• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <BinderRpcTestClientInfo.h>
18 #include <BinderRpcTestServerInfo.h>
19 #include <BnBinderRpcCallback.h>
20 #include <BnBinderRpcSession.h>
21 #include <BnBinderRpcTest.h>
22 #include <aidl/IBinderRpcTest.h>
23 #include <android-base/file.h>
24 #include <android-base/logging.h>
25 #include <android-base/properties.h>
26 #include <android/binder_auto_utils.h>
27 #include <android/binder_libbinder.h>
28 #include <binder/Binder.h>
29 #include <binder/BpBinder.h>
30 #include <binder/IPCThreadState.h>
31 #include <binder/IServiceManager.h>
32 #include <binder/ProcessState.h>
33 #include <binder/RpcServer.h>
34 #include <binder/RpcSession.h>
35 #include <binder/RpcTlsTestUtils.h>
36 #include <binder/RpcTlsUtils.h>
37 #include <binder/RpcTransport.h>
38 #include <binder/RpcTransportRaw.h>
39 #include <binder/RpcTransportTls.h>
40 #include <gtest/gtest.h>
41 
42 #include <chrono>
43 #include <cstdlib>
44 #include <iostream>
45 #include <thread>
46 #include <type_traits>
47 
48 #include <poll.h>
49 #include <sys/prctl.h>
50 #include <unistd.h>
51 
52 #include "../FdTrigger.h"
53 #include "../RpcSocketAddress.h" // for testing preconnected clients
54 #include "../RpcState.h"         // for debugging
55 #include "../vm_sockets.h"       // for VMADDR_*
56 
57 using namespace std::chrono_literals;
58 using namespace std::placeholders;
59 using testing::AssertionFailure;
60 using testing::AssertionResult;
61 using testing::AssertionSuccess;
62 
63 namespace android {
64 
65 static_assert(RPC_WIRE_PROTOCOL_VERSION + 1 == RPC_WIRE_PROTOCOL_VERSION_NEXT ||
66               RPC_WIRE_PROTOCOL_VERSION == RPC_WIRE_PROTOCOL_VERSION_EXPERIMENTAL);
67 const char* kLocalInetAddress = "127.0.0.1";
68 
69 enum class RpcSecurity { RAW, TLS };
70 
RpcSecurityValues()71 static inline std::vector<RpcSecurity> RpcSecurityValues() {
72     return {RpcSecurity::RAW, RpcSecurity::TLS};
73 }
74 
newFactory(RpcSecurity rpcSecurity,std::shared_ptr<RpcCertificateVerifier> verifier=nullptr,std::unique_ptr<RpcAuth> auth=nullptr)75 static inline std::unique_ptr<RpcTransportCtxFactory> newFactory(
76         RpcSecurity rpcSecurity, std::shared_ptr<RpcCertificateVerifier> verifier = nullptr,
77         std::unique_ptr<RpcAuth> auth = nullptr) {
78     switch (rpcSecurity) {
79         case RpcSecurity::RAW:
80             return RpcTransportCtxFactoryRaw::make();
81         case RpcSecurity::TLS: {
82             if (verifier == nullptr) {
83                 verifier = std::make_shared<RpcCertificateVerifierSimple>();
84             }
85             if (auth == nullptr) {
86                 auth = std::make_unique<RpcAuthSelfSigned>();
87             }
88             return RpcTransportCtxFactoryTls::make(std::move(verifier), std::move(auth));
89         }
90         default:
91             LOG_ALWAYS_FATAL("Unknown RpcSecurity %d", rpcSecurity);
92     }
93 }
94 
TEST(BinderRpcParcel,EntireParcelFormatted)95 TEST(BinderRpcParcel, EntireParcelFormatted) {
96     Parcel p;
97     p.writeInt32(3);
98 
99     EXPECT_DEATH(p.markForBinder(sp<BBinder>::make()), "");
100 }
101 
102 class BinderRpcSimple : public ::testing::TestWithParam<RpcSecurity> {
103 public:
PrintTestParam(const::testing::TestParamInfo<ParamType> & info)104     static std::string PrintTestParam(const ::testing::TestParamInfo<ParamType>& info) {
105         return newFactory(info.param)->toCString();
106     }
107 };
108 
TEST_P(BinderRpcSimple,SetExternalServerTest)109 TEST_P(BinderRpcSimple, SetExternalServerTest) {
110     base::unique_fd sink(TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR)));
111     int sinkFd = sink.get();
112     auto server = RpcServer::make(newFactory(GetParam()));
113     ASSERT_FALSE(server->hasServer());
114     ASSERT_EQ(OK, server->setupExternalServer(std::move(sink)));
115     ASSERT_TRUE(server->hasServer());
116     base::unique_fd retrieved = server->releaseServer();
117     ASSERT_FALSE(server->hasServer());
118     ASSERT_EQ(sinkFd, retrieved.get());
119 }
120 
TEST(BinderRpc,CannotUseNextWireVersion)121 TEST(BinderRpc, CannotUseNextWireVersion) {
122     auto session = RpcSession::make();
123     EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT));
124     EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT + 1));
125     EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT + 2));
126     EXPECT_FALSE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_NEXT + 15));
127 }
128 
TEST(BinderRpc,CanUseExperimentalWireVersion)129 TEST(BinderRpc, CanUseExperimentalWireVersion) {
130     auto session = RpcSession::make();
131     EXPECT_TRUE(session->setProtocolVersion(RPC_WIRE_PROTOCOL_VERSION_EXPERIMENTAL));
132 }
133 
134 using android::binder::Status;
135 
136 #define EXPECT_OK(status)                 \
137     do {                                  \
138         Status stat = (status);           \
139         EXPECT_TRUE(stat.isOk()) << stat; \
140     } while (false)
141 
142 class MyBinderRpcSession : public BnBinderRpcSession {
143 public:
144     static std::atomic<int32_t> gNum;
145 
MyBinderRpcSession(const std::string & name)146     MyBinderRpcSession(const std::string& name) : mName(name) { gNum++; }
getName(std::string * name)147     Status getName(std::string* name) override {
148         *name = mName;
149         return Status::ok();
150     }
~MyBinderRpcSession()151     ~MyBinderRpcSession() { gNum--; }
152 
153 private:
154     std::string mName;
155 };
156 std::atomic<int32_t> MyBinderRpcSession::gNum;
157 
158 class MyBinderRpcCallback : public BnBinderRpcCallback {
sendCallback(const std::string & value)159     Status sendCallback(const std::string& value) {
160         std::unique_lock _l(mMutex);
161         mValues.push_back(value);
162         _l.unlock();
163         mCv.notify_one();
164         return Status::ok();
165     }
sendOnewayCallback(const std::string & value)166     Status sendOnewayCallback(const std::string& value) { return sendCallback(value); }
167 
168 public:
169     std::mutex mMutex;
170     std::condition_variable mCv;
171     std::vector<std::string> mValues;
172 };
173 
174 class MyBinderRpcTest : public BnBinderRpcTest {
175 public:
176     wp<RpcServer> server;
177     int port = 0;
178 
sendString(const std::string & str)179     Status sendString(const std::string& str) override {
180         (void)str;
181         return Status::ok();
182     }
doubleString(const std::string & str,std::string * strstr)183     Status doubleString(const std::string& str, std::string* strstr) override {
184         *strstr = str + str;
185         return Status::ok();
186     }
getClientPort(int * out)187     Status getClientPort(int* out) override {
188         *out = port;
189         return Status::ok();
190     }
countBinders(std::vector<int32_t> * out)191     Status countBinders(std::vector<int32_t>* out) override {
192         sp<RpcServer> spServer = server.promote();
193         if (spServer == nullptr) {
194             return Status::fromExceptionCode(Status::EX_NULL_POINTER);
195         }
196         out->clear();
197         for (auto session : spServer->listSessions()) {
198             size_t count = session->state()->countBinders();
199             out->push_back(count);
200         }
201         return Status::ok();
202     }
pingMe(const sp<IBinder> & binder,int32_t * out)203     Status pingMe(const sp<IBinder>& binder, int32_t* out) override {
204         if (binder == nullptr) {
205             std::cout << "Received null binder!" << std::endl;
206             return Status::fromExceptionCode(Status::EX_NULL_POINTER);
207         }
208         *out = binder->pingBinder();
209         return Status::ok();
210     }
repeatBinder(const sp<IBinder> & binder,sp<IBinder> * out)211     Status repeatBinder(const sp<IBinder>& binder, sp<IBinder>* out) override {
212         *out = binder;
213         return Status::ok();
214     }
215     static sp<IBinder> mHeldBinder;
holdBinder(const sp<IBinder> & binder)216     Status holdBinder(const sp<IBinder>& binder) override {
217         mHeldBinder = binder;
218         return Status::ok();
219     }
getHeldBinder(sp<IBinder> * held)220     Status getHeldBinder(sp<IBinder>* held) override {
221         *held = mHeldBinder;
222         return Status::ok();
223     }
nestMe(const sp<IBinderRpcTest> & binder,int count)224     Status nestMe(const sp<IBinderRpcTest>& binder, int count) override {
225         if (count <= 0) return Status::ok();
226         return binder->nestMe(this, count - 1);
227     }
alwaysGiveMeTheSameBinder(sp<IBinder> * out)228     Status alwaysGiveMeTheSameBinder(sp<IBinder>* out) override {
229         static sp<IBinder> binder = new BBinder;
230         *out = binder;
231         return Status::ok();
232     }
openSession(const std::string & name,sp<IBinderRpcSession> * out)233     Status openSession(const std::string& name, sp<IBinderRpcSession>* out) override {
234         *out = new MyBinderRpcSession(name);
235         return Status::ok();
236     }
getNumOpenSessions(int32_t * out)237     Status getNumOpenSessions(int32_t* out) override {
238         *out = MyBinderRpcSession::gNum;
239         return Status::ok();
240     }
241 
242     std::mutex blockMutex;
lock()243     Status lock() override {
244         blockMutex.lock();
245         return Status::ok();
246     }
unlockInMsAsync(int32_t ms)247     Status unlockInMsAsync(int32_t ms) override {
248         usleep(ms * 1000);
249         blockMutex.unlock();
250         return Status::ok();
251     }
lockUnlock()252     Status lockUnlock() override {
253         std::lock_guard<std::mutex> _l(blockMutex);
254         return Status::ok();
255     }
256 
sleepMs(int32_t ms)257     Status sleepMs(int32_t ms) override {
258         usleep(ms * 1000);
259         return Status::ok();
260     }
261 
sleepMsAsync(int32_t ms)262     Status sleepMsAsync(int32_t ms) override {
263         // In-process binder calls are asynchronous, but the call to this method
264         // is synchronous wrt its client. This in/out-process threading model
265         // diffentiation is a classic binder leaky abstraction (for better or
266         // worse) and is preserved here the way binder sockets plugs itself
267         // into BpBinder, as nothing is changed at the higher levels
268         // (IInterface) which result in this behavior.
