• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_list.h"
18 
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22 
23 #include <sstream>
24 #include <vector>
25 
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30 
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni/jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51 
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif  // ART_USE_FUTEXES
59 
60 namespace art {
61 
62 using android::base::StringPrintf;
63 
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69 
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73 
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75     : suspend_all_count_(0),
76       unregistering_count_(0),
77       suspend_all_historam_("suspend all histogram", 16, 64),
78       long_suspend_(false),
79       shut_down_(false),
80       thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
81       empty_checkpoint_barrier_(new Barrier(0)) {
82   CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
83 }
84 
~ThreadList()85 ThreadList::~ThreadList() {
86   CHECK(shut_down_);
87 }
88 
ShutDown()89 void ThreadList::ShutDown() {
90   ScopedTrace trace(__PRETTY_FUNCTION__);
91   // Detach the current thread if necessary. If we failed to start, there might not be any threads.
92   // We need to detach the current thread here in case there's another thread waiting to join with
93   // us.
94   bool contains = false;
95   Thread* self = Thread::Current();
96   {
97     MutexLock mu(self, *Locks::thread_list_lock_);
98     contains = Contains(self);
99   }
100   if (contains) {
101     Runtime::Current()->DetachCurrentThread();
102   }
103   WaitForOtherNonDaemonThreadsToExit();
104   // Disable GC and wait for GC to complete in case there are still daemon threads doing
105   // allocations.
106   gc::Heap* const heap = Runtime::Current()->GetHeap();
107   heap->DisableGCForShutdown();
108   // In case a GC is in progress, wait for it to finish.
109   heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
110   // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
111   //       Thread::Init.
112   SuspendAllDaemonThreadsForShutdown();
113 
114   shut_down_ = true;
115 }
116 
Contains(Thread * thread)117 bool ThreadList::Contains(Thread* thread) {
118   return find(list_.begin(), list_.end(), thread) != list_.end();
119 }
120 
GetLockOwner()121 pid_t ThreadList::GetLockOwner() {
122   return Locks::thread_list_lock_->GetExclusiveOwnerTid();
123 }
124 
DumpNativeStacks(std::ostream & os)125 void ThreadList::DumpNativeStacks(std::ostream& os) {
126   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
127   std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
128   for (const auto& thread : list_) {
129     os << "DUMPING THREAD " << thread->GetTid() << "\n";
130     DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
131     os << "\n";
132   }
133 }
134 
DumpForSigQuit(std::ostream & os)135 void ThreadList::DumpForSigQuit(std::ostream& os) {
136   {
137     ScopedObjectAccess soa(Thread::Current());
138     // Only print if we have samples.
139     if (suspend_all_historam_.SampleSize() > 0) {
140       Histogram<uint64_t>::CumulativeData data;
141       suspend_all_historam_.CreateHistogram(&data);
142       suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data);  // Dump time to suspend.
143     }
144   }
145   bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
146   Dump(os, dump_native_stack);
147   DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
148 }
149 
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)150 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
151     NO_THREAD_SAFETY_ANALYSIS {
152   // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
153   // refactor DumpState to avoid skipping analysis.
154   Thread::DumpState(os, nullptr, tid);
155   if (dump_native_stack) {
156     DumpNativeStack(os, tid, nullptr, "  native: ");
157   }
158   os << std::endl;
159 }
160 
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
162   DIR* d = opendir("/proc/self/task");
163   if (!d) {
164     return;
165   }
166 
167   Thread* self = Thread::Current();
168   dirent* e;
169   while ((e = readdir(d)) != nullptr) {
170     char* end;
171     pid_t tid = strtol(e->d_name, &end, 10);
172     if (!*end) {
173       Thread* thread;
174       {
175         MutexLock mu(self, *Locks::thread_list_lock_);
176         thread = FindThreadByTid(tid);
177       }
178       if (thread == nullptr) {
179         DumpUnattachedThread(os, tid, dump_native_stack);
180       }
181     }
182   }
183   closedir(d);
184 }
185 
186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
187 // overloaded with ANR dumps.
188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
189 
190 // A closure used by Thread::Dump.
191 class DumpCheckpoint final : public Closure {
192  public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)193   DumpCheckpoint(std::ostream* os, bool dump_native_stack)
194       : os_(os),
195         // Avoid verifying count in case a thread doesn't end up passing through the barrier.
196         // This avoids a SIGABRT that would otherwise happen in the destructor.
197         barrier_(0, /*verify_count_on_shutdown=*/false),
198         backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
199         dump_native_stack_(dump_native_stack) {
200     if (backtrace_map_ != nullptr) {
201       backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
202     }
203   }
204 
Run(Thread * thread)205   void Run(Thread* thread) override {
206     // Note thread and self may not be equal if thread was already suspended at the point of the
207     // request.
208     Thread* self = Thread::Current();
209     CHECK(self != nullptr);
210     std::ostringstream local_os;
211     {
212       ScopedObjectAccess soa(self);
213       thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
214     }
215     {
216       // Use the logging lock to ensure serialization when writing to the common ostream.
217       MutexLock mu(self, *Locks::logging_lock_);
218       *os_ << local_os.str() << std::endl;
219     }
220     barrier_.Pass(self);
221   }
222 
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)223   void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
224     Thread* self = Thread::Current();
225     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
226     bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
227     if (timed_out) {
228       // Avoid a recursive abort.
229       LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
230           << "Unexpected time out during dump checkpoint.";
231     }
232   }
233 
234  private:
235   // The common stream that will accumulate all the dumps.
236   std::ostream* const os_;
237   // The barrier to be passed through and for the requestor to wait upon.
