1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <sstream>
24 #include <vector>
25
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni/jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif // ART_USE_FUTEXES
59
60 namespace art {
61
62 using android::base::StringPrintf;
63
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75 : suspend_all_count_(0),
76 unregistering_count_(0),
77 suspend_all_historam_("suspend all histogram", 16, 64),
78 long_suspend_(false),
79 shut_down_(false),
80 thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
81 empty_checkpoint_barrier_(new Barrier(0)) {
82 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
83 }
84
~ThreadList()85 ThreadList::~ThreadList() {
86 CHECK(shut_down_);
87 }
88
ShutDown()89 void ThreadList::ShutDown() {
90 ScopedTrace trace(__PRETTY_FUNCTION__);
91 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
92 // We need to detach the current thread here in case there's another thread waiting to join with
93 // us.
94 bool contains = false;
95 Thread* self = Thread::Current();
96 {
97 MutexLock mu(self, *Locks::thread_list_lock_);
98 contains = Contains(self);
99 }
100 if (contains) {
101 Runtime::Current()->DetachCurrentThread();
102 }
103 WaitForOtherNonDaemonThreadsToExit();
104 // Disable GC and wait for GC to complete in case there are still daemon threads doing
105 // allocations.
106 gc::Heap* const heap = Runtime::Current()->GetHeap();
107 heap->DisableGCForShutdown();
108 // In case a GC is in progress, wait for it to finish.
109 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
110 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
111 // Thread::Init.
112 SuspendAllDaemonThreadsForShutdown();
113
114 shut_down_ = true;
115 }
116
Contains(Thread * thread)117 bool ThreadList::Contains(Thread* thread) {
118 return find(list_.begin(), list_.end(), thread) != list_.end();
119 }
120
GetLockOwner()121 pid_t ThreadList::GetLockOwner() {
122 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
123 }
124
DumpNativeStacks(std::ostream & os)125 void ThreadList::DumpNativeStacks(std::ostream& os) {
126 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
127 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
128 for (const auto& thread : list_) {
129 os << "DUMPING THREAD " << thread->GetTid() << "\n";
130 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
131 os << "\n";
132 }
133 }
134
DumpForSigQuit(std::ostream & os)135 void ThreadList::DumpForSigQuit(std::ostream& os) {
136 {
137 ScopedObjectAccess soa(Thread::Current());
138 // Only print if we have samples.
139 if (suspend_all_historam_.SampleSize() > 0) {
140 Histogram<uint64_t>::CumulativeData data;
141 suspend_all_historam_.CreateHistogram(&data);
142 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
143 }
144 }
145 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
146 Dump(os, dump_native_stack);
147 DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
148 }
149
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)150 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
151 NO_THREAD_SAFETY_ANALYSIS {
152 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
153 // refactor DumpState to avoid skipping analysis.
154 Thread::DumpState(os, nullptr, tid);
155 if (dump_native_stack) {
156 DumpNativeStack(os, tid, nullptr, " native: ");
157 }
158 os << std::endl;
159 }
160
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)161 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
162 DIR* d = opendir("/proc/self/task");
163 if (!d) {
164 return;
165 }
166
167 Thread* self = Thread::Current();
168 dirent* e;
169 while ((e = readdir(d)) != nullptr) {
170 char* end;
171 pid_t tid = strtol(e->d_name, &end, 10);
172 if (!*end) {
173 Thread* thread;
174 {
175 MutexLock mu(self, *Locks::thread_list_lock_);
176 thread = FindThreadByTid(tid);
177 }
178 if (thread == nullptr) {
179 DumpUnattachedThread(os, tid, dump_native_stack);
180 }
181 }
182 }
183 closedir(d);
184 }
185
186 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
187 // overloaded with ANR dumps.
188 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
189
190 // A closure used by Thread::Dump.
191 class DumpCheckpoint final : public Closure {
192 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)193 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
194 : os_(os),
195 // Avoid verifying count in case a thread doesn't end up passing through the barrier.
196 // This avoids a SIGABRT that would otherwise happen in the destructor.
197 barrier_(0, /*verify_count_on_shutdown=*/false),
198 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
199 dump_native_stack_(dump_native_stack) {
200 if (backtrace_map_ != nullptr) {
201 backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
202 }
203 }
204
Run(Thread * thread)205 void Run(Thread* thread) override {
206 // Note thread and self may not be equal if thread was already suspended at the point of the
207 // request.
208 Thread* self = Thread::Current();
209 CHECK(self != nullptr);
210 std::ostringstream local_os;
211 {
212 ScopedObjectAccess soa(self);
213 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
214 }
215 {
216 // Use the logging lock to ensure serialization when writing to the common ostream.
217 MutexLock mu(self, *Locks::logging_lock_);
218 *os_ << local_os.str() << std::endl;
219 }
220 barrier_.Pass(self);
221 }
222
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)223 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
224 Thread* self = Thread::Current();
225 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
226 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
227 if (timed_out) {
228 // Avoid a recursive abort.
229 LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
230 << "Unexpected time out during dump checkpoint.";
231 }
232 }
233
234 private:
235 // The common stream that will accumulate all the dumps.
236 std::ostream* const os_;
237 // The barrier to be passed through and for the requestor to wait upon.
238 Barrier barrier_;
239 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
240 std::unique_ptr<BacktraceMap> backtrace_map_;
241 // Whether we should dump the native stack.