269         return sleepMs(ms);
270     }
271 
doCallback(const sp<IBinderRpcCallback> & callback,bool oneway,bool delayed,const std::string & value)272     Status doCallback(const sp<IBinderRpcCallback>& callback, bool oneway, bool delayed,
273                       const std::string& value) override {
274         if (callback == nullptr) {
275             return Status::fromExceptionCode(Status::EX_NULL_POINTER);
276         }
277 
278         if (delayed) {
279             std::thread([=]() {
280                 ALOGE("Executing delayed callback: '%s'", value.c_str());
281                 Status status = doCallback(callback, oneway, false, value);
282                 ALOGE("Delayed callback status: '%s'", status.toString8().c_str());
283             }).detach();
284             return Status::ok();
285         }
286 
287         if (oneway) {
288             return callback->sendOnewayCallback(value);
289         }
290 
291         return callback->sendCallback(value);
292     }
293 
doCallbackAsync(const sp<IBinderRpcCallback> & callback,bool oneway,bool delayed,const std::string & value)294     Status doCallbackAsync(const sp<IBinderRpcCallback>& callback, bool oneway, bool delayed,
295                            const std::string& value) override {
296         return doCallback(callback, oneway, delayed, value);
297     }
298 
die(bool cleanup)299     Status die(bool cleanup) override {
300         if (cleanup) {
301             exit(1);
302         } else {
303             _exit(1);
304         }
305     }
306 
scheduleShutdown()307     Status scheduleShutdown() override {
308         sp<RpcServer> strongServer = server.promote();
309         if (strongServer == nullptr) {
310             return Status::fromExceptionCode(Status::EX_NULL_POINTER);
311         }
312         std::thread([=] {
313             LOG_ALWAYS_FATAL_IF(!strongServer->shutdown(), "Could not shutdown");
314         }).detach();
315         return Status::ok();
316     }
317 
useKernelBinderCallingId()318     Status useKernelBinderCallingId() override {
319         // this is WRONG! It does not make sense when using RPC binder, and
320         // because it is SO wrong, and so much code calls this, it should abort!
321 
322         (void)IPCThreadState::self()->getCallingPid();
323         return Status::ok();
324     }
325 };
326 sp<IBinder> MyBinderRpcTest::mHeldBinder;
327 
328 class Process {
329 public:
330     Process(Process&&) = default;
Process(const std::function<void (android::base::borrowed_fd,android::base::borrowed_fd)> & f)331     Process(const std::function<void(android::base::borrowed_fd /* writeEnd */,
332                                      android::base::borrowed_fd /* readEnd */)>& f) {
333         android::base::unique_fd childWriteEnd;
334         android::base::unique_fd childReadEnd;
335         CHECK(android::base::Pipe(&mReadEnd, &childWriteEnd)) << strerror(errno);
336         CHECK(android::base::Pipe(&childReadEnd, &mWriteEnd)) << strerror(errno);
337         if (0 == (mPid = fork())) {
338             // racey: assume parent doesn't crash before this is set
339             prctl(PR_SET_PDEATHSIG, SIGHUP);
340 
341             f(childWriteEnd, childReadEnd);
342 
343             exit(0);
344         }
345     }
~Process()346     ~Process() {
347         if (mPid != 0) {
348             waitpid(mPid, nullptr, 0);
349         }
350     }
readEnd()351     android::base::borrowed_fd readEnd() { return mReadEnd; }
writeEnd()352     android::base::borrowed_fd writeEnd() { return mWriteEnd; }
353 
354 private:
355     pid_t mPid = 0;
356     android::base::unique_fd mReadEnd;
357     android::base::unique_fd mWriteEnd;
358 };
359 
allocateSocketAddress()360 static std::string allocateSocketAddress() {
361     static size_t id = 0;
362     std::string temp = getenv("TMPDIR") ?: "/tmp";
363     auto ret = temp + "/binderRpcTest_" + std::to_string(id++);
364     unlink(ret.c_str());
365     return ret;
366 };
367 
allocateVsockPort()368 static unsigned int allocateVsockPort() {
369     static unsigned int vsockPort = 3456;
370     return vsockPort++;
371 }
372 
373 struct ProcessSession {
374     // reference to process hosting a socket server
375     Process host;
376 
377     struct SessionInfo {
378         sp<RpcSession> session;
379         sp<IBinder> root;
380     };
381 
382     // client session objects associated with other process
383     // each one represents a separate session
384     std::vector<SessionInfo> sessions;
385 
386     ProcessSession(ProcessSession&&) = default;
~ProcessSessionandroid::ProcessSession387     ~ProcessSession() {
388         for (auto& session : sessions) {
389             session.root = nullptr;
390         }
391 
392         for (auto& info : sessions) {
393             sp<RpcSession>& session = info.session;
394 
395             EXPECT_NE(nullptr, session);
396             EXPECT_NE(nullptr, session->state());
397             EXPECT_EQ(0, session->state()->countBinders()) << (session->state()->dump(), "dump:");
398 
399             wp<RpcSession> weakSession = session;
400             session = nullptr;
401             EXPECT_EQ(nullptr, weakSession.promote()) << "Leaked session";
402         }
403     }
404 };
405 
406 // Process session where the process hosts IBinderRpcTest, the server used
407 // for most testing here
408 struct BinderRpcTestProcessSession {
409     ProcessSession proc;
410 
411     // pre-fetched root object (for first session)
412     sp<IBinder> rootBinder;
413 
414     // pre-casted root object (for first session)
415     sp<IBinderRpcTest> rootIface;
416 
417     // whether session should be invalidated by end of run
418     bool expectAlreadyShutdown = false;
419 
420     BinderRpcTestProcessSession(BinderRpcTestProcessSession&&) = default;
~BinderRpcTestProcessSessionandroid::BinderRpcTestProcessSession421     ~BinderRpcTestProcessSession() {
422         EXPECT_NE(nullptr, rootIface);
423         if (rootIface == nullptr) return;
424 
425         if (!expectAlreadyShutdown) {
426             std::vector<int32_t> remoteCounts;
427             // calling over any sessions counts across all sessions
428             EXPECT_OK(rootIface->countBinders(&remoteCounts));
429             EXPECT_EQ(remoteCounts.size(), proc.sessions.size());
430             for (auto remoteCount : remoteCounts) {
431                 EXPECT_EQ(remoteCount, 1);
432             }
433 
434             // even though it is on another thread, shutdown races with
435             // the transaction reply being written
436             if (auto status = rootIface->scheduleShutdown(); !status.isOk()) {
437                 EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
438             }
439         }
440 
441         rootIface = nullptr;
442         rootBinder = nullptr;
443     }
444 };
445 
446 enum class SocketType {
447     PRECONNECTED,
448     UNIX,
449     VSOCK,
450     INET,
451 };
PrintToString(SocketType socketType)452 static inline std::string PrintToString(SocketType socketType) {
453     switch (socketType) {
454         case SocketType::PRECONNECTED:
455             return "preconnected_uds";
456         case SocketType::UNIX:
457             return "unix_domain_socket";
458         case SocketType::VSOCK:
459             return "vm_socket";
460         case SocketType::INET:
461             return "inet_socket";
462         default:
463             LOG_ALWAYS_FATAL("Unknown socket type");
464             return "";
465     }
466 }
467 
connectTo(const RpcSocketAddress & addr)468 static base::unique_fd connectTo(const RpcSocketAddress& addr) {
469     base::unique_fd serverFd(
470             TEMP_FAILURE_RETRY(socket(addr.addr()->sa_family, SOCK_STREAM | SOCK_CLOEXEC, 0)));
471     int savedErrno = errno;
472     CHECK(serverFd.ok()) << "Could not create socket " << addr.toString() << ": "
473                          << strerror(savedErrno);
474 
475     if (0 != TEMP_FAILURE_RETRY(connect(serverFd.get(), addr.addr(), addr.addrSize()))) {
476         int savedErrno = errno;
477         LOG(FATAL) << "Could not connect to socket " << addr.toString() << ": "
478                    << strerror(savedErrno);
479     }
480     return serverFd;
481 }
482 
483 class BinderRpc : public ::testing::TestWithParam<std::tuple<SocketType, RpcSecurity>> {
484 public:
485     struct Options {
486         size_t numThreads = 1;
487         size_t numSessions = 1;
488         size_t numIncomingConnections = 0;
489         size_t numOutgoingConnections = SIZE_MAX;
490     };
491 
PrintParamInfo(const testing::TestParamInfo<ParamType> & info)492     static inline std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
493         auto [type, security] = info.param;
494         return PrintToString(type) + "_" + newFactory(security)->toCString();
495     }
496 
writeString(android::base::borrowed_fd fd,std::string_view str)497     static inline void writeString(android::base::borrowed_fd fd, std::string_view str) {
498         uint64_t length = str.length();
499         CHECK(android::base::WriteFully(fd, &length, sizeof(length)));
500         CHECK(android::base::WriteFully(fd, str.data(), str.length()));
501     }
502 
readString(android::base::borrowed_fd fd)503     static inline std::string readString(android::base::borrowed_fd fd) {
504         uint64_t length;
505         CHECK(android::base::ReadFully(fd, &length, sizeof(length)));
506         std::string ret(length, '\0');
507         CHECK(android::base::ReadFully(fd, ret.data(), length));
508         return ret;
509     }
510 
writeToFd(android::base::borrowed_fd fd,const Parcelable & parcelable)511     static inline void writeToFd(android::base::borrowed_fd fd, const Parcelable& parcelable) {
512         Parcel parcel;
513         CHECK_EQ(OK, parcelable.writeToParcel(&parcel));
514         writeString(fd,
515                     std::string(reinterpret_cast<const char*>(parcel.data()), parcel.dataSize()));
516     }
517 
518     template <typename T>
readFromFd(android::base::borrowed_fd fd)519     static inline T readFromFd(android::base::borrowed_fd fd) {
520         std::string data = readString(fd);
521         Parcel parcel;
522         CHECK_EQ(OK, parcel.setData(reinterpret_cast<const uint8_t*>(data.data()), data.size()));
523         T object;
524         CHECK_EQ(OK, object.readFromParcel(&parcel));
525         return object;
526     }
527 
528     // This creates a new process serving an interface on a certain number of
529     // threads.
createRpcTestSocketServerProcess(const Options & options,const std::function<void (const sp<RpcServer> &)> & configure)530     ProcessSession createRpcTestSocketServerProcess(
531             const Options& options, const std::function<void(const sp<RpcServer>&)>& configure) {
532         CHECK_GE(options.numSessions, 1) << "Must have at least one session to a server";
533 
534         SocketType socketType = std::get<0>(GetParam());
535         RpcSecurity rpcSecurity = std::get<1>(GetParam());
536 
537         unsigned int vsockPort = allocateVsockPort();
538         std::string addr = allocateSocketAddress();
539 
540         auto ret = ProcessSession{
541                 .host = Process([&](android::base::borrowed_fd writeEnd,
542                                     android::base::borrowed_fd readEnd) {
543                     auto certVerifier = std::make_shared<RpcCertificateVerifierSimple>();
544                     sp<RpcServer> server = RpcServer::make(newFactory(rpcSecurity, certVerifier));
545 
546                     server->setMaxThreads(options.numThreads);
547 
548                     unsigned int outPort = 0;
549 
550                     switch (socketType) {
551                         case SocketType::PRECONNECTED:
552                             [[fallthrough]];
553                         case SocketType::UNIX:
554                             CHECK_EQ(OK, server->setupUnixDomainServer(addr.c_str())) << addr;
555                             break;
556                         case SocketType::VSOCK:
557                             CHECK_EQ(OK, server->setupVsockServer(vsockPort));
558                             break;
559                         case SocketType::INET: {
560                             CHECK_EQ(OK, server->setupInetServer(kLocalInetAddress, 0, &outPort));
561                             CHECK_NE(0, outPort);
562                             break;
563                         }
564                         default:
565                             LOG_ALWAYS_FATAL("Unknown socket type");
566                     }
567 
568                     BinderRpcTestServerInfo serverInfo;
569                     serverInfo.port = static_cast<int64_t>(outPort);
570                     serverInfo.cert.data = server->getCertificate(RpcCertificateFormat::PEM);
571                     writeToFd(writeEnd, serverInfo);
572                     auto clientInfo = readFromFd<BinderRpcTestClientInfo>(readEnd);
573 
574                     if (rpcSecurity == RpcSecurity::TLS) {
575                         for (const auto& clientCert : clientInfo.certs) {
576                             CHECK_EQ(OK,
577                                      certVerifier
578                                              ->addTrustedPeerCertificate(RpcCertificateFormat::PEM,
579                                                                          clientCert.data));
580                         }
581                     }
582 
583                     configure(server);
584 
585                     server->join();
586 
587                     // Another thread calls shutdown. Wait for it to complete.
