_cdf_length(bsize));
1588   } else if (!has_rows && has_cols) {
1589     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1590     assert(bsize > BLOCK_8X8);
1591     aom_cdf_prob cdf[2];
1592     partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1593     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1594   } else {
1595     assert(has_rows && !has_cols);
1596     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1597     assert(bsize > BLOCK_8X8);
1598     aom_cdf_prob cdf[2];
1599     partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1600     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1601   }
1602 }
1603 
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1604 static AOM_INLINE void write_modes_sb(
1605     AV1_COMP *const cpi, ThreadData *const td, const TileInfo *const tile,
1606     aom_writer *const w, const TokenExtra **tok,
1607     const TokenExtra *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize) {
1608   const AV1_COMMON *const cm = &cpi->common;
1609   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1610   MACROBLOCKD *const xd = &td->mb.e_mbd;
1611   assert(bsize < BLOCK_SIZES_ALL);
1612   const int hbs = mi_size_wide[bsize] / 2;
1613   const int quarter_step = mi_size_wide[bsize] / 4;
1614   int i;
1615   const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1616   const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1617 
1618   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1619 
1620 #if !CONFIG_REALTIME_ONLY
1621   const int num_planes = av1_num_planes(cm);
1622   for (int plane = 0; plane < num_planes; ++plane) {
1623     int rcol0, rcol1, rrow0, rrow1;
1624     if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1625                                            &rcol0, &rcol1, &rrow0, &rrow1)) {
1626       const int rstride = cm->rst_info[plane].horz_units_per_tile;
1627       for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1628         for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1629           const int runit_idx = rcol + rrow * rstride;
1630           const RestorationUnitInfo *rui =
1631               &cm->rst_info[plane].unit_info[runit_idx];
1632           loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, td->counts);
1633         }
1634       }
1635     }
1636   }
1637 #endif
1638 
1639   write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1640   switch (partition) {
1641     case PARTITION_NONE:
1642       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1643       break;
1644     case PARTITION_HORZ:
1645       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1646       if (mi_row + hbs < mi_params->mi_rows)
1647         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1648       break;
1649     case PARTITION_VERT:
1650       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1651       if (mi_col + hbs < mi_params->mi_cols)
1652         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1653       break;
1654     case PARTITION_SPLIT:
1655       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1656       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1657                      subsize);
1658       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1659                      subsize);
1660       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1661                      subsize);
1662       break;
1663     case PARTITION_HORZ_A:
1664       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1665       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1666       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1667       break;
1668     case PARTITION_HORZ_B:
1669       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1670       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1671       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1672       break;
1673     case PARTITION_VERT_A:
1674       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1675       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1677       break;
1678     case PARTITION_VERT_B:
1679       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1680       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1681       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1682       break;
1683     case PARTITION_HORZ_4:
1684       for (i = 0; i < 4; ++i) {
1685         int this_mi_row = mi_row + i * quarter_step;
1686         if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1687 
1688         write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1689       }
1690       break;
1691     case PARTITION_VERT_4:
1692       for (i = 0; i < 4; ++i) {
1693         int this_mi_col = mi_col + i * quarter_step;
1694         if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1695 
1696         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1697       }
1698       break;
1699     default: assert(0);
1700   }
1701 
1702   // update partition context
1703   update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1704 }
1705 
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1706 static AOM_INLINE void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1707                                    const TileInfo *const tile,
1708                                    aom_writer *const w, int tile_row,
1709                                    int tile_col) {
1710   AV1_COMMON *const cm = &cpi->common;
1711   MACROBLOCKD *const xd = &td->mb.e_mbd;
1712   const int mi_row_start = tile->mi_row_start;
1713   const int mi_row_end = tile->mi_row_end;
1714   const int mi_col_start = tile->mi_col_start;
1715   const int mi_col_end = tile->mi_col_end;
1716   const int num_planes = av1_num_planes(cm);
1717 
1718   av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1719   av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1720 
1721   if (cpi->common.delta_q_info.delta_q_present_flag) {
1722     xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1723     if (cpi->common.delta_q_info.delta_lf_present_flag) {
1724       av1_reset_loop_filter_delta(xd, num_planes);
1725     }
1726   }
1727 
1728   for (int mi_row = mi_row_start; mi_row < mi_row_end;
1729        mi_row += cm->seq_params->mib_size) {
1730     const int sb_row_in_tile =
1731         (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1732     const TokenExtra *tok =
1733         cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start;
1734     const TokenExtra *tok_end =
1735         tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count;
1736 
1737     av1_zero_left_context(xd);
1738 
1739     for (int mi_col = mi_col_start; mi_col < mi_col_end;
1740          mi_col += cm->seq_params->mib_size) {
1741       td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1742       write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1743                      cm->seq_params->sb_size);
1744     }
1745     assert(tok == tok_end);
1746   }
1747 }
1748 
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1749 static AOM_INLINE void encode_restoration_mode(
1750     AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
1751   assert(!cm->features.all_lossless);
1752   if (!cm->seq_params->enable_restoration) return;
1753   if (cm->features.allow_intrabc) return;
1754   const int num_planes = av1_num_planes(cm);
1755   int all_none = 1, chroma_none = 1;
1756   for (int p = 0; p < num_planes; ++p) {
1757     RestorationInfo *rsi = &cm->rst_info[p];
1758     if (rsi->frame_restoration_type != RESTORE_NONE) {
1759       all_none = 0;
1760       chroma_none &= p == 0;
1761     }
1762     switch (rsi->frame_restoration_type) {
1763       case RESTORE_NONE:
1764         aom_wb_write_bit(wb, 0);
1765         aom_wb_write_bit(wb, 0);
1766         break;
1767       case RESTORE_WIENER:
1768         aom_wb_write_bit(wb, 1);
1769         aom_wb_write_bit(wb, 0);
1770         break;
1771       case RESTORE_SGRPROJ:
1772         aom_wb_write_bit(wb, 1);
1773         aom_wb_write_bit(wb, 1);
1774         break;
1775       case RESTORE_SWITCHABLE:
1776         aom_wb_write_bit(wb, 0);
1777         aom_wb_write_bit(wb, 1);
1778         break;
1779       default: assert(0);
1780     }
1781   }
1782   if (!all_none) {
1783     assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1784            cm->seq_params->sb_size == BLOCK_128X128);
1785     const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1786 
1787     RestorationInfo *rsi = &cm->rst_info[0];
1788 
1789     assert(rsi->restoration_unit_size >= sb_size);
1790     assert(RESTORATION_UNITSIZE_MAX == 256);
1791 
1792     if (sb_size == 64) {
1793       aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1794     }
1795     if (rsi->restoration_unit_size > 64) {
1796       aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1797     }
1798   }
1799 
1800   if (num_planes > 1) {
1801     int s =
1802         AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1803     if (s && !chroma_none) {
1804       aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1805                                cm->rst_info[0].restoration_unit_size);
1806       assert(cm->rst_info[1].restoration_unit_size ==
1807                  cm->rst_info[0].restoration_unit_size ||
1808              cm->rst_info[1].restoration_unit_size ==
1809                  (cm->rst_info[0].restoration_unit_size >> s));
1810       assert(cm->rst_info[2].restoration_unit_size ==
1811              cm->rst_info[1].restoration_unit_size);
1812     } else if (!s) {
1813       assert(cm->rst_info[1].restoration_unit_size ==
1814              cm->rst_info[0].restoration_unit_size);
1815       assert(cm->rst_info[2].restoration_unit_size ==
1816              cm->rst_info[1].restoration_unit_size);
1817     }
1818   }
1819 }
1820 
1821 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1822 static AOM_INLINE void write_wiener_filter(int wiener_win,
1823                                            const WienerInfo *wiener_info,
1824                                            WienerInfo *ref_wiener_info,
1825                                            aom_writer *wb) {
1826   if (wiener_win == WIENER_WIN)
1827     aom_write_primitive_refsubexpfin(
1828         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1829         WIENER_FILT_TAP0_SUBEXP_K,
1830         ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1831         wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1832   else
1833     assert(wiener_info->vfilter[0] == 0 &&
1834            wiener_info->vfilter[WIENER_WIN - 1] == 0);
1835   aom_write_primitive_refsubexpfin(
1836       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1837       WIENER_FILT_TAP1_SUBEXP_K,
1838       ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1839       wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1840   aom_write_primitive_refsubexpfin(
1841       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1842       WIENER_FILT_TAP2_SUBEXP_K,
1843       ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1844       wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1845   if (wiener_win == WIENER_WIN)
1846     aom_write_primitive_refsubexpfin(
1847         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1848         WIENER_FILT_TAP0_SUBEXP_K,
1849         ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1850         wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1851   else
1852     assert(wiener_info->hfilter[0] == 0 &&
1853            wiener_info->hfilter[WIENER_WIN - 1] == 0);
1854   aom_write_primitive_refsubexpfin(
1855       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1856       WIENER_FILT_TAP1_SUBEXP_K,
1857       ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1858       wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1859   aom_write_primitive_refsubexpfin(
1860       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1861       WIENER_FILT_TAP2_SUBEXP_K,
1862       ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1863       wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1864   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1865 }
1866 
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1867 static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1868                                             SgrprojInfo *ref_sgrproj_info,
1869                                             aom_writer *wb) {
1870   aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1871   const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1872 
1873   if (params->r[0] == 0) {
1874     assert(sgrproj_info->xqd[0] == 0);
1875     aom_write_primitive_refsubexpfin(
1876         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1877         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1878         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1879   } else if (params->r[1] == 0) {
1880     aom_write_primitive_refsubexpfin(
1881         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1882         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1883         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1884   } else {
1885     aom_write_primitive_refsubexpfin(
1886         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1887         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1888         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1889     aom_write_primitive_refsubexpfin(
1890         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1891         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1892         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1893   }
1894 
1895   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1896 }
1897 
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,const RestorationUnitInfo * rui,aom_writer * const w,int plane,FRAME_COUNTS * counts)1898 static AOM_INLINE void loop_restoration_write_sb_coeffs(
1899     const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
1900     aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1901   const RestorationInfo *rsi = cm->rst_info + plane;
1902   RestorationType frame_rtype = rsi->frame_restoration_type;
1903   assert(frame_rtype != RESTORE_NONE);
1904 
1905   (void)counts;
1906   assert(!cm->features.all_lossless);
1907 
1908   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1909   WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1910   SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1911   RestorationType unit_rtype = rui->restoration_type;
1912 
1913   if (frame_rtype == RESTORE_SWITCHABLE) {
1914     aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1915                      RESTORE_SWITCHABLE_TYPES);
1916 #if CONFIG_ENTROPY_STATS
1917     ++counts->switchable_restore[unit_rtype];
1918 #endif
1919     switch (unit_rtype) {
1920       case RESTORE_WIENER:
1921         write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1922         break;
1923       case RESTORE_SGRPROJ:
1924         write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1925         break;
1926       default: assert(unit_rtype == RESTORE_NONE); break;
1927     }
1928   } else if (frame_rtype == RESTORE_WIENER) {
1929     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1930                      xd->tile_ctx->wiener_restore_cdf, 2);
1931 #if CONFIG_ENTROPY_STATS
1932     ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1933 #endif
1934     if (unit_rtype != RESTORE_NONE) {
1935       write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1936     }
1937   } else if (frame_rtype == RESTORE_SGRPROJ) {
1938     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1939                      xd->tile_ctx->sgrproj_restore_cdf, 2);
1940 #if CONFIG_ENTROPY_STATS
1941     ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1942 #endif
1943     if (unit_rtype != RESTORE_NONE) {
1944       write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1945     }
1946   }
1947 }
1948 #endif  // !CONFIG_REALTIME_ONLY
1949 
1950 // Only write out the ref delta section if any of the elements
1951 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)1952 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
1953   struct loopfilter *lf = &cm->lf;
1954   if (!lf->mode_ref_delta_update) {
1955     return 0;
1956   }
1957   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
1958   int8_t last_ref_deltas[REF_FRAMES];
1959   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
1960   if (buf == NULL) {
1961     av1_set_default_ref_deltas(last_ref_deltas);
1962     av1_set_default_mode_deltas(last_mode_deltas);
1963   } else {
1964     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
1965     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
1966   }
1967   for (int i = 0; i < REF_FRAMES; i++) {
1968     if (lf->ref_deltas[i] != last_ref_deltas[i]) {
1969       return true;
1970     }
1971   }
1972   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
1973     if (lf->mode_deltas[i] != last_mode_deltas[i]) {
1974       return true;
1975     }
1976   }
1977   return false;
1978 }
1979 
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1980 static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
1981                                          struct aom_write_bit_buffer *wb) {
1982   assert(!cm->features.coded_lossless);
1983   if (cm->features.allow_intrabc) return;
1984   const int num_planes = av1_num_planes(cm);
1985   struct loopfilter *lf = &cm->lf;
1986 
1987   // Encode the loop filter level and type
1988   aom_wb_write_literal(wb, lf->filter_level[0], 6);
1989   aom_wb_write_literal(wb, lf->filter_level[1], 6);
1990   if (num_planes > 1) {
1991     if (lf->filter_level[0] || lf->filter_level[1]) {
1992       aom_wb_write_literal(wb, lf->filter_level_u, 6);
1993       aom_wb_write_literal(wb, lf->filter_level_v, 6);
1994     }
1995   }
1996   aom_wb_write_literal(wb, lf->sharpness_level, 3);
1997 
1998   aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
1999 
2000   // Write out loop filter deltas applied at the MB level based on mode or
2001   // ref frame (if they are enabled), only if there is information to write.