242 const bool dump_native_stack_;
243 };
244
Dump(std::ostream & os,bool dump_native_stack)245 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
246 Thread* self = Thread::Current();
247 {
248 MutexLock mu(self, *Locks::thread_list_lock_);
249 os << "DALVIK THREADS (" << list_.size() << "):\n";
250 }
251 if (self != nullptr) {
252 DumpCheckpoint checkpoint(&os, dump_native_stack);
253 size_t threads_running_checkpoint;
254 {
255 // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
256 ScopedObjectAccess soa(self);
257 threads_running_checkpoint = RunCheckpoint(&checkpoint);
258 }
259 if (threads_running_checkpoint != 0) {
260 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
261 }
262 } else {
263 DumpUnattachedThreads(os, dump_native_stack);
264 }
265 }
266
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)267 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
268 MutexLock mu(self, *Locks::thread_list_lock_);
269 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
270 for (const auto& thread : list_) {
271 if (thread != ignore1 && thread != ignore2) {
272 CHECK(thread->IsSuspended())
273 << "\nUnsuspended thread: <<" << *thread << "\n"
274 << "self: <<" << *Thread::Current();
275 }
276 }
277 }
278
279 #if HAVE_TIMED_RWLOCK
280 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()281 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
282 // Increment gAborting before doing the thread list dump since we don't want any failures from
283 // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
284 // See b/69044468.
285 ++gAborting;
286 Runtime* runtime = Runtime::Current();
287 std::ostringstream ss;
288 ss << "Thread suspend timeout\n";
289 Locks::mutator_lock_->Dump(ss);
290 ss << "\n";
291 runtime->GetThreadList()->Dump(ss);
292 --gAborting;
293 LOG(FATAL) << ss.str();
294 exit(0);
295 }
296 #endif
297
298 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
299 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
300 // we use sched_yield instead of calling usleep.
301 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
302 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)303 static void ThreadSuspendSleep(useconds_t delay_us) {
304 if (delay_us == 0) {
305 sched_yield();
306 } else {
307 usleep(delay_us);
308 }
309 }
310
RunCheckpoint(Closure * checkpoint_function,Closure * callback)311 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
312 Thread* self = Thread::Current();
313 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
314 Locks::thread_list_lock_->AssertNotHeld(self);
315 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
316
317 std::vector<Thread*> suspended_count_modified_threads;
318 size_t count = 0;
319 {
320 // Call a checkpoint function for each thread, threads which are suspended get their checkpoint
321 // manually called.
322 MutexLock mu(self, *Locks::thread_list_lock_);
323 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
324 count = list_.size();
325 for (const auto& thread : list_) {
326 if (thread != self) {
327 bool requested_suspend = false;
328 while (true) {
329 if (thread->RequestCheckpoint(checkpoint_function)) {
330 // This thread will run its checkpoint some time in the near future.
331 if (requested_suspend) {
332 // The suspend request is now unnecessary.
333 bool updated =
334 thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
335 DCHECK(updated);
336 requested_suspend = false;
337 }
338 break;
339 } else {
340 // The thread is probably suspended, try to make sure that it stays suspended.
341 if (thread->GetState() == ThreadState::kRunnable) {
342 // Spurious fail, try again.
343 continue;
344 }
345 if (!requested_suspend) {
346 bool updated =
347 thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
348 DCHECK(updated);
349 requested_suspend = true;
350 if (thread->IsSuspended()) {
351 break;
352 }
353 // The thread raced us to become Runnable. Try to RequestCheckpoint() again.
354 } else {
355 // The thread previously raced our suspend request to become Runnable but
356 // since it is suspended again, it must honor that suspend request now.
357 DCHECK(thread->IsSuspended());
358 break;
359 }
360 }
361 }
362 if (requested_suspend) {
363 suspended_count_modified_threads.push_back(thread);
364 }
365 }
366 }
367 // Run the callback to be called inside this critical section.
368 if (callback != nullptr) {
369 callback->Run(self);
370 }
371 }
372
373 // Run the checkpoint on ourself while we wait for threads to suspend.
374 checkpoint_function->Run(self);
375
376 // Run the checkpoint on the suspended threads.
377 for (const auto& thread : suspended_count_modified_threads) {
378 // We know for sure that the thread is suspended at this point.
379 DCHECK(thread->IsSuspended());
380 checkpoint_function->Run(thread);
381 {
382 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
383 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
384 DCHECK(updated);
385 }
386 }
387
388 {
389 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
390 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
391 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
392 Thread::resume_cond_->Broadcast(self);
393 }
394
395 return count;
396 }
397
RunEmptyCheckpoint()398 void ThreadList::RunEmptyCheckpoint() {
399 Thread* self = Thread::Current();
400 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
401 Locks::thread_list_lock_->AssertNotHeld(self);
402 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
403 std::vector<uint32_t> runnable_thread_ids;
404 size_t count = 0;
405 Barrier* barrier = empty_checkpoint_barrier_.get();
406 barrier->Init(self, 0);
407 {
408 MutexLock mu(self, *Locks::thread_list_lock_);
409 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
410 for (Thread* thread : list_) {
411 if (thread != self) {
412 while (true) {
413 if (thread->RequestEmptyCheckpoint()) {
414 // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
415 // some time in the near future.
416 ++count;
417 if (kIsDebugBuild) {
418 runnable_thread_ids.push_back(thread->GetThreadId());
419 }
420 break;
421 }
422 if (thread->GetState() != ThreadState::kRunnable) {
423 // It's seen suspended, we are done because it must not be in the middle of a mutator
424 // heap access.