588                     (void)server->shutdown();
589                 }),
590         };
591 
592         std::vector<sp<RpcSession>> sessions;
593         auto certVerifier = std::make_shared<RpcCertificateVerifierSimple>();
594         for (size_t i = 0; i < options.numSessions; i++) {
595             sessions.emplace_back(RpcSession::make(newFactory(rpcSecurity, certVerifier)));
596         }
597 
598         auto serverInfo = readFromFd<BinderRpcTestServerInfo>(ret.host.readEnd());
599         BinderRpcTestClientInfo clientInfo;
600         for (const auto& session : sessions) {
601             auto& parcelableCert = clientInfo.certs.emplace_back();
602             parcelableCert.data = session->getCertificate(RpcCertificateFormat::PEM);
603         }
604         writeToFd(ret.host.writeEnd(), clientInfo);
605 
606         CHECK_LE(serverInfo.port, std::numeric_limits<unsigned int>::max());
607         if (socketType == SocketType::INET) {
608             CHECK_NE(0, serverInfo.port);
609         }
610 
611         if (rpcSecurity == RpcSecurity::TLS) {
612             const auto& serverCert = serverInfo.cert.data;
613             CHECK_EQ(OK,
614                      certVerifier->addTrustedPeerCertificate(RpcCertificateFormat::PEM,
615                                                              serverCert));
616         }
617 
618         status_t status;
619 
620         for (const auto& session : sessions) {
621             session->setMaxIncomingThreads(options.numIncomingConnections);
622             session->setMaxOutgoingThreads(options.numOutgoingConnections);
623 
624             switch (socketType) {
625                 case SocketType::PRECONNECTED:
626                     status = session->setupPreconnectedClient({}, [=]() {
627                         return connectTo(UnixSocketAddress(addr.c_str()));
628                     });
629                     break;
630                 case SocketType::UNIX:
631                     status = session->setupUnixDomainClient(addr.c_str());
632                     break;
633                 case SocketType::VSOCK:
634                     status = session->setupVsockClient(VMADDR_CID_LOCAL, vsockPort);
635                     break;
636                 case SocketType::INET:
637                     status = session->setupInetClient("127.0.0.1", serverInfo.port);
638                     break;
639                 default:
640                     LOG_ALWAYS_FATAL("Unknown socket type");
641             }
642             CHECK_EQ(status, OK) << "Could not connect: " << statusToString(status);
643             ret.sessions.push_back({session, session->getRootObject()});
644         }
645         return ret;
646     }
647 
createRpcTestSocketServerProcess(const Options & options)648     BinderRpcTestProcessSession createRpcTestSocketServerProcess(const Options& options) {
649         BinderRpcTestProcessSession ret{
650                 .proc = createRpcTestSocketServerProcess(
651                         options,
652                         [&](const sp<RpcServer>& server) {
653                             server->setPerSessionRootObject([&](const sockaddr* addr,
654                                                                 socklen_t len) {
655                                 sp<MyBinderRpcTest> service = sp<MyBinderRpcTest>::make();
656                                 switch (addr->sa_family) {
657                                     case AF_UNIX:
658                                         // nothing to save
659                                         break;
660                                     case AF_VSOCK:
661                                         CHECK_EQ(len, sizeof(sockaddr_vm));
662                                         service->port = reinterpret_cast<const sockaddr_vm*>(addr)
663                                                                 ->svm_port;
664                                         break;
665                                     case AF_INET:
666                                         CHECK_EQ(len, sizeof(sockaddr_in));
667                                         service->port =
668                                                 ntohs(reinterpret_cast<const sockaddr_in*>(addr)
669                                                               ->sin_port);
670                                         break;
671                                     case AF_INET6:
672                                         CHECK_EQ(len, sizeof(sockaddr_in));
673                                         service->port =
674                                                 ntohs(reinterpret_cast<const sockaddr_in6*>(addr)
675                                                               ->sin6_port);
676                                         break;
677                                     default:
678                                         LOG_ALWAYS_FATAL("Unrecognized address family %d",
679                                                          addr->sa_family);
680                                 }
681                                 service->server = server;
682                                 return service;
683                             });
684                         }),
685         };
686 
687         ret.rootBinder = ret.proc.sessions.at(0).root;
688         ret.rootIface = interface_cast<IBinderRpcTest>(ret.rootBinder);
689 
690         return ret;
691     }
692 
693     void testThreadPoolOverSaturated(sp<IBinderRpcTest> iface, size_t numCalls,
694                                      size_t sleepMs = 500);
695 };
696 
TEST_P(BinderRpc,Ping)697 TEST_P(BinderRpc, Ping) {
698     auto proc = createRpcTestSocketServerProcess({});
699     ASSERT_NE(proc.rootBinder, nullptr);
700     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
701 }
702 
TEST_P(BinderRpc,GetInterfaceDescriptor)703 TEST_P(BinderRpc, GetInterfaceDescriptor) {
704     auto proc = createRpcTestSocketServerProcess({});
705     ASSERT_NE(proc.rootBinder, nullptr);
706     EXPECT_EQ(IBinderRpcTest::descriptor, proc.rootBinder->getInterfaceDescriptor());
707 }
708 
TEST_P(BinderRpc,MultipleSessions)709 TEST_P(BinderRpc, MultipleSessions) {
710     auto proc = createRpcTestSocketServerProcess({.numThreads = 1, .numSessions = 5});
711     for (auto session : proc.proc.sessions) {
712         ASSERT_NE(nullptr, session.root);
713         EXPECT_EQ(OK, session.root->pingBinder());
714     }
715 }
716 
TEST_P(BinderRpc,SeparateRootObject)717 TEST_P(BinderRpc, SeparateRootObject) {
718     SocketType type = std::get<0>(GetParam());
719     if (type == SocketType::PRECONNECTED || type == SocketType::UNIX) {
720         // we can't get port numbers for unix sockets
721         return;
722     }
723 
724     auto proc = createRpcTestSocketServerProcess({.numSessions = 2});
725 
726     int port1 = 0;
727     EXPECT_OK(proc.rootIface->getClientPort(&port1));
728 
729     sp<IBinderRpcTest> rootIface2 = interface_cast<IBinderRpcTest>(proc.proc.sessions.at(1).root);
730     int port2;
731     EXPECT_OK(rootIface2->getClientPort(&port2));
732 
733     // we should have a different IBinderRpcTest object created for each
734     // session, because we use setPerSessionRootObject
735     EXPECT_NE(port1, port2);
736 }
737 
TEST_P(BinderRpc,TransactionsMustBeMarkedRpc)738 TEST_P(BinderRpc, TransactionsMustBeMarkedRpc) {
739     auto proc = createRpcTestSocketServerProcess({});
740     Parcel data;
741     Parcel reply;
742     EXPECT_EQ(BAD_TYPE, proc.rootBinder->transact(IBinder::PING_TRANSACTION, data, &reply, 0));
743 }
744 
TEST_P(BinderRpc,AppendSeparateFormats)745 TEST_P(BinderRpc, AppendSeparateFormats) {
746     auto proc1 = createRpcTestSocketServerProcess({});
747     auto proc2 = createRpcTestSocketServerProcess({});
748 
749     Parcel pRaw;
750 
751     Parcel p1;
752     p1.markForBinder(proc1.rootBinder);
753     p1.writeInt32(3);
754 
755     EXPECT_EQ(BAD_TYPE, p1.appendFrom(&pRaw, 0, p1.dataSize()));
756     EXPECT_EQ(BAD_TYPE, pRaw.appendFrom(&p1, 0, p1.dataSize()));
757 
758     Parcel p2;
759     p2.markForBinder(proc2.rootBinder);
760     p2.writeInt32(7);
761 
762     EXPECT_EQ(BAD_TYPE, p1.appendFrom(&p2, 0, p2.dataSize()));
763     EXPECT_EQ(BAD_TYPE, p2.appendFrom(&p1, 0, p1.dataSize()));
764 }
765 
TEST_P(BinderRpc,UnknownTransaction)766 TEST_P(BinderRpc, UnknownTransaction) {
767     auto proc = createRpcTestSocketServerProcess({});
768     Parcel data;
769     data.markForBinder(proc.rootBinder);
770     Parcel reply;
771     EXPECT_EQ(UNKNOWN_TRANSACTION, proc.rootBinder->transact(1337, data, &reply, 0));
772 }
773 
TEST_P(BinderRpc,SendSomethingOneway)774 TEST_P(BinderRpc, SendSomethingOneway) {
775     auto proc = createRpcTestSocketServerProcess({});
776     EXPECT_OK(proc.rootIface->sendString("asdf"));
777 }
778 
TEST_P(BinderRpc,SendAndGetResultBack)779 TEST_P(BinderRpc, SendAndGetResultBack) {
780     auto proc = createRpcTestSocketServerProcess({});
781     std::string doubled;
782     EXPECT_OK(proc.rootIface->doubleString("cool ", &doubled));
783     EXPECT_EQ("cool cool ", doubled);
784 }
785 
TEST_P(BinderRpc,SendAndGetResultBackBig)786 TEST_P(BinderRpc, SendAndGetResultBackBig) {
787     auto proc = createRpcTestSocketServerProcess({});
788     std::string single = std::string(1024, 'a');
789     std::string doubled;
790     EXPECT_OK(proc.rootIface->doubleString(single, &doubled));
791     EXPECT_EQ(single + single, doubled);
792 }
793 
TEST_P(BinderRpc,CallMeBack)794 TEST_P(BinderRpc, CallMeBack) {
795     auto proc = createRpcTestSocketServerProcess({});
796 
797     int32_t pingResult;
798     EXPECT_OK(proc.rootIface->pingMe(new MyBinderRpcSession("foo"), &pingResult));
799     EXPECT_EQ(OK, pingResult);
800 
801     EXPECT_EQ(0, MyBinderRpcSession::gNum);
802 }
803 
TEST_P(BinderRpc,RepeatBinder)804 TEST_P(BinderRpc, RepeatBinder) {
805     auto proc = createRpcTestSocketServerProcess({});
806 
807     sp<IBinder> inBinder = new MyBinderRpcSession("foo");
808     sp<IBinder> outBinder;
809     EXPECT_OK(proc.rootIface->repeatBinder(inBinder, &outBinder));
810     EXPECT_EQ(inBinder, outBinder);
811 
812     wp<IBinder> weak = inBinder;
813     inBinder = nullptr;
814     outBinder = nullptr;
815 
816     // Force reading a reply, to process any pending dec refs from the other
817     // process (the other process will process dec refs there before processing
818     // the ping here).
