1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 *
27 * Modifications: Added PACKET_MMAP support
28 * Paolo Abeni <paolo.abeni@email.it>
29 * Added TPACKET_V3 support
30 * Gabor Tatarka <gabor.tatarka@ericsson.com>
31 *
32 * based on previous works of:
33 * Simon Patarin <patarin@cs.unibo.it>
34 * Phil Wood <cpw@lanl.gov>
35 *
36 * Monitor-mode support for mac80211 includes code taken from the iw
37 * command; the copyright notice for that code is
38 *
39 * Copyright (c) 2007, 2008 Johannes Berg
40 * Copyright (c) 2007 Andy Lutomirski
41 * Copyright (c) 2007 Mike Kershaw
42 * Copyright (c) 2008 Gábor Stefanik
43 *
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
62 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
63 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
64 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
65 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 */
69
70
71 #define _GNU_SOURCE
72
73 #ifdef HAVE_CONFIG_H
74 #include <config.h>
75 #endif
76
77 #include <errno.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <unistd.h>
81 #include <fcntl.h>
82 #include <string.h>
83 #include <limits.h>
84 #include <sys/stat.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/utsname.h>
88 #include <sys/mman.h>
89 #include <linux/if.h>
90 #include <linux/if_packet.h>
91 #include <linux/sockios.h>
92 #include <linux/ethtool.h>
93 #include <netinet/in.h>
94 #include <linux/if_ether.h>
95 #include <linux/if_arp.h>
96 #include <poll.h>
97 #include <dirent.h>
98 #include <sys/eventfd.h>
99
100 #include "pcap-int.h"
101 #include "pcap/sll.h"
102 #include "pcap/vlan.h"
103
104 #include "diag-control.h"
105
106 /*
107 * We require TPACKET_V2 support.
108 */
109 #ifndef TPACKET2_HDRLEN
110 #error "Libpcap will only work if TPACKET_V2 is supported; you must build for a 2.6.27 or later kernel"
111 #endif
112
113 /* check for memory mapped access avaibility. We assume every needed
114 * struct is defined if the macro TPACKET_HDRLEN is defined, because it
115 * uses many ring related structs and macros */
116 #ifdef TPACKET3_HDRLEN
117 # define HAVE_TPACKET3
118 #endif /* TPACKET3_HDRLEN */
119
120 /*
121 * Not all compilers that are used to compile code to run on Linux have
122 * these builtins. For example, older versions of GCC don't, and at
123 * least some people are doing cross-builds for MIPS with older versions
124 * of GCC.
125 */
126 #ifndef HAVE___ATOMIC_LOAD_N
127 #define __atomic_load_n(ptr, memory_model) (*(ptr))
128 #endif
129 #ifndef HAVE___ATOMIC_STORE_N
130 #define __atomic_store_n(ptr, val, memory_model) *(ptr) = (val)
131 #endif
132
133 #define packet_mmap_acquire(pkt) \
134 (__atomic_load_n(&pkt->tp_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
135 #define packet_mmap_release(pkt) \
136 (__atomic_store_n(&pkt->tp_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
137 #define packet_mmap_v3_acquire(pkt) \
138 (__atomic_load_n(&pkt->hdr.bh1.block_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
139 #define packet_mmap_v3_release(pkt) \
140 (__atomic_store_n(&pkt->hdr.bh1.block_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
141
142 #include <linux/types.h>
143 #include <linux/filter.h>
144
145 #ifdef HAVE_LINUX_NET_TSTAMP_H
146 #include <linux/net_tstamp.h>
147 #endif
148
149 /*
150 * For checking whether a device is a bonding device.
151 */
152 #include <linux/if_bonding.h>
153
154 /*
155 * Got libnl?
156 */
157 #ifdef HAVE_LIBNL
158 #include <linux/nl80211.h>
159
160 #include <netlink/genl/genl.h>
161 #include <netlink/genl/family.h>
162 #include <netlink/genl/ctrl.h>
163 #include <netlink/msg.h>
164 #include <netlink/attr.h>
165 #endif /* HAVE_LIBNL */
166
167 #ifndef HAVE_SOCKLEN_T
168 typedef int socklen_t;
169 #endif
170
171 #define MAX_LINKHEADER_SIZE 256
172
173 /*
174 * When capturing on all interfaces we use this as the buffer size.
175 * Should be bigger then all MTUs that occur in real life.
176 * 64kB should be enough for now.
177 */
178 #define BIGGER_THAN_ALL_MTUS (64*1024)
179
180 /*
181 * Private data for capturing on Linux PF_PACKET sockets.
182 */
183 struct pcap_linux {
184 long long sysfs_dropped; /* packets reported dropped by /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors */
185 struct pcap_stat stat;
186
187 char *device; /* device name */
188 int filter_in_userland; /* must filter in userland */
189 int blocks_to_filter_in_userland;
190 int must_do_on_close; /* stuff we must do when we close */
191 int timeout; /* timeout for buffering */
192 int cooked; /* using SOCK_DGRAM rather than SOCK_RAW */
193 int ifindex; /* interface index of device we're bound to */
194 int lo_ifindex; /* interface index of the loopback device */
195 int netdown; /* we got an ENETDOWN and haven't resolved it */
196 bpf_u_int32 oldmode; /* mode to restore when turning monitor mode off */
197 char *mondevice; /* mac80211 monitor device we created */
198 u_char *mmapbuf; /* memory-mapped region pointer */
199 size_t mmapbuflen; /* size of region */
200 int vlan_offset; /* offset at which to insert vlan tags; if -1, don't insert */
201 u_int tp_version; /* version of tpacket_hdr for mmaped ring */
202 u_int tp_hdrlen; /* hdrlen of tpacket_hdr for mmaped ring */
203 u_char *oneshot_buffer; /* buffer for copy of packet */
204 int poll_timeout; /* timeout to use in poll() */
205 #ifdef HAVE_TPACKET3
206 unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */
207 int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */
208 #endif
209 int poll_breakloop_fd; /* fd to an eventfd to break from blocking operations */
210 };
211
212 /*
213 * Stuff to do when we close.
214 */
215 #define MUST_CLEAR_RFMON 0x00000001 /* clear rfmon (monitor) mode */
216 #define MUST_DELETE_MONIF 0x00000002 /* delete monitor-mode interface */
217
218 /*
219 * Prototypes for internal functions and methods.
220 */
221 static int get_if_flags(const char *, bpf_u_int32 *, char *);
222 static int is_wifi(const char *);
223 static void map_arphrd_to_dlt(pcap_t *, int, const char *, int);
224 static int pcap_activate_linux(pcap_t *);
225 static int activate_pf_packet(pcap_t *, int);
226 static int setup_mmapped(pcap_t *, int *);
227 static int pcap_can_set_rfmon_linux(pcap_t *);
228 static int pcap_inject_linux(pcap_t *, const void *, int);
229 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
230 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
231 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
232 static int pcap_set_datalink_linux(pcap_t *, int);
233 static void pcap_cleanup_linux(pcap_t *);
234
235 union thdr {
236 struct tpacket2_hdr *h2;
237 #ifdef HAVE_TPACKET3
238 struct tpacket_block_desc *h3;
239 #endif
240 u_char *raw;
241 };
242
243 #define RING_GET_FRAME_AT(h, offset) (((u_char **)h->buffer)[(offset)])
244 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset)
245
246 static void destroy_ring(pcap_t *handle);
247 static int create_ring(pcap_t *handle, int *status);
248 static int prepare_tpacket_socket(pcap_t *handle);
249 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *);
250 #ifdef HAVE_TPACKET3
251 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *);
252 #endif
253 static int pcap_setnonblock_linux(pcap_t *p, int nonblock);
254 static int pcap_getnonblock_linux(pcap_t *p);
255 static void pcap_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
256 const u_char *bytes);
257
258 /*
259 * In pre-3.0 kernels, the tp_vlan_tci field is set to whatever the
260 * vlan_tci field in the skbuff is. 0 can either mean "not on a VLAN"
261 * or "on VLAN 0". There is no flag set in the tp_status field to
262 * distinguish between them.
263 *
264 * In 3.0 and later kernels, if there's a VLAN tag present, the tp_vlan_tci
265 * field is set to the VLAN tag, and the TP_STATUS_VLAN_VALID flag is set
266 * in the tp_status field, otherwise the tp_vlan_tci field is set to 0 and
267 * the TP_STATUS_VLAN_VALID flag isn't set in the tp_status field.
268 *
269 * With a pre-3.0 kernel, we cannot distinguish between packets with no
270 * VLAN tag and packets on VLAN 0, so we will mishandle some packets, and
271 * there's nothing we can do about that.
272 *
273 * So, on those systems, which never set the TP_STATUS_VLAN_VALID flag, we
274 * continue the behavior of earlier libpcaps, wherein we treated packets
275 * with a VLAN tag of 0 as being packets without a VLAN tag rather than packets
276 * on VLAN 0. We do this by treating packets with a tp_vlan_tci of 0 and
277 * with the TP_STATUS_VLAN_VALID flag not set in tp_status as not having
278 * VLAN tags. This does the right thing on 3.0 and later kernels, and
279 * continues the old unfixably-imperfect behavior on pre-3.0 kernels.
280 *
281 * If TP_STATUS_VLAN_VALID isn't defined, we test it as the 0x10 bit; it
282 * has that value in 3.0 and later kernels.
283 */
284 #ifdef TP_STATUS_VLAN_VALID
285 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & TP_STATUS_VLAN_VALID))
286 #else
287 /*
288 * This is being compiled on a system that lacks TP_STATUS_VLAN_VALID,
289 * so we testwith the value it has in the 3.0 and later kernels, so
290 * we can test it if we're running on a system that has it. (If we're
291 * running on a system that doesn't have it, it won't be set in the
292 * tp_status field, so the tests of it will always fail; that means
293 * we behave the way we did before we introduced this macro.)
294 */
295 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & 0x10))
296 #endif
297
298 #ifdef TP_STATUS_VLAN_TPID_VALID
299 # define VLAN_TPID(hdr, hv) (((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q)
300 #else
301 # define VLAN_TPID(hdr, hv) ETH_P_8021Q
302 #endif
303
304 /*
305 * Required select timeout if we're polling for an "interface disappeared"
306 * indication - 1 millisecond.
307 */
308 static const struct timeval netdown_timeout = {
309 0, 1000 /* 1000 microseconds = 1 millisecond */
310 };
311
312 /*
313 * Wrap some ioctl calls
314 */
315 static int iface_get_id(int fd, const char *device, char *ebuf);
316 static int iface_get_mtu(int fd, const char *device, char *ebuf);
317 static int iface_get_arptype(int fd, const char *device, char *ebuf);
318 static int iface_bind(int fd, int ifindex, char *ebuf, int protocol);
319 static int enter_rfmon_mode(pcap_t *handle, int sock_fd,
320 const char *device);
321 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
322 static int iface_ethtool_get_ts_info(const char *device, pcap_t *handle,
323 char *ebuf);
324 #endif
325 static int iface_get_offload(pcap_t *handle);
326
327 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
328 static int fix_offset(pcap_t *handle, struct bpf_insn *p);
329 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
330 static int reset_kernel_filter(pcap_t *handle);
331
332 static struct sock_filter total_insn
333 = BPF_STMT(BPF_RET | BPF_K, 0);
334 static struct sock_fprog total_fcode
335 = { 1, &total_insn };
336
337 static int iface_dsa_get_proto_info(const char *device, pcap_t *handle);
338
339 pcap_t *
pcap_create_interface(const char * device,char * ebuf)340 pcap_create_interface(const char *device, char *ebuf)
341 {
342 pcap_t *handle;
343
344 handle = PCAP_CREATE_COMMON(ebuf, struct pcap_linux);
345 if (handle == NULL)
346 return NULL;
347
348 handle->activate_op = pcap_activate_linux;
349 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
350
351 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
352 /*
353 * See what time stamp types we support.
354 */
355 if (iface_ethtool_get_ts_info(device, handle, ebuf) == -1) {
356 pcap_close(handle);
357 return NULL;
358 }
359 #endif
360
361 /*
362 * We claim that we support microsecond and nanosecond time
363 * stamps.
364 *
365 * XXX - with adapter-supplied time stamps, can we choose
366 * microsecond or nanosecond time stamps on arbitrary
367 * adapters?
368 */
369 handle->tstamp_precision_list = malloc(2 * sizeof(u_int));
370 if (handle->tstamp_precision_list == NULL) {
371 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
372 errno, "malloc");
373 pcap_close(handle);
374 return NULL;
375 }
376 handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO;
377 handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO;
378 handle->tstamp_precision_count = 2;
379
380 struct pcap_linux *handlep = handle->priv;
381 handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK);
382
383 return handle;
384 }
385
386 #ifdef HAVE_LIBNL
387 /*
388 * If interface {if_name} is a mac80211 driver, the file
389 * /sys/class/net/{if_name}/phy80211 is a symlink to
390 * /sys/class/ieee80211/{phydev_name}, for some {phydev_name}.
391 *
392 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
393 * least, has a "wmaster0" device and a "wlan0" device; the
394 * latter is the one with the IP address. Both show up in
395 * "tcpdump -D" output. Capturing on the wmaster0 device
396 * captures with 802.11 headers.
397 *
398 * airmon-ng searches through /sys/class/net for devices named
399 * monN, starting with mon0; as soon as one *doesn't* exist,
400 * it chooses that as the monitor device name. If the "iw"
401 * command exists, it does
402 *
403 * iw dev {if_name} interface add {monif_name} type monitor
404 *
405 * where {monif_name} is the monitor device. It then (sigh) sleeps
406 * .1 second, and then configures the device up. Otherwise, if
407 * /sys/class/ieee80211/{phydev_name}/add_iface is a file, it writes
408 * {mondev_name}, without a newline, to that file, and again (sigh)
409 * sleeps .1 second, and then iwconfig's that device into monitor
410 * mode and configures it up. Otherwise, you can't do monitor mode.
411 *
412 * All these devices are "glued" together by having the
413 * /sys/class/net/{if_name}/phy80211 links pointing to the same
414 * place, so, given a wmaster, wlan, or mon device, you can
415 * find the other devices by looking for devices with
416 * the same phy80211 link.
417 *
418 * To turn monitor mode off, delete the monitor interface,
419 * either with
420 *
421 * iw dev {monif_name} interface del
422 *
423 * or by sending {monif_name}, with no NL, down
424 * /sys/class/ieee80211/{phydev_name}/remove_iface
425 *
426 * Note: if you try to create a monitor device named "monN", and
427 * there's already a "monN" device, it fails, as least with
428 * the netlink interface (which is what iw uses), with a return
429 * value of -ENFILE. (Return values are negative errnos.) We
430 * could probably use that to find an unused device.
431 *
432 * Yes, you can have multiple monitor devices for a given
433 * physical device.
434 */
435
436 /*
437 * Is this a mac80211 device? If so, fill in the physical device path and
438 * return 1; if not, return 0. On an error, fill in handle->errbuf and
439 * return PCAP_ERROR.
440 */
441 static int
get_mac80211_phydev(pcap_t * handle,const char * device,char * phydev_path,size_t phydev_max_pathlen)442 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path,
443 size_t phydev_max_pathlen)
444 {
445 char *pathstr;
446 ssize_t bytes_read;
447
448 /*
449 * Generate the path string for the symlink to the physical device.
450 */
451 if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) {
452 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
453 "%s: Can't generate path name string for /sys/class/net device",
454 device);
455 return PCAP_ERROR;
456 }
457 bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen);
458 if (bytes_read == -1) {
459 if (errno == ENOENT || errno == EINVAL) {
460 /*
461 * Doesn't exist, or not a symlink; assume that
462 * means it's not a mac80211 device.
463 */
464 free(pathstr);
465 return 0;
466 }
467 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
468 errno, "%s: Can't readlink %s", device, pathstr);
469 free(pathstr);
470 return PCAP_ERROR;
471 }
472 free(pathstr);
473 phydev_path[bytes_read] = '\0';
474 return 1;
475 }
476
477 struct nl80211_state {
478 struct nl_sock *nl_sock;
479 struct nl_cache *nl_cache;
480 struct genl_family *nl80211;
481 };
482
483 static int
nl80211_init(pcap_t * handle,struct nl80211_state * state,const char * device)484 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device)
485 {
486 int err;
487
488 state->nl_sock = nl_socket_alloc();
489 if (!state->nl_sock) {
490 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
491 "%s: failed to allocate netlink handle", device);
492 return PCAP_ERROR;
493 }
494
495 if (genl_connect(state->nl_sock)) {
496 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
497 "%s: failed to connect to generic netlink", device);
498 goto out_handle_destroy;
499 }
500
501 err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache);
502 if (err < 0) {
503 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
504 "%s: failed to allocate generic netlink cache: %s",
505 device, nl_geterror(-err));
506 goto out_handle_destroy;
507 }
508
509 state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211");
510 if (!state->nl80211) {
511 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
512 "%s: nl80211 not found", device);
513 goto out_cache_free;
514 }
515
516 return 0;
517
518 out_cache_free:
519 nl_cache_free(state->nl_cache);
520 out_handle_destroy:
521 nl_socket_free(state->nl_sock);
522 return PCAP_ERROR;
523 }
524
525 static void
nl80211_cleanup(struct nl80211_state * state)526 nl80211_cleanup(struct nl80211_state *state)
527 {
528 genl_family_put(state->nl80211);
529 nl_cache_free(state->nl_cache);
530 nl_socket_free(state->nl_sock);
531 }
532
533 static int
534 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
535 const char *device, const char *mondevice);
536
537 static int
add_mon_if(pcap_t * handle,int sock_fd,struct nl80211_state * state,const char * device,const char * mondevice)538 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
539 const char *device, const char *mondevice)
540 {
541 struct pcap_linux *handlep = handle->priv;
542 int ifindex;
543 struct nl_msg *msg;
544 int err;
545
546 ifindex = iface_get_id(sock_fd, device, handle->errbuf);
547 if (ifindex == -1)
548 return PCAP_ERROR;
549
550 msg = nlmsg_alloc();
551 if (!msg) {
552 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
553 "%s: failed to allocate netlink msg", device);
554 return PCAP_ERROR;
555 }
556
557 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
558 0, NL80211_CMD_NEW_INTERFACE, 0);
559 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
560 DIAG_OFF_NARROWING
561 NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice);
562 DIAG_ON_NARROWING
563 NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR);
564
565 err = nl_send_auto_complete(state->nl_sock, msg);
566 if (err < 0) {
567 if (err == -NLE_FAILURE) {
568 /*
569 * Device not available; our caller should just
570 * keep trying. (libnl 2.x maps ENFILE to
571 * NLE_FAILURE; it can also map other errors
572 * to that, but there's not much we can do
573 * about that.)
574 */
575 nlmsg_free(msg);
576 return 0;
577 } else {
578 /*
579 * Real failure, not just "that device is not
580 * available.
581 */
582 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
583 "%s: nl_send_auto_complete failed adding %s interface: %s",
584 device, mondevice, nl_geterror(-err));
585 nlmsg_free(msg);
586 return PCAP_ERROR;
587 }
588 }
589 err = nl_wait_for_ack(state->nl_sock);
590 if (err < 0) {
591 if (err == -NLE_FAILURE) {
592 /*
593 * Device not available; our caller should just
594 * keep trying. (libnl 2.x maps ENFILE to
595 * NLE_FAILURE; it can also map other errors
596 * to that, but there's not much we can do
597 * about that.)
598 */
599 nlmsg_free(msg);
600 return 0;
601 } else {
602 /*
603 * Real failure, not just "that device is not
604 * available.
605 */
606 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
607 "%s: nl_wait_for_ack failed adding %s interface: %s",
608 device, mondevice, nl_geterror(-err));
609 nlmsg_free(msg);
610 return PCAP_ERROR;
611 }
612 }
613
614 /*
615 * Success.
616 */
617 nlmsg_free(msg);
618
619 /*
620 * Try to remember the monitor device.
621 */
622 handlep->mondevice = strdup(mondevice);
623 if (handlep->mondevice == NULL) {
624 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
625 errno, "strdup");
626 /*
627 * Get rid of the monitor device.