425 break;
426 }
427 }
428 }
429 }
430 }
431
432 // Wake up the threads blocking for weak ref access so that they will respond to the empty
433 // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
434 Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
435 Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
436 {
437 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
438 uint64_t total_wait_time = 0;
439 bool first_iter = true;
440 while (true) {
441 // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
442 // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
443 // and a mutex.) This needs to be done periodically because the thread may be preempted
444 // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
445 // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
446 // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
447 // handled in the first iteration.
448 for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
449 mutex->WakeupToRespondToEmptyCheckpoint();
450 }
451 static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
452 static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
453 size_t barrier_count = first_iter ? count : 0;
454 first_iter = false; // Don't add to the barrier count from the second iteration on.
455 bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
456 if (!timed_out) {
457 break; // Success
458 }
459 // This is a very rare case.
460 total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
461 if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
462 std::ostringstream ss;
463 ss << "Empty checkpoint timeout\n";
464 ss << "Barrier count " << barrier->GetCount(self) << "\n";
465 ss << "Runnable thread IDs";
466 for (uint32_t tid : runnable_thread_ids) {
467 ss << " " << tid;
468 }
469 ss << "\n";
470 Locks::mutator_lock_->Dump(ss);
471 ss << "\n";
472 LOG(FATAL_WITHOUT_ABORT) << ss.str();
473 // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
474 // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
475 {
476 ScopedObjectAccess soa(self);
477 MutexLock mu1(self, *Locks::thread_list_lock_);
478 for (Thread* thread : GetList()) {
479 uint32_t tid = thread->GetThreadId();
480 bool is_in_runnable_thread_ids =
481 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
482 runnable_thread_ids.end();
483 if (is_in_runnable_thread_ids &&
484 thread->ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
485 // Found a runnable thread that hasn't responded to the empty checkpoint request.
486 // Assume it's stuck and safe to dump its stack.
487 thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
488 /*dump_native_stack=*/ true,
489 /*backtrace_map=*/ nullptr,
490 /*force_dump_stack=*/ true);
491 }
492 }
493 }
494 LOG(FATAL_WITHOUT_ABORT)
495 << "Dumped runnable threads that haven't responded to empty checkpoint.";
496 // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
497 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
498 LOG(FATAL) << "Dumped all threads.";
499 }
500 }
501 }
502 }
503
504 // A checkpoint/suspend-all hybrid to switch thread roots from
505 // from-space to to-space refs. Used to synchronize threads at a point
506 // to mark the initiation of marking while maintaining the to-space
507 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)508 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
509 Closure* flip_callback,
510 gc::collector::GarbageCollector* collector,
511 gc::GcPauseListener* pause_listener) {
512 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
513 Thread* self = Thread::Current();
514 Locks::mutator_lock_->AssertNotHeld(self);
515 Locks::thread_list_lock_->AssertNotHeld(self);
516 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
517 CHECK_NE(self->GetState(), ThreadState::kRunnable);
518
519 collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
520
521 // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
522 // pause.
523 const uint64_t suspend_start_time = NanoTime();
524 SuspendAllInternal(self, self, nullptr);
525 if (pause_listener != nullptr) {
526 pause_listener->StartPause();
527 }
528
529 // Run the flip callback for the collector.
530 Locks::mutator_lock_->ExclusiveLock(self);
531 suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
532 flip_callback->Run(self);
533 Locks::mutator_lock_->ExclusiveUnlock(self);
534 collector->RegisterPause(NanoTime() - suspend_start_time);
535 if (pause_listener != nullptr) {
536 pause_listener->EndPause();
537 }
538
539 // Resume runnable threads.
540 size_t runnable_thread_count = 0;
541 std::vector<Thread*> other_threads;
542 {
543 TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
544 MutexLock mu(self, *Locks::thread_list_lock_);
545 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
546 --suspend_all_count_;
547 for (Thread* thread : list_) {
548 // Set the flip function for all threads because once we start resuming any threads,
549 // they may need to run the flip function on behalf of other threads, even this one.
550 thread->SetFlipFunction(thread_flip_visitor);
551 if (thread == self) {
552 continue;
553 }
554 // Resume early the threads that were runnable but are suspended just for this thread flip or
555 // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
556 // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
557 // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
558 ThreadState state = thread->GetState();
559 if ((state == ThreadState::kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
560 thread->GetSuspendCount() == 1) {
561 // The thread will resume right after the broadcast.
562 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
563 DCHECK(updated);
564 ++runnable_thread_count;
565 } else {
566 other_threads.push_back(thread);
567 }
568 }
569 Thread::resume_cond_->Broadcast(self);
570 }
571
572 collector->GetHeap()->ThreadFlipEnd(self);
573
574 // Try to run the closure on the other threads.
575 {
576 TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
577 ReaderMutexLock mu(self, *Locks::mutator_lock_);
578 for (Thread* thread : other_threads) {
579 thread->EnsureFlipFunctionStarted(self);
580 DCHECK(!thread->ReadFlag(ThreadFlag::kPendingFlipFunction));
581 }
582 // Try to run the flip function for self.
583 self->EnsureFlipFunctionStarted(self);
584 DCHECK(!self->ReadFlag(ThreadFlag::kPendingFlipFunction));
585 }
586
587 // Resume other threads.
588 {
589 TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
590 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
591 for (const auto& thread : other_threads) {
592 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
593 DCHECK(updated);
594 }
595 Thread::resume_cond_->Broadcast(self);
596 }
597
598 return runnable_thread_count + other_threads.size() + 1; // +1 for self.