819     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
820 
821     EXPECT_EQ(nullptr, weak.promote());
822 
823     EXPECT_EQ(0, MyBinderRpcSession::gNum);
824 }
825 
TEST_P(BinderRpc,RepeatTheirBinder)826 TEST_P(BinderRpc, RepeatTheirBinder) {
827     auto proc = createRpcTestSocketServerProcess({});
828 
829     sp<IBinderRpcSession> session;
830     EXPECT_OK(proc.rootIface->openSession("aoeu", &session));
831 
832     sp<IBinder> inBinder = IInterface::asBinder(session);
833     sp<IBinder> outBinder;
834     EXPECT_OK(proc.rootIface->repeatBinder(inBinder, &outBinder));
835     EXPECT_EQ(inBinder, outBinder);
836 
837     wp<IBinder> weak = inBinder;
838     session = nullptr;
839     inBinder = nullptr;
840     outBinder = nullptr;
841 
842     // Force reading a reply, to process any pending dec refs from the other
843     // process (the other process will process dec refs there before processing
844     // the ping here).
845     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
846 
847     EXPECT_EQ(nullptr, weak.promote());
848 }
849 
TEST_P(BinderRpc,RepeatBinderNull)850 TEST_P(BinderRpc, RepeatBinderNull) {
851     auto proc = createRpcTestSocketServerProcess({});
852 
853     sp<IBinder> outBinder;
854     EXPECT_OK(proc.rootIface->repeatBinder(nullptr, &outBinder));
855     EXPECT_EQ(nullptr, outBinder);
856 }
857 
TEST_P(BinderRpc,HoldBinder)858 TEST_P(BinderRpc, HoldBinder) {
859     auto proc = createRpcTestSocketServerProcess({});
860 
861     IBinder* ptr = nullptr;
862     {
863         sp<IBinder> binder = new BBinder();
864         ptr = binder.get();
865         EXPECT_OK(proc.rootIface->holdBinder(binder));
866     }
867 
868     sp<IBinder> held;
869     EXPECT_OK(proc.rootIface->getHeldBinder(&held));
870 
871     EXPECT_EQ(held.get(), ptr);
872 
873     // stop holding binder, because we test to make sure references are cleaned
874     // up
875     EXPECT_OK(proc.rootIface->holdBinder(nullptr));
876     // and flush ref counts
877     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
878 }
879 
880 // START TESTS FOR LIMITATIONS OF SOCKET BINDER
881 // These are behavioral differences form regular binder, where certain usecases
882 // aren't supported.
883 
TEST_P(BinderRpc,CannotMixBindersBetweenUnrelatedSocketSessions)884 TEST_P(BinderRpc, CannotMixBindersBetweenUnrelatedSocketSessions) {
885     auto proc1 = createRpcTestSocketServerProcess({});
886     auto proc2 = createRpcTestSocketServerProcess({});
887 
888     sp<IBinder> outBinder;
889     EXPECT_EQ(INVALID_OPERATION,
890               proc1.rootIface->repeatBinder(proc2.rootBinder, &outBinder).transactionError());
891 }
892 
TEST_P(BinderRpc,CannotMixBindersBetweenTwoSessionsToTheSameServer)893 TEST_P(BinderRpc, CannotMixBindersBetweenTwoSessionsToTheSameServer) {
894     auto proc = createRpcTestSocketServerProcess({.numThreads = 1, .numSessions = 2});
895 
896     sp<IBinder> outBinder;
897     EXPECT_EQ(INVALID_OPERATION,
898               proc.rootIface->repeatBinder(proc.proc.sessions.at(1).root, &outBinder)
899                       .transactionError());
900 }
901 
TEST_P(BinderRpc,CannotSendRegularBinderOverSocketBinder)902 TEST_P(BinderRpc, CannotSendRegularBinderOverSocketBinder) {
903     auto proc = createRpcTestSocketServerProcess({});
904 
905     sp<IBinder> someRealBinder = IInterface::asBinder(defaultServiceManager());
906     sp<IBinder> outBinder;
907     EXPECT_EQ(INVALID_OPERATION,
908               proc.rootIface->repeatBinder(someRealBinder, &outBinder).transactionError());
909 }
910 
TEST_P(BinderRpc,CannotSendSocketBinderOverRegularBinder)911 TEST_P(BinderRpc, CannotSendSocketBinderOverRegularBinder) {
912     auto proc = createRpcTestSocketServerProcess({});
913 
914     // for historical reasons, IServiceManager interface only returns the
915     // exception code
916     EXPECT_EQ(binder::Status::EX_TRANSACTION_FAILED,
917               defaultServiceManager()->addService(String16("not_suspicious"), proc.rootBinder));
918 }
919 
920 // END TESTS FOR LIMITATIONS OF SOCKET BINDER
921 
TEST_P(BinderRpc,RepeatRootObject)922 TEST_P(BinderRpc, RepeatRootObject) {
923     auto proc = createRpcTestSocketServerProcess({});
924 
925     sp<IBinder> outBinder;
926     EXPECT_OK(proc.rootIface->repeatBinder(proc.rootBinder, &outBinder));
927     EXPECT_EQ(proc.rootBinder, outBinder);
928 }
929 
TEST_P(BinderRpc,NestedTransactions)930 TEST_P(BinderRpc, NestedTransactions) {
931     auto proc = createRpcTestSocketServerProcess({});
932 
933     auto nastyNester = sp<MyBinderRpcTest>::make();
934     EXPECT_OK(proc.rootIface->nestMe(nastyNester, 10));
935 
936     wp<IBinder> weak = nastyNester;
937     nastyNester = nullptr;
938     EXPECT_EQ(nullptr, weak.promote());
939 }
940 
TEST_P(BinderRpc,SameBinderEquality)941 TEST_P(BinderRpc, SameBinderEquality) {
942     auto proc = createRpcTestSocketServerProcess({});
943 
944     sp<IBinder> a;
945     EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&a));
946 
947     sp<IBinder> b;
948     EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&b));
949 
950     EXPECT_EQ(a, b);
951 }
952 
TEST_P(BinderRpc,SameBinderEqualityWeak)953 TEST_P(BinderRpc, SameBinderEqualityWeak) {
954     auto proc = createRpcTestSocketServerProcess({});
955 
956     sp<IBinder> a;
957     EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&a));
958     wp<IBinder> weak = a;
959     a = nullptr;
960 
961     sp<IBinder> b;
962     EXPECT_OK(proc.rootIface->alwaysGiveMeTheSameBinder(&b));
963 
964     // this is the wrong behavior, since BpBinder
965     // doesn't implement onIncStrongAttempted
966     // but make sure there is no crash
967     EXPECT_EQ(nullptr, weak.promote());
968 
969     GTEST_SKIP() << "Weak binders aren't currently re-promotable for RPC binder.";
970 
971     // In order to fix this:
972     // - need to have incStrongAttempted reflected across IPC boundary (wait for
973     //   response to promote - round trip...)
974     // - sendOnLastWeakRef, to delete entries out of RpcState table
975     EXPECT_EQ(b, weak.promote());
976 }
977 
978 #define expectSessions(expected, iface)                   \
979     do {                                                  \
980         int session;                                      \
981         EXPECT_OK((iface)->getNumOpenSessions(&session)); \
982         EXPECT_EQ(expected, session);                     \
983     } while (false)
984 
TEST_P(BinderRpc,SingleSession)985 TEST_P(BinderRpc, SingleSession) {
986     auto proc = createRpcTestSocketServerProcess({});
987 
988     sp<IBinderRpcSession> session;
989     EXPECT_OK(proc.rootIface->openSession("aoeu", &session));
990     std::string out;
991     EXPECT_OK(session->getName(&out));
992     EXPECT_EQ("aoeu", out);
993 
994     expectSessions(1, proc.rootIface);
995     session = nullptr;
996     expectSessions(0, proc.rootIface);
997 }
998 
TEST_P(BinderRpc,ManySessions)999 TEST_P(BinderRpc, ManySessions) {
1000     auto proc = createRpcTestSocketServerProcess({});
1001 
1002     std::vector<sp<IBinderRpcSession>> sessions;
1003 
1004     for (size_t i = 0; i < 15; i++) {
1005         expectSessions(i, proc.rootIface);
1006         sp<IBinderRpcSession> session;
1007         EXPECT_OK(proc.rootIface->openSession(std::to_string(i), &session));
1008         sessions.push_back(session);
1009     }
1010     expectSessions(sessions.size(), proc.rootIface);
1011     for (size_t i = 0; i < sessions.size(); i++) {
1012         std::string out;
1013         EXPECT_OK(sessions.at(i)->getName(&out));
1014         EXPECT_EQ(std::to_string(i), out);
1015     }
1016     expectSessions(sessions.size(), proc.rootIface);
1017 
1018     while (!sessions.empty()) {
1019         sessions.pop_back();
1020         expectSessions(sessions.size(), proc.rootIface);
1021     }
1022     expectSessions(0, proc.rootIface);
1023 }
1024 
epochMillis()1025 size_t epochMillis() {
1026     using std::chrono::duration_cast;
1027     using std::chrono::milliseconds;
1028     using std::chrono::seconds;
1029     using std::chrono::system_clock;
1030     return duration_cast<milliseconds>(system_clock::now().time_since_epoch()).count();
1031 }
1032 
TEST_P(BinderRpc,ThreadPoolGreaterThanEqualRequested)1033 TEST_P(BinderRpc, ThreadPoolGreaterThanEqualRequested) {
1034     constexpr size_t kNumThreads = 10;
1035 
1036     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
1037 
1038     EXPECT_OK(proc.rootIface->lock());
1039 
1040     // block all but one thread taking locks
1041     std::vector<std::thread> ts;
1042     for (size_t i = 0; i < kNumThreads - 1; i++) {
1043         ts.push_back(std::thread([&] { proc.rootIface->lockUnlock(); }));
1044     }
1045 
1046     usleep(100000); // give chance for calls on other threads
1047 
1048     // other calls still work
1049     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
1050 
1051     constexpr size_t blockTimeMs = 500;
1052     size_t epochMsBefore = epochMillis();
1053     // after this, we should never see a response within this time
1054     EXPECT_OK(proc.rootIface->unlockInMsAsync(blockTimeMs));
1055 
1056     // this call should be blocked for blockTimeMs
1057     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
1058 
1059     size_t epochMsAfter = epochMillis();
1060     EXPECT_GE(epochMsAfter, epochMsBefore + blockTimeMs) << epochMsBefore;
1061 
1062     for (auto& t : ts) t.join();
1063 }
1064 
testThreadPoolOverSaturated(sp<IBinderRpcTest> iface,size_t numCalls,size_t sleepMs)1065 void BinderRpc::testThreadPoolOverSaturated(sp<IBinderRpcTest> iface, size_t numCalls,
1066                                             size_t sleepMs) {
1067     size_t epochMsBefore = epochMillis();
1068 
1069     std::vector<std::thread> ts;
1070     for (size_t i = 0; i < numCalls; i++) {
1071         ts.push_back(std::thread([&] { iface->sleepMs(sleepMs); }));
1072     }
1073 
1074     for (auto& t : ts) t.join();
1075 
1076     size_t epochMsAfter = epochMillis();
1077 
1078     EXPECT_GE(epochMsAfter, epochMsBefore + 2 * sleepMs);
1079 
1080     // Potential flake, but make sure calls are handled in parallel.