628 */
629 del_mon_if(handle, sock_fd, state, device, mondevice);
630 return PCAP_ERROR;
631 }
632 return 1;
633
634 nla_put_failure:
635 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
636 "%s: nl_put failed adding %s interface",
637 device, mondevice);
638 nlmsg_free(msg);
639 return PCAP_ERROR;
640 }
641
642 static int
del_mon_if(pcap_t * handle,int sock_fd,struct nl80211_state * state,const char * device,const char * mondevice)643 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
644 const char *device, const char *mondevice)
645 {
646 int ifindex;
647 struct nl_msg *msg;
648 int err;
649
650 ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf);
651 if (ifindex == -1)
652 return PCAP_ERROR;
653
654 msg = nlmsg_alloc();
655 if (!msg) {
656 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
657 "%s: failed to allocate netlink msg", device);
658 return PCAP_ERROR;
659 }
660
661 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
662 0, NL80211_CMD_DEL_INTERFACE, 0);
663 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
664
665 err = nl_send_auto_complete(state->nl_sock, msg);
666 if (err < 0) {
667 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
668 "%s: nl_send_auto_complete failed deleting %s interface: %s",
669 device, mondevice, nl_geterror(-err));
670 nlmsg_free(msg);
671 return PCAP_ERROR;
672 }
673 err = nl_wait_for_ack(state->nl_sock);
674 if (err < 0) {
675 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
676 "%s: nl_wait_for_ack failed adding %s interface: %s",
677 device, mondevice, nl_geterror(-err));
678 nlmsg_free(msg);
679 return PCAP_ERROR;
680 }
681
682 /*
683 * Success.
684 */
685 nlmsg_free(msg);
686 return 1;
687
688 nla_put_failure:
689 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
690 "%s: nl_put failed deleting %s interface",
691 device, mondevice);
692 nlmsg_free(msg);
693 return PCAP_ERROR;
694 }
695 #endif /* HAVE_LIBNL */
696
pcap_protocol(pcap_t * handle)697 static int pcap_protocol(pcap_t *handle)
698 {
699 int protocol;
700
701 protocol = handle->opt.protocol;
702 if (protocol == 0)
703 protocol = ETH_P_ALL;
704
705 return htons(protocol);
706 }
707
708 static int
pcap_can_set_rfmon_linux(pcap_t * handle)709 pcap_can_set_rfmon_linux(pcap_t *handle)
710 {
711 #ifdef HAVE_LIBNL
712 char phydev_path[PATH_MAX+1];
713 int ret;
714 #endif
715
716 if (strcmp(handle->opt.device, "any") == 0) {
717 /*
718 * Monitor mode makes no sense on the "any" device.
719 */
720 return 0;
721 }
722
723 #ifdef HAVE_LIBNL
724 /*
725 * Bleah. There doesn't seem to be a way to ask a mac80211
726 * device, through libnl, whether it supports monitor mode;
727 * we'll just check whether the device appears to be a
728 * mac80211 device and, if so, assume the device supports
729 * monitor mode.
730 */
731 ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path,
732 PATH_MAX);
733 if (ret < 0)
734 return ret; /* error */
735 if (ret == 1)
736 return 1; /* mac80211 device */
737 #endif
738
739 return 0;
740 }
741
742 /*
743 * Grabs the number of missed packets by the interface from
744 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors.
745 *
746 * Compared to /proc/net/dev this avoids counting software drops,
747 * but may be unimplemented and just return 0.
748 * The author has found no straigthforward way to check for support.
749 */
750 static long long int
linux_get_stat(const char * if_name,const char * stat)751 linux_get_stat(const char * if_name, const char * stat) {
752 ssize_t bytes_read;
753 int fd;
754 char buffer[PATH_MAX];
755
756 snprintf(buffer, sizeof(buffer), "/sys/class/net/%s/statistics/%s", if_name, stat);
757 fd = open(buffer, O_RDONLY);
758 if (fd == -1)
759 return 0;
760
761 bytes_read = read(fd, buffer, sizeof(buffer) - 1);
762 close(fd);
763 if (bytes_read == -1)
764 return 0;
765 buffer[bytes_read] = '\0';
766
767 return strtoll(buffer, NULL, 10);
768 }
769
770 static long long int
linux_if_drops(const char * if_name)771 linux_if_drops(const char * if_name)
772 {
773 long long int missed = linux_get_stat(if_name, "rx_missed_errors");
774 long long int fifo = linux_get_stat(if_name, "rx_fifo_errors");
775 return missed + fifo;
776 }
777
778
779 /*
780 * Monitor mode is kind of interesting because we have to reset the
781 * interface before exiting. The problem can't really be solved without
782 * some daemon taking care of managing usage counts. If we put the
783 * interface into monitor mode, we set a flag indicating that we must
784 * take it out of that mode when the interface is closed, and, when
785 * closing the interface, if that flag is set we take it out of monitor
786 * mode.
787 */
788
pcap_cleanup_linux(pcap_t * handle)789 static void pcap_cleanup_linux( pcap_t *handle )
790 {
791 struct pcap_linux *handlep = handle->priv;
792 #ifdef HAVE_LIBNL
793 struct nl80211_state nlstate;
794 int ret;
795 #endif /* HAVE_LIBNL */
796
797 if (handlep->must_do_on_close != 0) {
798 /*
799 * There's something we have to do when closing this
800 * pcap_t.
801 */
802 #ifdef HAVE_LIBNL
803 if (handlep->must_do_on_close & MUST_DELETE_MONIF) {
804 ret = nl80211_init(handle, &nlstate, handlep->device);
805 if (ret >= 0) {
806 ret = del_mon_if(handle, handle->fd, &nlstate,
807 handlep->device, handlep->mondevice);
808 nl80211_cleanup(&nlstate);
809 }
810 if (ret < 0) {
811 fprintf(stderr,
812 "Can't delete monitor interface %s (%s).\n"
813 "Please delete manually.\n",
814 handlep->mondevice, handle->errbuf);
815 }
816 }
817 #endif /* HAVE_LIBNL */
818
819 /*
820 * Take this pcap out of the list of pcaps for which we
821 * have to take the interface out of some mode.
822 */
823 pcap_remove_from_pcaps_to_close(handle);
824 }
825
826 if (handle->fd != -1) {
827 /*
828 * Destroy the ring buffer (assuming we've set it up),
829 * and unmap it if it's mapped.
830 */
831 destroy_ring(handle);
832 }
833
834 if (handlep->oneshot_buffer != NULL) {
835 free(handlep->oneshot_buffer);
836 handlep->oneshot_buffer = NULL;
837 }
838
839 if (handlep->mondevice != NULL) {
840 free(handlep->mondevice);
841 handlep->mondevice = NULL;
842 }
843 if (handlep->device != NULL) {
844 free(handlep->device);
845 handlep->device = NULL;
846 }
847
848 close(handlep->poll_breakloop_fd);
849 pcap_cleanup_live_common(handle);
850 }
851
852 #ifdef HAVE_TPACKET3
853 /*
854 * Some versions of TPACKET_V3 have annoying bugs/misfeatures
855 * around which we have to work. Determine if we have those
856 * problems or not.
857 * 3.19 is the first release with a fixed version of
858 * TPACKET_V3. We treat anything before that as
859 * not having a fixed version; that may really mean
860 * it has *no* version.
861 */
has_broken_tpacket_v3(void)862 static int has_broken_tpacket_v3(void)
863 {
864 struct utsname utsname;
865 const char *release;
866 long major, minor;
867 int matches, verlen;
868
869 /* No version information, assume broken. */
870 if (uname(&utsname) == -1)
871 return 1;
872 release = utsname.release;
873
874 /* A malformed version, ditto. */
875 matches = sscanf(release, "%ld.%ld%n", &major, &minor, &verlen);
876 if (matches != 2)
877 return 1;
878 if (release[verlen] != '.' && release[verlen] != '\0')
879 return 1;
880
881 /* OK, a fixed version. */
882 if (major > 3 || (major == 3 && minor >= 19))
883 return 0;
884
885 /* Too old :( */
886 return 1;
887 }
888 #endif
889
890 /*
891 * Set the timeout to be used in poll() with memory-mapped packet capture.
892 */
893 static void
set_poll_timeout(struct pcap_linux * handlep)894 set_poll_timeout(struct pcap_linux *handlep)
895 {
896 #ifdef HAVE_TPACKET3
897 int broken_tpacket_v3 = has_broken_tpacket_v3();
898 #endif
899 if (handlep->timeout == 0) {
900 #ifdef HAVE_TPACKET3
901 /*
902 * XXX - due to a set of (mis)features in the TPACKET_V3
903 * kernel code prior to the 3.19 kernel, blocking forever
904 * with a TPACKET_V3 socket can, if few packets are
905 * arriving and passing the socket filter, cause most
906 * packets to be dropped. See libpcap issue #335 for the
907 * full painful story.
908 *
909 * The workaround is to have poll() time out very quickly,
910 * so we grab the frames handed to us, and return them to
911 * the kernel, ASAP.
912 */
913 if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3)
914 handlep->poll_timeout = 1; /* don't block for very long */
915 else
916 #endif
917 handlep->poll_timeout = -1; /* block forever */
918 } else if (handlep->timeout > 0) {
919 #ifdef HAVE_TPACKET3
920 /*
921 * For TPACKET_V3, the timeout is handled by the kernel,
922 * so block forever; that way, we don't get extra timeouts.
923 * Don't do that if we have a broken TPACKET_V3, though.
924 */
925 if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3)
926 handlep->poll_timeout = -1; /* block forever, let TPACKET_V3 wake us up */
927 else
928 #endif
929 handlep->poll_timeout = handlep->timeout; /* block for that amount of time */
930 } else {
931 /*
932 * Non-blocking mode; we call poll() to pick up error
933 * indications, but we don't want it to wait for
934 * anything.
935 */
936 handlep->poll_timeout = 0;
937 }
938 }
939
pcap_breakloop_linux(pcap_t * handle)940 static void pcap_breakloop_linux(pcap_t *handle)
941 {
942 pcap_breakloop_common(handle);
943 struct pcap_linux *handlep = handle->priv;
944
945 uint64_t value = 1;
946 /* XXX - what if this fails? */
947 (void)write(handlep->poll_breakloop_fd, &value, sizeof(value));
948 }
949
950 /*
951 * Get a handle for a live capture from the given device. You can
952 * pass NULL as device to get all packages (without link level
953 * information of course). If you pass 1 as promisc the interface
954 * will be set to promiscuous mode (XXX: I think this usage should
955 * be deprecated and functions be added to select that later allow
956 * modification of that values -- Torsten).
957 */
958 static int
pcap_activate_linux(pcap_t * handle)959 pcap_activate_linux(pcap_t *handle)
960 {
961 struct pcap_linux *handlep = handle->priv;
962 const char *device;
963 int is_any_device;
964 struct ifreq ifr;
965 int status = 0;
966 int status2 = 0;
967 int ret;
968
969 device = handle->opt.device;
970
971 /*
972 * Make sure the name we were handed will fit into the ioctls we
973 * might perform on the device; if not, return a "No such device"
974 * indication, as the Linux kernel shouldn't support creating
975 * a device whose name won't fit into those ioctls.
976 *
977 * "Will fit" means "will fit, complete with a null terminator",
978 * so if the length, which does *not* include the null terminator,
979 * is greater than *or equal to* the size of the field into which
980 * we'll be copying it, that won't fit.
981 */
982 if (strlen(device) >= sizeof(ifr.ifr_name)) {
983 status = PCAP_ERROR_NO_SUCH_DEVICE;
984 goto fail;
985 }
986
987 /*
988 * Turn a negative snapshot value (invalid), a snapshot value of
989 * 0 (unspecified), or a value bigger than the normal maximum
990 * value, into the maximum allowed value.
991 *
992 * If some application really *needs* a bigger snapshot
993 * length, we should just increase MAXIMUM_SNAPLEN.
994 */
995 if (handle->snapshot <= 0 || handle->snapshot > MAXIMUM_SNAPLEN)
996 handle->snapshot = MAXIMUM_SNAPLEN;
997
998 handlep->device = strdup(device);
999 if (handlep->device == NULL) {
1000 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1001 errno, "strdup");
1002 status = PCAP_ERROR;
1003 goto fail;
1004 }
1005
1006 /*
1007 * The "any" device is a special device which causes us not
1008 * to bind to a particular device and thus to look at all
1009 * devices.
1010 */
1011 is_any_device = (strcmp(device, "any") == 0);
1012 if (is_any_device) {
1013 if (handle->opt.promisc) {
1014 handle->opt.promisc = 0;
1015 /* Just a warning. */
1016 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1017 "Promiscuous mode not supported on the \"any\" device");
1018 status = PCAP_WARNING_PROMISC_NOTSUP;
1019 }
1020 }
1021
1022 /* copy timeout value */
1023 handlep->timeout = handle->opt.timeout;
1024
1025 /*
1026 * If we're in promiscuous mode, then we probably want
1027 * to see when the interface drops packets too, so get an
1028 * initial count from
1029 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1030 */
1031 if (handle->opt.promisc)
1032 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1033
1034 /*
1035 * If the "any" device is specified, try to open a SOCK_DGRAM.
1036 * Otherwise, open a SOCK_RAW.
1037 */
1038 ret = activate_pf_packet(handle, is_any_device);
1039 if (ret < 0) {
1040 /*
1041 * Fatal error; the return value is the error code,
1042 * and handle->errbuf has been set to an appropriate
1043 * error message.
1044 */
1045 status = ret;
1046 goto fail;
1047 }
1048 /*
1049 * Success.
1050 * Try to set up memory-mapped access.
1051 */
1052 ret = setup_mmapped(handle, &status);
1053 if (ret == -1) {
1054 /*
1055 * We failed to set up to use it, or the
1056 * kernel supports it, but we failed to
1057 * enable it. status has been set to the
1058 * error status to return and, if it's
1059 * PCAP_ERROR, handle->errbuf contains
1060 * the error message.
1061 */
1062 goto fail;
1063 }
1064
1065 /*
1066 * We succeeded. status has been set to the status to return,
1067 * which might be 0, or might be a PCAP_WARNING_ value.
1068 */
1069 /*
1070 * Now that we have activated the mmap ring, we can
1071 * set the correct protocol.
1072 */
1073 if ((status2 = iface_bind(handle->fd, handlep->ifindex,
1074 handle->errbuf, pcap_protocol(handle))) != 0) {
1075 status = status2;
1076 goto fail;
1077 }
1078
1079 handle->inject_op = pcap_inject_linux;
1080 handle->setfilter_op = pcap_setfilter_linux;
1081 handle->setdirection_op = pcap_setdirection_linux;
1082 handle->set_datalink_op = pcap_set_datalink_linux;
1083 handle->setnonblock_op = pcap_setnonblock_linux;
1084 handle->getnonblock_op = pcap_getnonblock_linux;
1085 handle->cleanup_op = pcap_cleanup_linux;
1086 handle->stats_op = pcap_stats_linux;
1087 handle->breakloop_op = pcap_breakloop_linux;
1088
1089 switch (handlep->tp_version) {
1090
1091 case TPACKET_V2:
1092 handle->read_op = pcap_read_linux_mmap_v2;
1093 break;
1094 #ifdef HAVE_TPACKET3
1095 case TPACKET_V3:
1096 handle->read_op = pcap_read_linux_mmap_v3;
1097 break;
1098 #endif
1099 }
1100 handle->oneshot_callback = pcap_oneshot_linux;
1101 handle->selectable_fd = handle->fd;
1102
1103 return status;
1104
1105 fail:
1106 pcap_cleanup_linux(handle);
1107 return status;
1108 }
1109
1110 static int
pcap_set_datalink_linux(pcap_t * handle,int dlt)1111 pcap_set_datalink_linux(pcap_t *handle, int dlt)
1112 {
1113 handle->linktype = dlt;
1114 return 0;
1115 }
1116
1117 /*
1118 * linux_check_direction()
1119 *
1120 * Do checks based on packet direction.
1121 */
1122 static inline int
linux_check_direction(const pcap_t * handle,const struct sockaddr_ll * sll)1123 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll)
1124 {
1125 struct pcap_linux *handlep = handle->priv;
1126
1127 if (sll->sll_pkttype == PACKET_OUTGOING) {
1128 /*
1129 * Outgoing packet.
1130 * If this is from the loopback device, reject it;
1131 * we'll see the packet as an incoming packet as well,
1132 * and we don't want to see it twice.
1133 */
1134 if (sll->sll_ifindex == handlep->lo_ifindex)
1135 return 0;
1136
1137 /*
1138 * If this is an outgoing CAN or CAN FD frame, and
1139 * the user doesn't only want outgoing packets,
1140 * reject it; CAN devices and drivers, and the CAN
1141 * stack, always arrange to loop back transmitted
1142 * packets, so they also appear as incoming packets.
1143 * We don't want duplicate packets, and we can't
1144 * easily distinguish packets looped back by the CAN
1145 * layer than those received by the CAN layer, so we
1146 * eliminate this packet instead.
1147 */
1148 if ((sll->sll_protocol == LINUX_SLL_P_CAN ||
1149 sll->sll_protocol == LINUX_SLL_P_CANFD) &&
1150 handle->direction != PCAP_D_OUT)
1151 return 0;
1152
1153 /*
1154 * If the user only wants incoming packets, reject it.
1155 */
1156 if (handle->direction == PCAP_D_IN)
1157 return 0;
1158 } else {
1159 /*
1160 * Incoming packet.
1161 * If the user only wants outgoing packets, reject it.
1162 */
1163 if (handle->direction == PCAP_D_OUT)
1164 return 0;
1165 }
1166 return 1;
1167 }
1168
1169 /*
1170 * Check whether the device to which the pcap_t is bound still exists.
1171 * We do so by asking what address the socket is bound to, and checking
1172 * whether the ifindex in the address is -1, meaning "that device is gone",
1173 * or some other value, meaning "that device still exists".
1174 */
1175 static int
device_still_exists(pcap_t * handle)1176 device_still_exists(pcap_t *handle)
1177 {
1178 struct pcap_linux *handlep = handle->priv;
1179 struct sockaddr_ll addr;
1180 socklen_t addr_len;
1181
1182 /*
1183 * If handlep->ifindex is -1, the socket isn't bound, meaning
1184 * we're capturing on the "any" device; that device never
1185 * disappears. (It should also never be configured down, so
1186 * we shouldn't even get here, but let's make sure.)
1187 */
1188 if (handlep->ifindex == -1)
1189 return (1); /* it's still here */
1190
1191 /*
1192 * OK, now try to get the address for the socket.
1193 */
1194 addr_len = sizeof (addr);
1195 if (getsockname(handle->fd, (struct sockaddr *) &addr, &addr_len) == -1) {
1196 /*
1197 * Error - report an error and return -1.
1198 */
1199 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1200 errno, "getsockname failed");
1201 return (-1);
1202 }
1203 if (addr.sll_ifindex == -1) {
1204 /*
1205 * This means the device went away.
1206 */
1207 return (0);
1208 }
1209
1210 /*
1211 * The device presumably just went down.
1212 */
1213 return (1);
1214 }
1215
1216 static int
pcap_inject_linux(pcap_t * handle,const void * buf,int size)1217 pcap_inject_linux(pcap_t *handle, const void *buf, int size)
1218 {
1219 struct pcap_linux *handlep = handle->priv;
1220 int ret;
1221
1222 if (handlep->ifindex == -1) {
1223 /*
1224 * We don't support sending on the "any" device.
1225 */
1226 pcap_strlcpy(handle->errbuf,
1227 "Sending packets isn't supported on the \"any\" device",
1228 PCAP_ERRBUF_SIZE);
1229 return (-1);
1230 }
1231
1232 if (handlep->cooked) {
1233 /*
1234 * We don't support sending on cooked-mode sockets.
1235 *
1236 * XXX - how do you send on a bound cooked-mode
1237 * socket?
1238 * Is a "sendto()" required there?