238   Barrier barrier_;
239   // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
240   std::unique_ptr<BacktraceMap> backtrace_map_;
241   // Whether we should dump the native stack.
242   const bool dump_native_stack_;
243 };
244 
Dump(std::ostream & os,bool dump_native_stack)245 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
246   Thread* self = Thread::Current();
247   {
248     MutexLock mu(self, *Locks::thread_list_lock_);
249     os << "DALVIK THREADS (" << list_.size() << "):\n";
250   }
251   if (self != nullptr) {
252     DumpCheckpoint checkpoint(&os, dump_native_stack);
253     size_t threads_running_checkpoint;
254     {
255       // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
256       ScopedObjectAccess soa(self);
257       threads_running_checkpoint = RunCheckpoint(&checkpoint);
258     }
259     if (threads_running_checkpoint != 0) {
260       checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
261     }
262   } else {
263     DumpUnattachedThreads(os, dump_native_stack);
264   }
265 }
266 
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)267 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
268   MutexLock mu(self, *Locks::thread_list_lock_);
269   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
270   for (const auto& thread : list_) {
271     if (thread != ignore1 && thread != ignore2) {
272       CHECK(thread->IsSuspended())
273             << "\nUnsuspended thread: <<" << *thread << "\n"
274             << "self: <<" << *Thread::Current();
275     }
276   }
277 }
278 
279 #if HAVE_TIMED_RWLOCK
280 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()281 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
282   // Increment gAborting before doing the thread list dump since we don't want any failures from
283   // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
284   // See b/69044468.
285   ++gAborting;
286   Runtime* runtime = Runtime::Current();
287   std::ostringstream ss;
288   ss << "Thread suspend timeout\n";
289   Locks::mutator_lock_->Dump(ss);
290   ss << "\n";
291   runtime->GetThreadList()->Dump(ss);
292   --gAborting;
293   LOG(FATAL) << ss.str();
294   exit(0);
295 }
296 #endif
297 
298 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
299 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
300 // we use sched_yield instead of calling usleep.
301 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
302 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)303 static void ThreadSuspendSleep(useconds_t delay_us) {
304   if (delay_us == 0) {
305     sched_yield();
306   } else {
307     usleep(delay_us);
308   }
309 }
310 
RunCheckpoint(Closure * checkpoint_function,Closure * callback)311 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
312   Thread* self = Thread::Current();
313   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
314   Locks::thread_list_lock_->AssertNotHeld(self);
315   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
316 
317   std::vector<Thread*> suspended_count_modified_threads;
318   size_t count = 0;
319   {
320     // Call a checkpoint function for each thread, threads which are suspended get their checkpoint
321     // manually called.
322     MutexLock mu(self, *Locks::thread_list_lock_);
323     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
324     count = list_.size();
325     for (const auto& thread : list_) {
326       if (thread != self) {
327         bool requested_suspend = false;
328         while (true) {
329           if (thread->RequestCheckpoint(checkpoint_function)) {
330             // This thread will run its checkpoint some time in the near future.
331             if (requested_suspend) {
332               // The suspend request is now unnecessary.
333               bool updated =
334                   thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
335               DCHECK(updated);
336               requested_suspend = false;
337             }
338             break;
339           } else {
340             // The thread is probably suspended, try to make sure that it stays suspended.
341             if (thread->GetState() == ThreadState::kRunnable) {
342               // Spurious fail, try again.
343               continue;
344             }
345             if (!requested_suspend) {
346               bool updated =
347                   thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
348               DCHECK(updated);
349               requested_suspend = true;
350               if (thread->IsSuspended()) {
351                 break;
352               }
353               // The thread raced us to become Runnable. Try to RequestCheckpoint() again.
354             } else {
355               // The thread previously raced our suspend request to become Runnable but
356               // since it is suspended again, it must honor that suspend request now.
357               DCHECK(thread->IsSuspended());
358               break;
359             }
360           }
361         }
362         if (requested_suspend) {
363           suspended_count_modified_threads.push_back(thread);
364         }
365       }
366     }
367     // Run the callback to be called inside this critical section.
368     if (callback != nullptr) {
369       callback->Run(self);
370     }
371   }
372 
373   // Run the checkpoint on ourself while we wait for threads to suspend.
374   checkpoint_function->Run(self);
375 
376   // Run the checkpoint on the suspended threads.
377   for (const auto& thread : suspended_count_modified_threads) {
378     // We know for sure that the thread is suspended at this point.
379     DCHECK(thread->IsSuspended());
380     checkpoint_function->Run(thread);
381     {
382       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
383       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
384       DCHECK(updated);
385     }
386   }
387 
388   {
389     // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
390     // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
391     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
392     Thread::resume_cond_->Broadcast(self);
393   }
394 
395   return count;
396 }
397 
RunEmptyCheckpoint()398 void ThreadList::RunEmptyCheckpoint() {
399   Thread* self = Thread::Current();
400   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
401   Locks::thread_list_lock_->AssertNotHeld(self);
402   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
403   std::vector<uint32_t> runnable_thread_ids;
404   size_t count = 0;
405   Barrier* barrier = empty_checkpoint_barrier_.get();
406   barrier->Init(self, 0);
407   {
408     MutexLock mu(self, *Locks::thread_list_lock_);
409     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
410     for (Thread* thread : list_) {
411       if (thread != self) {
412         while (true) {
413           if (thread->RequestEmptyCheckpoint()) {
414             // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
415             // some time in the near future.
416             ++count;
417             if (kIsDebugBuild) {
418               runnable_thread_ids.push_back(thread->GetThreadId());
419             }
420             break;
421           }
422           if (thread->GetState() != ThreadState::kRunnable) {
423             // It's seen suspended, we are done because it must not be in the middle of a mutator
424             // heap access.