2002   int meaningful = is_mode_ref_delta_meaningful(cm);
2003   aom_wb_write_bit(wb, meaningful);
2004   if (!meaningful) {
2005     return;
2006   }
2007 
2008   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2009   int8_t last_ref_deltas[REF_FRAMES];
2010   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2011   if (buf == NULL) {
2012     av1_set_default_ref_deltas(last_ref_deltas);
2013     av1_set_default_mode_deltas(last_mode_deltas);
2014   } else {
2015     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2016     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2017   }
2018   for (int i = 0; i < REF_FRAMES; i++) {
2019     const int delta = lf->ref_deltas[i];
2020     const int changed = delta != last_ref_deltas[i];
2021     aom_wb_write_bit(wb, changed);
2022     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2023   }
2024   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2025     const int delta = lf->mode_deltas[i];
2026     const int changed = delta != last_mode_deltas[i];
2027     aom_wb_write_bit(wb, changed);
2028     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2029   }
2030 }
2031 
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2032 static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
2033                                    struct aom_write_bit_buffer *wb) {
2034   assert(!cm->features.coded_lossless);
2035   if (!cm->seq_params->enable_cdef) return;
2036   if (cm->features.allow_intrabc) return;
2037   const int num_planes = av1_num_planes(cm);
2038   int i;
2039   aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2040   aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2041   for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2042     aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2043                          CDEF_STRENGTH_BITS);
2044     if (num_planes > 1)
2045       aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2046                            CDEF_STRENGTH_BITS);
2047   }
2048 }
2049 
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2050 static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
2051                                      int delta_q) {
2052   if (delta_q != 0) {
2053     aom_wb_write_bit(wb, 1);
2054     aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2055   } else {
2056     aom_wb_write_bit(wb, 0);
2057   }
2058 }
2059 
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2060 static AOM_INLINE void encode_quantization(
2061     const CommonQuantParams *const quant_params, int num_planes,
2062     bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2063   aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2064   write_delta_q(wb, quant_params->y_dc_delta_q);
2065   if (num_planes > 1) {
2066     int diff_uv_delta =
2067         (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2068         (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2069     if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2070     write_delta_q(wb, quant_params->u_dc_delta_q);
2071     write_delta_q(wb, quant_params->u_ac_delta_q);
2072     if (diff_uv_delta) {
2073       write_delta_q(wb, quant_params->v_dc_delta_q);
2074       write_delta_q(wb, quant_params->v_ac_delta_q);
2075     }
2076   }
2077   aom_wb_write_bit(wb, quant_params->using_qmatrix);
2078   if (quant_params->using_qmatrix) {
2079     aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2080     aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2081     if (!separate_uv_delta_q)
2082       assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2083     else
2084       aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2085   }
2086 }
2087 
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2088 static AOM_INLINE void encode_segmentation(AV1_COMMON *cm,
2089                                            struct aom_write_bit_buffer *wb) {
2090   int i, j;
2091   struct segmentation *seg = &cm->seg;
2092 
2093   aom_wb_write_bit(wb, seg->enabled);
2094   if (!seg->enabled) return;
2095 
2096   // Write update flags
2097   if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2098     aom_wb_write_bit(wb, seg->update_map);
2099     if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2100     aom_wb_write_bit(wb, seg->update_data);
2101   }
2102 
2103   // Segmentation data
2104   if (seg->update_data) {
2105     for (i = 0; i < MAX_SEGMENTS; i++) {
2106       for (j = 0; j < SEG_LVL_MAX; j++) {
2107         const int active = segfeature_active(seg, i, j);
2108         aom_wb_write_bit(wb, active);
2109         if (active) {
2110           const int data_max = av1_seg_feature_data_max(j);
2111           const int data_min = -data_max;
2112           const int ubits = get_unsigned_bits(data_max);
2113           const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2114 
2115           if (av1_is_segfeature_signed(j)) {
2116             aom_wb_write_inv_signed_literal(wb, data, ubits);
2117           } else {
2118             aom_wb_write_literal(wb, data, ubits);
2119           }
2120         }
2121       }
2122     }
2123   }
2124 }
2125 
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2126 static AOM_INLINE void write_frame_interp_filter(
2127     InterpFilter filter, struct aom_write_bit_buffer *wb) {
2128   aom_wb_write_bit(wb, filter == SWITCHABLE);
2129   if (filter != SWITCHABLE)
2130     aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2131 }
2132 
2133 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2134 static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2135                                         int v) {
2136   const int l = get_unsigned_bits(n);
2137   const int m = (1 << l) - n;
2138   if (l == 0) return;
2139   if (v < m) {
2140     aom_wb_write_literal(wb, v, l - 1);
2141   } else {
2142     aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2143     aom_wb_write_literal(wb, (v - m) & 1, 1);
2144   }
2145 }
2146 
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2147 static AOM_INLINE void write_tile_info_max_tile(
2148     const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2149   int width_mi =
2150       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2151   int height_mi =
2152       ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2153   int width_sb = width_mi >> cm->seq_params->mib_size_log2;
2154   int height_sb = height_mi >> cm->seq_params->mib_size_log2;
2155   int size_sb, i;
2156   const CommonTileParams *const tiles = &cm->tiles;
2157 
2158   aom_wb_write_bit(wb, tiles->uniform_spacing);
2159 
2160   if (tiles->uniform_spacing) {
2161     int ones = tiles->log2_cols - tiles->min_log2_cols;
2162     while (ones--) {
2163       aom_wb_write_bit(wb, 1);
2164     }
2165     if (tiles->log2_cols < tiles->max_log2_cols) {
2166       aom_wb_write_bit(wb, 0);
2167     }
2168 
2169     // rows
2170     ones = tiles->log2_rows - tiles->min_log2_rows;
2171     while (ones--) {
2172       aom_wb_write_bit(wb, 1);
2173     }
2174     if (tiles->log2_rows < tiles->max_log2_rows) {
2175       aom_wb_write_bit(wb, 0);
2176     }
2177   } else {
2178     // Explicit tiles with configurable tile widths and heights
2179     // columns
2180     for (i = 0; i < tiles->cols; i++) {
2181       size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2182       wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2183       width_sb -= size_sb;
2184     }
2185     assert(width_sb == 0);
2186 
2187     // rows
2188     for (i = 0; i < tiles->rows; i++) {
2189       size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2190       wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2191                        size_sb - 1);
2192       height_sb -= size_sb;
2193     }
2194     assert(height_sb == 0);
2195   }
2196 }
2197 
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2198 static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
2199                                        struct aom_write_bit_buffer *saved_wb,
2200                                        struct aom_write_bit_buffer *wb) {
2201   write_tile_info_max_tile(cm, wb);
2202 
2203   *saved_wb = *wb;
2204   if (cm->tiles.rows * cm->tiles.cols > 1) {
2205     // tile id used for cdf update
2206     aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2207     // Number of bytes in tile size - 1
2208     aom_wb_write_literal(wb, 3, 2);
2209   }
2210 }
2211 
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2212 static AOM_INLINE void write_ext_tile_info(
2213     const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
2214     struct aom_write_bit_buffer *wb) {
2215   // This information is stored as a separate byte.
2216   int mod = wb->bit_offset % CHAR_BIT;
2217   if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2218   assert(aom_wb_is_byte_aligned(wb));
2219 
2220   *saved_wb = *wb;
2221   if (cm->tiles.rows * cm->tiles.cols > 1) {
2222     // Note that the last item in the uncompressed header is the data
2223     // describing tile configuration.
2224     // Number of bytes in tile column size - 1
2225     aom_wb_write_literal(wb, 0, 2);
2226     // Number of bytes in tile size - 1
2227     aom_wb_write_literal(wb, 0, 2);
2228   }
2229 }
2230 
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2231 static INLINE int find_identical_tile(
2232     const int tile_row, const int tile_col,
2233     TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2234   const MV32 candidate_offset[1] = { { 1, 0 } };
2235   const uint8_t *const cur_tile_data =
2236       tile_buffers[tile_row][tile_col].data + 4;
2237   const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2238 
2239   int i;
2240 
2241   if (tile_row == 0) return 0;
2242 
2243   // (TODO: yunqingwang) For now, only above tile is checked and used.
2244   // More candidates such as left tile can be added later.