1239 */
1240 pcap_strlcpy(handle->errbuf,
1241 "Sending packets isn't supported in cooked mode",
1242 PCAP_ERRBUF_SIZE);
1243 return (-1);
1244 }
1245
1246 ret = (int)send(handle->fd, buf, size, 0);
1247 if (ret == -1) {
1248 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1249 errno, "send");
1250 return (-1);
1251 }
1252 return (ret);
1253 }
1254
1255 /*
1256 * Get the statistics for the given packet capture handle.
1257 */
1258 static int
pcap_stats_linux(pcap_t * handle,struct pcap_stat * stats)1259 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1260 {
1261 struct pcap_linux *handlep = handle->priv;
1262 #ifdef HAVE_TPACKET3
1263 /*
1264 * For sockets using TPACKET_V2, the extra stuff at the end
1265 * of a struct tpacket_stats_v3 will not be filled in, and
1266 * we don't look at it so this is OK even for those sockets.
1267 * In addition, the PF_PACKET socket code in the kernel only
1268 * uses the length parameter to compute how much data to
1269 * copy out and to indicate how much data was copied out, so
1270 * it's OK to base it on the size of a struct tpacket_stats.
1271 *
1272 * XXX - it's probably OK, in fact, to just use a
1273 * struct tpacket_stats for V3 sockets, as we don't
1274 * care about the tp_freeze_q_cnt stat.
1275 */
1276 struct tpacket_stats_v3 kstats;
1277 #else /* HAVE_TPACKET3 */
1278 struct tpacket_stats kstats;
1279 #endif /* HAVE_TPACKET3 */
1280 socklen_t len = sizeof (struct tpacket_stats);
1281
1282 long long if_dropped = 0;
1283
1284 /*
1285 * To fill in ps_ifdrop, we parse
1286 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1287 * for the numbers
1288 */
1289 if (handle->opt.promisc)
1290 {
1291 /*
1292 * XXX - is there any reason to do this by remembering
1293 * the last counts value, subtracting it from the
1294 * current counts value, and adding that to stat.ps_ifdrop,
1295 * maintaining stat.ps_ifdrop as a count, rather than just
1296 * saving the *initial* counts value and setting
1297 * stat.ps_ifdrop to the difference between the current
1298 * value and the initial value?
1299 *
1300 * One reason might be to handle the count wrapping
1301 * around, on platforms where the count is 32 bits
1302 * and where you might get more than 2^32 dropped
1303 * packets; is there any other reason?
1304 *
1305 * (We maintain the count as a long long int so that,
1306 * if the kernel maintains the counts as 64-bit even
1307 * on 32-bit platforms, we can handle the real count.
1308 *
1309 * Unfortunately, we can't report 64-bit counts; we
1310 * need a better API for reporting statistics, such as
1311 * one that reports them in a style similar to the
1312 * pcapng Interface Statistics Block, so that 1) the
1313 * counts are 64-bit, 2) it's easier to add new statistics
1314 * without breaking the ABI, and 3) it's easier to
1315 * indicate to a caller that wants one particular
1316 * statistic that it's not available by just not supplying
1317 * it.)
1318 */
1319 if_dropped = handlep->sysfs_dropped;
1320 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1321 handlep->stat.ps_ifdrop += (u_int)(handlep->sysfs_dropped - if_dropped);
1322 }
1323
1324 /*
1325 * Try to get the packet counts from the kernel.
1326 */
1327 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1328 &kstats, &len) > -1) {
1329 /*
1330 * "ps_recv" counts only packets that *passed* the
1331 * filter, not packets that didn't pass the filter.
1332 * This includes packets later dropped because we
1333 * ran out of buffer space.
1334 *
1335 * "ps_drop" counts packets dropped because we ran
1336 * out of buffer space. It doesn't count packets
1337 * dropped by the interface driver. It counts only
1338 * packets that passed the filter.
1339 *
1340 * See above for ps_ifdrop.
1341 *
1342 * Both statistics include packets not yet read from
1343 * the kernel by libpcap, and thus not yet seen by
1344 * the application.
1345 *
1346 * In "linux/net/packet/af_packet.c", at least in 2.6.27
1347 * through 5.6 kernels, "tp_packets" is incremented for
1348 * every packet that passes the packet filter *and* is
1349 * successfully copied to the ring buffer; "tp_drops" is
1350 * incremented for every packet dropped because there's
1351 * not enough free space in the ring buffer.
1352 *
1353 * When the statistics are returned for a PACKET_STATISTICS
1354 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1355 * so that "tp_packets" counts all packets handed to
1356 * the PF_PACKET socket, including packets dropped because
1357 * there wasn't room on the socket buffer - but not
1358 * including packets that didn't pass the filter.
1359 *
1360 * In the BSD BPF, the count of received packets is
1361 * incremented for every packet handed to BPF, regardless
1362 * of whether it passed the filter.
1363 *
1364 * We can't make "pcap_stats()" work the same on both
1365 * platforms, but the best approximation is to return
1366 * "tp_packets" as the count of packets and "tp_drops"
1367 * as the count of drops.
1368 *
1369 * Keep a running total because each call to
1370 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1371 * resets the counters to zero.
1372 */
1373 handlep->stat.ps_recv += kstats.tp_packets;
1374 handlep->stat.ps_drop += kstats.tp_drops;
1375 *stats = handlep->stat;
1376 return 0;
1377 }
1378
1379 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, errno,
1380 "failed to get statistics from socket");
1381 return -1;
1382 }
1383
1384 /*
1385 * Description string for the "any" device.
1386 */
1387 static const char any_descr[] = "Pseudo-device that captures on all interfaces";
1388
1389 /*
1390 * A PF_PACKET socket can be bound to any network interface.
1391 */
1392 static int
can_be_bound(const char * name _U_)1393 can_be_bound(const char *name _U_)
1394 {
1395 return (1);
1396 }
1397
1398 /*
1399 * Get a socket to use with various interface ioctls.
1400 */
1401 static int
get_if_ioctl_socket(void)1402 get_if_ioctl_socket(void)
1403 {
1404 int fd;
1405
1406 /*
1407 * This is a bit ugly.
1408 *
1409 * There isn't a socket type that's guaranteed to work.
1410 *
1411 * AF_NETLINK will work *if* you have Netlink configured into the
1412 * kernel (can it be configured out if you have any networking
1413 * support at all?) *and* if you're running a sufficiently recent
1414 * kernel, but not all the kernels we support are sufficiently
1415 * recent - that feature was introduced in Linux 4.6.
1416 *
1417 * AF_UNIX will work *if* you have UNIX-domain sockets configured
1418 * into the kernel and *if* you're not on a system that doesn't
1419 * allow them - some SELinux systems don't allow you create them.
1420 * Most systems probably have them configured in, but not all systems
1421 * have them configured in and allow them to be created.
1422 *
1423 * AF_INET will work *if* you have IPv4 configured into the kernel,
1424 * but, apparently, some systems have network adapters but have
1425 * kernels without IPv4 support.
1426 *
1427 * AF_INET6 will work *if* you have IPv6 configured into the
1428 * kernel, but if you don't have AF_INET, you might not have
1429 * AF_INET6, either (that is, independently on its own grounds).
1430 *
1431 * AF_PACKET would work, except that some of these calls should
1432 * work even if you *don't* have capture permission (you should be
1433 * able to enumerate interfaces and get information about them
1434 * without capture permission; you shouldn't get a failure until
1435 * you try pcap_activate()). (If you don't allow programs to
1436 * get as much information as possible about interfaces if you
1437 * don't have permission to capture, you run the risk of users
1438 * asking "why isn't it showing XXX" - or, worse, if you don't
1439 * show interfaces *at all* if you don't have permission to
1440 * capture on them, "why do no interfaces show up?" - when the
1441 * real problem is a permissions problem. Error reports of that
1442 * type require a lot more back-and-forth to debug, as evidenced
1443 * by many Wireshark bugs/mailing list questions/Q&A questoins.)
1444 *
1445 * So:
1446 *
1447 * we first try an AF_NETLINK socket, where "try" includes
1448 * "try to do a device ioctl on it", as, in the future, once
1449 * pre-4.6 kernels are sufficiently rare, that will probably
1450 * be the mechanism most likely to work;
1451 *
1452 * if that fails, we try an AF_UNIX socket, as that's less
1453 * likely to be configured out on a networking-capable system
1454 * than is IP;
1455 *
1456 * if that fails, we try an AF_INET6 socket;
1457 *
1458 * if that fails, we try an AF_INET socket.
1459 */
1460 fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
1461 if (fd != -1) {
1462 /*
1463 * OK, let's make sure we can do an SIOCGIFNAME
1464 * ioctl.
1465 */
1466 struct ifreq ifr;
1467
1468 memset(&ifr, 0, sizeof(ifr));
1469 if (ioctl(fd, SIOCGIFNAME, &ifr) == 0 ||
1470 errno != EOPNOTSUPP) {
1471 /*
1472 * It succeeded, or failed for some reason
1473 * other than "netlink sockets don't support
1474 * device ioctls". Go with the AF_NETLINK
1475 * socket.
1476 */
1477 return (fd);
1478 }
1479
1480 /*
1481 * OK, that didn't work, so it's as bad as "netlink
1482 * sockets aren't available". Close the socket and
1483 * drive on.
1484 */
1485 close(fd);
1486 }
1487
1488 /*
1489 * Now try an AF_UNIX socket.
1490 */
1491 fd = socket(AF_UNIX, SOCK_RAW, 0);
1492 if (fd != -1) {
1493 /*
1494 * OK, we got it!
1495 */
1496 return (fd);
1497 }
1498
1499 /*
1500 * Now try an AF_INET6 socket.
1501 */
1502 fd = socket(AF_INET6, SOCK_DGRAM, 0);
1503 if (fd != -1) {
1504 return (fd);
1505 }
1506
1507 /*
1508 * Now try an AF_INET socket.
1509 *
1510 * XXX - if that fails, is there anything else we should try?
1511 * AF_CAN, for embedded systems in vehicles, in case they're
1512 * built without Internet protocol support? Any other socket
1513 * types popular in non-Internet embedded systems?
1514 */
1515 return (socket(AF_INET, SOCK_DGRAM, 0));
1516 }
1517
1518 /*
1519 * Get additional flags for a device, using SIOCGIFMEDIA.
1520 */
1521 static int
get_if_flags(const char * name,bpf_u_int32 * flags,char * errbuf)1522 get_if_flags(const char *name, bpf_u_int32 *flags, char *errbuf)
1523 {
1524 int sock;
1525 FILE *fh;
1526 unsigned int arptype;
1527 struct ifreq ifr;
1528 struct ethtool_value info;
1529
1530 if (*flags & PCAP_IF_LOOPBACK) {
1531 /*
1532 * Loopback devices aren't wireless, and "connected"/
1533 * "disconnected" doesn't apply to them.
1534 */
1535 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1536 return 0;
1537 }
1538
1539 sock = get_if_ioctl_socket();
1540 if (sock == -1) {
1541 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno,
1542 "Can't create socket to get ethtool information for %s",
1543 name);
1544 return -1;
1545 }
1546
1547 /*
1548 * OK, what type of network is this?
1549 * In particular, is it wired or wireless?
1550 */
1551 if (is_wifi(name)) {
1552 /*
1553 * Wi-Fi, hence wireless.
1554 */
1555 *flags |= PCAP_IF_WIRELESS;
1556 } else {
1557 /*
1558 * OK, what does /sys/class/net/{if_name}/type contain?
1559 * (We don't use that for Wi-Fi, as it'll report
1560 * "Ethernet", i.e. ARPHRD_ETHER, for non-monitor-
1561 * mode devices.)
1562 */
1563 char *pathstr;
1564
1565 if (asprintf(&pathstr, "/sys/class/net/%s/type", name) == -1) {
1566 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1567 "%s: Can't generate path name string for /sys/class/net device",
1568 name);
1569 close(sock);
1570 return -1;
1571 }
1572 fh = fopen(pathstr, "r");
1573 if (fh != NULL) {
1574 if (fscanf(fh, "%u", &arptype) == 1) {
1575 /*
1576 * OK, we got an ARPHRD_ type; what is it?
1577 */
1578 switch (arptype) {
1579
1580 case ARPHRD_LOOPBACK:
1581 /*
1582 * These are types to which
1583 * "connected" and "disconnected"
1584 * don't apply, so don't bother
1585 * asking about it.
1586 *
1587 * XXX - add other types?
1588 */
1589 close(sock);
1590 fclose(fh);
1591 free(pathstr);
1592 return 0;
1593
1594 case ARPHRD_IRDA:
1595 case ARPHRD_IEEE80211:
1596 case ARPHRD_IEEE80211_PRISM:
1597 case ARPHRD_IEEE80211_RADIOTAP:
1598 #ifdef ARPHRD_IEEE802154
1599 case ARPHRD_IEEE802154:
1600 #endif
1601 #ifdef ARPHRD_IEEE802154_MONITOR
1602 case ARPHRD_IEEE802154_MONITOR:
1603 #endif
1604 #ifdef ARPHRD_6LOWPAN
1605 case ARPHRD_6LOWPAN:
1606 #endif
1607 /*
1608 * Various wireless types.
1609 */
1610 *flags |= PCAP_IF_WIRELESS;
1611 break;
1612 }
1613 }
1614 fclose(fh);
1615 free(pathstr);
1616 }
1617 }
1618
1619 #ifdef ETHTOOL_GLINK
1620 memset(&ifr, 0, sizeof(ifr));
1621 pcap_strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
1622 info.cmd = ETHTOOL_GLINK;
1623 /*
1624 * XXX - while Valgrind handles SIOCETHTOOL and knows that
1625 * the ETHTOOL_GLINK command sets the .data member of the
1626 * structure, Memory Sanitizer doesn't yet do so:
1627 *
1628 * https://bugs.llvm.org/show_bug.cgi?id=45814
1629 *
1630 * For now, we zero it out to squelch warnings; if the bug
1631 * in question is fixed, we can remove this.
1632 */
1633 info.data = 0;
1634 ifr.ifr_data = (caddr_t)&info;
1635 if (ioctl(sock, SIOCETHTOOL, &ifr) == -1) {
1636 int save_errno = errno;
1637
1638 switch (save_errno) {
1639
1640 case EOPNOTSUPP:
1641 case EINVAL:
1642 /*
1643 * OK, this OS version or driver doesn't support
1644 * asking for this information.
1645 * XXX - distinguish between "this doesn't
1646 * support ethtool at all because it's not
1647 * that type of device" vs. "this doesn't
1648 * support ethtool even though it's that
1649 * type of device", and return "unknown".
1650 */
1651 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1652 close(sock);
1653 return 0;
1654
1655 case ENODEV:
1656 /*
1657 * OK, no such device.
1658 * The user will find that out when they try to
1659 * activate the device; just say "OK" and
1660 * don't set anything.
1661 */
1662 close(sock);
1663 return 0;
1664
1665 default:
1666 /*
1667 * Other error.
1668 */
1669 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE,
1670 save_errno,
1671 "%s: SIOCETHTOOL(ETHTOOL_GLINK) ioctl failed",
1672 name);
1673 close(sock);
1674 return -1;
1675 }
1676 }
1677
1678 /*
1679 * Is it connected?
1680 */
1681 if (info.data) {
1682 /*
1683 * It's connected.
1684 */
1685 *flags |= PCAP_IF_CONNECTION_STATUS_CONNECTED;
1686 } else {
1687 /*
1688 * It's disconnected.
1689 */
1690 *flags |= PCAP_IF_CONNECTION_STATUS_DISCONNECTED;
1691 }
1692 #endif
1693
1694 close(sock);
1695 return 0;
1696 }
1697
1698 int
pcap_platform_finddevs(pcap_if_list_t * devlistp,char * errbuf)1699 pcap_platform_finddevs(pcap_if_list_t *devlistp, char *errbuf)
1700 {
1701 /*
1702 * Get the list of regular interfaces first.
1703 */
1704 if (pcap_findalldevs_interfaces(devlistp, errbuf, can_be_bound,
1705 get_if_flags) == -1)
1706 return (-1); /* failure */
1707
1708 /*
1709 * Add the "any" device.
1710 * As it refers to all network devices, not to any particular
1711 * network device, the notion of "connected" vs. "disconnected"
1712 * doesn't apply.
1713 */
1714 if (add_dev(devlistp, "any",
1715 PCAP_IF_UP|PCAP_IF_RUNNING|PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE,
1716 any_descr, errbuf) == NULL)
1717 return (-1);
1718
1719 return (0);
1720 }
1721
1722 /*
1723 * Set direction flag: Which packets do we accept on a forwarding
1724 * single device? IN, OUT or both?
1725 */
1726 static int
pcap_setdirection_linux(pcap_t * handle,pcap_direction_t d)1727 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1728 {
1729 /*
1730 * It's guaranteed, at this point, that d is a valid
1731 * direction value.
1732 */
1733 handle->direction = d;
1734 return 0;
1735 }
1736
1737 static int
is_wifi(const char * device)1738 is_wifi(const char *device)
1739 {
1740 char *pathstr;
1741 struct stat statb;
1742
1743 /*
1744 * See if there's a sysfs wireless directory for it.
1745 * If so, it's a wireless interface.
1746 */
1747 if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) {
1748 /*
1749 * Just give up here.
1750 */
1751 return 0;
1752 }
1753 if (stat(pathstr, &statb) == 0) {
1754 free(pathstr);
1755 return 1;
1756 }
1757 free(pathstr);
1758
1759 return 0;
1760 }
1761
1762 /*
1763 * Linux uses the ARP hardware type to identify the type of an
1764 * interface. pcap uses the DLT_xxx constants for this. This
1765 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1766 * constant, as arguments, and sets "handle->linktype" to the
1767 * appropriate DLT_XXX constant and sets "handle->offset" to
1768 * the appropriate value (to make "handle->offset" plus link-layer
1769 * header length be a multiple of 4, so that the link-layer payload
1770 * will be aligned on a 4-byte boundary when capturing packets).
1771 * (If the offset isn't set here, it'll be 0; add code as appropriate
1772 * for cases where it shouldn't be 0.)
1773 *
1774 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1775 * in cooked mode; otherwise, we can't use cooked mode, so we have
1776 * to pick some type that works in raw mode, or fail.
1777 *
1778 * Sets the link type to -1 if unable to map the type.
1779 */
map_arphrd_to_dlt(pcap_t * handle,int arptype,const char * device,int cooked_ok)1780 static void map_arphrd_to_dlt(pcap_t *handle, int arptype,
1781 const char *device, int cooked_ok)
1782 {
1783 static const char cdma_rmnet[] = "cdma_rmnet";
1784
1785 switch (arptype) {
1786
1787 case ARPHRD_ETHER:
1788 /*
1789 * For various annoying reasons having to do with DHCP
1790 * software, some versions of Android give the mobile-
1791 * phone-network interface an ARPHRD_ value of
1792 * ARPHRD_ETHER, even though the packets supplied by
1793 * that interface have no link-layer header, and begin
1794 * with an IP header, so that the ARPHRD_ value should
1795 * be ARPHRD_NONE.
1796 *
1797 * Detect those devices by checking the device name, and
1798 * use DLT_RAW for them.
1799 */
1800 if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) {
1801 handle->linktype = DLT_RAW;
1802 return;
1803 }
1804
1805 /*
1806 * Is this a real Ethernet device? If so, give it a
1807 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1808 * that an application can let you choose it, in case you're
1809 * capturing DOCSIS traffic that a Cisco Cable Modem
1810 * Termination System is putting out onto an Ethernet (it
1811 * doesn't put an Ethernet header onto the wire, it puts raw
1812 * DOCSIS frames out on the wire inside the low-level
1813 * Ethernet framing).
1814 *
1815 * XXX - are there any other sorts of "fake Ethernet" that
1816 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as
1817 * a Cisco CMTS won't put traffic onto it or get traffic
1818 * bridged onto it? ISDN is handled in "activate_pf_packet()",
1819 * as we fall back on cooked mode there, and we use
1820 * is_wifi() to check for 802.11 devices; are there any
1821 * others?
1822 */
1823 if (!is_wifi(device)) {
1824 int ret;
1825
1826 /*
1827 * This is not a Wi-Fi device but it could be
1828 * a DSA master/management network device.