599 }
600
SuspendAll(const char * cause,bool long_suspend)601 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
602 Thread* self = Thread::Current();
603
604 if (self != nullptr) {
605 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
606 } else {
607 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
608 }
609 {
610 ScopedTrace trace("Suspending mutator threads");
611 const uint64_t start_time = NanoTime();
612
613 SuspendAllInternal(self, self);
614 // All threads are known to have suspended (but a thread may still own the mutator lock)
615 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
616 #if HAVE_TIMED_RWLOCK
617 while (true) {
618 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
619 NsToMs(thread_suspend_timeout_ns_),
620 0)) {
621 break;
622 } else if (!long_suspend_) {
623 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
624 // could result in a thread suspend timeout.
625 // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
626 UnsafeLogFatalForThreadSuspendAllTimeout();
627 }
628 }
629 #else
630 Locks::mutator_lock_->ExclusiveLock(self);
631 #endif
632
633 long_suspend_ = long_suspend;
634
635 const uint64_t end_time = NanoTime();
636 const uint64_t suspend_time = end_time - start_time;
637 suspend_all_historam_.AdjustAndAddValue(suspend_time);
638 if (suspend_time > kLongThreadSuspendThreshold) {
639 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
640 }
641
642 if (kDebugLocking) {
643 // Debug check that all threads are suspended.
644 AssertThreadsAreSuspended(self, self);
645 }
646 }
647 ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
648
649 if (self != nullptr) {
650 VLOG(threads) << *self << " SuspendAll complete";
651 } else {
652 VLOG(threads) << "Thread[null] SuspendAll complete";
653 }
654 }
655
656 // Ensures all threads running Java suspend and that those not running Java don't start.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)657 void ThreadList::SuspendAllInternal(Thread* self,
658 Thread* ignore1,
659 Thread* ignore2,
660 SuspendReason reason) {
661 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
662 Locks::thread_list_lock_->AssertNotHeld(self);
663 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
664 if (kDebugLocking && self != nullptr) {
665 CHECK_NE(self->GetState(), ThreadState::kRunnable);
666 }
667
668 // First request that all threads suspend, then wait for them to suspend before
669 // returning. This suspension scheme also relies on other behaviour:
670 // 1. Threads cannot be deleted while they are suspended or have a suspend-
671 // request flag set - (see Unregister() below).
672 // 2. When threads are created, they are created in a suspended state (actually
673 // kNative) and will never begin executing Java code without first checking
674 // the suspend-request flag.
675
676 // The atomic counter for number of threads that need to pass the barrier.
677 AtomicInteger pending_threads;
678 uint32_t num_ignored = 0;
679 if (ignore1 != nullptr) {
680 ++num_ignored;
681 }
682 if (ignore2 != nullptr && ignore1 != ignore2) {
683 ++num_ignored;
684 }
685 {
686 MutexLock mu(self, *Locks::thread_list_lock_);
687 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
688 // Update global suspend all state for attaching threads.
689 ++suspend_all_count_;
690 pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
691 // Increment everybody's suspend count (except those that should be ignored).
692 for (const auto& thread : list_) {
693 if (thread == ignore1 || thread == ignore2) {
694 continue;
695 }
696 VLOG(threads) << "requesting thread suspend: " << *thread;
697 bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
698 DCHECK(updated);
699
700 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
701 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
702 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
703 if (thread->IsSuspended()) {
704 // Only clear the counter for the current thread.
705 thread->ClearSuspendBarrier(&pending_threads);
706 pending_threads.fetch_sub(1, std::memory_order_seq_cst);
707 }
708 }
709 }
710
711 // Wait for the barrier to be passed by all runnable threads. This wait
712 // is done with a timeout so that we can detect problems.
713 #if ART_USE_FUTEXES
714 timespec wait_timeout;
715 InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
716 #endif
717 const uint64_t start_time = NanoTime();
718 while (true) {
719 int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
720 if (LIKELY(cur_val > 0)) {
721 #if ART_USE_FUTEXES
722 if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
723 != 0) {
724 if ((errno == EAGAIN) || (errno == EINTR)) {
725 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
726 continue;
727 }
728 if (errno == ETIMEDOUT) {
729 const uint64_t wait_time = NanoTime() - start_time;
730 MutexLock mu(self, *Locks::thread_list_lock_);
731 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
732 std::ostringstream oss;
733 for (const auto& thread : list_) {
734 if (thread == ignore1 || thread == ignore2) {
735 continue;
736 }
737 if (!thread->IsSuspended()) {
738 oss << std::endl << "Thread not suspended: " << *thread;
739 }
740 }
741 LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
742 << "Timed out waiting for threads to suspend, waited for "
743 << PrettyDuration(wait_time)
744 << oss.str();
745 } else {
746 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
747 }
748 } // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
749 #else
750 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
751 UNUSED(start_time);
752 #endif
753 } else {
754 CHECK_EQ(cur_val, 0);
755 break;
756 }
757 }
758 }
759
ResumeAll()760 void ThreadList::ResumeAll() {
761 Thread* self = Thread::Current();
762
763 if (self != nullptr) {
764 VLOG(threads) << *self << " ResumeAll starting";
765 } else {
766 VLOG(threads) << "Thread[null] ResumeAll starting";
767 }
768
769 ATraceEnd();
770
771 ScopedTrace trace("Resuming mutator threads");
772
773 if (kDebugLocking) {
774 // Debug check that all threads are suspended.
775 AssertThreadsAreSuspended(self, self);
776 }
777
778 long_suspend_ = false;
779
780 Locks::mutator_lock_->ExclusiveUnlock(self);
781 {
782 MutexLock mu(self, *Locks::thread_list_lock_);
783 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
784 // Update global suspend all state for attaching threads.