2245   for (i = 0; i < 1; i++) {
2246     int row_offset = candidate_offset[0].row;
2247     int col_offset = candidate_offset[0].col;
2248     int row = tile_row - row_offset;
2249     int col = tile_col - col_offset;
2250     const uint8_t *tile_data;
2251     TileBufferEnc *candidate;
2252 
2253     if (row < 0 || col < 0) continue;
2254 
2255     const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2256 
2257     // Read out tile-copy-mode bit:
2258     if ((tile_hdr >> 31) == 1) {
2259       // The candidate is a copy tile itself: the offset is stored in bits
2260       // 30 through 24 inclusive.
2261       row_offset += (tile_hdr >> 24) & 0x7f;
2262       row = tile_row - row_offset;
2263     }
2264 
2265     candidate = &tile_buffers[row][col];
2266 
2267     if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2268 
2269     tile_data = candidate->data + 4;
2270 
2271     if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2272 
2273     // Identical tile found
2274     assert(row_offset > 0);
2275     return row_offset;
2276   }
2277 
2278   // No identical tile found
2279   return 0;
2280 }
2281 
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2282 static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
2283                                          struct aom_write_bit_buffer *wb) {
2284   const int scaling_active = av1_resize_scaled(cm);
2285   aom_wb_write_bit(wb, scaling_active);
2286   if (scaling_active) {
2287     aom_wb_write_literal(wb, cm->render_width - 1, 16);
2288     aom_wb_write_literal(wb, cm->render_height - 1, 16);
2289   }
2290 }
2291 
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2292 static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
2293                                             struct aom_write_bit_buffer *wb) {
2294   const SequenceHeader *const seq_params = cm->seq_params;
2295   if (!seq_params->enable_superres) {
2296     assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2297     return;
2298   }
2299 
2300   // First bit is whether to to scale or not
2301   if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2302     aom_wb_write_bit(wb, 0);  // no scaling
2303   } else {
2304     aom_wb_write_bit(wb, 1);  // scaling, write scale factor
2305     assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2306     assert(cm->superres_scale_denominator <
2307            SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2308     aom_wb_write_literal(
2309         wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2310         SUPERRES_SCALE_BITS);
2311   }
2312 }
2313 
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2314 static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
2315                                         int frame_size_override,
2316                                         struct aom_write_bit_buffer *wb) {
2317   const int coded_width = cm->superres_upscaled_width - 1;
2318   const int coded_height = cm->superres_upscaled_height - 1;
2319 
2320   if (frame_size_override) {
2321     const SequenceHeader *seq_params = cm->seq_params;
2322     int num_bits_width = seq_params->num_bits_width;
2323     int num_bits_height = seq_params->num_bits_height;
2324     aom_wb_write_literal(wb, coded_width, num_bits_width);
2325     aom_wb_write_literal(wb, coded_height, num_bits_height);
2326   }
2327 
2328   write_superres_scale(cm, wb);
2329   write_render_size(cm, wb);
2330 }
2331 
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2332 static AOM_INLINE void write_frame_size_with_refs(
2333     const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2334   int found = 0;
2335 
2336   MV_REFERENCE_FRAME ref_frame;
2337   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2338     const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2339 
2340     if (cfg != NULL) {
2341       found = cm->superres_upscaled_width == cfg->y_crop_width &&
2342               cm->superres_upscaled_height == cfg->y_crop_height;
2343       found &= cm->render_width == cfg->render_width &&
2344                cm->render_height == cfg->render_height;
2345     }
2346     aom_wb_write_bit(wb, found);
2347     if (found) {
2348       write_superres_scale(cm, wb);
2349       break;
2350     }
2351   }
2352 
2353   if (!found) {
2354     int frame_size_override = 1;  // Always equal to 1 in this function
2355     write_frame_size(cm, frame_size_override, wb);
2356   }
2357 }
2358 
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2359 static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
2360                                      struct aom_write_bit_buffer *wb) {
2361   assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2362   aom_wb_write_literal(wb, profile, PROFILE_BITS);
2363 }
2364 
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2365 static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
2366                                       struct aom_write_bit_buffer *wb) {
2367   // Profile 0/1: [0] for 8 bit, [1]  10-bit
2368   // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2369   aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2370   if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2371     aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2372   }
2373 }
2374 
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2375 static AOM_INLINE void write_color_config(
2376     const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2377   write_bitdepth(seq_params, wb);
2378   const int is_monochrome = seq_params->monochrome;
2379   // monochrome bit
2380   if (seq_params->profile != PROFILE_1)
2381     aom_wb_write_bit(wb, is_monochrome);
2382   else
2383     assert(!is_monochrome);
2384   if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2385       seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2386       seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2387     aom_wb_write_bit(wb, 0);  // No color description present
2388   } else {
2389     aom_wb_write_bit(wb, 1);  // Color description present
2390     aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2391     aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2392     aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2393   }
2394   if (is_monochrome) {
2395     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2396     aom_wb_write_bit(wb, seq_params->color_range);
2397     return;
2398   }
2399   if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2400       seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2401       seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2402     assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2403     assert(seq_params->profile == PROFILE_1 ||
2404            (seq_params->profile == PROFILE_2 &&
2405             seq_params->bit_depth == AOM_BITS_12));
2406   } else {
2407     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2408     aom_wb_write_bit(wb, seq_params->color_range);
2409     if (seq_params->profile == PROFILE_0) {
2410       // 420 only
2411       assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2412     } else if (seq_params->profile == PROFILE_1) {
2413       // 444 only
2414       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2415     } else if (seq_params->profile == PROFILE_2) {
2416       if (seq_params->bit_depth == AOM_BITS_12) {
2417         // 420, 444 or 422
2418         aom_wb_write_bit(wb, seq_params->subsampling_x);
2419         if (seq_params->subsampling_x == 0) {
2420           assert(seq_params->subsampling_y == 0 &&
2421                  "4:4:0 subsampling not allowed in AV1");
2422         } else {
2423           aom_wb_write_bit(wb, seq_params->subsampling_y);
2424         }
2425       } else {
2426         // 422 only
2427         assert(seq_params->subsampling_x == 1 &&
2428                seq_params->subsampling_y == 0);
2429       }
2430     }
2431     if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2432       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2433     }
2434     if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2435       aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2436     }
2437   }
2438   aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2439 }
2440 
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2441 static AOM_INLINE void write_timing_info_header(
2442     const aom_timing_info_t *const timing_info,
2443     struct aom_write_bit_buffer *wb) {
2444   aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2445   aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2446   aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2447   if (timing_info->equal_picture_interval) {
2448     aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2449   }
2450 }
2451 
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2452 static AOM_INLINE void write_decoder_model_info(
2453     const aom_dec_model_info_t *const decoder_model_info,
2454     struct aom_write_bit_buffer *wb) {
2455   aom_wb_write_literal(
2456       wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2457   aom_wb_write_unsigned_literal(
2458       wb, decoder_model_info->num_units_in_decoding_tick, 32);
2459   aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2460                        5);
2461   aom_wb_write_literal(
2462       wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2463 }
2464 
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2465 static AOM_INLINE void write_dec_model_op_parameters(
2466     const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2467     struct aom_write_bit_buffer *wb) {
2468   aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2469                                 buffer_delay_length);
2470   aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2471                                 buffer_delay_length);
2472   aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2473 }
2474 
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2475 static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
2476                                          struct aom_write_bit_buffer *wb) {
2477   aom_wb_write_unsigned_literal(
2478       wb, cm->frame_presentation_time,
2479       cm->seq_params->decoder_model_info.frame_presentation_time_length);
2480 }
2481 
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2482 static AOM_INLINE void write_film_grain_params(
2483     const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
2484   const AV1_COMMON *const cm = &cpi->common;
2485   const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2486   aom_wb_write_bit(wb, pars->apply_grain);
2487   if (!pars->apply_grain) return;
2488 
2489   aom_wb_write_literal(wb, pars->random_seed, 16);
2490 
2491   if (cm->current_frame.frame_type == INTER_FRAME)
2492     aom_wb_write_bit(wb, pars->update_parameters);
2493 
2494   if (!pars->update_parameters) {
2495     int ref_frame, ref_idx;
2496     for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2497       ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2498       assert(ref_idx != INVALID_IDX);
2499       const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2500       if (buf->film_grain_params_present &&
2501           aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2502         break;
2503       }
2504     }
2505     assert(ref_frame < REF_FRAMES);
2506     aom_wb_write_literal(wb, ref_idx, 3);
2507     return;
2508   }
2509 
2510   // Scaling functions parameters
2511   aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14
2512   for (int i = 0; i < pars->num_y_points; i++) {
2513     aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2514     aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2515   }
2516 
2517   if (!cm->seq_params->monochrome) {
2518     aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2519   } else {
2520     assert(!pars->chroma_scaling_from_luma);
2521   }
2522 
2523   if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2524       ((cm->seq_params->subsampling_x == 1) &&
2525        (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2526     assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2527   } else {
2528     aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10
2529     for (int i = 0; i < pars->num_cb_points; i++) {
2530       aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2531       aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2532     }
2533 
2534     aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10
2535     for (int i = 0; i < pars->num_cr_points; i++) {
2536       aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2537       aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2538     }
2539   }
2540 
2541   aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value
2542 
2543   // AR coefficients
2544   // Only sent if the corresponsing scaling function has
2545   // more than 0 points
2546 
2547   aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2548 
2549   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2550   int num_pos_chroma = num_pos_luma;
2551   if (pars->num_y_points > 0) ++num_pos_chroma;
2552 
2553   if (pars->num_y_points)
2554     for (int i = 0; i < num_pos_luma; i++)
2555       aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2556 
2557   if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2558     for (int i = 0; i < num_pos_chroma; i++)
2559       aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2560 
2561   if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2562     for (int i = 0; i < num_pos_chroma; i++)
2563       aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2564 
2565   aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value
2566 
2567   aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2568 
2569   if (pars->num_cb_points) {
2570     aom_wb_write_literal(wb, pars->cb_mult, 8);
2571     aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2572     aom_wb_write_literal(wb, pars->cb_offset, 9);
2573   }
2574 
2575   if (pars->num_cr_points) {
2576     aom_wb_write_literal(wb, pars->cr_mult, 8);
2577     aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2578     aom_wb_write_literal(wb, pars->cr_offset, 9);
2579   }
2580 
2581   aom_wb_write_bit(wb, pars->overlap_flag);
2582 
2583   aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2584 }
2585 
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2586 static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
2587                                      struct aom_write_bit_buffer *wb) {
2588   (void)seq_params;
2589   (void)wb;
2590   assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2591   assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2592   assert(seq_params->sb_size == BLOCK_128X128 ||
2593          seq_params->sb_size == BLOCK_64X64);
2594   aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2595 }
2596 
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2597 static AOM_INLINE void write_sequence_header(
2598     const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2599   aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2600   aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2601   aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2602                        seq_params->num_bits_width);
2603   aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2604                        seq_params->num_bits_height);
2605 
2606   if (!seq_params->reduced_still_picture_hdr) {
2607     aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2608     if (seq_params->frame_id_numbers_present_flag) {
2609       // We must always have delta_frame_id_length < frame_id_length,
2610       // in order for a frame to be referenced with a unique delta.