1081     EXPECT_LE(epochMsAfter, epochMsBefore + 3 * sleepMs);
1082 }
1083 
TEST_P(BinderRpc,ThreadPoolOverSaturated)1084 TEST_P(BinderRpc, ThreadPoolOverSaturated) {
1085     constexpr size_t kNumThreads = 10;
1086     constexpr size_t kNumCalls = kNumThreads + 3;
1087     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
1088     testThreadPoolOverSaturated(proc.rootIface, kNumCalls);
1089 }
1090 
TEST_P(BinderRpc,ThreadPoolLimitOutgoing)1091 TEST_P(BinderRpc, ThreadPoolLimitOutgoing) {
1092     constexpr size_t kNumThreads = 20;
1093     constexpr size_t kNumOutgoingConnections = 10;
1094     constexpr size_t kNumCalls = kNumOutgoingConnections + 3;
1095     auto proc = createRpcTestSocketServerProcess(
1096             {.numThreads = kNumThreads, .numOutgoingConnections = kNumOutgoingConnections});
1097     testThreadPoolOverSaturated(proc.rootIface, kNumCalls);
1098 }
1099 
TEST_P(BinderRpc,ThreadingStressTest)1100 TEST_P(BinderRpc, ThreadingStressTest) {
1101     constexpr size_t kNumClientThreads = 10;
1102     constexpr size_t kNumServerThreads = 10;
1103     constexpr size_t kNumCalls = 100;
1104 
1105     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads});
1106 
1107     std::vector<std::thread> threads;
1108     for (size_t i = 0; i < kNumClientThreads; i++) {
1109         threads.push_back(std::thread([&] {
1110             for (size_t j = 0; j < kNumCalls; j++) {
1111                 sp<IBinder> out;
1112                 EXPECT_OK(proc.rootIface->repeatBinder(proc.rootBinder, &out));
1113                 EXPECT_EQ(proc.rootBinder, out);
1114             }
1115         }));
1116     }
1117 
1118     for (auto& t : threads) t.join();
1119 }
1120 
saturateThreadPool(size_t threadCount,const sp<IBinderRpcTest> & iface)1121 static void saturateThreadPool(size_t threadCount, const sp<IBinderRpcTest>& iface) {
1122     std::vector<std::thread> threads;
1123     for (size_t i = 0; i < threadCount; i++) {
1124         threads.push_back(std::thread([&] { EXPECT_OK(iface->sleepMs(500)); }));
1125     }
1126     for (auto& t : threads) t.join();
1127 }
1128 
TEST_P(BinderRpc,OnewayStressTest)1129 TEST_P(BinderRpc, OnewayStressTest) {
1130     constexpr size_t kNumClientThreads = 10;
1131     constexpr size_t kNumServerThreads = 10;
1132     constexpr size_t kNumCalls = 1000;
1133 
1134     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads});
1135 
1136     std::vector<std::thread> threads;
1137     for (size_t i = 0; i < kNumClientThreads; i++) {
1138         threads.push_back(std::thread([&] {
1139             for (size_t j = 0; j < kNumCalls; j++) {
1140                 EXPECT_OK(proc.rootIface->sendString("a"));
1141             }
1142         }));
1143     }
1144 
1145     for (auto& t : threads) t.join();
1146 
1147     saturateThreadPool(kNumServerThreads, proc.rootIface);
1148 }
1149 
TEST_P(BinderRpc,OnewayCallDoesNotWait)1150 TEST_P(BinderRpc, OnewayCallDoesNotWait) {
1151     constexpr size_t kReallyLongTimeMs = 100;
1152     constexpr size_t kSleepMs = kReallyLongTimeMs * 5;
1153 
1154     auto proc = createRpcTestSocketServerProcess({});
1155 
1156     size_t epochMsBefore = epochMillis();
1157 
1158     EXPECT_OK(proc.rootIface->sleepMsAsync(kSleepMs));
1159 
1160     size_t epochMsAfter = epochMillis();
1161     EXPECT_LT(epochMsAfter, epochMsBefore + kReallyLongTimeMs);
1162 }
1163 
TEST_P(BinderRpc,OnewayCallQueueing)1164 TEST_P(BinderRpc, OnewayCallQueueing) {
1165     constexpr size_t kNumSleeps = 10;
1166     constexpr size_t kNumExtraServerThreads = 4;
1167     constexpr size_t kSleepMs = 50;
1168 
1169     // make sure calls to the same object happen on the same thread
1170     auto proc = createRpcTestSocketServerProcess({.numThreads = 1 + kNumExtraServerThreads});
1171 
1172     EXPECT_OK(proc.rootIface->lock());
1173 
1174     size_t epochMsBefore = epochMillis();
1175 
1176     // all these *Async commands should be queued on the server sequentially,
1177     // even though there are multiple threads.
1178     for (size_t i = 0; i + 1 < kNumSleeps; i++) {
1179         proc.rootIface->sleepMsAsync(kSleepMs);
1180     }
1181     EXPECT_OK(proc.rootIface->unlockInMsAsync(kSleepMs));
1182 
1183     // this can only return once the final async call has unlocked
1184     EXPECT_OK(proc.rootIface->lockUnlock());
1185 
1186     size_t epochMsAfter = epochMillis();
1187 
1188     EXPECT_GT(epochMsAfter, epochMsBefore + kSleepMs * kNumSleeps);
1189 
1190     saturateThreadPool(1 + kNumExtraServerThreads, proc.rootIface);
1191 }
1192 
TEST_P(BinderRpc,OnewayCallExhaustion)1193 TEST_P(BinderRpc, OnewayCallExhaustion) {
1194     constexpr size_t kNumClients = 2;
1195     constexpr size_t kTooLongMs = 1000;
1196 
1197     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumClients, .numSessions = 2});
1198 
1199     // Build up oneway calls on the second session to make sure it terminates
1200     // and shuts down. The first session should be unaffected (proc destructor
1201     // checks the first session).
1202     auto iface = interface_cast<IBinderRpcTest>(proc.proc.sessions.at(1).root);
1203 
1204     std::vector<std::thread> threads;
1205     for (size_t i = 0; i < kNumClients; i++) {
1206         // one of these threads will get stuck queueing a transaction once the
1207         // socket fills up, the other will be able to fill up transactions on
1208         // this object
1209         threads.push_back(std::thread([&] {
1210             while (iface->sleepMsAsync(kTooLongMs).isOk()) {
1211             }
1212         }));
1213     }
1214     for (auto& t : threads) t.join();
1215 
1216     Status status = iface->sleepMsAsync(kTooLongMs);
1217     EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
1218 
1219     // now that it has died, wait for the remote session to shutdown
1220     std::vector<int32_t> remoteCounts;
1221     do {
1222         EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
1223     } while (remoteCounts.size() == kNumClients);
1224 
1225     // the second session should be shutdown in the other process by the time we
1226     // are able to join above (it'll only be hung up once it finishes processing
1227     // any pending commands). We need to erase this session from the record
1228     // here, so that the destructor for our session won't check that this
1229     // session is valid, but we still want it to test the other session.
1230     proc.proc.sessions.erase(proc.proc.sessions.begin() + 1);
1231 }
1232 
TEST_P(BinderRpc,Callbacks)1233 TEST_P(BinderRpc, Callbacks) {
1234     const static std::string kTestString = "good afternoon!";
1235 
1236     for (bool callIsOneway : {true, false}) {
1237         for (bool callbackIsOneway : {true, false}) {
1238             for (bool delayed : {true, false}) {
1239                 auto proc = createRpcTestSocketServerProcess(
1240                         {.numThreads = 1, .numSessions = 1, .numIncomingConnections = 1});
1241                 auto cb = sp<MyBinderRpcCallback>::make();
1242 
1243                 if (callIsOneway) {
1244                     EXPECT_OK(proc.rootIface->doCallbackAsync(cb, callbackIsOneway, delayed,
1245                                                               kTestString));
1246                 } else {
1247                     EXPECT_OK(
1248                             proc.rootIface->doCallback(cb, callbackIsOneway, delayed, kTestString));
1249                 }
1250 
1251                 using std::literals::chrono_literals::operator""s;
1252                 std::unique_lock<std::mutex> _l(cb->mMutex);
1253                 cb->mCv.wait_for(_l, 1s, [&] { return !cb->mValues.empty(); });
1254 
1255                 EXPECT_EQ(cb->mValues.size(), 1)
1256                         << "callIsOneway: " << callIsOneway
1257                         << " callbackIsOneway: " << callbackIsOneway << " delayed: " << delayed;
1258                 if (cb->mValues.empty()) continue;
1259                 EXPECT_EQ(cb->mValues.at(0), kTestString)
1260                         << "callIsOneway: " << callIsOneway
1261                         << " callbackIsOneway: " << callbackIsOneway << " delayed: " << delayed;
1262 
1263                 // since we are severing the connection, we need to go ahead and
1264                 // tell the server to shutdown and exit so that waitpid won't hang
1265                 if (auto status = proc.rootIface->scheduleShutdown(); !status.isOk()) {
1266                     EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
1267                 }
1268 
1269                 // since this session has an incoming connection w/ a threadpool, we
1270                 // need to manually shut it down
1271                 EXPECT_TRUE(proc.proc.sessions.at(0).session->shutdownAndWait(true));
1272 
1273                 proc.expectAlreadyShutdown = true;
1274             }
1275         }
1276     }
1277 }
1278 
TEST_P(BinderRpc,OnewayCallbackWithNoThread)1279 TEST_P(BinderRpc, OnewayCallbackWithNoThread) {
1280     auto proc = createRpcTestSocketServerProcess({});
1281     auto cb = sp<MyBinderRpcCallback>::make();
1282 
1283     Status status = proc.rootIface->doCallback(cb, true /*oneway*/, false /*delayed*/, "anything");
1284     EXPECT_EQ(WOULD_BLOCK, status.transactionError());
1285 }
1286 
TEST_P(BinderRpc,Die)1287 TEST_P(BinderRpc, Die) {
1288     for (bool doDeathCleanup : {true, false}) {
1289         auto proc = createRpcTestSocketServerProcess({});
1290 
1291         // make sure there is some state during crash
1292         // 1. we hold their binder
1293         sp<IBinderRpcSession> session;
1294         EXPECT_OK(proc.rootIface->openSession("happy", &session));
1295         // 2. they hold our binder
1296         sp<IBinder> binder = new BBinder();
1297         EXPECT_OK(proc.rootIface->holdBinder(binder));
1298 
1299         EXPECT_EQ(DEAD_OBJECT, proc.rootIface->die(doDeathCleanup).transactionError())
1300                 << "Do death cleanup: " << doDeathCleanup;
1301 
1302         proc.expectAlreadyShutdown = true;
1303     }
1304 }
1305 
TEST_P(BinderRpc,UseKernelBinderCallingId)1306 TEST_P(BinderRpc, UseKernelBinderCallingId) {
1307     bool okToFork = ProcessState::selfOrNull() == nullptr;
1308 
1309     auto proc = createRpcTestSocketServerProcess({});
1310 
1311     // If this process has used ProcessState already, then the forked process
1312     // cannot use it at all. If this process hasn't used it (depending on the
1313     // order tests are run), then the forked process can use it, and we'll only
1314     // catch the invalid usage the second time. Such is the burden of global
1315     // state!