1829 */
1830 ret = iface_dsa_get_proto_info(device, handle);
1831 if (ret < 0)
1832 return;
1833
1834 if (ret == 1) {
1835 /*
1836 * This is a DSA master/management network
1837 * device linktype is already set by
1838 * iface_dsa_get_proto_info() set an
1839 * appropriate offset here.
1840 */
1841 handle->offset = 2;
1842 break;
1843 }
1844
1845 /*
1846 * It's not a Wi-Fi device; offer DOCSIS.
1847 */
1848 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1849 /*
1850 * If that fails, just leave the list empty.
1851 */
1852 if (handle->dlt_list != NULL) {
1853 handle->dlt_list[0] = DLT_EN10MB;
1854 handle->dlt_list[1] = DLT_DOCSIS;
1855 handle->dlt_count = 2;
1856 }
1857 }
1858 /* FALLTHROUGH */
1859
1860 case ARPHRD_METRICOM:
1861 case ARPHRD_LOOPBACK:
1862 handle->linktype = DLT_EN10MB;
1863 handle->offset = 2;
1864 break;
1865
1866 case ARPHRD_EETHER:
1867 handle->linktype = DLT_EN3MB;
1868 break;
1869
1870 case ARPHRD_AX25:
1871 handle->linktype = DLT_AX25_KISS;
1872 break;
1873
1874 case ARPHRD_PRONET:
1875 handle->linktype = DLT_PRONET;
1876 break;
1877
1878 case ARPHRD_CHAOS:
1879 handle->linktype = DLT_CHAOS;
1880 break;
1881 #ifndef ARPHRD_CAN
1882 #define ARPHRD_CAN 280
1883 #endif
1884 case ARPHRD_CAN:
1885 /*
1886 * Map this to DLT_LINUX_SLL; that way, CAN frames will
1887 * have ETH_P_CAN/LINUX_SLL_P_CAN as the protocol and
1888 * CAN FD frames will have ETH_P_CANFD/LINUX_SLL_P_CANFD
1889 * as the protocol, so they can be distinguished by the
1890 * protocol in the SLL header.
1891 */
1892 handle->linktype = DLT_LINUX_SLL;
1893 break;
1894
1895 #ifndef ARPHRD_IEEE802_TR
1896 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
1897 #endif
1898 case ARPHRD_IEEE802_TR:
1899 case ARPHRD_IEEE802:
1900 handle->linktype = DLT_IEEE802;
1901 handle->offset = 2;
1902 break;
1903
1904 case ARPHRD_ARCNET:
1905 handle->linktype = DLT_ARCNET_LINUX;
1906 break;
1907
1908 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
1909 #define ARPHRD_FDDI 774
1910 #endif
1911 case ARPHRD_FDDI:
1912 handle->linktype = DLT_FDDI;
1913 handle->offset = 3;
1914 break;
1915
1916 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
1917 #define ARPHRD_ATM 19
1918 #endif
1919 case ARPHRD_ATM:
1920 /*
1921 * The Classical IP implementation in ATM for Linux
1922 * supports both what RFC 1483 calls "LLC Encapsulation",
1923 * in which each packet has an LLC header, possibly
1924 * with a SNAP header as well, prepended to it, and
1925 * what RFC 1483 calls "VC Based Multiplexing", in which
1926 * different virtual circuits carry different network
1927 * layer protocols, and no header is prepended to packets.
1928 *
1929 * They both have an ARPHRD_ type of ARPHRD_ATM, so
1930 * you can't use the ARPHRD_ type to find out whether
1931 * captured packets will have an LLC header, and,
1932 * while there's a socket ioctl to *set* the encapsulation
1933 * type, there's no ioctl to *get* the encapsulation type.
1934 *
1935 * This means that
1936 *
1937 * programs that dissect Linux Classical IP frames
1938 * would have to check for an LLC header and,
1939 * depending on whether they see one or not, dissect
1940 * the frame as LLC-encapsulated or as raw IP (I
1941 * don't know whether there's any traffic other than
1942 * IP that would show up on the socket, or whether
1943 * there's any support for IPv6 in the Linux
1944 * Classical IP code);
1945 *
1946 * filter expressions would have to compile into
1947 * code that checks for an LLC header and does
1948 * the right thing.
1949 *
1950 * Both of those are a nuisance - and, at least on systems
1951 * that support PF_PACKET sockets, we don't have to put
1952 * up with those nuisances; instead, we can just capture
1953 * in cooked mode. That's what we'll do, if we can.
1954 * Otherwise, we'll just fail.
1955 */
1956 if (cooked_ok)
1957 handle->linktype = DLT_LINUX_SLL;
1958 else
1959 handle->linktype = -1;
1960 break;
1961
1962 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
1963 #define ARPHRD_IEEE80211 801
1964 #endif
1965 case ARPHRD_IEEE80211:
1966 handle->linktype = DLT_IEEE802_11;
1967 break;
1968
1969 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
1970 #define ARPHRD_IEEE80211_PRISM 802
1971 #endif
1972 case ARPHRD_IEEE80211_PRISM:
1973 handle->linktype = DLT_PRISM_HEADER;
1974 break;
1975
1976 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
1977 #define ARPHRD_IEEE80211_RADIOTAP 803
1978 #endif
1979 case ARPHRD_IEEE80211_RADIOTAP:
1980 handle->linktype = DLT_IEEE802_11_RADIO;
1981 break;
1982
1983 case ARPHRD_PPP:
1984 /*
1985 * Some PPP code in the kernel supplies no link-layer
1986 * header whatsoever to PF_PACKET sockets; other PPP
1987 * code supplies PPP link-layer headers ("syncppp.c");
1988 * some PPP code might supply random link-layer
1989 * headers (PPP over ISDN - there's code in Ethereal,
1990 * for example, to cope with PPP-over-ISDN captures
1991 * with which the Ethereal developers have had to cope,
1992 * heuristically trying to determine which of the
1993 * oddball link-layer headers particular packets have).
1994 *
1995 * As such, we just punt, and run all PPP interfaces
1996 * in cooked mode, if we can; otherwise, we just treat
1997 * it as DLT_RAW, for now - if somebody needs to capture,
1998 * on a 2.0[.x] kernel, on PPP devices that supply a
1999 * link-layer header, they'll have to add code here to
2000 * map to the appropriate DLT_ type (possibly adding a
2001 * new DLT_ type, if necessary).
2002 */
2003 if (cooked_ok)
2004 handle->linktype = DLT_LINUX_SLL;
2005 else {
2006 /*
2007 * XXX - handle ISDN types here? We can't fall
2008 * back on cooked sockets, so we'd have to
2009 * figure out from the device name what type of
2010 * link-layer encapsulation it's using, and map
2011 * that to an appropriate DLT_ value, meaning
2012 * we'd map "isdnN" devices to DLT_RAW (they
2013 * supply raw IP packets with no link-layer
2014 * header) and "isdY" devices to a new DLT_I4L_IP
2015 * type that has only an Ethernet packet type as
2016 * a link-layer header.
2017 *
2018 * But sometimes we seem to get random crap
2019 * in the link-layer header when capturing on
2020 * ISDN devices....
2021 */
2022 handle->linktype = DLT_RAW;
2023 }
2024 break;
2025
2026 #ifndef ARPHRD_CISCO
2027 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
2028 #endif
2029 case ARPHRD_CISCO:
2030 handle->linktype = DLT_C_HDLC;
2031 break;
2032
2033 /* Not sure if this is correct for all tunnels, but it
2034 * works for CIPE */
2035 case ARPHRD_TUNNEL:
2036 #ifndef ARPHRD_SIT
2037 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */
2038 #endif
2039 case ARPHRD_SIT:
2040 case ARPHRD_CSLIP:
2041 case ARPHRD_SLIP6:
2042 case ARPHRD_CSLIP6:
2043 case ARPHRD_ADAPT:
2044 case ARPHRD_SLIP:
2045 #ifndef ARPHRD_RAWHDLC
2046 #define ARPHRD_RAWHDLC 518
2047 #endif
2048 case ARPHRD_RAWHDLC:
2049 #ifndef ARPHRD_DLCI
2050 #define ARPHRD_DLCI 15
2051 #endif
2052 case ARPHRD_DLCI:
2053 /*
2054 * XXX - should some of those be mapped to DLT_LINUX_SLL
2055 * instead? Should we just map all of them to DLT_LINUX_SLL?
2056 */
2057 handle->linktype = DLT_RAW;
2058 break;
2059
2060 #ifndef ARPHRD_FRAD
2061 #define ARPHRD_FRAD 770
2062 #endif
2063 case ARPHRD_FRAD:
2064 handle->linktype = DLT_FRELAY;
2065 break;
2066
2067 case ARPHRD_LOCALTLK:
2068 handle->linktype = DLT_LTALK;
2069 break;
2070
2071 case 18:
2072 /*
2073 * RFC 4338 defines an encapsulation for IP and ARP
2074 * packets that's compatible with the RFC 2625
2075 * encapsulation, but that uses a different ARP
2076 * hardware type and hardware addresses. That
2077 * ARP hardware type is 18; Linux doesn't define
2078 * any ARPHRD_ value as 18, but if it ever officially
2079 * supports RFC 4338-style IP-over-FC, it should define
2080 * one.
2081 *
2082 * For now, we map it to DLT_IP_OVER_FC, in the hopes
2083 * that this will encourage its use in the future,
2084 * should Linux ever officially support RFC 4338-style
2085 * IP-over-FC.
2086 */
2087 handle->linktype = DLT_IP_OVER_FC;
2088 break;
2089
2090 #ifndef ARPHRD_FCPP
2091 #define ARPHRD_FCPP 784
2092 #endif
2093 case ARPHRD_FCPP:
2094 #ifndef ARPHRD_FCAL
2095 #define ARPHRD_FCAL 785
2096 #endif
2097 case ARPHRD_FCAL:
2098 #ifndef ARPHRD_FCPL
2099 #define ARPHRD_FCPL 786
2100 #endif
2101 case ARPHRD_FCPL:
2102 #ifndef ARPHRD_FCFABRIC
2103 #define ARPHRD_FCFABRIC 787
2104 #endif
2105 case ARPHRD_FCFABRIC:
2106 /*
2107 * Back in 2002, Donald Lee at Cray wanted a DLT_ for
2108 * IP-over-FC:
2109 *
2110 * https://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html
2111 *
2112 * and one was assigned.
2113 *
2114 * In a later private discussion (spun off from a message
2115 * on the ethereal-users list) on how to get that DLT_
2116 * value in libpcap on Linux, I ended up deciding that
2117 * the best thing to do would be to have him tweak the
2118 * driver to set the ARPHRD_ value to some ARPHRD_FCxx
2119 * type, and map all those types to DLT_IP_OVER_FC:
2120 *
2121 * I've checked into the libpcap and tcpdump CVS tree
2122 * support for DLT_IP_OVER_FC. In order to use that,
2123 * you'd have to modify your modified driver to return
2124 * one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" -
2125 * change it to set "dev->type" to ARPHRD_FCFABRIC, for
2126 * example (the exact value doesn't matter, it can be
2127 * any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or
2128 * ARPHRD_FCFABRIC).
2129 *
2130 * 11 years later, Christian Svensson wanted to map
2131 * various ARPHRD_ values to DLT_FC_2 and
2132 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel
2133 * frames:
2134 *
2135 * https://github.com/mcr/libpcap/pull/29
2136 *
2137 * There doesn't seem to be any network drivers that uses
2138 * any of the ARPHRD_FC* values for IP-over-FC, and
2139 * it's not exactly clear what the "Dummy types for non
2140 * ARP hardware" are supposed to mean (link-layer
2141 * header type? Physical network type?), so it's
2142 * not exactly clear why the ARPHRD_FC* types exist
2143 * in the first place.
2144 *
2145 * For now, we map them to DLT_FC_2, and provide an
2146 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as
2147 * DLT_IP_OVER_FC just in case there's some old
2148 * driver out there that uses one of those types for
2149 * IP-over-FC on which somebody wants to capture
2150 * packets.
2151 */
2152 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 3);
2153 /*
2154 * If that fails, just leave the list empty.
2155 */
2156 if (handle->dlt_list != NULL) {
2157 handle->dlt_list[0] = DLT_FC_2;
2158 handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS;
2159 handle->dlt_list[2] = DLT_IP_OVER_FC;
2160 handle->dlt_count = 3;
2161 }
2162 handle->linktype = DLT_FC_2;
2163 break;
2164
2165 #ifndef ARPHRD_IRDA
2166 #define ARPHRD_IRDA 783
2167 #endif
2168 case ARPHRD_IRDA:
2169 /* Don't expect IP packet out of this interfaces... */
2170 handle->linktype = DLT_LINUX_IRDA;
2171 /* We need to save packet direction for IrDA decoding,
2172 * so let's use "Linux-cooked" mode. Jean II
2173 *
2174 * XXX - this is handled in activate_pf_packet(). */
2175 /* handlep->cooked = 1; */
2176 break;
2177
2178 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
2179 * is needed, please report it to <daniele@orlandi.com> */
2180 #ifndef ARPHRD_LAPD
2181 #define ARPHRD_LAPD 8445
2182 #endif
2183 case ARPHRD_LAPD:
2184 /* Don't expect IP packet out of this interfaces... */
2185 handle->linktype = DLT_LINUX_LAPD;
2186 break;
2187
2188 #ifndef ARPHRD_NONE
2189 #define ARPHRD_NONE 0xFFFE
2190 #endif
2191 case ARPHRD_NONE:
2192 /*
2193 * No link-layer header; packets are just IP
2194 * packets, so use DLT_RAW.
2195 */
2196 handle->linktype = DLT_RAW;
2197 break;
2198
2199 #ifndef ARPHRD_IEEE802154
2200 #define ARPHRD_IEEE802154 804
2201 #endif
2202 case ARPHRD_IEEE802154:
2203 handle->linktype = DLT_IEEE802_15_4_NOFCS;
2204 break;
2205
2206 #ifndef ARPHRD_NETLINK
2207 #define ARPHRD_NETLINK 824
2208 #endif
2209 case ARPHRD_NETLINK:
2210 handle->linktype = DLT_NETLINK;
2211 /*
2212 * We need to use cooked mode, so that in sll_protocol we
2213 * pick up the netlink protocol type such as NETLINK_ROUTE,
2214 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc.
2215 *
2216 * XXX - this is handled in activate_pf_packet().
2217 */
2218 /* handlep->cooked = 1; */
2219 break;
2220
2221 #ifndef ARPHRD_VSOCKMON
2222 #define ARPHRD_VSOCKMON 826
2223 #endif
2224 case ARPHRD_VSOCKMON:
2225 handle->linktype = DLT_VSOCK;
2226 break;
2227
2228 default:
2229 handle->linktype = -1;
2230 break;
2231 }
2232 }
2233
2234 #ifdef PACKET_RESERVE
2235 static void
set_dlt_list_cooked(pcap_t * handle,int sock_fd)2236 set_dlt_list_cooked(pcap_t *handle, int sock_fd)
2237 {
2238 socklen_t len;
2239 unsigned int tp_reserve;
2240
2241 /*
2242 * If we can't do PACKET_RESERVE, we can't reserve extra space
2243 * for a DLL_LINUX_SLL2 header, so we can't support DLT_LINUX_SLL2.
2244 */
2245 len = sizeof(tp_reserve);
2246 if (getsockopt(sock_fd, SOL_PACKET, PACKET_RESERVE, &tp_reserve,
2247 &len) == 0) {
2248 /*
2249 * Yes, we can do DLL_LINUX_SLL2.
2250 */
2251 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2252 /*
2253 * If that fails, just leave the list empty.
2254 */
2255 if (handle->dlt_list != NULL) {
2256 handle->dlt_list[0] = DLT_LINUX_SLL;
2257 handle->dlt_list[1] = DLT_LINUX_SLL2;
2258 handle->dlt_count = 2;
2259 }
2260 }
2261 }
2262 #else/* PACKET_RESERVE */
2263 /*
2264 * The build environment doesn't define PACKET_RESERVE, so we can't reserve
2265 * extra space for a DLL_LINUX_SLL2 header, so we can't support DLT_LINUX_SLL2.
2266 */
2267 static void
set_dlt_list_cooked(pcap_t * handle _U_,int sock_fd _U_)2268 set_dlt_list_cooked(pcap_t *handle _U_, int sock_fd _U_)
2269 {
2270 }
2271 #endif /* PACKET_RESERVE */
2272
2273 /*
2274 * Try to set up a PF_PACKET socket.
2275 * Returns 0 on success and a PCAP_ERROR_ value on failure.
2276 */
2277 static int
activate_pf_packet(pcap_t * handle,int is_any_device)2278 activate_pf_packet(pcap_t *handle, int is_any_device)
2279 {
2280 struct pcap_linux *handlep = handle->priv;
2281 const char *device = handle->opt.device;
2282 int status = 0;
2283 int sock_fd, arptype;
2284 #ifdef HAVE_PACKET_AUXDATA
2285 int val;
2286 #endif
2287 int err = 0;
2288 struct packet_mreq mr;
2289 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2290 int bpf_extensions;
2291 socklen_t len = sizeof(bpf_extensions);
2292 #endif
2293
2294 /*
2295 * Open a socket with protocol family packet. If cooked is true,
2296 * we open a SOCK_DGRAM socket for the cooked interface, otherwise
2297 * we open a SOCK_RAW socket for the raw interface.
2298 *
2299 * The protocol is set to 0. This means we will receive no
2300 * packets until we "bind" the socket with a non-zero
2301 * protocol. This allows us to setup the ring buffers without
2302 * dropping any packets.
2303 */
2304 sock_fd = is_any_device ?
2305 socket(PF_PACKET, SOCK_DGRAM, 0) :
2306 socket(PF_PACKET, SOCK_RAW, 0);
2307
2308 if (sock_fd == -1) {
2309 if (errno == EPERM || errno == EACCES) {
2310 /*
2311 * You don't have permission to open the
2312 * socket.
2313 */
2314 status = PCAP_ERROR_PERM_DENIED;
2315 } else {
2316 /*
2317 * Other error.
2318 */
2319 status = PCAP_ERROR;
2320 }
2321 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2322 errno, "socket");
2323 return status;
2324 }
2325
2326 /*
2327 * Get the interface index of the loopback device.
2328 * If the attempt fails, don't fail, just set the
2329 * "handlep->lo_ifindex" to -1.
2330 *
2331 * XXX - can there be more than one device that loops
2332 * packets back, i.e. devices other than "lo"? If so,
2333 * we'd need to find them all, and have an array of
2334 * indices for them, and check all of them in
2335 * "pcap_read_packet()".
2336 */
2337 handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
2338
2339 /*
2340 * Default value for offset to align link-layer payload
2341 * on a 4-byte boundary.
2342 */
2343 handle->offset = 0;
2344
2345 /*
2346 * What kind of frames do we have to deal with? Fall back
2347 * to cooked mode if we have an unknown interface type
2348 * or a type we know doesn't work well in raw mode.
2349 */
2350 if (!is_any_device) {
2351 /* Assume for now we don't need cooked mode. */
2352 handlep->cooked = 0;
2353
2354 if (handle->opt.rfmon) {
2355 /*
2356 * We were asked to turn on monitor mode.
2357 * Do so before we get the link-layer type,
2358 * because entering monitor mode could change
2359 * the link-layer type.
2360 */
2361 err = enter_rfmon_mode(handle, sock_fd, device);
2362 if (err < 0) {
2363 /* Hard failure */
2364 close(sock_fd);
2365 return err;
2366 }
2367 if (err == 0) {
2368 /*
2369 * Nothing worked for turning monitor mode
2370 * on.
2371 */
2372 close(sock_fd);
2373 return PCAP_ERROR_RFMON_NOTSUP;
2374 }
2375
2376 /*
2377 * Either monitor mode has been turned on for
2378 * the device, or we've been given a different
2379 * device to open for monitor mode. If we've
2380 * been given a different device, use it.