2611       // Avoid wasting bits by using a coding that enforces this restriction.
2612       aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2613       aom_wb_write_literal(
2614           wb,
2615           seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2616           3);
2617     }
2618   }
2619 
2620   write_sb_size(seq_params, wb);
2621 
2622   aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2623   aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2624 
2625   if (!seq_params->reduced_still_picture_hdr) {
2626     aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2627     aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2628     aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2629     aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2630 
2631     aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2632 
2633     if (seq_params->order_hint_info.enable_order_hint) {
2634       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2635       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2636     }
2637     if (seq_params->force_screen_content_tools == 2) {
2638       aom_wb_write_bit(wb, 1);
2639     } else {
2640       aom_wb_write_bit(wb, 0);
2641       aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2642     }
2643     if (seq_params->force_screen_content_tools > 0) {
2644       if (seq_params->force_integer_mv == 2) {
2645         aom_wb_write_bit(wb, 1);
2646       } else {
2647         aom_wb_write_bit(wb, 0);
2648         aom_wb_write_bit(wb, seq_params->force_integer_mv);
2649       }
2650     } else {
2651       assert(seq_params->force_integer_mv == 2);
2652     }
2653     if (seq_params->order_hint_info.enable_order_hint)
2654       aom_wb_write_literal(
2655           wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2656   }
2657 
2658   aom_wb_write_bit(wb, seq_params->enable_superres);
2659   aom_wb_write_bit(wb, seq_params->enable_cdef);
2660   aom_wb_write_bit(wb, seq_params->enable_restoration);
2661 }
2662 
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2663 static AOM_INLINE void write_global_motion_params(
2664     const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2665     struct aom_write_bit_buffer *wb, int allow_hp) {
2666   const TransformationType type = params->wmtype;
2667 
2668   aom_wb_write_bit(wb, type != IDENTITY);
2669   if (type != IDENTITY) {
2670     aom_wb_write_bit(wb, type == ROTZOOM);
2671     if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2672   }
2673 
2674   if (type >= ROTZOOM) {
2675     aom_wb_write_signed_primitive_refsubexpfin(
2676         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2677         (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2678             (1 << GM_ALPHA_PREC_BITS),
2679         (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2680     aom_wb_write_signed_primitive_refsubexpfin(
2681         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2682         (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2683         (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2684   }
2685 
2686   if (type >= AFFINE) {
2687     aom_wb_write_signed_primitive_refsubexpfin(
2688         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2689         (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2690         (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2691     aom_wb_write_signed_primitive_refsubexpfin(
2692         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2693         (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2694             (1 << GM_ALPHA_PREC_BITS),
2695         (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2696   }
2697 
2698   if (type >= TRANSLATION) {
2699     const int trans_bits = (type == TRANSLATION)
2700                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2701                                : GM_ABS_TRANS_BITS;
2702     const int trans_prec_diff = (type == TRANSLATION)
2703                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2704                                     : GM_TRANS_PREC_DIFF;
2705     aom_wb_write_signed_primitive_refsubexpfin(
2706         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2707         (ref_params->wmmat[0] >> trans_prec_diff),
2708         (params->wmmat[0] >> trans_prec_diff));
2709     aom_wb_write_signed_primitive_refsubexpfin(
2710         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2711         (ref_params->wmmat[1] >> trans_prec_diff),
2712         (params->wmmat[1] >> trans_prec_diff));
2713   }
2714 }
2715 
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2716 static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
2717                                            struct aom_write_bit_buffer *wb) {
2718   AV1_COMMON *const cm = &cpi->common;
2719   int frame;
2720   for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2721     const WarpedMotionParams *ref_params =
2722         cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2723                        : &default_warp_params;
2724     write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2725                                cm->features.allow_high_precision_mv);
2726     // TODO(sarahparker, debargha): The logic in the commented out code below
2727     // does not work currently and causes mismatches when resize is on.
2728     // Fix it before turning the optimization back on.
2729     /*
2730     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2731     if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2732         cpi->source->y_crop_height == ref_buf->y_crop_height) {
2733       write_global_motion_params(&cm->global_motion[frame],
2734                                  &cm->prev_frame->global_motion[frame], wb,
2735                                  cm->features.allow_high_precision_mv);
2736     } else {
2737       assert(cm->global_motion[frame].wmtype == IDENTITY &&
2738              "Invalid warp type for frames of different resolutions");
2739     }
2740     */
2741     /*
2742     printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2743            cm->current_frame.frame_number, cm->show_frame, frame,
2744            cm->global_motion[frame].wmmat[0],
2745            cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2746            cm->global_motion[frame].wmmat[3]);
2747            */
2748   }
2749 }
2750 
check_frame_refs_short_signaling(AV1_COMMON * const cm)2751 static int check_frame_refs_short_signaling(AV1_COMMON *const cm) {
2752   // Check whether all references are distinct frames.
2753   const RefCntBuffer *seen_bufs[FRAME_BUFFERS] = { NULL };
2754   int num_refs = 0;
2755   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2756     const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2757     if (buf != NULL) {
2758       int seen = 0;
2759       for (int i = 0; i < num_refs; i++) {
2760         if (seen_bufs[i] == buf) {
2761           seen = 1;
2762           break;
2763         }
2764       }
2765       if (!seen) seen_bufs[num_refs++] = buf;
2766     }
2767   }
2768 
2769   // We only turn on frame_refs_short_signaling when all references are
2770   // distinct.
2771   if (num_refs < INTER_REFS_PER_FRAME) {
2772     // It indicates that there exist more than one reference frame pointing to
2773     // the same reference buffer, i.e. two or more references are duplicate.
2774     return 0;
2775   }
2776 
2777   // Check whether the encoder side ref frame choices are aligned with that to
2778   // be derived at the decoder side.
2779   int remapped_ref_idx_decoder[REF_FRAMES];
2780 
2781   const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2782   const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2783 
2784   // Set up the frame refs mapping indexes according to the
2785   // frame_refs_short_signaling policy.
2786   av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2787 
2788   // We only turn on frame_refs_short_signaling when the encoder side decision
2789   // on ref frames is identical to that at the decoder side.
2790   int frame_refs_short_signaling = 1;
2791   for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2792     // Compare the buffer index between two reference frames indexed
2793     // respectively by the encoder and the decoder side decisions.
2794     RefCntBuffer *ref_frame_buf_new = NULL;
2795     if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2796       ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2797     }
2798     if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2799       frame_refs_short_signaling = 0;
2800       break;
2801     }
2802   }
2803 
2804 #if 0   // For debug
2805   printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2806   printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2807   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2808     printf("enc_ref(map_idx=%d)=%d, vs. "
2809         "dec_ref(map_idx=%d)=%d\n",
2810         get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2811         cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2812         ref_frame);
2813   }
2814 #endif  // 0
2815 
2816   return frame_refs_short_signaling;
2817 }
2818 
2819 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2820 static AOM_INLINE void write_uncompressed_header_obu(
2821     AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2822     struct aom_write_bit_buffer *wb) {
2823   AV1_COMMON *const cm = &cpi->common;
2824   const SequenceHeader *const seq_params = cm->seq_params;
2825   const CommonQuantParams *quant_params = &cm->quant_params;
2826   CurrentFrame *const current_frame = &cm->current_frame;
2827   FeatureFlags *const features = &cm->features;
2828 
2829   current_frame->frame_refs_short_signaling = 0;
2830 
2831   if (seq_params->still_picture) {
2832     assert(cm->show_existing_frame == 0);
2833     assert(cm->show_frame == 1);
2834     assert(current_frame->frame_type == KEY_FRAME);
2835   }
2836   if (!seq_params->reduced_still_picture_hdr) {
2837     if (encode_show_existing_frame(cm)) {
2838       aom_wb_write_bit(wb, 1);  // show_existing_frame
2839       aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2840 
2841       if (seq_params->decoder_model_info_present_flag &&
2842           seq_params->timing_info.equal_picture_interval == 0) {
2843         write_tu_pts_info(cm, wb);
2844       }
2845       if (seq_params->frame_id_numbers_present_flag) {
2846         int frame_id_len = seq_params->frame_id_length;
2847         int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2848         aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2849       }
2850       return;
2851     } else {
2852       aom_wb_write_bit(wb, 0);  // show_existing_frame
2853     }
2854 
2855     aom_wb_write_literal(wb, current_frame->frame_type, 2);
2856 
2857     aom_wb_write_bit(wb, cm->show_frame);
2858     if (cm->show_frame) {
2859       if (seq_params->decoder_model_info_present_flag &&
2860           seq_params->timing_info.equal_picture_interval == 0)
2861         write_tu_pts_info(cm, wb);
2862     } else {
2863       aom_wb_write_bit(wb, cm->showable_frame);
2864     }
2865     if (frame_is_sframe(cm)) {
2866       assert(features->error_resilient_mode);
2867     } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2868       aom_wb_write_bit(wb, features->error_resilient_mode);
2869     }
2870   }
2871   aom_wb_write_bit(wb, features->disable_cdf_update);
2872 
2873   if (seq_params->force_screen_content_tools == 2) {
2874     aom_wb_write_bit(wb, features->allow_screen_content_tools);
2875   } else {
2876     assert(features->allow_screen_content_tools ==
2877            seq_params->force_screen_content_tools);
2878   }
2879 
2880   if (features->allow_screen_content_tools) {
2881     if (seq_params->force_integer_mv == 2) {
2882       aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2883     } else {
2884       assert(features->cur_frame_force_integer_mv ==
2885              seq_params->force_integer_mv);
2886     }
2887   } else {
2888     assert(features->cur_frame_force_integer_mv == 0);
2889   }
2890 
2891   int frame_size_override_flag = 0;
2892 
2893   if (seq_params->reduced_still_picture_hdr) {
2894     assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2895            cm->superres_upscaled_height == seq_params->max_frame_height);
2896   } else {
2897     if (seq_params->frame_id_numbers_present_flag) {
2898       int frame_id_len = seq_params->frame_id_length;
2899       aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2900     }
2901 
2902     if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2903         cm->superres_upscaled_height > seq_params->max_frame_height) {
2904       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2905                          "Frame dimensions are larger than the maximum values");
2906     }
2907 
2908     frame_size_override_flag =
2909         frame_is_sframe(cm)
2910             ? 1
2911             : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2912                cm->superres_upscaled_height != seq_params->max_frame_height);
2913     if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2914 
2915     if (seq_params->order_hint_info.enable_order_hint)
2916       aom_wb_write_literal(
2917           wb, current_frame->order_hint,
2918           seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2919 
2920     if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
2921       aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
2922     }
2923   }
2924 
2925   if (seq_params->decoder_model_info_present_flag) {
2926     aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
2927     if (cpi->ppi->buffer_removal_time_present) {
2928       for (int op_num = 0;
2929            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
2930         if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
2931           if (seq_params->operating_point_idc[op_num] == 0 ||
2932               ((seq_params->operating_point_idc[op_num] >>
2933                 cm->temporal_layer_id) &
2934                    0x1 &&
2935                (seq_params->operating_point_idc[op_num] >>
2936                 (cm->spatial_layer_id + 8)) &
2937                    0x1)) {
2938             aom_wb_write_unsigned_literal(
2939                 wb, cm->buffer_removal_times[op_num],
2940                 seq_params->decoder_model_info.buffer_removal_time_length);
2941             cm->buffer_removal_times[op_num]++;
2942             if (cm->buffer_removal_times[op_num] == 0) {
2943               aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2944                                  "buffer_removal_time overflowed");
2945             }
2946           }
2947         }
2948       }
2949     }
2950   }
2951 
2952   // Shown keyframes and switch-frames automatically refreshes all reference
2953   // frames.  For all other frame types, we need to write refresh_frame_flags.