785 --suspend_all_count_;
786 // Decrement the suspend counts for all threads.
787 for (const auto& thread : list_) {
788 if (thread == self) {
789 continue;
790 }
791 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
792 DCHECK(updated);
793 }
794
795 // Broadcast a notification to all suspended threads, some or all of
796 // which may choose to wake up. No need to wait for them.
797 if (self != nullptr) {
798 VLOG(threads) << *self << " ResumeAll waking others";
799 } else {
800 VLOG(threads) << "Thread[null] ResumeAll waking others";
801 }
802 Thread::resume_cond_->Broadcast(self);
803 }
804
805 if (self != nullptr) {
806 VLOG(threads) << *self << " ResumeAll complete";
807 } else {
808 VLOG(threads) << "Thread[null] ResumeAll complete";
809 }
810 }
811
Resume(Thread * thread,SuspendReason reason)812 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
813 // This assumes there was an ATraceBegin when we suspended the thread.
814 ATraceEnd();
815
816 Thread* self = Thread::Current();
817 DCHECK_NE(thread, self);
818 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
819
820 {
821 // To check Contains.
822 MutexLock mu(self, *Locks::thread_list_lock_);
823 // To check IsSuspended.
824 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
825 if (UNLIKELY(!thread->IsSuspended())) {
826 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
827 << ") thread not suspended";
828 return false;
829 }
830 if (!Contains(thread)) {
831 // We only expect threads within the thread-list to have been suspended otherwise we can't
832 // stop such threads from delete-ing themselves.
833 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
834 << ") thread not within thread list";
835 return false;
836 }
837 if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
838 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
839 << ") could not modify suspend count.";
840 return false;
841 }
842 }
843
844 {
845 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
846 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
847 Thread::resume_cond_->Broadcast(self);
848 }
849
850 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
851 return true;
852 }
853
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)854 static void ThreadSuspendByPeerWarning(Thread* self,
855 LogSeverity severity,
856 const char* message,
857 jobject peer) {
858 JNIEnvExt* env = self->GetJniEnv();
859 ScopedLocalRef<jstring>
860 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
861 peer, WellKnownClasses::java_lang_Thread_name)));
862 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
863 if (scoped_name_chars.c_str() == nullptr) {
864 LOG(severity) << message << ": " << peer;
865 env->ExceptionClear();
866 } else {
867 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
868 }
869 }
870
SuspendThreadByPeer(jobject peer,SuspendReason reason,bool * timed_out)871 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
872 SuspendReason reason,
873 bool* timed_out) {
874 bool request_suspension = true;
875 const uint64_t start_time = NanoTime();
876 int self_suspend_count = 0;
877 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
878 *timed_out = false;
879 Thread* const self = Thread::Current();
880 Thread* suspended_thread = nullptr;
881 VLOG(threads) << "SuspendThreadByPeer starting";
882 while (true) {
883 Thread* thread;
884 {
885 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
886 // is requesting another suspend, to avoid deadlock, by requiring this function be called
887 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
888 // than request thread suspension, to avoid potential cycles in threads requesting each other
889 // suspend.
890 ScopedObjectAccess soa(self);
891 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
892 thread = Thread::FromManagedThread(soa, peer);
893 if (thread == nullptr) {
894 if (suspended_thread != nullptr) {
895 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
896 // If we incremented the suspend count but the thread reset its peer, we need to
897 // re-decrement it since it is shutting down and may deadlock the runtime in
898 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
899 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
900 -1,
901 nullptr,
902 reason);
903 DCHECK(updated);
904 }
905 ThreadSuspendByPeerWarning(self,
906 ::android::base::WARNING,
907 "No such thread for suspend",
908 peer);
909 return nullptr;
910 }
911 if (!Contains(thread)) {
912 CHECK(suspended_thread == nullptr);
913 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
914 << reinterpret_cast<void*>(thread);
915 return nullptr;
916 }
917 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
918 {
919 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
920 if (request_suspension) {
921 if (self->GetSuspendCount() > 0) {
922 // We hold the suspend count lock but another thread is trying to suspend us. Its not
923 // safe to try to suspend another thread in case we get a cycle. Start the loop again
924 // which will allow this thread to be suspended.
925 ++self_suspend_count;
926 continue;
927 }
928 CHECK(suspended_thread == nullptr);
929 suspended_thread = thread;
930 bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
931 DCHECK(updated);
932 request_suspension = false;
933 } else {
934 // If the caller isn't requesting suspension, a suspension should have already occurred.
935 CHECK_GT(thread->GetSuspendCount(), 0);
936 }
937 // IsSuspended on the current thread will fail as the current thread is changed into
938 // Runnable above. As the suspend count is now raised if this is the current thread
939 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
940 // to just explicitly handle the current thread in the callers to this code.
941 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
942 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
943 // count, or else we've waited and it has self suspended) or is the current thread, we're
944 // done.
945 if (thread->IsSuspended()) {
946 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
947 if (ATraceEnabled()) {
948 std::string name;
949 thread->GetThreadName(name);
950 ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
951 peer).c_str());
952 }
953 return thread;
954 }
955 const uint64_t total_delay = NanoTime() - start_time;
956 if (total_delay >= thread_suspend_timeout_ns_) {
957 if (suspended_thread == nullptr) {
958 ThreadSuspendByPeerWarning(self,
959 ::android::base::FATAL,
960 "Failed to issue suspend request",
961 peer);
962 } else {
963 CHECK_EQ(suspended_thread, thread);
964 LOG(WARNING) << "Suspended thread state_and_flags: "
965 << suspended_thread->StateAndFlagsAsHexString()
966 << ", self_suspend_count = " << self_suspend_count;
967 // Explicitly release thread_suspend_count_lock_; we haven't held it for long, so
968 // seeing threads blocked on it is not informative.