425             break;
426           }
427         }
428       }
429     }
430   }
431 
432   // Wake up the threads blocking for weak ref access so that they will respond to the empty
433   // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
434   Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
435   Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
436   {
437     ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
438     uint64_t total_wait_time = 0;
439     bool first_iter = true;
440     while (true) {
441       // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
442       // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
443       // and a mutex.) This needs to be done periodically because the thread may be preempted
444       // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
445       // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
446       // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
447       // handled in the first iteration.
448       for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
449         mutex->WakeupToRespondToEmptyCheckpoint();
450       }
451       static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100;  // 100ms
452       static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000;  // 10 minutes.
453       size_t barrier_count = first_iter ? count : 0;
454       first_iter = false;  // Don't add to the barrier count from the second iteration on.
455       bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
456       if (!timed_out) {
457         break;  // Success
458       }
459       // This is a very rare case.
460       total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
461       if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
462         std::ostringstream ss;
463         ss << "Empty checkpoint timeout\n";
464         ss << "Barrier count " << barrier->GetCount(self) << "\n";
465         ss << "Runnable thread IDs";
466         for (uint32_t tid : runnable_thread_ids) {
467           ss << " " << tid;
468         }
469         ss << "\n";
470         Locks::mutator_lock_->Dump(ss);
471         ss << "\n";
472         LOG(FATAL_WITHOUT_ABORT) << ss.str();
473         // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
474         // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
475         {
476           ScopedObjectAccess soa(self);
477           MutexLock mu1(self, *Locks::thread_list_lock_);
478           for (Thread* thread : GetList()) {
479             uint32_t tid = thread->GetThreadId();
480             bool is_in_runnable_thread_ids =
481                 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
482                 runnable_thread_ids.end();
483             if (is_in_runnable_thread_ids &&
484                 thread->ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
485               // Found a runnable thread that hasn't responded to the empty checkpoint request.
486               // Assume it's stuck and safe to dump its stack.
487               thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
488                            /*dump_native_stack=*/ true,
489                            /*backtrace_map=*/ nullptr,
490                            /*force_dump_stack=*/ true);
491             }
492           }
493         }
494         LOG(FATAL_WITHOUT_ABORT)
495             << "Dumped runnable threads that haven't responded to empty checkpoint.";
496         // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
497         Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
498         LOG(FATAL) << "Dumped all threads.";
499       }
500     }
501   }
502 }
503 
504 // A checkpoint/suspend-all hybrid to switch thread roots from
505 // from-space to to-space refs. Used to synchronize threads at a point
506 // to mark the initiation of marking while maintaining the to-space
507 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)508 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
509                                    Closure* flip_callback,
510                                    gc::collector::GarbageCollector* collector,
511                                    gc::GcPauseListener* pause_listener) {
512   TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
513   Thread* self = Thread::Current();
514   Locks::mutator_lock_->AssertNotHeld(self);
515   Locks::thread_list_lock_->AssertNotHeld(self);
516   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
517   CHECK_NE(self->GetState(), ThreadState::kRunnable);
518 
519   collector->GetHeap()->ThreadFlipBegin(self);  // Sync with JNI critical calls.
520 
521   // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
522   // pause.
523   const uint64_t suspend_start_time = NanoTime();
524   SuspendAllInternal(self, self, nullptr);
525   if (pause_listener != nullptr) {
526     pause_listener->StartPause();
527   }
528 
529   // Run the flip callback for the collector.
530   Locks::mutator_lock_->ExclusiveLock(self);
531   suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
532   flip_callback->Run(self);
533   Locks::mutator_lock_->ExclusiveUnlock(self);
534   collector->RegisterPause(NanoTime() - suspend_start_time);
535   if (pause_listener != nullptr) {
536     pause_listener->EndPause();
537   }
538 
539   // Resume runnable threads.
540   size_t runnable_thread_count = 0;
541   std::vector<Thread*> other_threads;
542   {
543     TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
544     MutexLock mu(self, *Locks::thread_list_lock_);
545     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
546     --suspend_all_count_;
547     for (Thread* thread : list_) {
548       // Set the flip function for all threads because once we start resuming any threads,
549       // they may need to run the flip function on behalf of other threads, even this one.
550       thread->SetFlipFunction(thread_flip_visitor);
551       if (thread == self) {
552         continue;
553       }
554       // Resume early the threads that were runnable but are suspended just for this thread flip or
555       // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
556       // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
557       // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
558       ThreadState state = thread->GetState();
559       if ((state == ThreadState::kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
560           thread->GetSuspendCount() == 1) {
561         // The thread will resume right after the broadcast.
562         bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
563         DCHECK(updated);
564         ++runnable_thread_count;
565       } else {
566         other_threads.push_back(thread);
567       }
568     }
569     Thread::resume_cond_->Broadcast(self);
570   }
571 
572   collector->GetHeap()->ThreadFlipEnd(self);
573 
574   // Try to run the closure on the other threads.
575   {
576     TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
577     ReaderMutexLock mu(self, *Locks::mutator_lock_);
578     for (Thread* thread : other_threads) {
579       thread->EnsureFlipFunctionStarted(self);
580       DCHECK(!thread->ReadFlag(ThreadFlag::kPendingFlipFunction));
581     }
582     // Try to run the flip function for self.
583     self->EnsureFlipFunctionStarted(self);
584     DCHECK(!self->ReadFlag(ThreadFlag::kPendingFlipFunction));
585   }
586 
587   // Resume other threads.
588   {
589     TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
590     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
591     for (const auto& thread : other_threads) {
592       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
593       DCHECK(updated);
594     }
595     Thread::resume_cond_->Broadcast(self);
596   }
597 
598   return runnable_thread_count + other_threads.size() + 1;  // +1 for self.