2381 */
2382 if (handlep->mondevice != NULL)
2383 device = handlep->mondevice;
2384 }
2385 arptype = iface_get_arptype(sock_fd, device, handle->errbuf);
2386 if (arptype < 0) {
2387 close(sock_fd);
2388 return arptype;
2389 }
2390 map_arphrd_to_dlt(handle, arptype, device, 1);
2391 if (handle->linktype == -1 ||
2392 handle->linktype == DLT_LINUX_SLL ||
2393 handle->linktype == DLT_LINUX_IRDA ||
2394 handle->linktype == DLT_LINUX_LAPD ||
2395 handle->linktype == DLT_NETLINK ||
2396 (handle->linktype == DLT_EN10MB &&
2397 (strncmp("isdn", device, 4) == 0 ||
2398 strncmp("isdY", device, 4) == 0))) {
2399 /*
2400 * Unknown interface type (-1), or a
2401 * device we explicitly chose to run
2402 * in cooked mode (e.g., PPP devices),
2403 * or an ISDN device (whose link-layer
2404 * type we can only determine by using
2405 * APIs that may be different on different
2406 * kernels) - reopen in cooked mode.
2407 *
2408 * If the type is unknown, return a warning;
2409 * map_arphrd_to_dlt() has already set the
2410 * warning message.
2411 */
2412 if (close(sock_fd) == -1) {
2413 pcap_fmt_errmsg_for_errno(handle->errbuf,
2414 PCAP_ERRBUF_SIZE, errno, "close");
2415 return PCAP_ERROR;
2416 }
2417 sock_fd = socket(PF_PACKET, SOCK_DGRAM, 0);
2418 if (sock_fd < 0) {
2419 /*
2420 * Fatal error. We treat this as
2421 * a generic error; we already know
2422 * that we were able to open a
2423 * PF_PACKET/SOCK_RAW socket, so
2424 * any failure is a "this shouldn't
2425 * happen" case.
2426 */
2427 pcap_fmt_errmsg_for_errno(handle->errbuf,
2428 PCAP_ERRBUF_SIZE, errno, "socket");
2429 return PCAP_ERROR;
2430 }
2431 handlep->cooked = 1;
2432
2433 /*
2434 * Get rid of any link-layer type list
2435 * we allocated - this only supports cooked
2436 * capture.
2437 */
2438 if (handle->dlt_list != NULL) {
2439 free(handle->dlt_list);
2440 handle->dlt_list = NULL;
2441 handle->dlt_count = 0;
2442 set_dlt_list_cooked(handle, sock_fd);
2443 }
2444
2445 if (handle->linktype == -1) {
2446 /*
2447 * Warn that we're falling back on
2448 * cooked mode; we may want to
2449 * update "map_arphrd_to_dlt()"
2450 * to handle the new type.
2451 */
2452 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2453 "arptype %d not "
2454 "supported by libpcap - "
2455 "falling back to cooked "
2456 "socket",
2457 arptype);
2458 }
2459
2460 /*
2461 * IrDA capture is not a real "cooked" capture,
2462 * it's IrLAP frames, not IP packets. The
2463 * same applies to LAPD capture.
2464 */
2465 if (handle->linktype != DLT_LINUX_IRDA &&
2466 handle->linktype != DLT_LINUX_LAPD &&
2467 handle->linktype != DLT_NETLINK)
2468 handle->linktype = DLT_LINUX_SLL;
2469 if (handle->linktype == -1) {
2470 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2471 "unknown arptype %d, defaulting to cooked mode",
2472 arptype);
2473 status = PCAP_WARNING;
2474 }
2475 }
2476
2477 handlep->ifindex = iface_get_id(sock_fd, device,
2478 handle->errbuf);
2479 if (handlep->ifindex == -1) {
2480 close(sock_fd);
2481 return PCAP_ERROR;
2482 }
2483
2484 if ((err = iface_bind(sock_fd, handlep->ifindex,
2485 handle->errbuf, 0)) != 0) {
2486 close(sock_fd);
2487 return err;
2488 }
2489 } else {
2490 /*
2491 * The "any" device.
2492 */
2493 if (handle->opt.rfmon) {
2494 /*
2495 * It doesn't support monitor mode.
2496 */
2497 close(sock_fd);
2498 return PCAP_ERROR_RFMON_NOTSUP;
2499 }
2500
2501 /*
2502 * It uses cooked mode.
2503 */
2504 handlep->cooked = 1;
2505 handle->linktype = DLT_LINUX_SLL;
2506 handle->dlt_list = NULL;
2507 handle->dlt_count = 0;
2508 set_dlt_list_cooked(handle, sock_fd);
2509
2510 /*
2511 * We're not bound to a device.
2512 * For now, we're using this as an indication
2513 * that we can't transmit; stop doing that only
2514 * if we figure out how to transmit in cooked
2515 * mode.
2516 */
2517 handlep->ifindex = -1;
2518 }
2519
2520 /*
2521 * Select promiscuous mode on if "promisc" is set.
2522 *
2523 * Do not turn allmulti mode on if we don't select
2524 * promiscuous mode - on some devices (e.g., Orinoco
2525 * wireless interfaces), allmulti mode isn't supported
2526 * and the driver implements it by turning promiscuous
2527 * mode on, and that screws up the operation of the
2528 * card as a normal networking interface, and on no
2529 * other platform I know of does starting a non-
2530 * promiscuous capture affect which multicast packets
2531 * are received by the interface.
2532 */
2533
2534 /*
2535 * Hmm, how can we set promiscuous mode on all interfaces?
2536 * I am not sure if that is possible at all. For now, we
2537 * silently ignore attempts to turn promiscuous mode on
2538 * for the "any" device (so you don't have to explicitly
2539 * disable it in programs such as tcpdump).
2540 */
2541
2542 if (!is_any_device && handle->opt.promisc) {
2543 memset(&mr, 0, sizeof(mr));
2544 mr.mr_ifindex = handlep->ifindex;
2545 mr.mr_type = PACKET_MR_PROMISC;
2546 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
2547 &mr, sizeof(mr)) == -1) {
2548 pcap_fmt_errmsg_for_errno(handle->errbuf,
2549 PCAP_ERRBUF_SIZE, errno, "setsockopt (PACKET_ADD_MEMBERSHIP)");
2550 close(sock_fd);
2551 return PCAP_ERROR;
2552 }
2553 }
2554
2555 /* Enable auxiliary data if supported and reserve room for
2556 * reconstructing VLAN headers. */
2557 #ifdef HAVE_PACKET_AUXDATA
2558 val = 1;
2559 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
2560 sizeof(val)) == -1 && errno != ENOPROTOOPT) {
2561 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2562 errno, "setsockopt (PACKET_AUXDATA)");
2563 close(sock_fd);
2564 return PCAP_ERROR;
2565 }
2566 handle->offset += VLAN_TAG_LEN;
2567 #endif /* HAVE_PACKET_AUXDATA */
2568
2569 /*
2570 * If we're in cooked mode, make the snapshot length
2571 * large enough to hold a "cooked mode" header plus
2572 * 1 byte of packet data (so we don't pass a byte
2573 * count of 0 to "recvfrom()").
2574 * XXX - we don't know whether this will be DLT_LINUX_SLL
2575 * or DLT_LINUX_SLL2, so make sure it's big enough for
2576 * a DLT_LINUX_SLL2 "cooked mode" header; a snapshot length
2577 * that small is silly anyway.
2578 */
2579 if (handlep->cooked) {
2580 if (handle->snapshot < SLL2_HDR_LEN + 1)
2581 handle->snapshot = SLL2_HDR_LEN + 1;
2582 }
2583 handle->bufsize = handle->snapshot;
2584
2585 /*
2586 * Set the offset at which to insert VLAN tags.
2587 * That should be the offset of the type field.
2588 */
2589 switch (handle->linktype) {
2590
2591 case DLT_EN10MB:
2592 /*
2593 * The type field is after the destination and source
2594 * MAC address.
2595 */
2596 handlep->vlan_offset = 2 * ETH_ALEN;
2597 break;
2598
2599 case DLT_LINUX_SLL:
2600 /*
2601 * The type field is in the last 2 bytes of the
2602 * DLT_LINUX_SLL header.
2603 */
2604 handlep->vlan_offset = SLL_HDR_LEN - 2;
2605 break;
2606
2607 default:
2608 handlep->vlan_offset = -1; /* unknown */
2609 break;
2610 }
2611
2612 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) {
2613 int nsec_tstamps = 1;
2614
2615 if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) {
2616 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS");
2617 close(sock_fd);
2618 return PCAP_ERROR;
2619 }
2620 }
2621
2622 /*
2623 * We've succeeded. Save the socket FD in the pcap structure.
2624 */
2625 handle->fd = sock_fd;
2626
2627 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2628 /*
2629 * Can we generate special code for VLAN checks?
2630 * (XXX - what if we need the special code but it's not supported
2631 * by the OS? Is that possible?)
2632 */
2633 if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS,
2634 &bpf_extensions, &len) == 0) {
2635 if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) {
2636 /*
2637 * Yes, we can. Request that we do so.
2638 */
2639 handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING;
2640 }
2641 }
2642 #endif /* defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) */
2643
2644 return status;
2645 }
2646
2647 /*
2648 * Attempt to setup memory-mapped access.
2649 *
2650 * On success, returns 1, and sets *status to 0 if there are no warnings
2651 * or to a PCAP_WARNING_ code if there is a warning.
2652 *
2653 * On error, returns -1, and sets *status to the appropriate error code;
2654 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message.
2655 */
2656 static int
setup_mmapped(pcap_t * handle,int * status)2657 setup_mmapped(pcap_t *handle, int *status)
2658 {
2659 struct pcap_linux *handlep = handle->priv;
2660 int ret;
2661
2662 /*
2663 * Attempt to allocate a buffer to hold the contents of one
2664 * packet, for use by the oneshot callback.
2665 */
2666 handlep->oneshot_buffer = malloc(handle->snapshot);
2667 if (handlep->oneshot_buffer == NULL) {
2668 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2669 errno, "can't allocate oneshot buffer");
2670 *status = PCAP_ERROR;
2671 return -1;
2672 }
2673
2674 if (handle->opt.buffer_size == 0) {
2675 /* by default request 2M for the ring buffer */
2676 handle->opt.buffer_size = 2*1024*1024;
2677 }
2678 ret = prepare_tpacket_socket(handle);
2679 if (ret == -1) {
2680 free(handlep->oneshot_buffer);
2681 *status = PCAP_ERROR;
2682 return ret;
2683 }
2684 ret = create_ring(handle, status);
2685 if (ret == -1) {
2686 /*
2687 * Error attempting to enable memory-mapped capture;
2688 * fail. create_ring() has set *status.
2689 */
2690 free(handlep->oneshot_buffer);
2691 return -1;
2692 }
2693
2694 /*
2695 * Success. *status has been set either to 0 if there are no
2696 * warnings or to a PCAP_WARNING_ value if there is a warning.
2697 *
2698 * handle->offset is used to get the current position into the rx ring.
2699 * handle->cc is used to store the ring size.
2700 */
2701
2702 /*
2703 * Set the timeout to use in poll() before returning.
2704 */
2705 set_poll_timeout(handlep);
2706
2707 return 1;
2708 }
2709
2710 /*
2711 * Attempt to set the socket to the specified version of the memory-mapped
2712 * header.
2713 *
2714 * Return 0 if we succeed; return 1 if we fail because that version isn't
2715 * supported; return -1 on any other error, and set handle->errbuf.
2716 */
2717 static int
init_tpacket(pcap_t * handle,int version,const char * version_str)2718 init_tpacket(pcap_t *handle, int version, const char *version_str)
2719 {
2720 struct pcap_linux *handlep = handle->priv;
2721 int val = version;
2722 socklen_t len = sizeof(val);
2723
2724 /*
2725 * Probe whether kernel supports the specified TPACKET version;
2726 * this also gets the length of the header for that version.
2727 *
2728 * This socket option was introduced in 2.6.27, which was
2729 * also the first release with TPACKET_V2 support.
2730 */
2731 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
2732 if (errno == EINVAL) {
2733 /*
2734 * EINVAL means this specific version of TPACKET
2735 * is not supported. Tell the caller they can try
2736 * with a different one; if they've run out of
2737 * others to try, let them set the error message
2738 * appropriately.
2739 */
2740 return 1;
2741 }
2742
2743 /*
2744 * All other errors are fatal.
2745 */
2746 if (errno == ENOPROTOOPT) {
2747 /*
2748 * PACKET_HDRLEN isn't supported, which means
2749 * that memory-mapped capture isn't supported.
2750 * Indicate that in the message.
2751 */
2752 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2753 "Kernel doesn't support memory-mapped capture; a 2.6.27 or later 2.x kernel is required, with CONFIG_PACKET_MMAP specified for 2.x kernels");
2754 } else {
2755 /*
2756 * Some unexpected error.
2757 */
2758 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2759 errno, "can't get %s header len on packet socket",
2760 version_str);
2761 }
2762 return -1;
2763 }
2764 handlep->tp_hdrlen = val;
2765
2766 val = version;
2767 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
2768 sizeof(val)) < 0) {
2769 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2770 errno, "can't activate %s on packet socket", version_str);
2771 return -1;
2772 }
2773 handlep->tp_version = version;
2774
2775 return 0;
2776 }
2777
2778 /*
2779 * Attempt to set the socket to version 3 of the memory-mapped header and,
2780 * if that fails because version 3 isn't supported, attempt to fall
2781 * back to version 2. If version 2 isn't supported, just fail.
2782 *
2783 * Return 0 if we succeed and -1 on any other error, and set handle->errbuf.
2784 */
2785 static int
prepare_tpacket_socket(pcap_t * handle)2786 prepare_tpacket_socket(pcap_t *handle)
2787 {
2788 int ret;
2789
2790 #ifdef HAVE_TPACKET3
2791 /*
2792 * Try setting the version to TPACKET_V3.
2793 *
2794 * The only mode in which buffering is done on PF_PACKET
2795 * sockets, so that packets might not be delivered
2796 * immediately, is TPACKET_V3 mode.
2797 *
2798 * The buffering cannot be disabled in that mode, so
2799 * if the user has requested immediate mode, we don't
2800 * use TPACKET_V3.
2801 */
2802 if (!handle->opt.immediate) {
2803 ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3");
2804 if (ret == 0) {
2805 /*
2806 * Success.
2807 */
2808 return 0;
2809 }
2810 if (ret == -1) {
2811 /*
2812 * We failed for some reason other than "the
2813 * kernel doesn't support TPACKET_V3".
2814 */
2815 return -1;
2816 }
2817
2818 /*
2819 * This means it returned 1, which means "the kernel
2820 * doesn't support TPACKET_V3"; try TPACKET_V2.
2821 */
2822 }
2823 #endif /* HAVE_TPACKET3 */
2824
2825 /*
2826 * Try setting the version to TPACKET_V2.
2827 */
2828 ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2");
2829 if (ret == 0) {
2830 /*
2831 * Success.
2832 */
2833 return 0;
2834 }
2835
2836 if (ret == 1) {
2837 /*
2838 * OK, the kernel supports memory-mapped capture, but
2839 * not TPACKET_V2. Set the error message appropriately.
2840 */
2841 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2842 "Kernel doesn't support TPACKET_V2; a 2.6.27 or later kernel is required");
2843 }
2844
2845 /*
2846 * We failed.
2847 */
2848 return -1;
2849 }
2850
2851 #define MAX(a,b) ((a)>(b)?(a):(b))
2852
2853 /*
2854 * Attempt to set up memory-mapped access.
2855 *
2856 * On success, returns 1, and sets *status to 0 if there are no warnings
2857 * or to a PCAP_WARNING_ code if there is a warning.
2858 *
2859 * On error, returns -1, and sets *status to the appropriate error code;
2860 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message.
2861 */
2862 static int
create_ring(pcap_t * handle,int * status)2863 create_ring(pcap_t *handle, int *status)
2864 {
2865 struct pcap_linux *handlep = handle->priv;
2866 unsigned i, j, frames_per_block;
2867 #ifdef HAVE_TPACKET3
2868 /*
2869 * For sockets using TPACKET_V2, the extra stuff at the end of a
2870 * struct tpacket_req3 will be ignored, so this is OK even for
2871 * those sockets.
2872 */
2873 struct tpacket_req3 req;
2874 #else
2875 struct tpacket_req req;
2876 #endif
2877 socklen_t len;
2878 unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff;
2879 unsigned int frame_size;
2880
2881 /*
2882 * Start out assuming no warnings or errors.
2883 */
2884 *status = 0;
2885
2886 /*
2887 * Reserve space for VLAN tag reconstruction.
2888 */
2889 tp_reserve = VLAN_TAG_LEN;
2890
2891 /*
2892 * If we're using DLT_LINUX_SLL2, reserve space for a
2893 * DLT_LINUX_SLL2 header.
2894 *
2895 * XXX - we assume that the kernel is still adding
2896 * 16 bytes of extra space; that happens to
2897 * correspond to SLL_HDR_LEN (whether intentionally
2898 * or not - the kernel code has a raw "16" in
2899 * the expression), so we subtract SLL_HDR_LEN
2900 * from SLL2_HDR_LEN to get the additional space
2901 * needed. That also means we don't bother reserving
2902 * any additional space if we're using DLT_LINUX_SLL.
2903 *
2904 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - SLL_HDR_LEN)?
2905 */
2906 if (handle->linktype == DLT_LINUX_SLL2)
2907 tp_reserve += SLL2_HDR_LEN - SLL_HDR_LEN;
2908
2909 /*
2910 * Try to request that amount of reserve space.
2911 * This must be done before creating the ring buffer.
2912 * If PACKET_RESERVE is supported, creating the ring
2913 * buffer should be, although if creating the ring
2914 * buffer fails, the PACKET_RESERVE call has no effect,
2915 * so falling back on read-from-the-socket capturing
2916 * won't be affected.
2917 */
2918 len = sizeof(tp_reserve);
2919 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE,
2920 &tp_reserve, len) < 0) {
2921 /*
2922 * We treat ENOPROTOOPT as an error, as we
2923 * already determined that we support
2924 * TPACKET_V2 and later; see above.
2925 */
2926 pcap_fmt_errmsg_for_errno(handle->errbuf,
2927 PCAP_ERRBUF_SIZE, errno,
2928 "setsockopt (PACKET_RESERVE)");
2929 *status = PCAP_ERROR;
2930 return -1;
2931 }
2932
2933 switch (handlep->tp_version) {
2934
2935 case TPACKET_V2:
2936 /* Note that with large snapshot length (say 256K, which is
2937 * the default for recent versions of tcpdump, Wireshark,
2938 * TShark, dumpcap or 64K, the value that "-s 0" has given for
2939 * a long time with tcpdump), if we use the snapshot
2940 * length to calculate the frame length, only a few frames
2941 * will be available in the ring even with pretty
2942 * large ring size (and a lot of memory will be unused).
2943 *
2944 * Ideally, we should choose a frame length based on the
2945 * minimum of the specified snapshot length and the maximum
2946 * packet size. That's not as easy as it sounds; consider,
2947 * for example, an 802.11 interface in monitor mode, where
2948 * the frame would include a radiotap header, where the
2949 * maximum radiotap header length is device-dependent.
2950 *
2951 * So, for now, we just do this for Ethernet devices, where
2952 * there's no metadata header, and the link-layer header is
2953 * fixed length. We can get the maximum packet size by
2954 * adding 18, the Ethernet header length plus the CRC length
2955 * (just in case we happen to get the CRC in the packet), to
2956 * the MTU of the interface; we fetch the MTU in the hopes
2957 * that it reflects support for jumbo frames. (Even if the
2958 * interface is just being used for passive snooping, the
2959 * driver might set the size of buffers in the receive ring
2960 * based on the MTU, so that the MTU limits the maximum size
2961 * of packets that we can receive.)