2954   if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
2955       current_frame->frame_type == INTER_FRAME ||
2956       current_frame->frame_type == INTRA_ONLY_FRAME)
2957     aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
2958 
2959   if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
2960     // Write all ref frame order hints if error_resilient_mode == 1
2961     if (features->error_resilient_mode &&
2962         seq_params->order_hint_info.enable_order_hint) {
2963       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
2964         aom_wb_write_literal(
2965             wb, cm->ref_frame_map[ref_idx]->order_hint,
2966             seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2967       }
2968     }
2969   }
2970 
2971   if (current_frame->frame_type == KEY_FRAME) {
2972     write_frame_size(cm, frame_size_override_flag, wb);
2973     assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
2974     if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
2975       aom_wb_write_bit(wb, features->allow_intrabc);
2976   } else {
2977     if (current_frame->frame_type == INTRA_ONLY_FRAME) {
2978       write_frame_size(cm, frame_size_override_flag, wb);
2979       assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
2980       if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
2981         aom_wb_write_bit(wb, features->allow_intrabc);
2982     } else if (current_frame->frame_type == INTER_FRAME ||
2983                frame_is_sframe(cm)) {
2984       MV_REFERENCE_FRAME ref_frame;
2985 
2986       // NOTE: Error resilient mode turns off frame_refs_short_signaling
2987       //       automatically.
2988 #define FRAME_REFS_SHORT_SIGNALING 0
2989 #if FRAME_REFS_SHORT_SIGNALING
2990       current_frame->frame_refs_short_signaling =
2991           seq_params->order_hint_info.enable_order_hint;
2992 #endif  // FRAME_REFS_SHORT_SIGNALING
2993 
2994       if (current_frame->frame_refs_short_signaling) {
2995         // NOTE(zoeliu@google.com):
2996         //   An example solution for encoder-side implementation on frame refs
2997         //   short signaling, which is only turned on when the encoder side
2998         //   decision on ref frames is identical to that at the decoder side.
2999         current_frame->frame_refs_short_signaling =
3000             check_frame_refs_short_signaling(cm);
3001       }
3002 
3003       if (seq_params->order_hint_info.enable_order_hint)
3004         aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3005 
3006       if (current_frame->frame_refs_short_signaling) {
3007         const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3008         aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3009 
3010         const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3011         aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3012       }
3013 
3014       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3015         assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3016         if (!current_frame->frame_refs_short_signaling)
3017           aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3018                                REF_FRAMES_LOG2);
3019         if (seq_params->frame_id_numbers_present_flag) {
3020           int i = get_ref_frame_map_idx(cm, ref_frame);
3021           int frame_id_len = seq_params->frame_id_length;
3022           int diff_len = seq_params->delta_frame_id_length;
3023           int delta_frame_id_minus_1 =
3024               ((cm->current_frame_id - cm->ref_frame_id[i] +
3025                 (1 << frame_id_len)) %
3026                (1 << frame_id_len)) -
3027               1;
3028           if (delta_frame_id_minus_1 < 0 ||
3029               delta_frame_id_minus_1 >= (1 << diff_len)) {
3030             aom_internal_error(cm->error, AOM_CODEC_ERROR,
3031                                "Invalid delta_frame_id_minus_1");
3032           }
3033           aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3034         }
3035       }
3036 
3037       if (!features->error_resilient_mode && frame_size_override_flag) {
3038         write_frame_size_with_refs(cm, wb);
3039       } else {
3040         write_frame_size(cm, frame_size_override_flag, wb);
3041       }
3042 
3043       if (!features->cur_frame_force_integer_mv)
3044         aom_wb_write_bit(wb, features->allow_high_precision_mv);
3045       write_frame_interp_filter(features->interp_filter, wb);
3046       aom_wb_write_bit(wb, features->switchable_motion_mode);
3047       if (frame_might_allow_ref_frame_mvs(cm)) {
3048         aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3049       } else {
3050         assert(features->allow_ref_frame_mvs == 0);
3051       }
3052     }
3053   }
3054 
3055   const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3056                               !(features->disable_cdf_update);
3057   if (cm->tiles.large_scale)
3058     assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3059 
3060   if (might_bwd_adapt) {
3061     aom_wb_write_bit(
3062         wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3063   }
3064 
3065   write_tile_info(cm, saved_wb, wb);
3066   encode_quantization(quant_params, av1_num_planes(cm),
3067                       cm->seq_params->separate_uv_delta_q, wb);
3068   encode_segmentation(cm, wb);
3069 
3070   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3071   if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3072   if (quant_params->base_qindex > 0) {
3073     aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3074     if (delta_q_info->delta_q_present_flag) {
3075       aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3076       xd->current_base_qindex = quant_params->base_qindex;
3077       if (features->allow_intrabc)
3078         assert(delta_q_info->delta_lf_present_flag == 0);
3079       else
3080         aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3081       if (delta_q_info->delta_lf_present_flag) {
3082         aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3083         aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3084         av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3085       }
3086     }
3087   }
3088 
3089   if (features->all_lossless) {
3090     assert(!av1_superres_scaled(cm));
3091   } else {
3092     if (!features->coded_lossless) {
3093       encode_loopfilter(cm, wb);
3094       encode_cdef(cm, wb);
3095     }
3096     encode_restoration_mode(cm, wb);
3097   }
3098 
3099   // Write TX mode
3100   if (features->coded_lossless)
3101     assert(features->tx_mode == ONLY_4X4);
3102   else
3103     aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3104 
3105   if (!frame_is_intra_only(cm)) {
3106     const int use_hybrid_pred =
3107         current_frame->reference_mode == REFERENCE_MODE_SELECT;
3108 
3109     aom_wb_write_bit(wb, use_hybrid_pred);
3110   }
3111 
3112   if (current_frame->skip_mode_info.skip_mode_allowed)
3113     aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3114 
3115   if (frame_might_allow_warped_motion(cm))
3116     aom_wb_write_bit(wb, features->allow_warped_motion);
3117   else
3118     assert(!features->allow_warped_motion);
3119 
3120   aom_wb_write_bit(wb, features->reduced_tx_set_used);
3121 
3122   if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3123 
3124   if (seq_params->film_grain_params_present &&
3125       (cm->show_frame || cm->showable_frame))
3126     write_film_grain_params(cpi, wb);
3127 
3128   if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3129 }
3130 
choose_size_bytes(uint32_t size,int spare_msbs)3131 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3132   // Choose the number of bytes required to represent size, without
3133   // using the 'spare_msbs' number of most significant bits.
3134 
3135   // Make sure we will fit in 4 bytes to start with..
3136   if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3137 
3138   // Normalise to 32 bits
3139   size <<= spare_msbs;
3140 
3141   if (size >> 24 != 0)
3142     return 4;
3143   else if (size >> 16 != 0)
3144     return 3;
3145   else if (size >> 8 != 0)
3146     return 2;
3147   else
3148     return 1;
3149 }
3150 
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3151 static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
3152                                        const int val) {
3153   switch (sz) {
3154     case 1: dst[0] = (uint8_t)(val & 0xff); break;
3155     case 2: mem_put_le16(dst, val); break;
3156     case 3: mem_put_le24(dst, val); break;
3157     case 4: mem_put_le32(dst, val); break;
3158     default: assert(0 && "Invalid size"); break;
3159   }
3160 }
3161 
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3162 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3163                        const uint32_t data_size, const uint32_t max_tile_size,
3164                        const uint32_t max_tile_col_size,
3165                        int *const tile_size_bytes,
3166                        int *const tile_col_size_bytes) {
3167   // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3168   int tsb;
3169   int tcsb;
3170 
3171   if (tiles->large_scale) {
3172     // The top bit in the tile size field indicates tile copy mode, so we
3173     // have 1 less bit to code the tile size
3174     tsb = choose_size_bytes(max_tile_size, 1);
3175     tcsb = choose_size_bytes(max_tile_col_size, 0);
3176   } else {
3177     tsb = choose_size_bytes(max_tile_size, 0);
3178     tcsb = 4;  // This is ignored
3179     (void)max_tile_col_size;
3180   }
3181 
3182   assert(tsb > 0);
3183   assert(tcsb > 0);
3184 
3185   *tile_size_bytes = tsb;
3186   *tile_col_size_bytes = tcsb;
3187   if (tsb == 4 && tcsb == 4) return data_size;
3188 
3189   uint32_t wpos = 0;
3190   uint32_t rpos = 0;
3191 
3192   if (tiles->large_scale) {
3193     int tile_row;
3194     int tile_col;
3195 
3196     for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3197       // All but the last column has a column header
3198       if (tile_col < tiles->cols - 1) {
3199         uint32_t tile_col_size = mem_get_le32(dst + rpos);
3200         rpos += 4;
3201 
3202         // Adjust the tile column size by the number of bytes removed
3203         // from the tile size fields.
3204         tile_col_size -= (4 - tsb) * tiles->rows;
3205 
3206         mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3207         wpos += tcsb;
3208       }
3209 
3210       for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3211         // All, including the last row has a header
3212         uint32_t tile_header = mem_get_le32(dst + rpos);
3213         rpos += 4;
3214 
3215         // If this is a copy tile, we need to shift the MSB to the
3216         // top bit of the new width, and there is no data to copy.