969 Locks::thread_suspend_count_lock_->Unlock(self);
970 ThreadSuspendByPeerWarning(self,
971 ::android::base::FATAL,
972 "Thread suspension timed out",
973 peer);
974 }
975 UNREACHABLE();
976 } else if (sleep_us == 0 &&
977 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
978 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
979 // excessive CPU usage.
980 sleep_us = kThreadSuspendMaxYieldUs / 2;
981 }
982 }
983 // Release locks and come out of runnable state.
984 }
985 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
986 ThreadSuspendSleep(sleep_us);
987 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
988 // all if possible. This shouldn't be an issue since time to suspend should always be small.
989 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
990 }
991 }
992
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)993 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
994 const char* message,
995 uint32_t thread_id) {
996 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
997 }
998
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)999 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
1000 SuspendReason reason,
1001 bool* timed_out) {
1002 const uint64_t start_time = NanoTime();
1003 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1004 *timed_out = false;
1005 Thread* suspended_thread = nullptr;
1006 Thread* const self = Thread::Current();
1007 CHECK_NE(thread_id, kInvalidThreadId);
1008 VLOG(threads) << "SuspendThreadByThreadId starting";
1009 while (true) {
1010 {
1011 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1012 // is requesting another suspend, to avoid deadlock, by requiring this function be called
1013 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1014 // than request thread suspension, to avoid potential cycles in threads requesting each other
1015 // suspend.
1016 ScopedObjectAccess soa(self);
1017 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1018 Thread* thread = nullptr;
1019 for (const auto& it : list_) {
1020 if (it->GetThreadId() == thread_id) {
1021 thread = it;
1022 break;
1023 }
1024 }
1025 if (thread == nullptr) {
1026 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1027 << " no longer in thread list";
1028 // There's a race in inflating a lock and the owner giving up ownership and then dying.
1029 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1030 "No such thread id for suspend",
1031 thread_id);
1032 return nullptr;
1033 }
1034 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1035 DCHECK(Contains(thread));
1036 {
1037 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1038 if (suspended_thread == nullptr) {
1039 if (self->GetSuspendCount() > 0) {
1040 // We hold the suspend count lock but another thread is trying to suspend us. Its not
1041 // safe to try to suspend another thread in case we get a cycle. Start the loop again
1042 // which will allow this thread to be suspended.
1043 continue;
1044 }
1045 bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1046 DCHECK(updated);
1047 suspended_thread = thread;
1048 } else {
1049 CHECK_EQ(suspended_thread, thread);
1050 // If the caller isn't requesting suspension, a suspension should have already occurred.
1051 CHECK_GT(thread->GetSuspendCount(), 0);
1052 }
1053 // IsSuspended on the current thread will fail as the current thread is changed into
1054 // Runnable above. As the suspend count is now raised if this is the current thread
1055 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1056 // to just explicitly handle the current thread in the callers to this code.
1057 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1058 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1059 // count, or else we've waited and it has self suspended) or is the current thread, we're
1060 // done.
1061 if (thread->IsSuspended()) {
1062 if (ATraceEnabled()) {
1063 std::string name;
1064 thread->GetThreadName(name);
1065 ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1066 name.c_str(), thread_id).c_str());
1067 }
1068 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1069 return thread;
1070 }
1071 const uint64_t total_delay = NanoTime() - start_time;
1072 if (total_delay >= thread_suspend_timeout_ns_) {
1073 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1074 "Thread suspension timed out",
1075 thread_id);
1076 if (suspended_thread != nullptr) {
1077 bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1078 DCHECK(updated);
1079 }
1080 *timed_out = true;
1081 return nullptr;
1082 } else if (sleep_us == 0 &&
1083 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1084 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1085 // excessive CPU usage.
1086 sleep_us = kThreadSuspendMaxYieldUs / 2;
1087 }
1088 }
1089 // Release locks and come out of runnable state.
1090 }
1091 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1092 ThreadSuspendSleep(sleep_us);
1093 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1094 }
1095 }
1096
FindThreadByThreadId(uint32_t thread_id)1097 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1098 for (const auto& thread : list_) {
1099 if (thread->GetThreadId() == thread_id) {
1100 return thread;
1101 }
1102 }
1103 return nullptr;
1104 }
1105
FindThreadByTid(int tid)1106 Thread* ThreadList::FindThreadByTid(int tid) {
1107 for (const auto& thread : list_) {
1108 if (thread->GetTid() == tid) {
1109 return thread;
1110 }
1111 }
1112 return nullptr;
1113 }
1114
WaitForOtherNonDaemonThreadsToExit(bool check_no_birth)1115 void ThreadList::WaitForOtherNonDaemonThreadsToExit(bool check_no_birth) {
1116 ScopedTrace trace(__PRETTY_FUNCTION__);
1117 Thread* self = Thread::Current();
1118 Locks::mutator_lock_->AssertNotHeld(self);
1119 while (true) {
1120 Locks::runtime_shutdown_lock_->Lock(self);
1121 if (check_no_birth) {
1122 // No more threads can be born after we start to shutdown.
1123 CHECK(Runtime::Current()->IsShuttingDownLocked());
1124 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1125 } else {
1126 if (Runtime::Current()->NumberOfThreadsBeingBorn() != 0U) {
1127 // Awkward. Shutdown_cond_ is private, but the only live thread may not be registered yet.