599 }
600 
SuspendAll(const char * cause,bool long_suspend)601 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
602   Thread* self = Thread::Current();
603 
604   if (self != nullptr) {
605     VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
606   } else {
607     VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
608   }
609   {
610     ScopedTrace trace("Suspending mutator threads");
611     const uint64_t start_time = NanoTime();
612 
613     SuspendAllInternal(self, self);
614     // All threads are known to have suspended (but a thread may still own the mutator lock)
615     // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
616 #if HAVE_TIMED_RWLOCK
617     while (true) {
618       if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
619                                                          NsToMs(thread_suspend_timeout_ns_),
620                                                          0)) {
621         break;
622       } else if (!long_suspend_) {
623         // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
624         // could result in a thread suspend timeout.
625         // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
626         UnsafeLogFatalForThreadSuspendAllTimeout();
627       }
628     }
629 #else
630     Locks::mutator_lock_->ExclusiveLock(self);
631 #endif
632 
633     long_suspend_ = long_suspend;
634 
635     const uint64_t end_time = NanoTime();
636     const uint64_t suspend_time = end_time - start_time;
637     suspend_all_historam_.AdjustAndAddValue(suspend_time);
638     if (suspend_time > kLongThreadSuspendThreshold) {
639       LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
640     }
641 
642     if (kDebugLocking) {
643       // Debug check that all threads are suspended.
644       AssertThreadsAreSuspended(self, self);
645     }
646   }
647   ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
648 
649   if (self != nullptr) {
650     VLOG(threads) << *self << " SuspendAll complete";
651   } else {
652     VLOG(threads) << "Thread[null] SuspendAll complete";
653   }
654 }
655 
656 // Ensures all threads running Java suspend and that those not running Java don't start.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)657 void ThreadList::SuspendAllInternal(Thread* self,
658                                     Thread* ignore1,
659                                     Thread* ignore2,
660                                     SuspendReason reason) {
661   Locks::mutator_lock_->AssertNotExclusiveHeld(self);
662   Locks::thread_list_lock_->AssertNotHeld(self);
663   Locks::thread_suspend_count_lock_->AssertNotHeld(self);
664   if (kDebugLocking && self != nullptr) {
665     CHECK_NE(self->GetState(), ThreadState::kRunnable);
666   }
667 
668   // First request that all threads suspend, then wait for them to suspend before
669   // returning. This suspension scheme also relies on other behaviour:
670   // 1. Threads cannot be deleted while they are suspended or have a suspend-
671   //    request flag set - (see Unregister() below).
672   // 2. When threads are created, they are created in a suspended state (actually
673   //    kNative) and will never begin executing Java code without first checking
674   //    the suspend-request flag.
675 
676   // The atomic counter for number of threads that need to pass the barrier.
677   AtomicInteger pending_threads;
678   uint32_t num_ignored = 0;
679   if (ignore1 != nullptr) {
680     ++num_ignored;
681   }
682   if (ignore2 != nullptr && ignore1 != ignore2) {
683     ++num_ignored;
684   }
685   {
686     MutexLock mu(self, *Locks::thread_list_lock_);
687     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
688     // Update global suspend all state for attaching threads.
689     ++suspend_all_count_;
690     pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
691     // Increment everybody's suspend count (except those that should be ignored).
692     for (const auto& thread : list_) {
693       if (thread == ignore1 || thread == ignore2) {
694         continue;
695       }
696       VLOG(threads) << "requesting thread suspend: " << *thread;
697       bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
698       DCHECK(updated);
699 
700       // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
701       // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
702       // that can lead a thread to miss a call to PassActiveSuspendBarriers().
703       if (thread->IsSuspended()) {
704         // Only clear the counter for the current thread.
705         thread->ClearSuspendBarrier(&pending_threads);
706         pending_threads.fetch_sub(1, std::memory_order_seq_cst);
707       }
708     }
709   }
710 
711   // Wait for the barrier to be passed by all runnable threads. This wait
712   // is done with a timeout so that we can detect problems.
713 #if ART_USE_FUTEXES
714   timespec wait_timeout;
715   InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
716 #endif
717   const uint64_t start_time = NanoTime();
718   while (true) {
719     int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
720     if (LIKELY(cur_val > 0)) {
721 #if ART_USE_FUTEXES
722       if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
723           != 0) {
724         if ((errno == EAGAIN) || (errno == EINTR)) {
725           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
726           continue;
727         }
728         if (errno == ETIMEDOUT) {
729           const uint64_t wait_time = NanoTime() - start_time;
730           MutexLock mu(self, *Locks::thread_list_lock_);
731           MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
732           std::ostringstream oss;
733           for (const auto& thread : list_) {
734             if (thread == ignore1 || thread == ignore2) {
735               continue;
736             }
737             if (!thread->IsSuspended()) {
738               oss << std::endl << "Thread not suspended: " << *thread;
739             }
740           }
741           LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
742               << "Timed out waiting for threads to suspend, waited for "
743               << PrettyDuration(wait_time)
744               << oss.str();
745         } else {
746           PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
747         }
748       }  // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
749 #else
750       // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
751       UNUSED(start_time);
752 #endif
753     } else {
754       CHECK_EQ(cur_val, 0);
755       break;
756     }
757   }
758 }
759 
ResumeAll()760 void ThreadList::ResumeAll() {
761   Thread* self = Thread::Current();
762 
763   if (self != nullptr) {
764     VLOG(threads) << *self << " ResumeAll starting";
765   } else {
766     VLOG(threads) << "Thread[null] ResumeAll starting";
767   }
768 
769   ATraceEnd();
770 
771   ScopedTrace trace("Resuming mutator threads");
772 
773   if (kDebugLocking) {
774     // Debug check that all threads are suspended.