2962 *
2963 * If segmentation/fragmentation or receive offload are
2964 * enabled, we can get reassembled/aggregated packets larger
2965 * than MTU, but bounded to 65535 plus the Ethernet overhead,
2966 * due to kernel and protocol constraints */
2967 frame_size = handle->snapshot;
2968 if (handle->linktype == DLT_EN10MB) {
2969 unsigned int max_frame_len;
2970 int mtu;
2971 int offload;
2972
2973 mtu = iface_get_mtu(handle->fd, handle->opt.device,
2974 handle->errbuf);
2975 if (mtu == -1) {
2976 *status = PCAP_ERROR;
2977 return -1;
2978 }
2979 offload = iface_get_offload(handle);
2980 if (offload == -1) {
2981 *status = PCAP_ERROR;
2982 return -1;
2983 }
2984 if (offload)
2985 max_frame_len = MAX(mtu, 65535);
2986 else
2987 max_frame_len = mtu;
2988 max_frame_len += 18;
2989
2990 if (frame_size > max_frame_len)
2991 frame_size = max_frame_len;
2992 }
2993
2994 /* NOTE: calculus matching those in tpacket_rcv()
2995 * in linux-2.6/net/packet/af_packet.c
2996 */
2997 len = sizeof(sk_type);
2998 if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type,
2999 &len) < 0) {
3000 pcap_fmt_errmsg_for_errno(handle->errbuf,
3001 PCAP_ERRBUF_SIZE, errno, "getsockopt (SO_TYPE)");
3002 *status = PCAP_ERROR;
3003 return -1;
3004 }
3005 maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE;
3006 /* XXX: in the kernel maclen is calculated from
3007 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len
3008 * in: packet_snd() in linux-2.6/net/packet/af_packet.c
3009 * then packet_alloc_skb() in linux-2.6/net/packet/af_packet.c
3010 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c
3011 * but I see no way to get those sizes in userspace,
3012 * like for instance with an ifreq ioctl();
3013 * the best thing I've found so far is MAX_HEADER in
3014 * the kernel part of linux-2.6/include/linux/netdevice.h
3015 * which goes up to 128+48=176; since pcap-linux.c
3016 * defines a MAX_LINKHEADER_SIZE of 256 which is
3017 * greater than that, let's use it.. maybe is it even
3018 * large enough to directly replace macoff..
3019 */
3020 tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ;
3021 netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve;
3022 /* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN
3023 * of netoff, which contradicts
3024 * linux-2.6/Documentation/networking/packet_mmap.txt
3025 * documenting that:
3026 * "- Gap, chosen so that packet data (Start+tp_net)
3027 * aligns to TPACKET_ALIGNMENT=16"
3028 */
3029 /* NOTE: in linux-2.6/include/linux/skbuff.h:
3030 * "CPUs often take a performance hit
3031 * when accessing unaligned memory locations"
3032 */
3033 macoff = netoff - maclen;
3034 req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size);
3035 /*
3036 * Round the buffer size up to a multiple of the
3037 * frame size (rather than rounding down, which
3038 * would give a buffer smaller than our caller asked
3039 * for, and possibly give zero frames if the requested
3040 * buffer size is too small for one frame).
3041 */
3042 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3043 break;
3044
3045 #ifdef HAVE_TPACKET3
3046 case TPACKET_V3:
3047 /* The "frames" for this are actually buffers that
3048 * contain multiple variable-sized frames.
3049 *
3050 * We pick a "frame" size of MAXIMUM_SNAPLEN to leave
3051 * enough room for at least one reasonably-sized packet
3052 * in the "frame". */
3053 req.tp_frame_size = MAXIMUM_SNAPLEN;
3054 /*
3055 * Round the buffer size up to a multiple of the
3056 * "frame" size (rather than rounding down, which
3057 * would give a buffer smaller than our caller asked
3058 * for, and possibly give zero "frames" if the requested
3059 * buffer size is too small for one "frame").
3060 */
3061 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3062 break;
3063 #endif
3064 default:
3065 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3066 "Internal error: unknown TPACKET_ value %u",
3067 handlep->tp_version);
3068 *status = PCAP_ERROR;
3069 return -1;
3070 }
3071
3072 /* compute the minimum block size that will handle this frame.
3073 * The block has to be page size aligned.
3074 * The max block size allowed by the kernel is arch-dependent and
3075 * it's not explicitly checked here. */
3076 req.tp_block_size = getpagesize();
3077 while (req.tp_block_size < req.tp_frame_size)
3078 req.tp_block_size <<= 1;
3079
3080 frames_per_block = req.tp_block_size/req.tp_frame_size;
3081
3082 /*
3083 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was,
3084 * so we check for PACKET_TIMESTAMP. We check for
3085 * linux/net_tstamp.h just in case a system somehow has
3086 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might
3087 * be unnecessary.
3088 *
3089 * SIOCSHWTSTAMP was introduced in the patch that introduced
3090 * linux/net_tstamp.h, so we don't bother checking whether
3091 * SIOCSHWTSTAMP is defined (if your Linux system has
3092 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your
3093 * Linux system is badly broken).
3094 */
3095 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
3096 /*
3097 * If we were told to do so, ask the kernel and the driver
3098 * to use hardware timestamps.
3099 *
3100 * Hardware timestamps are only supported with mmapped
3101 * captures.
3102 */
3103 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER ||
3104 handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) {
3105 struct hwtstamp_config hwconfig;
3106 struct ifreq ifr;
3107 int timesource;
3108
3109 /*
3110 * Ask for hardware time stamps on all packets,
3111 * including transmitted packets.
3112 */
3113 memset(&hwconfig, 0, sizeof(hwconfig));
3114 hwconfig.tx_type = HWTSTAMP_TX_ON;
3115 hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
3116
3117 memset(&ifr, 0, sizeof(ifr));
3118 pcap_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
3119 ifr.ifr_data = (void *)&hwconfig;
3120
3121 if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) {
3122 switch (errno) {
3123
3124 case EPERM:
3125 /*
3126 * Treat this as an error, as the
3127 * user should try to run this
3128 * with the appropriate privileges -
3129 * and, if they can't, shouldn't
3130 * try requesting hardware time stamps.
3131 */
3132 *status = PCAP_ERROR_PERM_DENIED;
3133 return -1;
3134
3135 case EOPNOTSUPP:
3136 case ERANGE:
3137 /*
3138 * Treat this as a warning, as the
3139 * only way to fix the warning is to
3140 * get an adapter that supports hardware
3141 * time stamps for *all* packets.
3142 * (ERANGE means "we support hardware
3143 * time stamps, but for packets matching
3144 * that particular filter", so it means
3145 * "we don't support hardware time stamps
3146 * for all incoming packets" here.)
3147 *
3148 * We'll just fall back on the standard
3149 * host time stamps.
3150 */
3151 *status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP;
3152 break;
3153
3154 default:
3155 pcap_fmt_errmsg_for_errno(handle->errbuf,
3156 PCAP_ERRBUF_SIZE, errno,
3157 "SIOCSHWTSTAMP failed");
3158 *status = PCAP_ERROR;
3159 return -1;
3160 }
3161 } else {
3162 /*
3163 * Well, that worked. Now specify the type of
3164 * hardware time stamp we want for this
3165 * socket.
3166 */
3167 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) {
3168 /*
3169 * Hardware timestamp, synchronized
3170 * with the system clock.
3171 */
3172 timesource = SOF_TIMESTAMPING_SYS_HARDWARE;
3173 } else {
3174 /*
3175 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware
3176 * timestamp, not synchronized with the
3177 * system clock.
3178 */
3179 timesource = SOF_TIMESTAMPING_RAW_HARDWARE;
3180 }
3181 if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP,
3182 (void *)×ource, sizeof(timesource))) {
3183 pcap_fmt_errmsg_for_errno(handle->errbuf,
3184 PCAP_ERRBUF_SIZE, errno,
3185 "can't set PACKET_TIMESTAMP");
3186 *status = PCAP_ERROR;
3187 return -1;
3188 }
3189 }
3190 }
3191 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */
3192
3193 /* ask the kernel to create the ring */
3194 retry:
3195 req.tp_block_nr = req.tp_frame_nr / frames_per_block;
3196
3197 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
3198 req.tp_frame_nr = req.tp_block_nr * frames_per_block;
3199
3200 #ifdef HAVE_TPACKET3
3201 /* timeout value to retire block - use the configured buffering timeout, or default if <0. */
3202 if (handlep->timeout > 0) {
3203 /* Use the user specified timeout as the block timeout */
3204 req.tp_retire_blk_tov = handlep->timeout;
3205 } else if (handlep->timeout == 0) {
3206 /*
3207 * In pcap, this means "infinite timeout"; TPACKET_V3
3208 * doesn't support that, so just set it to UINT_MAX
3209 * milliseconds. In the TPACKET_V3 loop, if the
3210 * timeout is 0, and we haven't yet seen any packets,
3211 * and we block and still don't have any packets, we
3212 * keep blocking until we do.
3213 */
3214 req.tp_retire_blk_tov = UINT_MAX;
3215 } else {
3216 /*
3217 * XXX - this is not valid; use 0, meaning "have the
3218 * kernel pick a default", for now.
3219 */
3220 req.tp_retire_blk_tov = 0;
3221 }
3222 /* private data not used */
3223 req.tp_sizeof_priv = 0;
3224 /* Rx ring - feature request bits - none (rxhash will not be filled) */
3225 req.tp_feature_req_word = 0;
3226 #endif
3227
3228 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3229 (void *) &req, sizeof(req))) {
3230 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
3231 /*
3232 * Memory failure; try to reduce the requested ring
3233 * size.
3234 *
3235 * We used to reduce this by half -- do 5% instead.
3236 * That may result in more iterations and a longer
3237 * startup, but the user will be much happier with
3238 * the resulting buffer size.
3239 */
3240 if (req.tp_frame_nr < 20)
3241 req.tp_frame_nr -= 1;
3242 else
3243 req.tp_frame_nr -= req.tp_frame_nr/20;
3244 goto retry;
3245 }
3246 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3247 errno, "can't create rx ring on packet socket");
3248 *status = PCAP_ERROR;
3249 return -1;
3250 }
3251
3252 /* memory map the rx ring */
3253 handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size;
3254 handlep->mmapbuf = mmap(0, handlep->mmapbuflen,
3255 PROT_READ|PROT_WRITE, MAP_SHARED, handle->fd, 0);
3256 if (handlep->mmapbuf == MAP_FAILED) {
3257 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3258 errno, "can't mmap rx ring");
3259
3260 /* clear the allocated ring on error*/
3261 destroy_ring(handle);
3262 *status = PCAP_ERROR;
3263 return -1;
3264 }
3265
3266 /* allocate a ring for each frame header pointer*/
3267 handle->cc = req.tp_frame_nr;
3268 handle->buffer = malloc(handle->cc * sizeof(union thdr *));
3269 if (!handle->buffer) {
3270 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3271 errno, "can't allocate ring of frame headers");
3272
3273 destroy_ring(handle);
3274 *status = PCAP_ERROR;
3275 return -1;
3276 }
3277
3278 /* fill the header ring with proper frame ptr*/
3279 handle->offset = 0;
3280 for (i=0; i<req.tp_block_nr; ++i) {
3281 u_char *base = &handlep->mmapbuf[i*req.tp_block_size];
3282 for (j=0; j<frames_per_block; ++j, ++handle->offset) {
3283 RING_GET_CURRENT_FRAME(handle) = base;
3284 base += req.tp_frame_size;
3285 }
3286 }
3287
3288 handle->bufsize = req.tp_frame_size;
3289 handle->offset = 0;
3290 return 1;
3291 }
3292
3293 /* free all ring related resources*/
3294 static void
destroy_ring(pcap_t * handle)3295 destroy_ring(pcap_t *handle)
3296 {
3297 struct pcap_linux *handlep = handle->priv;
3298
3299 /*
3300 * Tell the kernel to destroy the ring.
3301 * We don't check for setsockopt failure, as 1) we can't recover
3302 * from an error and 2) we might not yet have set it up in the
3303 * first place.
3304 */
3305 struct tpacket_req req;
3306 memset(&req, 0, sizeof(req));
3307 (void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3308 (void *) &req, sizeof(req));
3309
3310 /* if ring is mapped, unmap it*/
3311 if (handlep->mmapbuf) {
3312 /* do not test for mmap failure, as we can't recover from any error */
3313 (void)munmap(handlep->mmapbuf, handlep->mmapbuflen);
3314 handlep->mmapbuf = NULL;
3315 }
3316 }
3317
3318 /*
3319 * Special one-shot callback, used for pcap_next() and pcap_next_ex(),
3320 * for Linux mmapped capture.
3321 *
3322 * The problem is that pcap_next() and pcap_next_ex() expect the packet
3323 * data handed to the callback to be valid after the callback returns,
3324 * but pcap_read_linux_mmap() has to release that packet as soon as
3325 * the callback returns (otherwise, the kernel thinks there's still
3326 * at least one unprocessed packet available in the ring, so a select()
3327 * will immediately return indicating that there's data to process), so,
3328 * in the callback, we have to make a copy of the packet.
3329 *
3330 * Yes, this means that, if the capture is using the ring buffer, using
3331 * pcap_next() or pcap_next_ex() requires more copies than using
3332 * pcap_loop() or pcap_dispatch(). If that bothers you, don't use
3333 * pcap_next() or pcap_next_ex().
3334 */
3335 static void
pcap_oneshot_linux(u_char * user,const struct pcap_pkthdr * h,const u_char * bytes)3336 pcap_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
3337 const u_char *bytes)
3338 {
3339 struct oneshot_userdata *sp = (struct oneshot_userdata *)user;
3340 pcap_t *handle = sp->pd;
3341 struct pcap_linux *handlep = handle->priv;
3342
3343 *sp->hdr = *h;
3344 memcpy(handlep->oneshot_buffer, bytes, h->caplen);
3345 *sp->pkt = handlep->oneshot_buffer;
3346 }
3347
3348 static int
pcap_getnonblock_linux(pcap_t * handle)3349 pcap_getnonblock_linux(pcap_t *handle)
3350 {
3351 struct pcap_linux *handlep = handle->priv;
3352
3353 /* use negative value of timeout to indicate non blocking ops */
3354 return (handlep->timeout<0);
3355 }
3356
3357 static int
pcap_setnonblock_linux(pcap_t * handle,int nonblock)3358 pcap_setnonblock_linux(pcap_t *handle, int nonblock)
3359 {
3360 struct pcap_linux *handlep = handle->priv;
3361
3362 /*
3363 * Set the file descriptor to non-blocking mode, as we use
3364 * it for sending packets.
3365 */
3366 if (pcap_setnonblock_fd(handle, nonblock) == -1)
3367 return -1;
3368
3369 /*
3370 * Map each value to their corresponding negation to
3371 * preserve the timeout value provided with pcap_set_timeout.
3372 */
3373 if (nonblock) {
3374 if (handlep->timeout >= 0) {
3375 /*
3376 * Indicate that we're switching to
3377 * non-blocking mode.
3378 */
3379 handlep->timeout = ~handlep->timeout;
3380 }
3381 } else {
3382 if (handlep->timeout < 0) {
3383 handlep->timeout = ~handlep->timeout;
3384 }
3385 }
3386 /* Update the timeout to use in poll(). */
3387 set_poll_timeout(handlep);
3388 return 0;
3389 }
3390
3391 /*
3392 * Get the status field of the ring buffer frame at a specified offset.
3393 */
3394 static inline u_int
pcap_get_ring_frame_status(pcap_t * handle,int offset)3395 pcap_get_ring_frame_status(pcap_t *handle, int offset)
3396 {
3397 struct pcap_linux *handlep = handle->priv;
3398 union thdr h;
3399
3400 h.raw = RING_GET_FRAME_AT(handle, offset);
3401 switch (handlep->tp_version) {
3402 case TPACKET_V2:
3403 return __atomic_load_n(&h.h2->tp_status, __ATOMIC_ACQUIRE);
3404 break;
3405 #ifdef HAVE_TPACKET3
3406 case TPACKET_V3:
3407 return __atomic_load_n(&h.h3->hdr.bh1.block_status, __ATOMIC_ACQUIRE);
3408 break;
3409 #endif
3410 }
3411 /* This should not happen. */
3412 return 0;
3413 }
3414
3415 /*
3416 * Block waiting for frames to be available.
3417 */
pcap_wait_for_frames_mmap(pcap_t * handle)3418 static int pcap_wait_for_frames_mmap(pcap_t *handle)
3419 {
3420 struct pcap_linux *handlep = handle->priv;
3421 int timeout;
3422 struct ifreq ifr;
3423 int ret;
3424 struct pollfd pollinfo[2];
3425 pollinfo[0].fd = handle->fd;
3426 pollinfo[0].events = POLLIN;
3427 pollinfo[1].fd = handlep->poll_breakloop_fd;
3428 pollinfo[1].events = POLLIN;
3429
3430 /*
3431 * Keep polling until we either get some packets to read, see
3432 * that we got told to break out of the loop, get a fatal error,
3433 * or discover that the device went away.
3434 *
3435 * In non-blocking mode, we must still do one poll() to catch
3436 * any pending error indications, but the poll() has a timeout
3437 * of 0, so that it doesn't block, and we quit after that one
3438 * poll().
3439 *
3440 * If we've seen an ENETDOWN, it might be the first indication
3441 * that the device went away, or it might just be that it was
3442 * configured down. Unfortunately, there's no guarantee that
3443 * the device has actually been removed as an interface, because:
3444 *
3445 * 1) if, as appears to be the case at least some of the time,
3446 * the PF_PACKET socket code first gets a NETDEV_DOWN indication
3447 * for the device and then gets a NETDEV_UNREGISTER indication
3448 * for it, the first indication will cause a wakeup with ENETDOWN
3449 * but won't set the packet socket's field for the interface index
3450 * to -1, and the second indication won't cause a wakeup (because
3451 * the first indication also caused the protocol hook to be
3452 * unregistered) but will set the packet socket's field for the
3453 * interface index to -1;
3454 *
3455 * 2) even if just a NETDEV_UNREGISTER indication is registered,
3456 * the packet socket's field for the interface index only gets
3457 * set to -1 after the wakeup, so there's a small but non-zero
3458 * risk that a thread blocked waiting for the wakeup will get
3459 * to the "fetch the socket name" code before the interface index
3460 * gets set to -1, so it'll get the old interface index.
3461 *
3462 * Therefore, if we got an ENETDOWN and haven't seen a packet
3463 * since then, we assume that we might be waiting for the interface
3464 * to disappear, and poll with a timeout to try again in a short
3465 * period of time. If we *do* see a packet, the interface has
3466 * come back up again, and is *definitely* still there, so we
3467 * don't need to poll.
3468 */
3469 for (;;) {
3470 /*
3471 * Yes, we do this even in non-blocking mode, as it's
3472 * the only way to get error indications from a
3473 * tpacket socket.
3474 *
3475 * The timeout is 0 in non-blocking mode, so poll()
3476 * returns immediately.
3477 */
3478 timeout = handlep->poll_timeout;
3479
3480 /*
3481 * If we got an ENETDOWN and haven't gotten an indication
3482 * that the device has gone away or that the device is up,
3483 * we don't yet know for certain whether the device has
3484 * gone away or not, do a poll() with a 1-millisecond timeout,
3485 * as we have to poll indefinitely for "device went away"
3486 * indications until we either get one or see that the
3487 * device is up.
3488 */
3489 if (handlep->netdown) {
3490 if (timeout != 0)
3491 timeout = 1;
3492 }
3493 ret = poll(pollinfo, 2, timeout);
3494 if (ret < 0) {
3495 /*
3496 * Error. If it's not EINTR, report it.
3497 */
3498 if (errno != EINTR) {
3499 pcap_fmt_errmsg_for_errno(handle->errbuf,
3500 PCAP_ERRBUF_SIZE, errno,
3501 "can't poll on packet socket");
3502 return PCAP_ERROR;
3503 }
3504
3505 /*
3506 * It's EINTR; if we were told to break out of
3507 * the loop, do so.
3508 */
3509 if (handle->break_loop) {
3510 handle->break_loop = 0;
3511 return PCAP_ERROR_BREAK;
3512 }
3513 } else if (ret > 0) {
3514 /*
3515 * OK, some descriptor is ready.
3516 * Check the socket descriptor first.
3517 *
3518 * As I read the Linux man page, pollinfo[0].revents
3519 * will either be POLLIN, POLLERR, POLLHUP, or POLLNVAL.
3520 */
3521 if (pollinfo[0].revents == POLLIN) {
3522 /*
3523 * OK, we may have packets to
3524 * read.