1128 // Fortunately, this is used mostly for testing, and not performance-critical.
1129 Locks::runtime_shutdown_lock_->Unlock(self);
1130 usleep(1000);
1131 continue;
1132 }
1133 }
1134 MutexLock mu(self, *Locks::thread_list_lock_);
1135 Locks::runtime_shutdown_lock_->Unlock(self);
1136 // Also wait for any threads that are unregistering to finish. This is required so that no
1137 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1138 // threads since they could unregister at the wrong time.
1139 bool done = unregistering_count_ == 0;
1140 if (done) {
1141 for (const auto& thread : list_) {
1142 if (thread != self && !thread->IsDaemon()) {
1143 done = false;
1144 break;
1145 }
1146 }
1147 }
1148 if (done) {
1149 break;
1150 }
1151 // Wait for another thread to exit before re-checking.
1152 Locks::thread_exit_cond_->Wait(self);
1153 }
1154 }
1155
SuspendAllDaemonThreadsForShutdown()1156 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1157 ScopedTrace trace(__PRETTY_FUNCTION__);
1158 Thread* self = Thread::Current();
1159 size_t daemons_left = 0;
1160 {
1161 // Tell all the daemons it's time to suspend.
1162 MutexLock mu(self, *Locks::thread_list_lock_);
1163 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1164 for (const auto& thread : list_) {
1165 // This is only run after all non-daemon threads have exited, so the remainder should all be
1166 // daemons.
1167 CHECK(thread->IsDaemon()) << *thread;
1168 if (thread != self) {
1169 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1170 DCHECK(updated);
1171 ++daemons_left;
1172 }
1173 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1174 // the sleep forever one.
1175 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1176 }
1177 }
1178 if (daemons_left == 0) {
1179 // No threads left; safe to shut down.
1180 return;
1181 }
1182 // There is not a clean way to shut down if we have daemons left. We have no mechanism for
1183 // killing them and reclaiming thread stacks. We also have no mechanism for waiting until they
1184 // have truly finished touching the memory we are about to deallocate. We do the best we can with
1185 // timeouts.
1186 //
1187 // If we have any daemons left, wait until they are (a) suspended and (b) they are not stuck
1188 // in a place where they are about to access runtime state and are not in a runnable state.
1189 // We attempt to do the latter by just waiting long enough for things to
1190 // quiesce. Examples: Monitor code or waking up from a condition variable.
1191 //
1192 // Give the threads a chance to suspend, complaining if they're slow. (a)
1193 bool have_complained = false;
1194 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1195 static constexpr size_t kSleepMicroseconds = 1000;
1196 bool all_suspended = false;
1197 for (size_t i = 0; !all_suspended && i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1198 bool found_running = false;
1199 {
1200 MutexLock mu(self, *Locks::thread_list_lock_);
1201 for (const auto& thread : list_) {
1202 if (thread != self && thread->GetState() == ThreadState::kRunnable) {
1203 if (!have_complained) {
1204 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1205 have_complained = true;
1206 }
1207 found_running = true;
1208 }
1209 }
1210 }
1211 if (found_running) {
1212 // Sleep briefly before checking again. Max total sleep time is kTimeoutMicroseconds.
1213 usleep(kSleepMicroseconds);
1214 } else {
1215 all_suspended = true;
1216 }
1217 }
1218 if (!all_suspended) {
1219 // We can get here if a daemon thread executed a fastnative native call, so that it
1220 // remained in runnable state, and then made a JNI call after we called
1221 // SetFunctionsToRuntimeShutdownFunctions(), causing it to permanently stay in a harmless
1222 // but runnable state. See b/147804269 .
1223 LOG(WARNING) << "timed out suspending all daemon threads";
1224 }
1225 // Assume all threads are either suspended or somehow wedged.
1226 // Wait again for all the now "suspended" threads to actually quiesce. (b)
1227 static constexpr size_t kDaemonSleepTime = 400'000;
1228 usleep(kDaemonSleepTime);
1229 std::list<Thread*> list_copy;
1230 {
1231 MutexLock mu(self, *Locks::thread_list_lock_);
1232 // Half-way through the wait, set the "runtime deleted" flag, causing any newly awoken
1233 // threads to immediately go back to sleep without touching memory. This prevents us from
1234 // touching deallocated memory, but it also prevents mutexes from getting released. Thus we
1235 // only do this once we're reasonably sure that no system mutexes are still held.
1236 for (const auto& thread : list_) {
1237 DCHECK(thread == self || !all_suspended || thread->GetState() != ThreadState::kRunnable);
1238 // In the !all_suspended case, the target is probably sleeping.
1239 thread->GetJniEnv()->SetRuntimeDeleted();
1240 // Possibly contended Mutex acquisitions are unsafe after this.
1241 // Releasing thread_list_lock_ is OK, since it can't block.
1242 }
1243 }
1244 // Finally wait for any threads woken before we set the "runtime deleted" flags to finish
1245 // touching memory.
1246 usleep(kDaemonSleepTime);
1247 #if defined(__has_feature)
1248 #if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
1249 // Sleep a bit longer with -fsanitize=address, since everything is slower.
1250 usleep(2 * kDaemonSleepTime);
1251 #endif
1252 #endif
1253 // At this point no threads should be touching our data structures anymore.