3217         if (tile_header >> 31 != 0) {
3218           if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3219           mem_put_varsize(dst + wpos, tsb, tile_header);
3220           wpos += tsb;
3221         } else {
3222           mem_put_varsize(dst + wpos, tsb, tile_header);
3223           wpos += tsb;
3224 
3225           tile_header += AV1_MIN_TILE_SIZE_BYTES;
3226           memmove(dst + wpos, dst + rpos, tile_header);
3227           rpos += tile_header;
3228           wpos += tile_header;
3229         }
3230       }
3231     }
3232 
3233     assert(rpos > wpos);
3234     assert(rpos == data_size);
3235 
3236     return wpos;
3237   }
3238   const int n_tiles = tiles->cols * tiles->rows;
3239   int n;
3240 
3241   for (n = 0; n < n_tiles; n++) {
3242     int tile_size;
3243 
3244     if (n == n_tiles - 1) {
3245       tile_size = data_size - rpos;
3246     } else {
3247       tile_size = mem_get_le32(dst + rpos);
3248       rpos += 4;
3249       mem_put_varsize(dst + wpos, tsb, tile_size);
3250       tile_size += AV1_MIN_TILE_SIZE_BYTES;
3251       wpos += tsb;
3252     }
3253 
3254     memmove(dst + wpos, dst + rpos, tile_size);
3255 
3256     rpos += tile_size;
3257     wpos += tile_size;
3258   }
3259 
3260   assert(rpos > wpos);
3261   assert(rpos == data_size);
3262 
3263   return wpos;
3264 }
3265 
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,int obu_extension,uint8_t * const dst)3266 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3267                               int *frame_header_count, OBU_TYPE obu_type,
3268                               int obu_extension, uint8_t *const dst) {
3269   if (level_params->keep_level_stats &&
3270       (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3271     ++(*frame_header_count);
3272 
3273   struct aom_write_bit_buffer wb = { dst, 0 };
3274   uint32_t size = 0;
3275 
3276   aom_wb_write_literal(&wb, 0, 1);  // forbidden bit.
3277   aom_wb_write_literal(&wb, (int)obu_type, 4);
3278   aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
3279   aom_wb_write_literal(&wb, 1, 1);  // obu_has_payload_length_field
3280   aom_wb_write_literal(&wb, 0, 1);  // reserved
3281 
3282   if (obu_extension) {
3283     aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
3284   }
3285 
3286   size = aom_wb_bytes_written(&wb);
3287   return size;
3288 }
3289 
av1_write_uleb_obu_size(size_t obu_header_size,size_t obu_payload_size,uint8_t * dest)3290 int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
3291                             uint8_t *dest) {
3292   const size_t offset = obu_header_size;
3293   size_t coded_obu_size = 0;
3294   const uint32_t obu_size = (uint32_t)obu_payload_size;
3295   assert(obu_size == obu_payload_size);
3296 
3297   if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
3298                       &coded_obu_size) != 0) {
3299     return AOM_CODEC_ERROR;
3300   }
3301 
3302   return AOM_CODEC_OK;
3303 }
3304 
av1_obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3305 size_t av1_obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3306                        uint8_t *data) {
3307   const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3308   const size_t move_dst_offset = length_field_size + obu_header_size;
3309   const size_t move_src_offset = obu_header_size;
3310   const size_t move_size = obu_payload_size;
3311   memmove(data + move_dst_offset, data + move_src_offset, move_size);
3312   return length_field_size;
3313 }
3314 
add_trailing_bits(struct aom_write_bit_buffer * wb)3315 static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3316   if (aom_wb_is_byte_aligned(wb)) {
3317     aom_wb_write_literal(wb, 0x80, 8);
3318   } else {
3319     // assumes that the other bits are already 0s
3320     aom_wb_write_bit(wb, 1);
3321   }
3322 }
3323 
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3324 static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
3325                                              struct aom_write_bit_buffer *wb) {
3326   assert(is_valid_seq_level_idx(seq_level_idx));
3327   aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3328 }
3329 
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst)3330 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3331                                        uint8_t *const dst) {
3332   struct aom_write_bit_buffer wb = { dst, 0 };
3333   uint32_t size = 0;
3334 
3335   write_profile(seq_params->profile, &wb);
3336 
3337   // Still picture or not
3338   aom_wb_write_bit(&wb, seq_params->still_picture);
3339   assert(IMPLIES(!seq_params->still_picture,
3340                  !seq_params->reduced_still_picture_hdr));
3341   // whether to use reduced still picture header
3342   aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3343 
3344   if (seq_params->reduced_still_picture_hdr) {
3345     assert(seq_params->timing_info_present == 0);
3346     assert(seq_params->decoder_model_info_present_flag == 0);
3347     assert(seq_params->display_model_info_present_flag == 0);
3348     write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3349   } else {
3350     aom_wb_write_bit(
3351         &wb, seq_params->timing_info_present);  // timing info present flag
3352 
3353     if (seq_params->timing_info_present) {
3354       // timing_info
3355       write_timing_info_header(&seq_params->timing_info, &wb);
3356       aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3357       if (seq_params->decoder_model_info_present_flag) {
3358         write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3359       }
3360     }
3361     aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3362     aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3363                          OP_POINTS_CNT_MINUS_1_BITS);
3364     int i;
3365     for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3366       aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3367                            OP_POINTS_IDC_BITS);
3368       write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3369       if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3370         aom_wb_write_bit(&wb, seq_params->tier[i]);
3371       if (seq_params->decoder_model_info_present_flag) {
3372         aom_wb_write_bit(
3373             &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3374         if (seq_params->op_params[i].decoder_model_param_present_flag) {
3375           write_dec_model_op_parameters(
3376               &seq_params->op_params[i],
3377               seq_params->decoder_model_info
3378                   .encoder_decoder_buffer_delay_length,
3379               &wb);
3380         }
3381       }
3382       if (seq_params->display_model_info_present_flag) {
3383         aom_wb_write_bit(
3384             &wb, seq_params->op_params[i].display_model_param_present_flag);
3385         if (seq_params->op_params[i].display_model_param_present_flag) {
3386           assert(seq_params->op_params[i].initial_display_delay <= 10);
3387           aom_wb_write_literal(
3388               &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3389         }
3390       }
3391     }
3392   }
3393   write_sequence_header(seq_params, &wb);
3394 
3395   write_color_config(seq_params, &wb);
3396 
3397   aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3398 
3399   add_trailing_bits(&wb);
3400 
3401   size = aom_wb_bytes_written(&wb);
3402   return size;
3403 }
3404 
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3405 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3406                                        struct aom_write_bit_buffer *saved_wb,
3407                                        uint8_t *const dst,
3408                                        int append_trailing_bits) {
3409   struct aom_write_bit_buffer wb = { dst, 0 };
3410   write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3411   if (append_trailing_bits) add_trailing_bits(&wb);
3412   return aom_wb_bytes_written(&wb);
3413 }
3414 
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3415 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3416                                         int end_tile, int tiles_log2,
3417                                         int tile_start_and_end_present_flag) {
3418   struct aom_write_bit_buffer wb = { dst, 0 };
3419   uint32_t size = 0;
3420 
3421   if (!tiles_log2) return size;
3422 
3423   aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3424 
3425   if (tile_start_and_end_present_flag) {
3426     aom_wb_write_literal(&wb, start_tile, tiles_log2);
3427     aom_wb_write_literal(&wb, end_tile, tiles_log2);
3428   }
3429 
3430   size = aom_wb_bytes_written(&wb);
3431   return size;
3432 }
3433 
3434 extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
3435                                                 const char *filename);
3436 
3437 typedef struct {
3438   uint32_t tg_hdr_size;
3439   uint32_t frame_header_size;
3440 } LargeTileFrameOBU;
3441 
3442 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * lst_obu)3443 static uint32_t init_large_scale_tile_obu_header(
3444     AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3445     LargeTileFrameOBU *lst_obu) {
3446   AV1LevelParams *const level_params = &cpi->ppi->level_params;
3447   CurrentFrame *const current_frame = &cpi->common.current_frame;
3448   // For large_scale_tile case, we always have only one tile group, so it can
3449   // be written as an OBU_FRAME.
3450   const OBU_TYPE obu_type = OBU_FRAME;
3451   lst_obu->tg_hdr_size = av1_write_obu_header(
3452       level_params, &cpi->frame_header_count, obu_type, 0, *data);
3453   *data += lst_obu->tg_hdr_size;
3454 
3455   const uint32_t frame_header_size =
3456       write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3457   *data += frame_header_size;
3458   lst_obu->frame_header_size = frame_header_size;
3459   // (yunqing) This test ensures the correctness of large scale tile coding.
3460   if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3461     char fn[20] = "./fh";
3462     fn[4] = current_frame->frame_number / 100 + '0';
3463     fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3464     fn[6] = (current_frame->frame_number % 10) + '0';
3465     fn[7] = '\0';
3466     av1_print_uncompressed_frame_header(*data - frame_header_size,
3467                                         frame_header_size, fn);
3468   }
3469   return frame_header_size;
3470 }
3471 
3472 // Write total buffer size and related information into the OBU header for large
3473 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3474 static void write_large_scale_tile_obu_size(
3475     const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3476     struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3477     int have_tiles, uint32_t *total_size, int max_tile_size,
3478     int max_tile_col_size) {
3479   int tile_size_bytes = 0;
3480   int tile_col_size_bytes = 0;
3481   if (have_tiles) {
3482     *total_size = remux_tiles(
3483         tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3484         max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3485     *total_size += lst_obu->frame_header_size;
3486   }
3487 
3488   // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3489   // current tile group size before tile data(include tile column header).
3490   // Tile group size doesn't include the bytes storing tg size.
3491   *total_size += lst_obu->tg_hdr_size;
3492   const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3493   const size_t length_field_size =
3494       av1_obu_memmove(lst_obu->tg_hdr_size, obu_payload_size, dst);
3495   if (av1_write_uleb_obu_size(lst_obu->tg_hdr_size, obu_payload_size, dst) !=
3496       AOM_CODEC_OK)
3497     assert(0);
3498 
3499   *total_size += (uint32_t)length_field_size;
3500   saved_wb->bit_buffer += length_field_size;
3501 
3502   // Now fill in the gaps in the uncompressed header.
3503   if (have_tiles) {
3504     assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3505     aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3506 
3507     assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3508     aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3509   }
3510 }
3511 
3512 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3513 static void write_large_scale_tile_obu(
3514     AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3515     int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3516     unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3517   AV1_COMMON *const cm = &cpi->common;
3518   const CommonTileParams *const tiles = &cm->tiles;
3519 
3520   TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3521   const int tile_cols = tiles->cols;
3522   const int tile_rows = tiles->rows;
3523   unsigned int tile_size = 0;
3524 
3525   av1_reset_pack_bs_thread_data(&cpi->td);
3526   for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3527     TileInfo tile_info;
3528     const int is_last_col = (tile_col == tile_cols - 1);
3529     const uint32_t col_offset = *total_size;
3530 
3531     av1_tile_set_col(&tile_info, cm, tile_col);
3532 
3533     // The last column does not have a column header
3534     if (!is_last_col) *total_size += 4;
3535 
3536     for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3537       TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3538       const int data_offset = have_tiles ? 4 : 0;
3539       const int tile_idx = tile_row * tile_cols + tile_col;
3540       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3541       av1_tile_set_row(&tile_info, cm, tile_row);
3542       aom_writer mode_bc;
3543 
3544       buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3545 
3546       // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3547       // even for the last one, unless no tiling is used at all.