1316     if (okToFork) {
1317         // we can't allocate IPCThreadState so actually the first time should
1318         // succeed :(
1319         EXPECT_OK(proc.rootIface->useKernelBinderCallingId());
1320     }
1321 
1322     // second time! we catch the error :)
1323     EXPECT_EQ(DEAD_OBJECT, proc.rootIface->useKernelBinderCallingId().transactionError());
1324 
1325     proc.expectAlreadyShutdown = true;
1326 }
1327 
TEST_P(BinderRpc,WorksWithLibbinderNdkPing)1328 TEST_P(BinderRpc, WorksWithLibbinderNdkPing) {
1329     auto proc = createRpcTestSocketServerProcess({});
1330 
1331     ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder));
1332     ASSERT_NE(binder, nullptr);
1333 
1334     ASSERT_EQ(STATUS_OK, AIBinder_ping(binder.get()));
1335 }
1336 
TEST_P(BinderRpc,WorksWithLibbinderNdkUserTransaction)1337 TEST_P(BinderRpc, WorksWithLibbinderNdkUserTransaction) {
1338     auto proc = createRpcTestSocketServerProcess({});
1339 
1340     ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder));
1341     ASSERT_NE(binder, nullptr);
1342 
1343     auto ndkBinder = aidl::IBinderRpcTest::fromBinder(binder);
1344     ASSERT_NE(ndkBinder, nullptr);
1345 
1346     std::string out;
1347     ndk::ScopedAStatus status = ndkBinder->doubleString("aoeu", &out);
1348     ASSERT_TRUE(status.isOk()) << status.getDescription();
1349     ASSERT_EQ("aoeuaoeu", out);
1350 }
1351 
countFds()1352 ssize_t countFds() {
1353     DIR* dir = opendir("/proc/self/fd/");
1354     if (dir == nullptr) return -1;
1355     ssize_t ret = 0;
1356     dirent* ent;
1357     while ((ent = readdir(dir)) != nullptr) ret++;
1358     closedir(dir);
1359     return ret;
1360 }
1361 
TEST_P(BinderRpc,Fds)1362 TEST_P(BinderRpc, Fds) {
1363     ssize_t beforeFds = countFds();
1364     ASSERT_GE(beforeFds, 0);
1365     {
1366         auto proc = createRpcTestSocketServerProcess({.numThreads = 10});
1367         ASSERT_EQ(OK, proc.rootBinder->pingBinder());
1368     }
1369     ASSERT_EQ(beforeFds, countFds()) << (system("ls -l /proc/self/fd/"), "fd leak?");
1370 }
1371 
TEST_P(BinderRpc,AidlDelegatorTest)1372 TEST_P(BinderRpc, AidlDelegatorTest) {
1373     auto proc = createRpcTestSocketServerProcess({});
1374     auto myDelegator = sp<IBinderRpcTestDelegator>::make(proc.rootIface);
1375     ASSERT_NE(nullptr, myDelegator);
1376 
1377     std::string doubled;
1378     EXPECT_OK(myDelegator->doubleString("cool ", &doubled));
1379     EXPECT_EQ("cool cool ", doubled);
1380 }
1381 
testSupportVsockLoopback()1382 static bool testSupportVsockLoopback() {
1383     // We don't need to enable TLS to know if vsock is supported.
1384     unsigned int vsockPort = allocateVsockPort();
1385     sp<RpcServer> server = RpcServer::make(RpcTransportCtxFactoryRaw::make());
1386     if (status_t status = server->setupVsockServer(vsockPort); status != OK) {
1387         if (status == -EAFNOSUPPORT) {
1388             return false;
1389         }
1390         LOG_ALWAYS_FATAL("Could not setup vsock server: %s", statusToString(status).c_str());
1391     }
1392     server->start();
1393 
1394     sp<RpcSession> session = RpcSession::make(RpcTransportCtxFactoryRaw::make());
1395     status_t status = session->setupVsockClient(VMADDR_CID_LOCAL, vsockPort);
1396     while (!server->shutdown()) usleep(10000);
1397     ALOGE("Detected vsock loopback supported: %s", statusToString(status).c_str());
1398     return status == OK;
1399 }
1400 
testSocketTypes(bool hasPreconnected=true)1401 static std::vector<SocketType> testSocketTypes(bool hasPreconnected = true) {
1402     std::vector<SocketType> ret = {SocketType::UNIX, SocketType::INET};
1403 
1404     if (hasPreconnected) ret.push_back(SocketType::PRECONNECTED);
1405 
1406     static bool hasVsockLoopback = testSupportVsockLoopback();
1407 
1408     if (hasVsockLoopback) {
1409         ret.push_back(SocketType::VSOCK);
1410     }
1411 
1412     return ret;
1413 }
1414 
1415 INSTANTIATE_TEST_CASE_P(PerSocket, BinderRpc,
1416                         ::testing::Combine(::testing::ValuesIn(testSocketTypes()),
1417                                            ::testing::ValuesIn(RpcSecurityValues())),
1418                         BinderRpc::PrintParamInfo);
1419 
1420 class BinderRpcServerRootObject
1421       : public ::testing::TestWithParam<std::tuple<bool, bool, RpcSecurity>> {};
1422 
TEST_P(BinderRpcServerRootObject,WeakRootObject)1423 TEST_P(BinderRpcServerRootObject, WeakRootObject) {
1424     using SetFn = std::function<void(RpcServer*, sp<IBinder>)>;
1425     auto setRootObject = [](bool isStrong) -> SetFn {
1426         return isStrong ? SetFn(&RpcServer::setRootObject) : SetFn(&RpcServer::setRootObjectWeak);
1427     };
1428 
1429     auto [isStrong1, isStrong2, rpcSecurity] = GetParam();
1430     auto server = RpcServer::make(newFactory(rpcSecurity));
1431     auto binder1 = sp<BBinder>::make();
1432     IBinder* binderRaw1 = binder1.get();
1433     setRootObject(isStrong1)(server.get(), binder1);
1434     EXPECT_EQ(binderRaw1, server->getRootObject());
1435     binder1.clear();
1436     EXPECT_EQ((isStrong1 ? binderRaw1 : nullptr), server->getRootObject());
1437 
1438     auto binder2 = sp<BBinder>::make();
1439     IBinder* binderRaw2 = binder2.get();
1440     setRootObject(isStrong2)(server.get(), binder2);
1441     EXPECT_EQ(binderRaw2, server->getRootObject());
1442     binder2.clear();
1443     EXPECT_EQ((isStrong2 ? binderRaw2 : nullptr), server->getRootObject());
1444 }
1445 
1446 INSTANTIATE_TEST_CASE_P(BinderRpc, BinderRpcServerRootObject,
1447                         ::testing::Combine(::testing::Bool(), ::testing::Bool(),
1448                                            ::testing::ValuesIn(RpcSecurityValues())));
1449 
1450 class OneOffSignal {
1451 public:
1452     // If notify() was previously called, or is called within |duration|, return true; else false.
1453     template <typename R, typename P>
wait(std::chrono::duration<R,P> duration)1454     bool wait(std::chrono::duration<R, P> duration) {
1455         std::unique_lock<std::mutex> lock(mMutex);
1456         return mCv.wait_for(lock, duration, [this] { return mValue; });
1457     }
notify()1458     void notify() {
1459         std::unique_lock<std::mutex> lock(mMutex);
1460         mValue = true;
1461         lock.unlock();
1462         mCv.notify_all();
1463     }
1464 
1465 private:
1466     std::mutex mMutex;
1467     std::condition_variable mCv;
1468     bool mValue = false;
1469 };
1470 
TEST_P(BinderRpcSimple,Shutdown)1471 TEST_P(BinderRpcSimple, Shutdown) {
1472     auto addr = allocateSocketAddress();
1473     auto server = RpcServer::make(newFactory(GetParam()));
1474     ASSERT_EQ(OK, server->setupUnixDomainServer(addr.c_str()));
1475     auto joinEnds = std::make_shared<OneOffSignal>();
1476 
1477     // If things are broken and the thread never stops, don't block other tests. Because the thread
1478     // may run after the test finishes, it must not access the stack memory of the test. Hence,
1479     // shared pointers are passed.
1480     std::thread([server, joinEnds] {
1481         server->join();
1482         joinEnds->notify();
1483     }).detach();
1484 
1485     bool shutdown = false;
1486     for (int i = 0; i < 10 && !shutdown; i++) {
1487         usleep(300 * 1000); // 300ms; total 3s
1488         if (server->shutdown()) shutdown = true;
1489     }
1490     ASSERT_TRUE(shutdown) << "server->shutdown() never returns true";
1491 
1492     ASSERT_TRUE(joinEnds->wait(2s))
1493             << "After server->shutdown() returns true, join() did not stop after 2s";
1494 }
1495 
TEST(BinderRpc,Java)1496 TEST(BinderRpc, Java) {
1497 #if !defined(__ANDROID__)
1498     GTEST_SKIP() << "This test is only run on Android. Though it can technically run on host on"
1499                     "createRpcDelegateServiceManager() with a device attached, such test belongs "
1500                     "to binderHostDeviceTest. Hence, just disable this test on host.";
1501 #endif // !__ANDROID__
1502     sp<IServiceManager> sm = defaultServiceManager();
1503     ASSERT_NE(nullptr, sm);
1504     // Any Java service with non-empty getInterfaceDescriptor() would do.
1505     // Let's pick batteryproperties.
1506     auto binder = sm->checkService(String16("batteryproperties"));
1507     ASSERT_NE(nullptr, binder);
1508     auto descriptor = binder->getInterfaceDescriptor();
1509     ASSERT_GE(descriptor.size(), 0);
1510     ASSERT_EQ(OK, binder->pingBinder());
1511 
1512     auto rpcServer = RpcServer::make();
1513     unsigned int port;
1514     ASSERT_EQ(OK, rpcServer->setupInetServer(kLocalInetAddress, 0, &port));
1515     auto socket = rpcServer->releaseServer();
1516 
1517     auto keepAlive = sp<BBinder>::make();
1518     auto setRpcClientDebugStatus = binder->setRpcClientDebug(std::move(socket), keepAlive);
1519 
1520     if (!android::base::GetBoolProperty("ro.debuggable", false) ||
1521         android::base::GetProperty("ro.build.type", "") == "user") {
1522         ASSERT_EQ(INVALID_OPERATION, setRpcClientDebugStatus)
1523                 << "setRpcClientDebug should return INVALID_OPERATION on non-debuggable or user "
1524                    "builds, but get "
1525                 << statusToString(setRpcClientDebugStatus);
1526         GTEST_SKIP();
1527     }
1528 
1529     ASSERT_EQ(OK, setRpcClientDebugStatus);
1530 
1531     auto rpcSession = RpcSession::make();
1532     ASSERT_EQ(OK, rpcSession->setupInetClient("127.0.0.1", port));
1533     auto rpcBinder = rpcSession->getRootObject();
1534     ASSERT_NE(nullptr, rpcBinder);
1535 
1536     ASSERT_EQ(OK, rpcBinder->pingBinder());
1537 
1538     ASSERT_EQ(descriptor, rpcBinder->getInterfaceDescriptor())
1539             << "getInterfaceDescriptor should not crash system_server";
1540     ASSERT_EQ(OK, rpcBinder->pingBinder());
1541 }
1542 
1543 INSTANTIATE_TEST_CASE_P(BinderRpc, BinderRpcSimple, ::testing::ValuesIn(RpcSecurityValues()),
1544                         BinderRpcSimple::PrintTestParam);
1545 
1546 class RpcTransportTestUtils {
1547 public:
1548     using Param = std::tuple<SocketType, RpcSecurity, std::optional<RpcCertificateFormat>>;
1549     using ConnectToServer = std::function<base::unique_fd()>;
1550 
1551     // A server that handles client socket connections.