3525 */
3526 break;
3527 }
3528 if (pollinfo[0].revents != 0) {
3529 /*
3530 * There's some indication other than
3531 * "you can read on this descriptor" on
3532 * the descriptor.
3533 */
3534 if (pollinfo[0].revents & POLLNVAL) {
3535 snprintf(handle->errbuf,
3536 PCAP_ERRBUF_SIZE,
3537 "Invalid polling request on packet socket");
3538 return PCAP_ERROR;
3539 }
3540 if (pollinfo[0].revents & (POLLHUP | POLLRDHUP)) {
3541 snprintf(handle->errbuf,
3542 PCAP_ERRBUF_SIZE,
3543 "Hangup on packet socket");
3544 return PCAP_ERROR;
3545 }
3546 if (pollinfo[0].revents & POLLERR) {
3547 /*
3548 * Get the error.
3549 */
3550 int err;
3551 socklen_t errlen;
3552
3553 errlen = sizeof(err);
3554 if (getsockopt(handle->fd, SOL_SOCKET,
3555 SO_ERROR, &err, &errlen) == -1) {
3556 /*
3557 * The call *itself* returned
3558 * an error; make *that*
3559 * the error.
3560 */
3561 err = errno;
3562 }
3563
3564 /*
3565 * OK, we have the error.
3566 */
3567 if (err == ENETDOWN) {
3568 /*
3569 * The device on which we're
3570 * capturing went away or the
3571 * interface was taken down.
3572 *
3573 * We don't know for certain
3574 * which happened, and the
3575 * next poll() may indicate
3576 * that there are packets
3577 * to be read, so just set
3578 * a flag to get us to do
3579 * checks later, and set
3580 * the required select
3581 * timeout to 1 millisecond
3582 * so that event loops that
3583 * check our socket descriptor
3584 * also time out so that
3585 * they can call us and we
3586 * can do the checks.
3587 */
3588 handlep->netdown = 1;
3589 handle->required_select_timeout = &netdown_timeout;
3590 } else if (err == 0) {
3591 /*
3592 * This shouldn't happen, so
3593 * report a special indication
3594 * that it did.
3595 */
3596 snprintf(handle->errbuf,
3597 PCAP_ERRBUF_SIZE,
3598 "Error condition on packet socket: Reported error was 0");
3599 return PCAP_ERROR;
3600 } else {
3601 pcap_fmt_errmsg_for_errno(handle->errbuf,
3602 PCAP_ERRBUF_SIZE,
3603 err,
3604 "Error condition on packet socket");
3605 return PCAP_ERROR;
3606 }
3607 }
3608 }
3609 /*
3610 * Now check the event device.
3611 */
3612 if (pollinfo[1].revents & POLLIN) {
3613 ssize_t nread;
3614 uint64_t value;
3615
3616 /*
3617 * This should never fail, but, just
3618 * in case....
3619 */
3620 nread = read(handlep->poll_breakloop_fd, &value,
3621 sizeof(value));
3622 if (nread == -1) {
3623 pcap_fmt_errmsg_for_errno(handle->errbuf,
3624 PCAP_ERRBUF_SIZE,
3625 errno,
3626 "Error reading from event FD");
3627 return PCAP_ERROR;
3628 }
3629
3630 /*
3631 * According to the Linux read(2) man
3632 * page, read() will transfer at most
3633 * 2^31-1 bytes, so the return value is
3634 * either -1 or a value between 0
3635 * and 2^31-1, so it's non-negative.
3636 *
3637 * Cast it to size_t to squelch
3638 * warnings from the compiler; add this
3639 * comment to squelch warnings from
3640 * humans reading the code. :-)
3641 *
3642 * Don't treat an EOF as an error, but
3643 * *do* treat a short read as an error;
3644 * that "shouldn't happen", but....
3645 */
3646 if (nread != 0 &&
3647 (size_t)nread < sizeof(value)) {
3648 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3649 "Short read from event FD: expected %zu, got %zd",
3650 sizeof(value), nread);
3651 return PCAP_ERROR;
3652 }
3653
3654 /*
3655 * This event gets signaled by a
3656 * pcap_breakloop() call; if we were told
3657 * to break out of the loop, do so.
3658 */
3659 if (handle->break_loop) {
3660 handle->break_loop = 0;
3661 return PCAP_ERROR_BREAK;
3662 }
3663 }
3664 }
3665
3666 /*
3667 * Either:
3668 *
3669 * 1) we got neither an error from poll() nor any
3670 * readable descriptors, in which case there
3671 * are no packets waiting to read
3672 *
3673 * or
3674 *
3675 * 2) We got readable descriptors but the PF_PACKET
3676 * socket wasn't one of them, in which case there
3677 * are no packets waiting to read
3678 *
3679 * so, if we got an ENETDOWN, we've drained whatever
3680 * packets were available to read at the point of the
3681 * ENETDOWN.
3682 *
3683 * So, if we got an ENETDOWN and haven't gotten an indication
3684 * that the device has gone away or that the device is up,
3685 * we don't yet know for certain whether the device has
3686 * gone away or not, check whether the device exists and is
3687 * up.
3688 */
3689 if (handlep->netdown) {
3690 if (!device_still_exists(handle)) {
3691 /*
3692 * The device doesn't exist any more;
3693 * report that.
3694 *
3695 * XXX - we should really return an
3696 * appropriate error for that, but
3697 * pcap_dispatch() etc. aren't documented
3698 * as having error returns other than
3699 * PCAP_ERROR or PCAP_ERROR_BREAK.
3700 */
3701 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3702 "The interface disappeared");
3703 return PCAP_ERROR;
3704 }
3705
3706 /*
3707 * The device still exists; try to see if it's up.
3708 */
3709 memset(&ifr, 0, sizeof(ifr));
3710 pcap_strlcpy(ifr.ifr_name, handlep->device,
3711 sizeof(ifr.ifr_name));
3712 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3713 if (errno == ENXIO || errno == ENODEV) {
3714 /*
3715 * OK, *now* it's gone.
3716 *
3717 * XXX - see above comment.
3718 */
3719 snprintf(handle->errbuf,
3720 PCAP_ERRBUF_SIZE,
3721 "The interface disappeared");
3722 return PCAP_ERROR;
3723 } else {
3724 pcap_fmt_errmsg_for_errno(handle->errbuf,
3725 PCAP_ERRBUF_SIZE, errno,
3726 "%s: Can't get flags",
3727 handlep->device);
3728 return PCAP_ERROR;
3729 }
3730 }
3731 if (ifr.ifr_flags & IFF_UP) {
3732 /*
3733 * It's up, so it definitely still exists.
3734 * Cancel the ENETDOWN indication - we
3735 * presumably got it due to the interface
3736 * going down rather than the device going
3737 * away - and revert to "no required select
3738 * timeout.
3739 */
3740 handlep->netdown = 0;
3741 handle->required_select_timeout = NULL;
3742 }
3743 }
3744
3745 /*
3746 * If we're in non-blocking mode, just quit now, rather
3747 * than spinning in a loop doing poll()s that immediately
3748 * time out if there's no indication on any descriptor.
3749 */
3750 if (handlep->poll_timeout == 0)
3751 break;
3752 }
3753 return 0;
3754 }
3755
3756 /* handle a single memory mapped packet */
pcap_handle_packet_mmap(pcap_t * handle,pcap_handler callback,u_char * user,unsigned char * frame,unsigned int tp_len,unsigned int tp_mac,unsigned int tp_snaplen,unsigned int tp_sec,unsigned int tp_usec,int tp_vlan_tci_valid,__u16 tp_vlan_tci,__u16 tp_vlan_tpid)3757 static int pcap_handle_packet_mmap(
3758 pcap_t *handle,
3759 pcap_handler callback,
3760 u_char *user,
3761 unsigned char *frame,
3762 unsigned int tp_len,
3763 unsigned int tp_mac,
3764 unsigned int tp_snaplen,
3765 unsigned int tp_sec,
3766 unsigned int tp_usec,
3767 int tp_vlan_tci_valid,
3768 __u16 tp_vlan_tci,
3769 __u16 tp_vlan_tpid)
3770 {
3771 struct pcap_linux *handlep = handle->priv;
3772 unsigned char *bp;
3773 struct sockaddr_ll *sll;
3774 struct pcap_pkthdr pcaphdr;
3775 unsigned int snaplen = tp_snaplen;
3776 struct utsname utsname;
3777
3778 /* perform sanity check on internal offset. */
3779 if (tp_mac + tp_snaplen > handle->bufsize) {
3780 /*
3781 * Report some system information as a debugging aid.
3782 */
3783 if (uname(&utsname) != -1) {
3784 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3785 "corrupted frame on kernel ring mac "
3786 "offset %u + caplen %u > frame len %d "
3787 "(kernel %.32s version %s, machine %.16s)",
3788 tp_mac, tp_snaplen, handle->bufsize,
3789 utsname.release, utsname.version,
3790 utsname.machine);
3791 } else {
3792 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3793 "corrupted frame on kernel ring mac "
3794 "offset %u + caplen %u > frame len %d",
3795 tp_mac, tp_snaplen, handle->bufsize);
3796 }
3797 return -1;
3798 }
3799
3800 /* run filter on received packet
3801 * If the kernel filtering is enabled we need to run the
3802 * filter until all the frames present into the ring
3803 * at filter creation time are processed.
3804 * In this case, blocks_to_filter_in_userland is used
3805 * as a counter for the packet we need to filter.
3806 * Note: alternatively it could be possible to stop applying
3807 * the filter when the ring became empty, but it can possibly
3808 * happen a lot later... */
3809 bp = frame + tp_mac;
3810
3811 /* if required build in place the sll header*/
3812 sll = (void *)(frame + TPACKET_ALIGN(handlep->tp_hdrlen));
3813 if (handlep->cooked) {
3814 if (handle->linktype == DLT_LINUX_SLL2) {
3815 struct sll2_header *hdrp;
3816
3817 /*
3818 * The kernel should have left us with enough
3819 * space for an sll header; back up the packet
3820 * data pointer into that space, as that'll be
3821 * the beginning of the packet we pass to the
3822 * callback.
3823 */
3824 bp -= SLL2_HDR_LEN;
3825
3826 /*
3827 * Let's make sure that's past the end of
3828 * the tpacket header, i.e. >=
3829 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3830 * don't step on the header when we construct
3831 * the sll header.
3832 */
3833 if (bp < (u_char *)frame +
3834 TPACKET_ALIGN(handlep->tp_hdrlen) +
3835 sizeof(struct sockaddr_ll)) {
3836 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3837 "cooked-mode frame doesn't have room for sll header");
3838 return -1;
3839 }
3840
3841 /*
3842 * OK, that worked; construct the sll header.
3843 */
3844 hdrp = (struct sll2_header *)bp;
3845 hdrp->sll2_protocol = sll->sll_protocol;
3846 hdrp->sll2_reserved_mbz = 0;
3847 hdrp->sll2_if_index = htonl(sll->sll_ifindex);
3848 hdrp->sll2_hatype = htons(sll->sll_hatype);
3849 hdrp->sll2_pkttype = sll->sll_pkttype;
3850 hdrp->sll2_halen = sll->sll_halen;
3851 memcpy(hdrp->sll2_addr, sll->sll_addr, SLL_ADDRLEN);
3852
3853 snaplen += sizeof(struct sll2_header);
3854 } else {
3855 struct sll_header *hdrp;
3856
3857 /*
3858 * The kernel should have left us with enough
3859 * space for an sll header; back up the packet
3860 * data pointer into that space, as that'll be
3861 * the beginning of the packet we pass to the
3862 * callback.
3863 */
3864 bp -= SLL_HDR_LEN;
3865
3866 /*
3867 * Let's make sure that's past the end of
3868 * the tpacket header, i.e. >=
3869 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3870 * don't step on the header when we construct
3871 * the sll header.
3872 */
3873 if (bp < (u_char *)frame +
3874 TPACKET_ALIGN(handlep->tp_hdrlen) +
3875 sizeof(struct sockaddr_ll)) {
3876 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3877 "cooked-mode frame doesn't have room for sll header");
3878 return -1;
3879 }
3880
3881 /*
3882 * OK, that worked; construct the sll header.
3883 */
3884 hdrp = (struct sll_header *)bp;
3885 hdrp->sll_pkttype = htons(sll->sll_pkttype);
3886 hdrp->sll_hatype = htons(sll->sll_hatype);
3887 hdrp->sll_halen = htons(sll->sll_halen);
3888 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
3889 hdrp->sll_protocol = sll->sll_protocol;
3890
3891 snaplen += sizeof(struct sll_header);
3892 }
3893 }
3894
3895 if (handlep->filter_in_userland && handle->fcode.bf_insns) {
3896 struct pcap_bpf_aux_data aux_data;
3897
3898 aux_data.vlan_tag_present = tp_vlan_tci_valid;
3899 aux_data.vlan_tag = tp_vlan_tci & 0x0fff;
3900
3901 if (pcap_filter_with_aux_data(handle->fcode.bf_insns,
3902 bp,
3903 tp_len,
3904 snaplen,
3905 &aux_data) == 0)
3906 return 0;
3907 }
3908
3909 if (!linux_check_direction(handle, sll))
3910 return 0;
3911
3912 /* get required packet info from ring header */
3913 pcaphdr.ts.tv_sec = tp_sec;
3914 pcaphdr.ts.tv_usec = tp_usec;
3915 pcaphdr.caplen = tp_snaplen;
3916 pcaphdr.len = tp_len;
3917
3918 /* if required build in place the sll header*/
3919 if (handlep->cooked) {
3920 /* update packet len */
3921 if (handle->linktype == DLT_LINUX_SLL2) {
3922 pcaphdr.caplen += SLL2_HDR_LEN;
3923 pcaphdr.len += SLL2_HDR_LEN;
3924 } else {
3925 pcaphdr.caplen += SLL_HDR_LEN;
3926 pcaphdr.len += SLL_HDR_LEN;
3927 }
3928 }
3929
3930 if (tp_vlan_tci_valid &&
3931 handlep->vlan_offset != -1 &&
3932 tp_snaplen >= (unsigned int) handlep->vlan_offset)
3933 {
3934 struct vlan_tag *tag;
3935
3936 /*
3937 * Move everything in the header, except the type field,
3938 * down VLAN_TAG_LEN bytes, to allow us to insert the
3939 * VLAN tag between that stuff and the type field.
3940 */
3941 bp -= VLAN_TAG_LEN;
3942 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset);
3943
3944 /*
3945 * Now insert the tag.
3946 */
3947 tag = (struct vlan_tag *)(bp + handlep->vlan_offset);
3948 tag->vlan_tpid = htons(tp_vlan_tpid);
3949 tag->vlan_tci = htons(tp_vlan_tci);
3950
3951 /*
3952 * Add the tag to the packet lengths.
3953 */
3954 pcaphdr.caplen += VLAN_TAG_LEN;
3955 pcaphdr.len += VLAN_TAG_LEN;
3956 }
3957
3958 /*
3959 * The only way to tell the kernel to cut off the
3960 * packet at a snapshot length is with a filter program;
3961 * if there's no filter program, the kernel won't cut
3962 * the packet off.
3963 *
3964 * Trim the snapshot length to be no longer than the
3965 * specified snapshot length.
3966 *
3967 * XXX - an alternative is to put a filter, consisting
3968 * of a "ret <snaplen>" instruction, on the socket
3969 * in the activate routine, so that the truncation is
3970 * done in the kernel even if nobody specified a filter;
3971 * that means that less buffer space is consumed in
3972 * the memory-mapped buffer.
3973 */
3974 if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot)
3975 pcaphdr.caplen = handle->snapshot;
3976
3977 /* pass the packet to the user */
3978 callback(user, &pcaphdr, bp);
3979
3980 return 1;
3981 }
3982
3983 static int
pcap_read_linux_mmap_v2(pcap_t * handle,int max_packets,pcap_handler callback,u_char * user)3984 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback,
3985 u_char *user)
3986 {
3987 struct pcap_linux *handlep = handle->priv;
3988 union thdr h;
3989 int pkts = 0;
3990 int ret;
3991
3992 /* wait for frames availability.*/
3993 h.raw = RING_GET_CURRENT_FRAME(handle);
3994 if (!packet_mmap_acquire(h.h2)) {
3995 /*
3996 * The current frame is owned by the kernel; wait for
3997 * a frame to be handed to us.
3998 */
3999 ret = pcap_wait_for_frames_mmap(handle);
4000 if (ret) {
4001 return ret;
4002 }
4003 }
4004
4005 /* non-positive values of max_packets are used to require all
4006 * packets currently available in the ring */
4007 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) {
4008 /*
4009 * Get the current ring buffer frame, and break if
4010 * it's still owned by the kernel.
4011 */
4012 h.raw = RING_GET_CURRENT_FRAME(handle);
4013 if (!packet_mmap_acquire(h.h2))
4014 break;
4015
4016 ret = pcap_handle_packet_mmap(
4017 handle,
4018 callback,
4019 user,
4020 h.raw,
4021 h.h2->tp_len,
4022 h.h2->tp_mac,
4023 h.h2->tp_snaplen,
4024 h.h2->tp_sec,
4025 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000,
4026 VLAN_VALID(h.h2, h.h2),
4027 h.h2->tp_vlan_tci,
4028 VLAN_TPID(h.h2, h.h2));
4029 if (ret == 1) {
4030 pkts++;
4031 } else if (ret < 0) {
4032 return ret;
4033 }
4034
4035 /*
4036 * Hand this block back to the kernel, and, if we're
4037 * counting blocks that need to be filtered in userland
4038 * after having been filtered by the kernel, count
4039 * the one we've just processed.
4040 */
4041 packet_mmap_release(h.h2);
4042 if (handlep->blocks_to_filter_in_userland > 0) {
4043 handlep->blocks_to_filter_in_userland--;
4044 if (handlep->blocks_to_filter_in_userland == 0) {
4045 /*
4046 * No more blocks need to be filtered
4047 * in userland.
4048 */
4049 handlep->filter_in_userland = 0;
4050 }
4051 }
4052
4053 /* next block */
4054 if (++handle->offset >= handle->cc)
4055 handle->offset = 0;
4056
4057 /* check for break loop condition*/
4058 if (handle->break_loop) {
4059 handle->break_loop = 0;
4060 return PCAP_ERROR_BREAK;
4061 }
4062 }
4063 return pkts;
4064 }
4065
4066 #ifdef HAVE_TPACKET3
4067 static int
pcap_read_linux_mmap_v3(pcap_t * handle,int max_packets,pcap_handler callback,u_char * user)4068 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback,
4069 u_char *user)
4070 {
4071 struct pcap_linux *handlep = handle->priv;
4072 union thdr h;
4073 int pkts = 0;
4074 int ret;
4075
4076 again:
4077 if (handlep->current_packet == NULL) {
4078 /* wait for frames availability.*/
4079 h.raw = RING_GET_CURRENT_FRAME(handle);
4080 if (!packet_mmap_v3_acquire(h.h3)) {
4081 /*
4082 * The current frame is owned by the kernel; wait
4083 * for a frame to be handed to us.
4084 */
4085 ret = pcap_wait_for_frames_mmap(handle);
4086 if (ret) {
4087 return ret;
4088 }
4089 }
4090 }
4091 h.raw = RING_GET_CURRENT_FRAME(handle);
4092 if (!packet_mmap_v3_acquire(h.h3)) {
4093 if (pkts == 0 && handlep->timeout == 0) {
4094 /* Block until we see a packet. */
4095 goto again;
4096 }
4097 return pkts;
4098 }
4099
4100 /* non-positive values of max_packets are used to require all
4101 * packets currently available in the ring */
4102 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) {
4103 int packets_to_read;
4104
4105 if (handlep->current_packet == NULL) {
4106 h.raw = RING_GET_CURRENT_FRAME(handle);
4107 if (!packet_mmap_v3_acquire(h.h3))
4108 break;
4109
4110 handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt;
4111 handlep->packets_left = h.h3->hdr.bh1.num_pkts;
4112 }
4113 packets_to_read = handlep->packets_left;
4114
4115 if (!PACKET_COUNT_IS_UNLIMITED(max_packets) &&
4116 packets_to_read > (max_packets - pkts)) {
4117 /*
4118 * We've been given a maximum number of packets
4119 * to process, and there are more packets in
4120 * this buffer than that. Only process enough
4121 * of them to get us up to that maximum.