775     AssertThreadsAreSuspended(self, self);
776   }
777 
778   long_suspend_ = false;
779 
780   Locks::mutator_lock_->ExclusiveUnlock(self);
781   {
782     MutexLock mu(self, *Locks::thread_list_lock_);
783     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
784     // Update global suspend all state for attaching threads.
785     --suspend_all_count_;
786     // Decrement the suspend counts for all threads.
787     for (const auto& thread : list_) {
788       if (thread == self) {
789         continue;
790       }
791       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
792       DCHECK(updated);
793     }
794 
795     // Broadcast a notification to all suspended threads, some or all of
796     // which may choose to wake up.  No need to wait for them.
797     if (self != nullptr) {
798       VLOG(threads) << *self << " ResumeAll waking others";
799     } else {
800       VLOG(threads) << "Thread[null] ResumeAll waking others";
801     }
802     Thread::resume_cond_->Broadcast(self);
803   }
804 
805   if (self != nullptr) {
806     VLOG(threads) << *self << " ResumeAll complete";
807   } else {
808     VLOG(threads) << "Thread[null] ResumeAll complete";
809   }
810 }
811 
Resume(Thread * thread,SuspendReason reason)812 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
813   // This assumes there was an ATraceBegin when we suspended the thread.
814   ATraceEnd();
815 
816   Thread* self = Thread::Current();
817   DCHECK_NE(thread, self);
818   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
819 
820   {
821     // To check Contains.
822     MutexLock mu(self, *Locks::thread_list_lock_);
823     // To check IsSuspended.
824     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
825     if (UNLIKELY(!thread->IsSuspended())) {
826       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
827           << ") thread not suspended";
828       return false;
829     }
830     if (!Contains(thread)) {
831       // We only expect threads within the thread-list to have been suspended otherwise we can't
832       // stop such threads from delete-ing themselves.
833       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
834           << ") thread not within thread list";
835       return false;
836     }
837     if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
838       LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
839                  << ") could not modify suspend count.";
840       return false;
841     }
842   }
843 
844   {
845     VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
846     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
847     Thread::resume_cond_->Broadcast(self);
848   }
849 
850   VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
851   return true;
852 }
853 
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)854 static void ThreadSuspendByPeerWarning(Thread* self,
855                                        LogSeverity severity,
856                                        const char* message,
857                                        jobject peer) {
858   JNIEnvExt* env = self->GetJniEnv();
859   ScopedLocalRef<jstring>
860       scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
861           peer, WellKnownClasses::java_lang_Thread_name)));
862   ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
863   if (scoped_name_chars.c_str() == nullptr) {
864       LOG(severity) << message << ": " << peer;
865       env->ExceptionClear();
866   } else {
867       LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
868   }
869 }
870 
SuspendThreadByPeer(jobject peer,SuspendReason reason,bool * timed_out)871 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
872                                         SuspendReason reason,
873                                         bool* timed_out) {
874   bool request_suspension = true;
875   const uint64_t start_time = NanoTime();
876   int self_suspend_count = 0;
877   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
878   *timed_out = false;
879   Thread* const self = Thread::Current();
880   Thread* suspended_thread = nullptr;
881   VLOG(threads) << "SuspendThreadByPeer starting";
882   while (true) {
883     Thread* thread;
884     {
885       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
886       // is requesting another suspend, to avoid deadlock, by requiring this function be called
887       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
888       // than request thread suspension, to avoid potential cycles in threads requesting each other
889       // suspend.
890       ScopedObjectAccess soa(self);
891       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
892       thread = Thread::FromManagedThread(soa, peer);
893       if (thread == nullptr) {
894         if (suspended_thread != nullptr) {
895           MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
896           // If we incremented the suspend count but the thread reset its peer, we need to
897           // re-decrement it since it is shutting down and may deadlock the runtime in
898           // ThreadList::WaitForOtherNonDaemonThreadsToExit.
899           bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
900                                                               -1,
901                                                               nullptr,
902                                                               reason);
903           DCHECK(updated);
904         }
905         ThreadSuspendByPeerWarning(self,
906                                    ::android::base::WARNING,
907                                     "No such thread for suspend",
908                                     peer);
909         return nullptr;
910       }
911       if (!Contains(thread)) {
912         CHECK(suspended_thread == nullptr);
913         VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
914             << reinterpret_cast<void*>(thread);
915         return nullptr;
916       }
917       VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
918       {
919         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
920         if (request_suspension) {
921           if (self->GetSuspendCount() > 0) {
922             // We hold the suspend count lock but another thread is trying to suspend us. Its not
923             // safe to try to suspend another thread in case we get a cycle. Start the loop again
924             // which will allow this thread to be suspended.
925             ++self_suspend_count;
926             continue;
927           }
928           CHECK(suspended_thread == nullptr);
929           suspended_thread = thread;
930           bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
931           DCHECK(updated);
932           request_suspension = false;
933         } else {
934           // If the caller isn't requesting suspension, a suspension should have already occurred.
935           CHECK_GT(thread->GetSuspendCount(), 0);
936         }
937         // IsSuspended on the current thread will fail as the current thread is changed into
938         // Runnable above. As the suspend count is now raised if this is the current thread
939         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
940         // to just explicitly handle the current thread in the callers to this code.
941         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
942         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
943         // count, or else we've waited and it has self suspended) or is the current thread, we're
944         // done.