1552     class Server {
1553     public:
Server()1554         explicit Server() {}
1555         Server(Server&&) = default;
~Server()1556         ~Server() { shutdownAndWait(); }
setUp(const Param & param,std::unique_ptr<RpcAuth> auth=std::make_unique<RpcAuthSelfSigned> ())1557         [[nodiscard]] AssertionResult setUp(
1558                 const Param& param,
1559                 std::unique_ptr<RpcAuth> auth = std::make_unique<RpcAuthSelfSigned>()) {
1560             auto [socketType, rpcSecurity, certificateFormat] = param;
1561             auto rpcServer = RpcServer::make(newFactory(rpcSecurity));
1562             switch (socketType) {
1563                 case SocketType::PRECONNECTED: {
1564                     return AssertionFailure() << "Not supported by this test";
1565                 } break;
1566                 case SocketType::UNIX: {
1567                     auto addr = allocateSocketAddress();
1568                     auto status = rpcServer->setupUnixDomainServer(addr.c_str());
1569                     if (status != OK) {
1570                         return AssertionFailure()
1571                                 << "setupUnixDomainServer: " << statusToString(status);
1572                     }
1573                     mConnectToServer = [addr] {
1574                         return connectTo(UnixSocketAddress(addr.c_str()));
1575                     };
1576                 } break;
1577                 case SocketType::VSOCK: {
1578                     auto port = allocateVsockPort();
1579                     auto status = rpcServer->setupVsockServer(port);
1580                     if (status != OK) {
1581                         return AssertionFailure() << "setupVsockServer: " << statusToString(status);
1582                     }
1583                     mConnectToServer = [port] {
1584                         return connectTo(VsockSocketAddress(VMADDR_CID_LOCAL, port));
1585                     };
1586                 } break;
1587                 case SocketType::INET: {
1588                     unsigned int port;
1589                     auto status = rpcServer->setupInetServer(kLocalInetAddress, 0, &port);
1590                     if (status != OK) {
1591                         return AssertionFailure() << "setupInetServer: " << statusToString(status);
1592                     }
1593                     mConnectToServer = [port] {
1594                         const char* addr = kLocalInetAddress;
1595                         auto aiStart = InetSocketAddress::getAddrInfo(addr, port);
1596                         if (aiStart == nullptr) return base::unique_fd{};
1597                         for (auto ai = aiStart.get(); ai != nullptr; ai = ai->ai_next) {
1598                             auto fd = connectTo(
1599                                     InetSocketAddress(ai->ai_addr, ai->ai_addrlen, addr, port));
1600                             if (fd.ok()) return fd;
1601                         }
1602                         ALOGE("None of the socket address resolved for %s:%u can be connected",
1603                               addr, port);
1604                         return base::unique_fd{};
1605                     };
1606                 }
1607             }
1608             mFd = rpcServer->releaseServer();
1609             if (!mFd.ok()) return AssertionFailure() << "releaseServer returns invalid fd";
1610             mCtx = newFactory(rpcSecurity, mCertVerifier, std::move(auth))->newServerCtx();
1611             if (mCtx == nullptr) return AssertionFailure() << "newServerCtx";
1612             mSetup = true;
1613             return AssertionSuccess();
1614         }
getCtx() const1615         RpcTransportCtx* getCtx() const { return mCtx.get(); }
getCertVerifier() const1616         std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const {
1617             return mCertVerifier;
1618         }
getConnectToServerFn()1619         ConnectToServer getConnectToServerFn() { return mConnectToServer; }
start()1620         void start() {
1621             LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!");
1622             mThread = std::make_unique<std::thread>(&Server::run, this);
1623         }
run()1624         void run() {
1625             LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!");
1626 
1627             std::vector<std::thread> threads;
1628             while (OK == mFdTrigger->triggerablePoll(mFd, POLLIN)) {
1629                 base::unique_fd acceptedFd(
1630                         TEMP_FAILURE_RETRY(accept4(mFd.get(), nullptr, nullptr /*length*/,
1631                                                    SOCK_CLOEXEC | SOCK_NONBLOCK)));
1632                 threads.emplace_back(&Server::handleOne, this, std::move(acceptedFd));
1633             }
1634 
1635             for (auto& thread : threads) thread.join();
1636         }
handleOne(android::base::unique_fd acceptedFd)1637         void handleOne(android::base::unique_fd acceptedFd) {
1638             ASSERT_TRUE(acceptedFd.ok());
1639             auto serverTransport = mCtx->newTransport(std::move(acceptedFd), mFdTrigger.get());
1640             if (serverTransport == nullptr) return; // handshake failed
1641             ASSERT_TRUE(mPostConnect(serverTransport.get(), mFdTrigger.get()));
1642         }
shutdownAndWait()1643         void shutdownAndWait() {
1644             shutdown();
1645             join();
1646         }
shutdown()1647         void shutdown() { mFdTrigger->trigger(); }
1648 
setPostConnect(std::function<AssertionResult (RpcTransport *,FdTrigger * fdTrigger)> fn)1649         void setPostConnect(
1650                 std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> fn) {
1651             mPostConnect = std::move(fn);
1652         }
1653 
1654     private:
1655         std::unique_ptr<std::thread> mThread;
1656         ConnectToServer mConnectToServer;
1657         std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make();
1658         base::unique_fd mFd;
1659         std::unique_ptr<RpcTransportCtx> mCtx;
1660         std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier =
1661                 std::make_shared<RpcCertificateVerifierSimple>();
1662         bool mSetup = false;
1663         // The function invoked after connection and handshake. By default, it is
1664         // |defaultPostConnect| that sends |kMessage| to the client.
1665         std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> mPostConnect =
1666                 Server::defaultPostConnect;
1667 
join()1668         void join() {
1669             if (mThread != nullptr) {
1670                 mThread->join();
1671                 mThread = nullptr;
1672             }
1673         }
1674 
defaultPostConnect(RpcTransport * serverTransport,FdTrigger * fdTrigger)1675         static AssertionResult defaultPostConnect(RpcTransport* serverTransport,
1676                                                   FdTrigger* fdTrigger) {
1677             std::string message(kMessage);
1678             iovec messageIov{message.data(), message.size()};
1679             auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1, {});
1680             if (status != OK) return AssertionFailure() << statusToString(status);
1681             return AssertionSuccess();
1682         }
1683     };
1684 
1685     class Client {
1686     public:
Client(ConnectToServer connectToServer)1687         explicit Client(ConnectToServer connectToServer) : mConnectToServer(connectToServer) {}
1688         Client(Client&&) = default;
setUp(const Param & param)1689         [[nodiscard]] AssertionResult setUp(const Param& param) {
1690             auto [socketType, rpcSecurity, certificateFormat] = param;
1691             mFdTrigger = FdTrigger::make();
1692             mCtx = newFactory(rpcSecurity, mCertVerifier)->newClientCtx();
1693             if (mCtx == nullptr) return AssertionFailure() << "newClientCtx";
1694             return AssertionSuccess();
1695         }
getCtx() const1696         RpcTransportCtx* getCtx() const { return mCtx.get(); }
getCertVerifier() const1697         std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const {
1698             return mCertVerifier;
1699         }
1700         // connect() and do handshake
setUpTransport()1701         bool setUpTransport() {
1702             mFd = mConnectToServer();
1703             if (!mFd.ok()) return AssertionFailure() << "Cannot connect to server";
1704             mClientTransport = mCtx->newTransport(std::move(mFd), mFdTrigger.get());
1705             return mClientTransport != nullptr;
1706         }
readMessage(const std::string & expectedMessage=kMessage)1707         AssertionResult readMessage(const std::string& expectedMessage = kMessage) {
1708             LOG_ALWAYS_FATAL_IF(mClientTransport == nullptr, "setUpTransport not called or failed");
1709             std::string readMessage(expectedMessage.size(), '\0');
1710             iovec readMessageIov{readMessage.data(), readMessage.size()};
1711             status_t readStatus = mClientTransport->interruptableReadFully(mFdTrigger.get(),
1712                                                                            &readMessageIov, 1, {});
1713             if (readStatus != OK) {
1714                 return AssertionFailure() << statusToString(readStatus);
1715             }
1716             if (readMessage != expectedMessage) {
1717                 return AssertionFailure()
1718                         << "Expected " << expectedMessage << ", actual " << readMessage;
1719             }
1720             return AssertionSuccess();
1721         }
run(bool handshakeOk=true,bool readOk=true)1722         void run(bool handshakeOk = true, bool readOk = true) {
1723             if (!setUpTransport()) {
1724                 ASSERT_FALSE(handshakeOk) << "newTransport returns nullptr, but it shouldn't";
1725                 return;
1726             }
1727             ASSERT_TRUE(handshakeOk) << "newTransport does not return nullptr, but it should";
1728             ASSERT_EQ(readOk, readMessage());
1729         }
1730 
1731     private:
1732         ConnectToServer mConnectToServer;
1733         base::unique_fd mFd;
1734         std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make();
1735         std::unique_ptr<RpcTransportCtx> mCtx;
1736         std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier =
1737                 std::make_shared<RpcCertificateVerifierSimple>();
1738         std::unique_ptr<RpcTransport> mClientTransport;
1739     };
1740 
1741     // Make A trust B.
1742     template <typename A, typename B>
trust(RpcSecurity rpcSecurity,std::optional<RpcCertificateFormat> certificateFormat,const A & a,const B & b)1743     static status_t trust(RpcSecurity rpcSecurity,
1744                           std::optional<RpcCertificateFormat> certificateFormat, const A& a,
1745                           const B& b) {
1746         if (rpcSecurity != RpcSecurity::TLS) return OK;
1747         LOG_ALWAYS_FATAL_IF(!certificateFormat.has_value());
1748         auto bCert = b->getCtx()->getCertificate(*certificateFormat);
1749         return a->getCertVerifier()->addTrustedPeerCertificate(*certificateFormat, bCert);
1750     }
1751 
1752     static constexpr const char* kMessage = "hello";
1753 };
1754 
1755 class RpcTransportTest : public testing::TestWithParam<RpcTransportTestUtils::Param> {
1756 public:
1757     using Server = RpcTransportTestUtils::Server;
1758     using Client = RpcTransportTestUtils::Client;
PrintParamInfo(const testing::TestParamInfo<ParamType> & info)1759     static inline std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
1760         auto [socketType, rpcSecurity, certificateFormat] = info.param;
1761         auto ret = PrintToString(socketType) + "_" + newFactory(rpcSecurity)->toCString();
1762         if (certificateFormat.has_value()) ret += "_" + PrintToString(*certificateFormat);
1763         return ret;
1764     }
getRpcTranportTestParams()1765     static std::vector<ParamType> getRpcTranportTestParams() {
1766         std::vector<ParamType> ret;
1767         for (auto socketType : testSocketTypes(false /* hasPreconnected */)) {
1768             for (auto rpcSecurity : RpcSecurityValues()) {
1769                 switch (rpcSecurity) {
1770                     case RpcSecurity::RAW: {
1771                         ret.emplace_back(socketType, rpcSecurity, std::nullopt);
1772                     } break;
1773                     case RpcSecurity::TLS: {
1774                         ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::PEM);
1775                         ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::DER);
1776                     } break;
1777                 }
1778             }
1779         }
1780         return ret;
1781     }
1782     template <typename A, typename B>
trust(const A & a,const B & b)1783     status_t trust(const A& a, const B& b) {
1784         auto [socketType, rpcSecurity, certificateFormat] = GetParam();
1785         return RpcTransportTestUtils::trust(rpcSecurity, certificateFormat, a, b);
1786     }
1787 };
1788 
TEST_P(RpcTransportTest,GoodCertificate)1789 TEST_P(RpcTransportTest, GoodCertificate) {
1790     auto server = std::make_unique<Server>();
1791     ASSERT_TRUE(server->setUp(GetParam()));
1792 
1793     Client client(server->getConnectToServerFn());
1794     ASSERT_TRUE(client.setUp(GetParam()));
1795 
1796     ASSERT_EQ(OK, trust(&client, server));
1797     ASSERT_EQ(OK, trust(server, &client));
1798 
1799     server->start();
1800     client.run();
1801 }
1802 
TEST_P(RpcTransportTest,MultipleClients)1803 TEST_P(RpcTransportTest, MultipleClients) {
1804     auto server = std::make_unique<Server>();
1805     ASSERT_TRUE(server->setUp(GetParam()));
1806 
1807     std::vector<Client> clients;
1808     for (int i = 0; i < 2; i++) {
1809         auto& client = clients.emplace_back(server->getConnectToServerFn());
1810         ASSERT_TRUE(client.setUp(GetParam()));
1811         ASSERT_EQ(OK, trust(&client, server));
1812         ASSERT_EQ(OK, trust(server, &client));
1813     }
1814 
1815     server->start();
1816     for (auto& client : clients) client.run();
1817 }
1818 
TEST_P(RpcTransportTest,UntrustedServer)1819 TEST_P(RpcTransportTest, UntrustedServer) {
1820     auto [socketType, rpcSecurity, certificateFormat] = GetParam();
1821 
1822     auto untrustedServer = std::make_unique<Server>();
1823     ASSERT_TRUE(untrustedServer->setUp(GetParam()));
1824 
1825     Client client(untrustedServer->getConnectToServerFn());
1826     ASSERT_TRUE(client.setUp(GetParam()));
1827 
1828     ASSERT_EQ(OK, trust(untrustedServer, &client));
1829 
1830     untrustedServer->start();
1831 
1832     // For TLS, this should reject the certificate. For RAW sockets, it should pass because
1833     // the client can't verify the server's identity.