3548       *total_size += data_offset;
3549       cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3550       mode_bc.allow_update_cdf = !tiles->large_scale;
3551       mode_bc.allow_update_cdf =
3552           mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3553       aom_start_encode(&mode_bc, buf->data + data_offset);
3554       write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3555       aom_stop_encode(&mode_bc);
3556       tile_size = mode_bc.pos;
3557       buf->size = tile_size;
3558 
3559       // Record the maximum tile size we see, so we can compact headers later.
3560       if (tile_size > *max_tile_size) {
3561         *max_tile_size = tile_size;
3562         *largest_tile_id = tile_cols * tile_row + tile_col;
3563       }
3564 
3565       if (have_tiles) {
3566         // tile header: size of this tile, or copy offset
3567         uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3568         const int tile_copy_mode =
3569             ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3570                                                                            : 0;
3571 
3572         // If tile_copy_mode = 1, check if this tile is a copy tile.
3573         // Very low chances to have copy tiles on the key frames, so don't
3574         // search on key frames to reduce unnecessary search.
3575         if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3576           const int identical_tile_offset =
3577               find_identical_tile(tile_row, tile_col, tile_buffers);
3578 
3579           // Indicate a copy-tile by setting the most significant bit.
3580           // The row-offset to copy from is stored in the highest byte.
3581           // remux_tiles will move these around later
3582           if (identical_tile_offset > 0) {
3583             tile_size = 0;
3584             tile_header = identical_tile_offset | 0x80;
3585             tile_header <<= 24;
3586           }
3587         }
3588 
3589         mem_put_le32(buf->data, tile_header);
3590       }
3591 
3592       *total_size += tile_size;
3593     }
3594     if (!is_last_col) {
3595       uint32_t col_size = *total_size - col_offset - 4;
3596       mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3597 
3598       // Record the maximum tile column size we see.
3599       *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3600     }
3601   }
3602   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3603 }
3604 
3605 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int * const largest_tile_id)3606 static INLINE uint32_t pack_large_scale_tiles_in_tg_obus(
3607     AV1_COMP *const cpi, uint8_t *const dst,
3608     struct aom_write_bit_buffer *saved_wb, int *const largest_tile_id) {
3609   AV1_COMMON *const cm = &cpi->common;
3610   const CommonTileParams *const tiles = &cm->tiles;
3611   uint32_t total_size = 0;
3612   unsigned int max_tile_size = 0;
3613   unsigned int max_tile_col_size = 0;
3614   const int have_tiles = tiles->cols * tiles->rows > 1;
3615   uint8_t *data = dst;
3616 
3617   LargeTileFrameOBU lst_obu;
3618 
3619   total_size +=
3620       init_large_scale_tile_obu_header(cpi, &data, saved_wb, &lst_obu);
3621 
3622   write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3623                              have_tiles, &max_tile_size, &max_tile_col_size);
3624 
3625   write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3626                                   have_tiles, &total_size, max_tile_size,
3627                                   max_tile_col_size);
3628 
3629   return total_size;
3630 }
3631 
3632 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3633 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3634                                    PackBSParams *const pack_bs_params,
3635                                    const int tile_idx) {
3636   AV1_COMMON *const cm = &cpi->common;
3637   const CommonTileParams *const tiles = &cm->tiles;
3638   int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3639   const int tg_size =
3640       (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3641 
3642   // Write Tile group, frame and OBU header
3643   // A new tile group begins at this tile.  Write the obu header and
3644   // tile group header
3645   const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3646   *curr_tg_hdr_size = av1_write_obu_header(
3647       &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3648       pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3649   pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3650 
3651   if (cpi->num_tg == 1)
3652     *curr_tg_hdr_size += write_frame_header_obu(
3653         cpi, xd, pack_bs_params->saved_wb,
3654         pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3655   *curr_tg_hdr_size += write_tile_group_header(
3656       pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3657       AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3658       (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3659   *pack_bs_params->total_size += *curr_tg_hdr_size;
3660 }
3661 
3662 // Pack tile data in the bitstream with tile_group, frame
3663 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3664 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3665                         PackBSParams *const pack_bs_params) {
3666   aom_writer mode_bc;
3667   AV1_COMMON *const cm = &cpi->common;
3668   int tile_row = pack_bs_params->tile_row;
3669   int tile_col = pack_bs_params->tile_col;
3670   uint32_t *const total_size = pack_bs_params->total_size;
3671   TileInfo tile_info;
3672   av1_tile_set_col(&tile_info, cm, tile_col);
3673   av1_tile_set_row(&tile_info, cm, tile_row);
3674   mode_bc.allow_update_cdf = 1;
3675   mode_bc.allow_update_cdf =
3676       mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3677 
3678   unsigned int tile_size;
3679 
3680   const int num_planes = av1_num_planes(cm);
3681   av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3682 
3683   pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3684 
3685   // The last tile of the tile group does not have a header.
3686   if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3687 
3688   // Pack tile data
3689   aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3690   write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3691   aom_stop_encode(&mode_bc);
3692   tile_size = mode_bc.pos;
3693   assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3694 
3695   pack_bs_params->buf.size = tile_size;
3696 
3697   // Write tile size
3698   if (!pack_bs_params->is_last_tile_in_tg) {
3699     // size of this tile
3700     mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3701   }
3702 }
3703 
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3704 void av1_write_last_tile_info(
3705     AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3706     struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3707     uint8_t *curr_tg_start, uint32_t *const total_size,
3708     uint8_t **tile_data_start, int *const largest_tile_id,
3709     int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3710   // write current tile group size
3711   const uint32_t obu_payload_size =
3712       (uint32_t)(*curr_tg_data_size) - obu_header_size;
3713   const size_t length_field_size =
3714       av1_obu_memmove(obu_header_size, obu_payload_size, curr_tg_start);
3715   if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size,
3716                               curr_tg_start) != AOM_CODEC_OK) {
3717     assert(0);
3718   }
3719   *curr_tg_data_size += (int)length_field_size;
3720   *total_size += (uint32_t)length_field_size;
3721   *tile_data_start += length_field_size;
3722   if (cpi->num_tg == 1) {
3723     // if this tg is combined with the frame header then update saved
3724     // frame header base offset according to length field size
3725     saved_wb->bit_buffer += length_field_size;
3726   }
3727 
3728   if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3729     // Make room for a duplicate Frame Header OBU.
3730     memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3731             *curr_tg_data_size);
3732 
3733     // Insert a copy of the Frame Header OBU.
3734     memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3735 
3736     // Force context update tile to be the first tile in error
3737     // resilient mode as the duplicate frame headers will have
3738     // context_update_tile_id set to 0
3739     *largest_tile_id = 0;
3740 
3741     // Rewrite the OBU header to change the OBU type to Redundant Frame
3742     // Header.
3743     av1_write_obu_header(&cpi->ppi->level_params, &cpi->frame_header_count,
3744                          OBU_REDUNDANT_FRAME_HEADER, obu_extn_header,
3745                          &curr_tg_start[fh_info->obu_header_byte_offset]);
3746 
3747     *curr_tg_data_size += (int)(fh_info->total_length);
3748     *total_size += (uint32_t)(fh_info->total_length);
3749   }
3750   *is_first_tg = 0;
3751 }
3752 
av1_reset_pack_bs_thread_data(ThreadData * const td)3753 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3754   td->coefficient_size = 0;
3755   td->max_mv_magnitude = 0;
3756   av1_zero(td->interp_filter_selected);
3757 }
3758 
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3759 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3760                                         ThreadData const *td) {
3761   int do_max_mv_magnitude_update = 1;
3762   cpi->rc.coefficient_size += td->coefficient_size;
3763 
3764 #if CONFIG_FRAME_PARALLEL_ENCODE
3765   // Disable max_mv_magnitude update for parallel frames based on update flag.
3766   if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3767 #endif
3768 
3769   if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3770     cpi->mv_search_params.max_mv_magnitude =
3771         AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3772 
3773   for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3774     cpi->common.cur_frame->interp_filter_selected[filter] +=
3775         td->interp_filter_selected[filter];
3776 }
3777 
3778 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3779 static void write_tile_obu(
3780     AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3781     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3782     const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3783     unsigned int *max_tile_size, uint32_t *const obu_header_size,
3784     uint8_t **tile_data_start) {
3785   AV1_COMMON *const cm = &cpi->common;
3786   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3787   const CommonTileParams *const tiles = &cm->tiles;
3788   const int tile_cols = tiles->cols;
3789   const int tile_rows = tiles->rows;
3790   // Fixed size tile groups for the moment
3791   const int num_tg_hdrs = cpi->num_tg;
3792   const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3793   int tile_count = 0;
3794   size_t curr_tg_data_size = 0;
3795   uint8_t *tile_data_curr = dst;
3796   int new_tg = 1;
3797   int is_first_tg = 1;
3798 
3799   av1_reset_pack_bs_thread_data(&cpi->td);
3800   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3801     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3802       const int tile_idx = tile_row * tile_cols + tile_col;
3803       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3804 
3805       int is_last_tile_in_tg = 0;
3806       if (new_tg) {
3807         tile_data_curr = dst + *total_size;
3808         tile_count = 0;
3809       }
3810       tile_count++;
3811 
3812       if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3813         is_last_tile_in_tg = 1;
3814 
3815       xd->tile_ctx = &this_tile->tctx;
3816 
3817       // PackBSParams stores all parameters required to pack tile and header
3818       // info.
3819       PackBSParams pack_bs_params;
3820       pack_bs_params.dst = dst;
3821       pack_bs_params.curr_tg_hdr_size = 0;
3822       pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
3823       pack_bs_params.new_tg = new_tg;
3824       pack_bs_params.obu_extn_header = obu_extn_header;
3825       pack_bs_params.obu_header_size = 0;
3826       pack_bs_params.saved_wb = saved_wb;
3827       pack_bs_params.tile_col = tile_col;
3828       pack_bs_params.tile_row = tile_row;
3829       pack_bs_params.tile_data_curr = tile_data_curr;
3830       pack_bs_params.total_size = total_size;
3831 
3832       if (new_tg)
3833         av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
3834 
3835       av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
3836 
3837       if (new_tg) {
3838         curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
3839         *tile_data_start += pack_bs_params.curr_tg_hdr_size;
3840         *obu_header_size = pack_bs_params.obu_header_size;
3841         new_tg = 0;
3842       }
3843       if (is_last_tile_in_tg) new_tg = 1;
3844 
3845       curr_tg_data_size +=
3846           (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
3847 
3848       if (pack_bs_params.buf.size > *max_tile_size) {
3849         *largest_tile_id = tile_idx;
3850         *max_tile_size = (unsigned int)pack_bs_params.buf.size;
3851       }
3852 
3853       if (is_last_tile_in_tg)
3854         av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
3855                                  tile_data_curr, total_size, tile_data_start,
3856                                  largest_tile_id, &is_first_tg,
3857                                  *obu_header_size, obu_extn_header);
3858       *total_size += (uint32_t)pack_bs_params.buf.size;
3859     }
3860   }
3861   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3862 }
3863 
3864 // Write total buffer size and related information into the OBU header for
3865 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)3866 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
3867                                 struct aom_write_bit_buffer *saved_wb,
3868                                 int largest_tile_id, uint32_t *const total_size,
3869                                 unsigned int max_tile_size,
3870                                 uint32_t obu_header_size,
3871                                 uint8_t *tile_data_start) {
3872   const CommonTileParams *const tiles = &cpi->common.tiles;
3873 
3874   // Fill in context_update_tile_id indicating the tile to use for the
3875   // cdf update. The encoder currently sets it to the largest tile
3876   // (but is up to the encoder)
3877   aom_wb_overwrite_literal(saved_wb, largest_tile_id,
3878                            (tiles->log2_cols + tiles->log2_rows));
3879   // If more than one tile group. tile_size_bytes takes the default value 4
3880   // and does not need to be set. For a single tile group it is set in the
3881   // section below.