945         if (thread->IsSuspended()) {
946           VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
947           if (ATraceEnabled()) {
948             std::string name;
949             thread->GetThreadName(name);
950             ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
951                                       peer).c_str());
952           }
953           return thread;
954         }
955         const uint64_t total_delay = NanoTime() - start_time;
956         if (total_delay >= thread_suspend_timeout_ns_) {
957           if (suspended_thread == nullptr) {
958             ThreadSuspendByPeerWarning(self,
959                                        ::android::base::FATAL,
960                                        "Failed to issue suspend request",
961                                        peer);
962           } else {
963             CHECK_EQ(suspended_thread, thread);
964             LOG(WARNING) << "Suspended thread state_and_flags: "
965                          << suspended_thread->StateAndFlagsAsHexString()
966                          << ", self_suspend_count = " << self_suspend_count;
967             // Explicitly release thread_suspend_count_lock_; we haven't held it for long, so
968             // seeing threads blocked on it is not informative.
969             Locks::thread_suspend_count_lock_->Unlock(self);
970             ThreadSuspendByPeerWarning(self,
971                                        ::android::base::FATAL,
972                                        "Thread suspension timed out",
973                                        peer);
974           }
975           UNREACHABLE();
976         } else if (sleep_us == 0 &&
977             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
978           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
979           // excessive CPU usage.
980           sleep_us = kThreadSuspendMaxYieldUs / 2;
981         }
982       }
983       // Release locks and come out of runnable state.
984     }
985     VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
986     ThreadSuspendSleep(sleep_us);
987     // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
988     // all if possible. This shouldn't be an issue since time to suspend should always be small.
989     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
990   }
991 }
992 
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)993 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
994                                            const char* message,
995                                            uint32_t thread_id) {
996   LOG(severity) << StringPrintf("%s: %d", message, thread_id);
997 }
998 
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)999 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
1000                                             SuspendReason reason,
1001                                             bool* timed_out) {
1002   const uint64_t start_time = NanoTime();
1003   useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1004   *timed_out = false;
1005   Thread* suspended_thread = nullptr;
1006   Thread* const self = Thread::Current();
1007   CHECK_NE(thread_id, kInvalidThreadId);
1008   VLOG(threads) << "SuspendThreadByThreadId starting";
1009   while (true) {
1010     {
1011       // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1012       // is requesting another suspend, to avoid deadlock, by requiring this function be called
1013       // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1014       // than request thread suspension, to avoid potential cycles in threads requesting each other
1015       // suspend.
1016       ScopedObjectAccess soa(self);
1017       MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1018       Thread* thread = nullptr;
1019       for (const auto& it : list_) {
1020         if (it->GetThreadId() == thread_id) {
1021           thread = it;
1022           break;
1023         }
1024       }
1025       if (thread == nullptr) {
1026         CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1027             << " no longer in thread list";
1028         // There's a race in inflating a lock and the owner giving up ownership and then dying.
1029         ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1030                                        "No such thread id for suspend",
1031                                        thread_id);
1032         return nullptr;
1033       }
1034       VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1035       DCHECK(Contains(thread));
1036       {
1037         MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1038         if (suspended_thread == nullptr) {
1039           if (self->GetSuspendCount() > 0) {
1040             // We hold the suspend count lock but another thread is trying to suspend us. Its not
1041             // safe to try to suspend another thread in case we get a cycle. Start the loop again
1042             // which will allow this thread to be suspended.
1043             continue;
1044           }
1045           bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1046           DCHECK(updated);
1047           suspended_thread = thread;
1048         } else {
1049           CHECK_EQ(suspended_thread, thread);
1050           // If the caller isn't requesting suspension, a suspension should have already occurred.
1051           CHECK_GT(thread->GetSuspendCount(), 0);
1052         }
1053         // IsSuspended on the current thread will fail as the current thread is changed into
1054         // Runnable above. As the suspend count is now raised if this is the current thread
1055         // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1056         // to just explicitly handle the current thread in the callers to this code.
1057         CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1058         // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1059         // count, or else we've waited and it has self suspended) or is the current thread, we're
1060         // done.
1061         if (thread->IsSuspended()) {
1062           if (ATraceEnabled()) {
1063             std::string name;
1064             thread->GetThreadName(name);
1065             ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1066                                       name.c_str(), thread_id).c_str());
1067           }
1068           VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1069           return thread;
1070         }
1071         const uint64_t total_delay = NanoTime() - start_time;
1072         if (total_delay >= thread_suspend_timeout_ns_) {
1073           ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1074                                          "Thread suspension timed out",
1075                                          thread_id);
1076           if (suspended_thread != nullptr) {
1077             bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1078             DCHECK(updated);
1079           }
1080           *timed_out = true;
1081           return nullptr;
1082         } else if (sleep_us == 0 &&
1083             total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1084           // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1085           // excessive CPU usage.
1086           sleep_us = kThreadSuspendMaxYieldUs / 2;
1087         }
1088       }
1089       // Release locks and come out of runnable state.
1090     }
1091     VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1092     ThreadSuspendSleep(sleep_us);
1093     sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1094   }
1095 }
1096 
FindThreadByThreadId(uint32_t thread_id)1097 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1098   for (const auto& thread : list_) {
1099     if (thread->GetThreadId() == thread_id) {
1100       return thread;
1101     }
1102   }
1103   return nullptr;
1104 }
1105 
FindThreadByTid(int tid)1106 Thread* ThreadList::FindThreadByTid(int tid) {
1107   for (const auto& thread : list_) {
1108     if (thread->GetTid() == tid) {
1109       return thread;
1110     }
1111   }
1112   return nullptr;
1113 }
1114 
WaitForOtherNonDaemonThreadsToExit(bool check_no_birth)1115 void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
1116   ScopedTrace trace(__PRETTY_FUNCTION__);
1117   Thread* self = Thread::Current();
1118   Locks::mutator_lock_->AssertNotHeld(self);
1119   while (true) {
1120     Locks::runtime_shutdown_lock_->Lock(self);
1121     if (check_no_birth) {
1122       // No more threads can be born after we start to shutdown.