1834     bool handshakeOk = rpcSecurity != RpcSecurity::TLS;
1835     client.run(handshakeOk);
1836 }
TEST_P(RpcTransportTest,MaliciousServer)1837 TEST_P(RpcTransportTest, MaliciousServer) {
1838     auto [socketType, rpcSecurity, certificateFormat] = GetParam();
1839     auto validServer = std::make_unique<Server>();
1840     ASSERT_TRUE(validServer->setUp(GetParam()));
1841 
1842     auto maliciousServer = std::make_unique<Server>();
1843     ASSERT_TRUE(maliciousServer->setUp(GetParam()));
1844 
1845     Client client(maliciousServer->getConnectToServerFn());
1846     ASSERT_TRUE(client.setUp(GetParam()));
1847 
1848     ASSERT_EQ(OK, trust(&client, validServer));
1849     ASSERT_EQ(OK, trust(validServer, &client));
1850     ASSERT_EQ(OK, trust(maliciousServer, &client));
1851 
1852     maliciousServer->start();
1853 
1854     // For TLS, this should reject the certificate. For RAW sockets, it should pass because
1855     // the client can't verify the server's identity.
1856     bool handshakeOk = rpcSecurity != RpcSecurity::TLS;
1857     client.run(handshakeOk);
1858 }
1859 
TEST_P(RpcTransportTest,UntrustedClient)1860 TEST_P(RpcTransportTest, UntrustedClient) {
1861     auto [socketType, rpcSecurity, certificateFormat] = GetParam();
1862     auto server = std::make_unique<Server>();
1863     ASSERT_TRUE(server->setUp(GetParam()));
1864 
1865     Client client(server->getConnectToServerFn());
1866     ASSERT_TRUE(client.setUp(GetParam()));
1867 
1868     ASSERT_EQ(OK, trust(&client, server));
1869 
1870     server->start();
1871 
1872     // For TLS, Client should be able to verify server's identity, so client should see
1873     // do_handshake() successfully executed. However, server shouldn't be able to verify client's
1874     // identity and should drop the connection, so client shouldn't be able to read anything.
1875     bool readOk = rpcSecurity != RpcSecurity::TLS;
1876     client.run(true, readOk);
1877 }
1878 
TEST_P(RpcTransportTest,MaliciousClient)1879 TEST_P(RpcTransportTest, MaliciousClient) {
1880     auto [socketType, rpcSecurity, certificateFormat] = GetParam();
1881     auto server = std::make_unique<Server>();
1882     ASSERT_TRUE(server->setUp(GetParam()));
1883 
1884     Client validClient(server->getConnectToServerFn());
1885     ASSERT_TRUE(validClient.setUp(GetParam()));
1886     Client maliciousClient(server->getConnectToServerFn());
1887     ASSERT_TRUE(maliciousClient.setUp(GetParam()));
1888 
1889     ASSERT_EQ(OK, trust(&validClient, server));
1890     ASSERT_EQ(OK, trust(&maliciousClient, server));
1891 
1892     server->start();
1893 
1894     // See UntrustedClient.
1895     bool readOk = rpcSecurity != RpcSecurity::TLS;
1896     maliciousClient.run(true, readOk);
1897 }
1898 
TEST_P(RpcTransportTest,Trigger)1899 TEST_P(RpcTransportTest, Trigger) {
1900     std::string msg2 = ", world!";
1901     std::mutex writeMutex;
1902     std::condition_variable writeCv;
1903     bool shouldContinueWriting = false;
1904     auto serverPostConnect = [&](RpcTransport* serverTransport, FdTrigger* fdTrigger) {
1905         std::string message(RpcTransportTestUtils::kMessage);
1906         iovec messageIov{message.data(), message.size()};
1907         auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1, {});
1908         if (status != OK) return AssertionFailure() << statusToString(status);
1909 
1910         {
1911             std::unique_lock<std::mutex> lock(writeMutex);
1912             if (!writeCv.wait_for(lock, 3s, [&] { return shouldContinueWriting; })) {
1913                 return AssertionFailure() << "write barrier not cleared in time!";
1914             }
1915         }
1916 
1917         iovec msg2Iov{msg2.data(), msg2.size()};
1918         status = serverTransport->interruptableWriteFully(fdTrigger, &msg2Iov, 1, {});
1919         if (status != DEAD_OBJECT)
1920             return AssertionFailure() << "When FdTrigger is shut down, interruptableWriteFully "
1921                                          "should return DEAD_OBJECT, but it is "
1922                                       << statusToString(status);
1923         return AssertionSuccess();
1924     };
1925 
1926     auto server = std::make_unique<Server>();
1927     ASSERT_TRUE(server->setUp(GetParam()));
1928 
1929     // Set up client
1930     Client client(server->getConnectToServerFn());
1931     ASSERT_TRUE(client.setUp(GetParam()));
1932 
1933     // Exchange keys
1934     ASSERT_EQ(OK, trust(&client, server));
1935     ASSERT_EQ(OK, trust(server, &client));
1936 
1937     server->setPostConnect(serverPostConnect);
1938 
1939     server->start();
1940     // connect() to server and do handshake
1941     ASSERT_TRUE(client.setUpTransport());
1942     // read the first message. This ensures that server has finished handshake and start handling
1943     // client fd. Server thread should pause at writeCv.wait_for().
1944     ASSERT_TRUE(client.readMessage(RpcTransportTestUtils::kMessage));
1945     // Trigger server shutdown after server starts handling client FD. This ensures that the second
1946     // write is on an FdTrigger that has been shut down.
1947     server->shutdown();
1948     // Continues server thread to write the second message.
1949     {
1950         std::lock_guard<std::mutex> lock(writeMutex);
1951         shouldContinueWriting = true;
1952     }
1953     writeCv.notify_all();
1954     // After this line, server thread unblocks and attempts to write the second message, but
1955     // shutdown is triggered, so write should failed with DEAD_OBJECT. See |serverPostConnect|.
1956     // On the client side, second read fails with DEAD_OBJECT
1957     ASSERT_FALSE(client.readMessage(msg2));
1958 }
1959 
1960 INSTANTIATE_TEST_CASE_P(BinderRpc, RpcTransportTest,
1961                         ::testing::ValuesIn(RpcTransportTest::getRpcTranportTestParams()),
1962                         RpcTransportTest::PrintParamInfo);
1963 
1964 class RpcTransportTlsKeyTest
1965       : public testing::TestWithParam<std::tuple<SocketType, RpcCertificateFormat, RpcKeyFormat>> {
1966 public:
1967     template <typename A, typename B>
trust(const A & a,const B & b)1968     status_t trust(const A& a, const B& b) {
1969         auto [socketType, certificateFormat, keyFormat] = GetParam();
1970         return RpcTransportTestUtils::trust(RpcSecurity::TLS, certificateFormat, a, b);
1971     }
PrintParamInfo(const testing::TestParamInfo<ParamType> & info)1972     static std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
1973         auto [socketType, certificateFormat, keyFormat] = info.param;
1974         auto ret = PrintToString(socketType) + "_certificate_" + PrintToString(certificateFormat) +
1975                 "_key_" + PrintToString(keyFormat);
1976         return ret;
1977     };
1978 };
1979 
TEST_P(RpcTransportTlsKeyTest,PreSignedCertificate)1980 TEST_P(RpcTransportTlsKeyTest, PreSignedCertificate) {
1981     auto [socketType, certificateFormat, keyFormat] = GetParam();
1982 
1983     std::vector<uint8_t> pkeyData, certData;
1984     {
1985         auto pkey = makeKeyPairForSelfSignedCert();
1986         ASSERT_NE(nullptr, pkey);
1987         auto cert = makeSelfSignedCert(pkey.get(), kCertValidSeconds);
1988         ASSERT_NE(nullptr, cert);
1989         pkeyData = serializeUnencryptedPrivatekey(pkey.get(), keyFormat);
1990         certData = serializeCertificate(cert.get(), certificateFormat);
1991     }
1992 
1993     auto desPkey = deserializeUnencryptedPrivatekey(pkeyData, keyFormat);
1994     auto desCert = deserializeCertificate(certData, certificateFormat);
1995     auto auth = std::make_unique<RpcAuthPreSigned>(std::move(desPkey), std::move(desCert));
1996     auto utilsParam =
1997             std::make_tuple(socketType, RpcSecurity::TLS, std::make_optional(certificateFormat));
1998 
1999     auto server = std::make_unique<RpcTransportTestUtils::Server>();
2000     ASSERT_TRUE(server->setUp(utilsParam, std::move(auth)));
2001 
2002     RpcTransportTestUtils::Client client(server->getConnectToServerFn());
2003     ASSERT_TRUE(client.setUp(utilsParam));
2004 
2005     ASSERT_EQ(OK, trust(&client, server));
2006     ASSERT_EQ(OK, trust(server, &client));
2007 
2008     server->start();
2009     client.run();
2010 }
2011 
2012 INSTANTIATE_TEST_CASE_P(
2013         BinderRpc, RpcTransportTlsKeyTest,
2014         testing::Combine(testing::ValuesIn(testSocketTypes(false /* hasPreconnected*/)),
2015                          testing::Values(RpcCertificateFormat::PEM, RpcCertificateFormat::DER),
2016                          testing::Values(RpcKeyFormat::PEM, RpcKeyFormat::DER)),
2017         RpcTransportTlsKeyTest::PrintParamInfo);
2018 
2019 } // namespace android
2020 
main(int argc,char ** argv)2021 int main(int argc, char** argv) {
2022     ::testing::InitGoogleTest(&argc, argv);
2023     android::base::InitLogging(argv, android::base::StderrLogger, android::base::DefaultAborter);
2024 
2025     return RUN_ALL_TESTS();
2026 }
2027