1254 }
1255
Register(Thread * self)1256 void ThreadList::Register(Thread* self) {
1257 DCHECK_EQ(self, Thread::Current());
1258 CHECK(!shut_down_);
1259
1260 if (VLOG_IS_ON(threads)) {
1261 std::ostringstream oss;
1262 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1263 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1264 }
1265
1266 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1267 // SuspendAll requests.
1268 MutexLock mu(self, *Locks::thread_list_lock_);
1269 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1270 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1271 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1272 for (int delta = suspend_all_count_; delta > 0; delta--) {
1273 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1274 DCHECK(updated);
1275 }
1276 CHECK(!Contains(self));
1277 list_.push_back(self);
1278 if (kUseReadBarrier) {
1279 gc::collector::ConcurrentCopying* const cc =
1280 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1281 // Initialize according to the state of the CC collector.
1282 self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1283 if (cc->IsUsingReadBarrierEntrypoints()) {
1284 self->SetReadBarrierEntrypoints();
1285 }
1286 self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1287 }
1288 }
1289
Unregister(Thread * self)1290 void ThreadList::Unregister(Thread* self) {
1291 DCHECK_EQ(self, Thread::Current());
1292 CHECK_NE(self->GetState(), ThreadState::kRunnable);
1293 Locks::mutator_lock_->AssertNotHeld(self);
1294
1295 VLOG(threads) << "ThreadList::Unregister() " << *self;
1296
1297 {
1298 MutexLock mu(self, *Locks::thread_list_lock_);
1299 ++unregistering_count_;
1300 }
1301
1302 // Any time-consuming destruction, plus anything that can call back into managed code or
1303 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1304 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1305 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1306 // list.
1307 self->Destroy();
1308
1309 // If tracing, remember thread id and name before thread exits.
1310 Trace::StoreExitingThreadInfo(self);
1311
1312 uint32_t thin_lock_id = self->GetThreadId();
1313 while (true) {
1314 // Remove and delete the Thread* while holding the thread_list_lock_ and
1315 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1316 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1317 {
1318 MutexLock mu(self, *Locks::thread_list_lock_);
1319 if (!Contains(self)) {
1320 std::string thread_name;
1321 self->GetThreadName(thread_name);
1322 std::ostringstream os;
1323 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1324 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1325 break;
1326 } else {
1327 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1328 if (!self->IsSuspended()) {
1329 list_.remove(self);
1330 break;
1331 }
1332 }
1333 }
1334 // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1335 // This is important if there are realtime threads. b/111277984
1336 usleep(1);
1337 // We failed to remove the thread due to a suspend request, loop and try again.
1338 }
1339 delete self;
1340
1341 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1342 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1343 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1344 ReleaseThreadId(nullptr, thin_lock_id);
1345
1346 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1347 // (It may wish to reattach later.)
1348 #ifdef __BIONIC__
1349 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1350 #else
1351 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1352 Thread::self_tls_ = nullptr;
1353 #endif
1354
1355 // Signal that a thread just detached.
1356 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1357 --unregistering_count_;
1358 Locks::thread_exit_cond_->Broadcast(nullptr);
1359 }
1360
ForEach(void (* callback)(Thread *,void *),void * context)1361 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1362 for (const auto& thread : list_) {
1363 callback(thread, context);
1364 }
1365 }
1366
VisitRootsForSuspendedThreads(RootVisitor * visitor)1367 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1368 Thread* const self = Thread::Current();
1369 std::vector<Thread*> threads_to_visit;
1370
1371 // Tell threads to suspend and copy them into list.
1372 {
1373 MutexLock mu(self, *Locks::thread_list_lock_);
1374 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1375 for (Thread* thread : list_) {
1376 bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1377 DCHECK(suspended);
1378 if (thread == self || thread->IsSuspended()) {
1379 threads_to_visit.push_back(thread);
1380 } else {
1381 bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1382 DCHECK(resumed);
1383 }
1384 }
1385 }
1386
1387 // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1388 // order violations.
1389 for (Thread* thread : threads_to_visit) {
1390 thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1391 }
1392
1393 // Restore suspend counts.
1394 {
1395 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1396 for (Thread* thread : threads_to_visit) {
1397 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1398 DCHECK(updated);
1399 }
1400 }
1401 }
1402
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1403 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1404 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1405 for (const auto& thread : list_) {
1406 thread->VisitRoots(visitor, flags);
1407 }
1408 }
1409
VisitReflectiveTargets(ReflectiveValueVisitor * visitor) const1410 void ThreadList::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) const {
1411 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1412 for (const auto& thread : list_) {
1413 thread->VisitReflectiveTargets(visitor);
1414 }
1415 }
1416
AllocThreadId(Thread * self)1417 uint32_t ThreadList::AllocThreadId(Thread* self) {
1418 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1419 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1420 if (!allocated_ids_[i]) {
1421 allocated_ids_.set(i);
1422 return i + 1; // Zero is reserved to mean "invalid".
1423 }
1424 }
1425 LOG(FATAL) << "Out of internal thread ids";
1426 UNREACHABLE();
1427 }
1428
ReleaseThreadId(Thread * self,uint32_t id)1429 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1430 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1431 --id; // Zero is reserved to mean "invalid".
1432 DCHECK(allocated_ids_[id]) << id;
1433 allocated_ids_.reset(id);
1434 }
1435
ScopedSuspendAll(const char * cause,bool long_suspend)1436 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1437 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1438 }
1439
~ScopedSuspendAll()1440 ScopedSuspendAll::~ScopedSuspendAll() {
1441 Runtime::Current()->GetThreadList()->ResumeAll();
1442 }
1443
1444 } // namespace art
1445