1123       CHECK(Runtime::Current()->IsShuttingDownLocked());
1124       CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1125     } else {
1126       if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
1127         // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
1128         // Fortunately, this is used mostly for testing, and not performance-critical.
1129         Locks::runtime_shutdown_lock_->Unlock(self);
1130         usleep(1000);
1131         continue;
1132       }
1133     }
1134     MutexLock mu(self, *Locks::thread_list_lock_);
1135     Locks::runtime_shutdown_lock_->Unlock(self);
1136     // Also wait for any threads that are unregistering to finish. This is required so that no
1137     // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1138     // threads since they could unregister at the wrong time.
1139     bool done = unregistering_count_ == 0;
1140     if (done) {
1141       for (const auto& thread : list_) {
1142         if (thread != self && !thread->IsDaemon()) {
1143           done = false;
1144           break;
1145         }
1146       }
1147     }
1148     if (done) {
1149       break;
1150     }
1151     // Wait for another thread to exit before re-checking.
1152     Locks::thread_exit_cond_->Wait(self);
1153   }
1154 }
1155 
SuspendAllDaemonThreadsForShutdown()1156 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1157   ScopedTrace trace(__PRETTY_FUNCTION__);
1158   Thread* self = Thread::Current();
1159   size_t daemons_left = 0;
1160   {
1161     // Tell all the daemons it's time to suspend.
1162     MutexLock mu(self, *Locks::thread_list_lock_);
1163     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1164     for (const auto& thread : list_) {
1165       // This is only run after all non-daemon threads have exited, so the remainder should all be
1166       // daemons.
1167       CHECK(thread->IsDaemon()) << *thread;
1168       if (thread != self) {
1169         bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1170         DCHECK(updated);
1171         ++daemons_left;
1172       }
1173       // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1174       // the sleep forever one.
1175       thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1176     }
1177   }
1178   if (daemons_left == 0) {
1179     // No threads left; safe to shut down.
1180     return;
1181   }
1182   // There is not a clean way to shut down if we have daemons left. We have no mechanism for
1183   // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
1184   // have truly finished touching the memory we are about to deallocate. We do the best we can with
1185   // timeouts.
1186   //
1187   // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
1188   // in a place where they are about to access runtime state and are not in a runnable state.
1189   // We attempt to do the latter by just waiting long enough for things to
1190   // quiesce. Examples: Monitor code or waking up from a condition variable.
1191   //
1192   // Give the threads a chance to suspend, complaining if they're slow. (a)
1193   bool have_complained = false;
1194   static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1195   static constexpr size_t kSleepMicroseconds = 1000;
1196   bool all_suspended = false;
1197   for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1198     bool found_running = false;
1199     {
1200       MutexLock mu(self, *Locks::thread_list_lock_);
1201       for (const auto& thread : list_) {
1202         if (thread != self && thread->GetState() == ThreadState::kRunnable) {
1203           if (!have_complained) {
1204             LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1205             have_complained = true;
1206           }
1207           found_running = true;
1208         }
1209       }
1210     }
1211     if (found_running) {
1212       // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
1213       usleep(kSleepMicroseconds);
1214     } else {
1215       all_suspended = true;
1216     }
1217   }
1218   if (!all_suspended) {
1219     // We can get here if a daemon thread executed a fastnative native call, so that it
1220     // remained in runnable state, and then made a JNI call after we called
1221     // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
1222     // but runnable state. See b/147804269 .
1223     LOG(WARNING) << "timed out suspending all daemon threads";
1224   }
1225   // Assume all threads are either suspended or somehow wedged.
1226   // Wait again for all the now "suspended" threads to actually quiesce. (b)
1227   static constexpr size_t kDaemonSleepTime = 400'000;
1228   usleep(kDaemonSleepTime);
1229   std::list<Thread*> list_copy;
1230   {
1231     MutexLock mu(self, *Locks::thread_list_lock_);
1232     // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
1233     // threads to immediately go back to sleep without touching memory. This prevents us from
1234     // touching deallocated memory, but it also prevents mutexes from getting released. Thus we
1235     // only do this once we're reasonably sure that no system mutexes are still held.
1236     for (const auto& thread : list_) {
1237       DCHECK(thread == self || !all_suspended || thread->GetState() != ThreadState::kRunnable);
1238       // In the !all_suspended case, the target is probably sleeping.
1239       thread->GetJniEnv()->SetRuntimeDeleted();
1240       // Possibly contended Mutex acquisitions are unsafe after this.
1241       // Releasing thread_list_lock_ is OK, since it can't block.
1242     }
1243   }
1244   // Finally wait for any threads woken before we set the "runtime deleted" flags to finish
1245   // touching memory.
1246   usleep(kDaemonSleepTime);
1247 #if defined(__has_feature)
1248 #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
1249   // Sleep a bit longer with -fsanitize=address, since everything is slower.
1250   usleep(2 * kDaemonSleepTime);
1251 #endif
1252 #endif
1253   // At this point no threads should be touching our data structures anymore.
1254 }
1255 
Register(Thread * self)1256 void ThreadList::Register(Thread* self) {
1257   DCHECK_EQ(self, Thread::Current());
1258   CHECK(!shut_down_);
1259 
1260   if (VLOG_IS_ON(threads)) {
1261     std::ostringstream oss;
1262     self->ShortDump(oss);  // We don't hold the mutator_lock_ yet and so cannot call Dump.
1263     LOG(INFO) << "ThreadList::Register() " << *self  << "\n" << oss.str();
1264   }
1265 
1266   // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1267   // SuspendAll requests.