3882   if (cpi->num_tg != 1) return;
3883   int tile_size_bytes = 4, unused;
3884   const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
3885   const uint32_t tile_data_size = *total_size - tile_data_offset;
3886 
3887   *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
3888                             max_tile_size, 0, &tile_size_bytes, &unused);
3889   *total_size += tile_data_offset;
3890   assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3891 
3892   aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3893 
3894   // Update the OBU length if remux_tiles() reduced the size.
3895   uint64_t payload_size;
3896   size_t length_field_size;
3897   int res =
3898       aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
3899                       &payload_size, &length_field_size);
3900   assert(res == 0);
3901   (void)res;
3902 
3903   const uint64_t new_payload_size =
3904       *total_size - obu_header_size - length_field_size;
3905   if (new_payload_size != payload_size) {
3906     size_t new_length_field_size;
3907     res = aom_uleb_encode(new_payload_size, length_field_size,
3908                           dst + obu_header_size, &new_length_field_size);
3909     assert(res == 0);
3910     if (new_length_field_size < length_field_size) {
3911       const size_t src_offset = obu_header_size + length_field_size;
3912       const size_t dst_offset = obu_header_size + new_length_field_size;
3913       memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
3914       *total_size -= (int)(length_field_size - new_length_field_size);
3915     }
3916   }
3917 }
3918 
3919 // As per the experiments, single-thread bitstream packing is better for
3920 // frames with a smaller bitstream size. This behavior is due to setup time
3921 // overhead of multithread function would be more than that of time required
3922 // to pack the smaller bitstream of such frames. This function computes the
3923 // number of required number of workers based on setup time overhead and job
3924 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers)3925 int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
3926                             int avail_workers) {
3927   if (AOMMIN(avail_workers, num_tiles) <= 1) return 1;
3928 
3929   uint64_t frame_abs_sum_level = 0;
3930 
3931   for (int idx = 0; idx < num_tiles; idx++)
3932     frame_abs_sum_level += tile_data[idx].abs_sum_level;
3933 
3934   int ideal_num_workers = 1;
3935   const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
3936   float max_sum = 0.0;
3937 
3938   for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
3939     const float fas_per_worker_const =
3940         ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
3941     const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
3942     const float this_sum = fas_per_worker_const - setup_time_const -
3943                            job_disp_time_const / num_workers;
3944 
3945     if (this_sum > max_sum) {
3946       max_sum = this_sum;
3947       ideal_num_workers = num_workers;
3948     }
3949   }
3950   return ideal_num_workers;
3951 }
3952 
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)3953 static INLINE uint32_t pack_tiles_in_tg_obus(
3954     AV1_COMP *const cpi, uint8_t *const dst,
3955     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
3956     const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
3957   const CommonTileParams *const tiles = &cpi->common.tiles;
3958   uint32_t total_size = 0;
3959   unsigned int max_tile_size = 0;
3960   uint32_t obu_header_size = 0;
3961   uint8_t *tile_data_start = dst;
3962   const int tile_cols = tiles->cols;
3963   const int tile_rows = tiles->rows;
3964   const int num_tiles = tile_rows * tile_cols;
3965 
3966   const int num_workers = calc_pack_bs_mt_workers(
3967       cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS]);
3968 
3969   if (num_workers > 1) {
3970     av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
3971                           fh_info, largest_tile_id, &max_tile_size,
3972                           &obu_header_size, &tile_data_start, num_workers);
3973   } else {
3974     write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
3975                    fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
3976                    &tile_data_start);
3977   }
3978 
3979   if (num_tiles > 1)
3980     write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
3981                         max_tile_size, obu_header_size, tile_data_start);
3982   return total_size;
3983 }
3984 
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)3985 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
3986                                        struct aom_write_bit_buffer *saved_wb,
3987                                        uint8_t obu_extension_header,
3988                                        const FrameHeaderInfo *fh_info,
3989                                        int *const largest_tile_id) {
3990   AV1_COMMON *const cm = &cpi->common;
3991   const CommonTileParams *const tiles = &cm->tiles;
3992   *largest_tile_id = 0;
3993 
3994   // Select the coding strategy (temporal or spatial)
3995   if (cm->seg.enabled) av1_choose_segmap_coding_method(cm, &cpi->td.mb.e_mbd);
3996 
3997   if (tiles->large_scale)
3998     return pack_large_scale_tiles_in_tg_obus(cpi, dst, saved_wb,
3999                                              largest_tile_id);
4000 
4001   return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4002                                fh_info, largest_tile_id);
4003 }
4004 
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst)4005 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4006                                      uint8_t *const dst) {
4007   size_t coded_metadata_size = 0;
4008   const uint64_t metadata_type = (uint64_t)metadata->type;
4009   if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
4010                       &coded_metadata_size) != 0) {
4011     return 0;
4012   }
4013   memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4014   // Add trailing bits.
4015   dst[coded_metadata_size + metadata->sz] = 0x80;
4016   return (uint32_t)(coded_metadata_size + metadata->sz + 1);
4017 }
4018 
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst)4019 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
4020   if (!cpi->source) return 0;
4021   AV1_COMMON *const cm = &cpi->common;
4022   aom_metadata_array_t *arr = cpi->source->metadata;
4023   if (!arr) return 0;
4024   size_t obu_header_size = 0;
4025   size_t obu_payload_size = 0;
4026   size_t total_bytes_written = 0;
4027   size_t length_field_size = 0;
4028   for (size_t i = 0; i < arr->sz; i++) {
4029     aom_metadata_t *current_metadata = arr->metadata_array[i];
4030     if (current_metadata && current_metadata->payload) {
4031       if ((cm->current_frame.frame_type == KEY_FRAME &&
4032            current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4033           (cm->current_frame.frame_type != KEY_FRAME &&
4034            current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4035           current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4036         obu_header_size = av1_write_obu_header(&cpi->ppi->level_params,
4037                                                &cpi->frame_header_count,
4038                                                OBU_METADATA, 0, dst);
4039         obu_payload_size =
4040             av1_write_metadata_obu(current_metadata, dst + obu_header_size);
4041         length_field_size =
4042             av1_obu_memmove(obu_header_size, obu_payload_size, dst);
4043         if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
4044             AOM_CODEC_OK) {
4045           const size_t obu_size = obu_header_size + obu_payload_size;
4046           dst += obu_size + length_field_size;
4047           total_bytes_written += obu_size + length_field_size;
4048         } else {
4049           aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4050                              "Error writing metadata OBU size");
4051         }
4052       }
4053     }
4054   }
4055   return total_bytes_written;
4056 }
4057 
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t * size,int * const largest_tile_id)4058 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
4059                        int *const largest_tile_id) {
4060   uint8_t *data = dst;
4061   uint32_t data_size;
4062   AV1_COMMON *const cm = &cpi->common;
4063   AV1LevelParams *const level_params = &cpi->ppi->level_params;
4064   uint32_t obu_header_size = 0;
4065   uint32_t obu_payload_size = 0;
4066   FrameHeaderInfo fh_info = { NULL, 0, 0 };
4067   const uint8_t obu_extension_header =
4068       cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4069 
4070   // If no non-zero delta_q has been used, reset delta_q_present_flag
4071   if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4072     cm->delta_q_info.delta_q_present_flag = 0;
4073   }
4074 
4075 #if CONFIG_BITSTREAM_DEBUG
4076   bitstream_queue_reset_write();
4077 #endif
4078 
4079   cpi->frame_header_count = 0;
4080 
4081   // The TD is now written outside the frame encode loop
4082 
4083   // write sequence header obu at each key frame, preceded by 4-byte size
4084   if (cm->current_frame.frame_type == KEY_FRAME &&
4085       cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
4086     obu_header_size = av1_write_obu_header(
4087         level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER, 0, data);
4088 
4089     obu_payload_size =
4090         av1_write_sequence_header_obu(cm->seq_params, data + obu_header_size);
4091     const size_t length_field_size =
4092         av1_obu_memmove(obu_header_size, obu_payload_size, data);
4093     if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4094         AOM_CODEC_OK) {
4095       return AOM_CODEC_ERROR;
4096     }
4097 
4098     data += obu_header_size + obu_payload_size + length_field_size;
4099   }
4100 
4101   // write metadata obus before the frame obu that has the show_frame flag set
4102   if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
4103 
4104   const int write_frame_header =
4105       (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4106   struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4107   size_t length_field = 0;
4108   if (write_frame_header) {
4109     // Write Frame Header OBU.
4110     fh_info.frame_header = data;
4111     obu_header_size =
4112         av1_write_obu_header(level_params, &cpi->frame_header_count,
4113                              OBU_FRAME_HEADER, obu_extension_header, data);
4114     obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4115                                               data + obu_header_size, 1);
4116 
4117     length_field = av1_obu_memmove(obu_header_size, obu_payload_size, data);
4118     if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
4119         AOM_CODEC_OK) {
4120       return AOM_CODEC_ERROR;
4121     }
4122 
4123     fh_info.obu_header_byte_offset = 0;
4124     fh_info.total_length = obu_header_size + obu_payload_size + length_field;
4125     data += fh_info.total_length;
4126   }
4127 
4128   if (encode_show_existing_frame(cm)) {
4129     data_size = 0;
4130   } else {
4131     // Since length_field is determined adaptively after frame header
4132     // encoding, saved_wb must be adjusted accordingly.
4133     saved_wb.bit_buffer += length_field;
4134 
4135     //  Each tile group obu will be preceded by 4-byte size of the tile group
4136     //  obu
4137     data_size = write_tiles_in_tg_obus(
4138         cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
4139   }
4140   data += data_size;
4141   *size = data - dst;
4142   return AOM_CODEC_OK;
4143 }
4144