1268   MutexLock mu(self, *Locks::thread_list_lock_);
1269   MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1270   // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1271   // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1272   for (int delta = suspend_all_count_; delta > 0; delta--) {
1273     bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1274     DCHECK(updated);
1275   }
1276   CHECK(!Contains(self));
1277   list_.push_back(self);
1278   if (kUseReadBarrier) {
1279     gc::collector::ConcurrentCopying* const cc =
1280         Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1281     // Initialize according to the state of the CC collector.
1282     self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1283     if (cc->IsUsingReadBarrierEntrypoints()) {
1284       self->SetReadBarrierEntrypoints();
1285     }
1286     self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1287   }
1288 }
1289 
Unregister(Thread * self)1290 void ThreadList::Unregister(Thread* self) {
1291   DCHECK_EQ(self, Thread::Current());
1292   CHECK_NE(self->GetState(), ThreadState::kRunnable);
1293   Locks::mutator_lock_->AssertNotHeld(self);
1294 
1295   VLOG(threads) << "ThreadList::Unregister() " << *self;
1296 
1297   {
1298     MutexLock mu(self, *Locks::thread_list_lock_);
1299     ++unregistering_count_;
1300   }
1301 
1302   // Any time-consuming destruction, plus anything that can call back into managed code or
1303   // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1304   // causes the threads to join. It is important to do this after incrementing unregistering_count_
1305   // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1306   // list.
1307   self->Destroy();
1308 
1309   // If tracing, remember thread id and name before thread exits.
1310   Trace::StoreExitingThreadInfo(self);
1311 
1312   uint32_t thin_lock_id = self->GetThreadId();
1313   while (true) {
1314     // Remove and delete the Thread* while holding the thread_list_lock_ and
1315     // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1316     // Note: deliberately not using MutexLock that could hold a stale self pointer.
1317     {
1318       MutexLock mu(self, *Locks::thread_list_lock_);
1319       if (!Contains(self)) {
1320         std::string thread_name;
1321         self->GetThreadName(thread_name);
1322         std::ostringstream os;
1323         DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
1324         LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1325         break;
1326       } else {
1327         MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1328         if (!self->IsSuspended()) {
1329           list_.remove(self);
1330           break;
1331         }
1332       }
1333     }
1334     // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1335     // This is important if there are realtime threads. b/111277984
1336     usleep(1);
1337     // We failed to remove the thread due to a suspend request, loop and try again.
1338   }
1339   delete self;
1340 
1341   // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1342   // temporarily have multiple threads with the same thread id. When this occurs, it causes
1343   // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1344   ReleaseThreadId(nullptr, thin_lock_id);
1345 
1346   // Clear the TLS data, so that the underlying native thread is recognizably detached.
1347   // (It may wish to reattach later.)
1348 #ifdef __BIONIC__
1349   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1350 #else
1351   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1352   Thread::self_tls_ = nullptr;
1353 #endif
1354 
1355   // Signal that a thread just detached.
1356   MutexLock mu(nullptr, *Locks::thread_list_lock_);
1357   --unregistering_count_;
1358   Locks::thread_exit_cond_->Broadcast(nullptr);
1359 }
1360 
ForEach(void (* callback)(Thread *,void *),void * context)1361 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1362   for (const auto& thread : list_) {
1363     callback(thread, context);
1364   }
1365 }
1366 
VisitRootsForSuspendedThreads(RootVisitor * visitor)1367 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1368   Thread* const self = Thread::Current();
1369   std::vector<Thread*> threads_to_visit;
1370 
1371   // Tell threads to suspend and copy them into list.
1372   {
1373     MutexLock mu(self, *Locks::thread_list_lock_);
1374     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1375     for (Thread* thread : list_) {
1376       bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1377       DCHECK(suspended);
1378       if (thread == self || thread->IsSuspended()) {
1379         threads_to_visit.push_back(thread);
1380       } else {
1381         bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1382         DCHECK(resumed);
1383       }
1384     }
1385   }
1386 
1387   // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1388   // order violations.
1389   for (Thread* thread : threads_to_visit) {
1390     thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1391   }
1392 
1393   // Restore suspend counts.
1394   {
1395     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1396     for (Thread* thread : threads_to_visit) {
1397       bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1398       DCHECK(updated);
1399     }
1400   }
1401 }
1402 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1403 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1404   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1405   for (const auto& thread : list_) {
1406     thread->VisitRoots(visitor, flags);
1407   }
1408 }
1409 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor) const1410 void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
1411   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1412   for (const auto& thread : list_) {
1413     thread->VisitReflectiveTargets(visitor);
1414   }
1415 }
1416 
AllocThreadId(Thread * self)1417 uint32_t ThreadList::AllocThreadId(Thread* self) {
1418   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1419   for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1420     if (!allocated_ids_[i]) {
1421       allocated_ids_.set(i);
1422       return i + 1;  // Zero is reserved to mean "invalid".
1423     }
1424   }
1425   LOG(FATAL) << "Out of internal thread ids";
1426   UNREACHABLE();
1427 }
1428 
ReleaseThreadId(Thread * self,uint32_t id)1429 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1430   MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1431   --id;  // Zero is reserved to mean "invalid".
1432   DCHECK(allocated_ids_[id]) << id;
1433   allocated_ids_.reset(id);
1434 }
1435 
ScopedSuspendAll(const char * cause,bool long_suspend)1436 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1437   Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1438 }
1439 
~ScopedSuspendAll()1440 ScopedSuspendAll::~ScopedSuspendAll() {
1441   Runtime::Current()->GetThreadList()->ResumeAll();
1442 }
1443 
1444 }  // namespace art
1445