4122 */
4123 packets_to_read = max_packets - pkts;
4124 }
4125
4126 while (packets_to_read-- && !handle->break_loop) {
4127 struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet;
4128 ret = pcap_handle_packet_mmap(
4129 handle,
4130 callback,
4131 user,
4132 handlep->current_packet,
4133 tp3_hdr->tp_len,
4134 tp3_hdr->tp_mac,
4135 tp3_hdr->tp_snaplen,
4136 tp3_hdr->tp_sec,
4137 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000,
4138 VLAN_VALID(tp3_hdr, &tp3_hdr->hv1),
4139 tp3_hdr->hv1.tp_vlan_tci,
4140 VLAN_TPID(tp3_hdr, &tp3_hdr->hv1));
4141 if (ret == 1) {
4142 pkts++;
4143 } else if (ret < 0) {
4144 handlep->current_packet = NULL;
4145 return ret;
4146 }
4147 handlep->current_packet += tp3_hdr->tp_next_offset;
4148 handlep->packets_left--;
4149 }
4150
4151 if (handlep->packets_left <= 0) {
4152 /*
4153 * Hand this block back to the kernel, and, if
4154 * we're counting blocks that need to be
4155 * filtered in userland after having been
4156 * filtered by the kernel, count the one we've
4157 * just processed.
4158 */
4159 packet_mmap_v3_release(h.h3);
4160 if (handlep->blocks_to_filter_in_userland > 0) {
4161 handlep->blocks_to_filter_in_userland--;
4162 if (handlep->blocks_to_filter_in_userland == 0) {
4163 /*
4164 * No more blocks need to be filtered
4165 * in userland.
4166 */
4167 handlep->filter_in_userland = 0;
4168 }
4169 }
4170
4171 /* next block */
4172 if (++handle->offset >= handle->cc)
4173 handle->offset = 0;
4174
4175 handlep->current_packet = NULL;
4176 }
4177
4178 /* check for break loop condition*/
4179 if (handle->break_loop) {
4180 handle->break_loop = 0;
4181 return PCAP_ERROR_BREAK;
4182 }
4183 }
4184 if (pkts == 0 && handlep->timeout == 0) {
4185 /* Block until we see a packet. */
4186 goto again;
4187 }
4188 return pkts;
4189 }
4190 #endif /* HAVE_TPACKET3 */
4191
4192 /*
4193 * Attach the given BPF code to the packet capture device.
4194 */
4195 static int
pcap_setfilter_linux(pcap_t * handle,struct bpf_program * filter)4196 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
4197 {
4198 struct pcap_linux *handlep;
4199 struct sock_fprog fcode;
4200 int can_filter_in_kernel;
4201 int err = 0;
4202 int n, offset;
4203
4204 if (!handle)
4205 return -1;
4206 if (!filter) {
4207 pcap_strlcpy(handle->errbuf, "setfilter: No filter specified",
4208 PCAP_ERRBUF_SIZE);
4209 return -1;
4210 }
4211
4212 handlep = handle->priv;
4213
4214 /* Make our private copy of the filter */
4215
4216 if (install_bpf_program(handle, filter) < 0)
4217 /* install_bpf_program() filled in errbuf */
4218 return -1;
4219
4220 /*
4221 * Run user level packet filter by default. Will be overridden if
4222 * installing a kernel filter succeeds.
4223 */
4224 handlep->filter_in_userland = 1;
4225
4226 /* Install kernel level filter if possible */
4227
4228 #ifdef USHRT_MAX
4229 if (handle->fcode.bf_len > USHRT_MAX) {
4230 /*
4231 * fcode.len is an unsigned short for current kernel.
4232 * I have yet to see BPF-Code with that much
4233 * instructions but still it is possible. So for the
4234 * sake of correctness I added this check.
4235 */
4236 fprintf(stderr, "Warning: Filter too complex for kernel\n");
4237 fcode.len = 0;
4238 fcode.filter = NULL;
4239 can_filter_in_kernel = 0;
4240 } else
4241 #endif /* USHRT_MAX */
4242 {
4243 /*
4244 * Oh joy, the Linux kernel uses struct sock_fprog instead
4245 * of struct bpf_program and of course the length field is
4246 * of different size. Pointed out by Sebastian
4247 *
4248 * Oh, and we also need to fix it up so that all "ret"
4249 * instructions with non-zero operands have MAXIMUM_SNAPLEN
4250 * as the operand if we're not capturing in memory-mapped
4251 * mode, and so that, if we're in cooked mode, all memory-
4252 * reference instructions use special magic offsets in
4253 * references to the link-layer header and assume that the
4254 * link-layer payload begins at 0; "fix_program()" will do
4255 * that.
4256 */
4257 switch (fix_program(handle, &fcode)) {
4258
4259 case -1:
4260 default:
4261 /*
4262 * Fatal error; just quit.
4263 * (The "default" case shouldn't happen; we
4264 * return -1 for that reason.)
4265 */
4266 return -1;
4267
4268 case 0:
4269 /*
4270 * The program performed checks that we can't make
4271 * work in the kernel.
4272 */
4273 can_filter_in_kernel = 0;
4274 break;
4275
4276 case 1:
4277 /*
4278 * We have a filter that'll work in the kernel.
4279 */
4280 can_filter_in_kernel = 1;
4281 break;
4282 }
4283 }
4284
4285 /*
4286 * NOTE: at this point, we've set both the "len" and "filter"
4287 * fields of "fcode". As of the 2.6.32.4 kernel, at least,
4288 * those are the only members of the "sock_fprog" structure,
4289 * so we initialize every member of that structure.
4290 *
4291 * If there is anything in "fcode" that is not initialized,
4292 * it is either a field added in a later kernel, or it's
4293 * padding.
4294 *
4295 * If a new field is added, this code needs to be updated
4296 * to set it correctly.
4297 *
4298 * If there are no other fields, then:
4299 *
4300 * if the Linux kernel looks at the padding, it's
4301 * buggy;
4302 *
4303 * if the Linux kernel doesn't look at the padding,
4304 * then if some tool complains that we're passing
4305 * uninitialized data to the kernel, then the tool
4306 * is buggy and needs to understand that it's just
4307 * padding.
4308 */
4309 if (can_filter_in_kernel) {
4310 if ((err = set_kernel_filter(handle, &fcode)) == 0)
4311 {
4312 /*
4313 * Installation succeeded - using kernel filter,
4314 * so userland filtering not needed.
4315 */
4316 handlep->filter_in_userland = 0;
4317 }
4318 else if (err == -1) /* Non-fatal error */
4319 {
4320 /*
4321 * Print a warning if we weren't able to install
4322 * the filter for a reason other than "this kernel
4323 * isn't configured to support socket filters.
4324 */
4325 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
4326 fprintf(stderr,
4327 "Warning: Kernel filter failed: %s\n",
4328 pcap_strerror(errno));
4329 }
4330 }
4331 }
4332
4333 /*
4334 * If we're not using the kernel filter, get rid of any kernel
4335 * filter that might've been there before, e.g. because the
4336 * previous filter could work in the kernel, or because some other
4337 * code attached a filter to the socket by some means other than
4338 * calling "pcap_setfilter()". Otherwise, the kernel filter may
4339 * filter out packets that would pass the new userland filter.
4340 */
4341 if (handlep->filter_in_userland) {
4342 if (reset_kernel_filter(handle) == -1) {
4343 pcap_fmt_errmsg_for_errno(handle->errbuf,
4344 PCAP_ERRBUF_SIZE, errno,
4345 "can't remove kernel filter");
4346 err = -2; /* fatal error */
4347 }
4348 }
4349
4350 /*
4351 * Free up the copy of the filter that was made by "fix_program()".
4352 */
4353 if (fcode.filter != NULL)
4354 free(fcode.filter);
4355
4356 if (err == -2)
4357 /* Fatal error */
4358 return -1;
4359
4360 /*
4361 * If we're filtering in userland, there's nothing to do;
4362 * the new filter will be used for the next packet.
4363 */
4364 if (handlep->filter_in_userland)
4365 return 0;
4366
4367 /*
4368 * We're filtering in the kernel; the packets present in
4369 * all blocks currently in the ring were already filtered
4370 * by the old filter, and so will need to be filtered in
4371 * userland by the new filter.
4372 *
4373 * Get an upper bound for the number of such blocks; first,
4374 * walk the ring backward and count the free blocks.
4375 */
4376 offset = handle->offset;
4377 if (--offset < 0)
4378 offset = handle->cc - 1;
4379 for (n=0; n < handle->cc; ++n) {
4380 if (--offset < 0)
4381 offset = handle->cc - 1;
4382 if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL)
4383 break;
4384 }
4385
4386 /*
4387 * If we found free blocks, decrement the count of free
4388 * blocks by 1, just in case we lost a race with another
4389 * thread of control that was adding a packet while
4390 * we were counting and that had run the filter before
4391 * we changed it.
4392 *
4393 * XXX - could there be more than one block added in
4394 * this fashion?
4395 *
4396 * XXX - is there a way to avoid that race, e.g. somehow
4397 * wait for all packets that passed the old filter to
4398 * be added to the ring?
4399 */
4400 if (n != 0)
4401 n--;
4402
4403 /*
4404 * Set the count of blocks worth of packets to filter
4405 * in userland to the total number of blocks in the
4406 * ring minus the number of free blocks we found, and
4407 * turn on userland filtering. (The count of blocks
4408 * worth of packets to filter in userland is guaranteed
4409 * not to be zero - n, above, couldn't be set to a
4410 * value > handle->cc, and if it were equal to
4411 * handle->cc, it wouldn't be zero, and thus would
4412 * be decremented to handle->cc - 1.)
4413 */
4414 handlep->blocks_to_filter_in_userland = handle->cc - n;
4415 handlep->filter_in_userland = 1;
4416
4417 return 0;
4418 }
4419
4420 /*
4421 * Return the index of the given device name. Fill ebuf and return
4422 * -1 on failure.
4423 */
4424 static int
iface_get_id(int fd,const char * device,char * ebuf)4425 iface_get_id(int fd, const char *device, char *ebuf)
4426 {
4427 struct ifreq ifr;
4428
4429 memset(&ifr, 0, sizeof(ifr));
4430 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4431
4432 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
4433 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4434 errno, "SIOCGIFINDEX");
4435 return -1;
4436 }
4437
4438 return ifr.ifr_ifindex;
4439 }
4440
4441 /*
4442 * Bind the socket associated with FD to the given device.
4443 * Return 0 on success or a PCAP_ERROR_ value on a hard error.
4444 */
4445 static int
iface_bind(int fd,int ifindex,char * ebuf,int protocol)4446 iface_bind(int fd, int ifindex, char *ebuf, int protocol)
4447 {
4448 struct sockaddr_ll sll;
4449 int ret, err;
4450 socklen_t errlen = sizeof(err);
4451
4452 memset(&sll, 0, sizeof(sll));
4453 sll.sll_family = AF_PACKET;
4454 sll.sll_ifindex = ifindex < 0 ? 0 : ifindex;
4455 sll.sll_protocol = protocol;
4456
4457 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
4458 if (errno == ENETDOWN) {
4459 /*
4460 * Return a "network down" indication, so that
4461 * the application can report that rather than
4462 * saying we had a mysterious failure and
4463 * suggest that they report a problem to the
4464 * libpcap developers.
4465 */
4466 return PCAP_ERROR_IFACE_NOT_UP;
4467 }
4468 if (errno == ENODEV)
4469 ret = PCAP_ERROR_NO_SUCH_DEVICE;
4470 else
4471 ret = PCAP_ERROR;
4472 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4473 errno, "bind");
4474 return ret;
4475 }
4476
4477 /* Any pending errors, e.g., network is down? */
4478
4479 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
4480 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4481 errno, "getsockopt (SO_ERROR)");
4482 return PCAP_ERROR;
4483 }
4484
4485 if (err == ENETDOWN) {
4486 /*
4487 * Return a "network down" indication, so that
4488 * the application can report that rather than
4489 * saying we had a mysterious failure and
4490 * suggest that they report a problem to the
4491 * libpcap developers.
4492 */
4493 return PCAP_ERROR_IFACE_NOT_UP;
4494 } else if (err > 0) {
4495 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4496 err, "bind");
4497 return PCAP_ERROR;
4498 }
4499
4500 return 0;
4501 }
4502
4503 /*
4504 * Try to enter monitor mode.
4505 * If we have libnl, try to create a new monitor-mode device and
4506 * capture on that; otherwise, just say "not supported".
4507 */
4508 #ifdef HAVE_LIBNL
4509 static int
enter_rfmon_mode(pcap_t * handle,int sock_fd,const char * device)4510 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device)
4511 {
4512 struct pcap_linux *handlep = handle->priv;
4513 int ret;
4514 char phydev_path[PATH_MAX+1];
4515 struct nl80211_state nlstate;
4516 struct ifreq ifr;
4517 u_int n;
4518
4519 /*
4520 * Is this a mac80211 device?
4521 */
4522 ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX);
4523 if (ret < 0)
4524 return ret; /* error */
4525 if (ret == 0)
4526 return 0; /* no error, but not mac80211 device */
4527
4528 /*
4529 * XXX - is this already a monN device?
4530 * If so, we're done.
4531 */
4532
4533 /*
4534 * OK, it's apparently a mac80211 device.
4535 * Try to find an unused monN device for it.
4536 */
4537 ret = nl80211_init(handle, &nlstate, device);
4538 if (ret != 0)
4539 return ret;
4540 for (n = 0; n < UINT_MAX; n++) {
4541 /*
4542 * Try mon{n}.
4543 */
4544 char mondevice[3+10+1]; /* mon{UINT_MAX}\0 */
4545
4546 snprintf(mondevice, sizeof mondevice, "mon%u", n);
4547 ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice);
4548 if (ret == 1) {
4549 /*
4550 * Success. We don't clean up the libnl state
4551 * yet, as we'll be using it later.
4552 */
4553 goto added;
4554 }
4555 if (ret < 0) {
4556 /*
4557 * Hard failure. Just return ret; handle->errbuf
4558 * has already been set.
4559 */
4560 nl80211_cleanup(&nlstate);
4561 return ret;
4562 }
4563 }
4564
4565 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4566 "%s: No free monN interfaces", device);
4567 nl80211_cleanup(&nlstate);
4568 return PCAP_ERROR;
4569
4570 added:
4571
4572 #if 0
4573 /*
4574 * Sleep for .1 seconds.
4575 */
4576 delay.tv_sec = 0;
4577 delay.tv_nsec = 500000000;
4578 nanosleep(&delay, NULL);
4579 #endif
4580
4581 /*
4582 * If we haven't already done so, arrange to have
4583 * "pcap_close_all()" called when we exit.
4584 */
4585 if (!pcap_do_addexit(handle)) {
4586 /*
4587 * "atexit()" failed; don't put the interface
4588 * in rfmon mode, just give up.
4589 */
4590 del_mon_if(handle, sock_fd, &nlstate, device,
4591 handlep->mondevice);
4592 nl80211_cleanup(&nlstate);
4593 return PCAP_ERROR;
4594 }
4595
4596 /*
4597 * Now configure the monitor interface up.
4598 */
4599 memset(&ifr, 0, sizeof(ifr));
4600 pcap_strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name));
4601 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) {
4602 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4603 errno, "%s: Can't get flags for %s", device,
4604 handlep->mondevice);
4605 del_mon_if(handle, sock_fd, &nlstate, device,
4606 handlep->mondevice);
4607 nl80211_cleanup(&nlstate);
4608 return PCAP_ERROR;
4609 }
4610 ifr.ifr_flags |= IFF_UP|IFF_RUNNING;
4611 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) {
4612 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4613 errno, "%s: Can't set flags for %s", device,
4614 handlep->mondevice);
4615 del_mon_if(handle, sock_fd, &nlstate, device,
4616 handlep->mondevice);
4617 nl80211_cleanup(&nlstate);
4618 return PCAP_ERROR;
4619 }
4620
4621 /*
4622 * Success. Clean up the libnl state.
4623 */
4624 nl80211_cleanup(&nlstate);
4625
4626 /*
4627 * Note that we have to delete the monitor device when we close
4628 * the handle.
4629 */
4630 handlep->must_do_on_close |= MUST_DELETE_MONIF;
4631
4632 /*
4633 * Add this to the list of pcaps to close when we exit.
4634 */
4635 pcap_add_to_pcaps_to_close(handle);
4636
4637 return 1;
4638 }
4639 #else /* HAVE_LIBNL */
4640 static int
enter_rfmon_mode(pcap_t * handle _U_,int sock_fd _U_,const char * device _U_)4641 enter_rfmon_mode(pcap_t *handle _U_, int sock_fd _U_, const char *device _U_)
4642 {
4643 /*
4644 * We don't have libnl, so we can't do monitor mode.
4645 */
4646 return 0;
4647 }
4648 #endif /* HAVE_LIBNL */
4649
4650 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
4651 /*
4652 * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values.
4653 */
4654 static const struct {
4655 int soft_timestamping_val;
4656 int pcap_tstamp_val;
4657 } sof_ts_type_map[3] = {
4658 { SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST },
4659 { SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER },
4660 { SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED }
4661 };
4662 #define NUM_SOF_TIMESTAMPING_TYPES (sizeof sof_ts_type_map / sizeof sof_ts_type_map[0])
4663
4664 /*
4665 * Set the list of time stamping types to include all types.
4666 */
4667 static int
iface_set_all_ts_types(pcap_t * handle,char * ebuf)4668 iface_set_all_ts_types(pcap_t *handle, char *ebuf)
4669 {
4670 u_int i;
4671
4672 handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int));
4673 if (handle->tstamp_type_list == NULL) {
4674 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4675 errno, "malloc");
4676 return -1;
4677 }
4678 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++)
4679 handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val;
4680 handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES;
4681 return 0;
4682 }
4683
4684 #ifdef ETHTOOL_GET_TS_INFO
4685 /*
4686 * Get a list of time stamping capabilities.
4687 */
4688 static int
iface_ethtool_get_ts_info(const char * device,pcap_t * handle,char * ebuf)4689 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf)
4690 {
4691 int fd;
4692 struct ifreq ifr;
4693 struct ethtool_ts_info info;
4694 int num_ts_types;
4695 u_int i, j;
4696
4697 /*
4698 * This doesn't apply to the "any" device; you can't say "turn on
4699 * hardware time stamping for all devices that exist now and arrange
4700 * that it be turned on for any device that appears in the future",
4701 * and not all devices even necessarily *support* hardware time
4702 * stamping, so don't report any time stamp types.
4703 */
4704 if (strcmp(device, "any") == 0) {
4705 handle->tstamp_type_list = NULL;
4706 return 0;
4707 }
4708
4709 /*
4710 * Create a socket from which to fetch time stamping capabilities.
4711 */
4712 fd = get_if_ioctl_socket();
4713 if (fd < 0) {
4714 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4715 errno, "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO)");
4716 return -1;
4717 }
4718
4719 memset(&ifr, 0, sizeof(ifr));
4720 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4721 memset(&info, 0, sizeof(info));
4722 info.cmd = ETHTOOL_GET_TS_INFO;
4723 ifr.ifr_data = (caddr_t)&info;
4724 if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) {
4725 int save_errno = errno;
4726
4727 close(fd);
4728 switch (save_errno) {
4729
4730 case EOPNOTSUPP:
4731 case EINVAL:
4732 /*
4733 * OK, this OS version or driver doesn't support
4734 * asking for the time stamping types, so let's
4735 * just return all the possible types.
4736 */
4737 if (iface_set_all_ts_types(handle, ebuf) == -1)
4738 return -1;
4739 return 0;
4740
4741 case ENODEV:
4742 /*
4743 * OK, no such device.
4744 * The user will find that out when they try to
4745 * activate the device; just return an empty
4746 * list of time stamp types.
4747 */
4748 handle->tstamp_type_list = NULL;
4749 return 0;
4750
4751 default:
4752 /*
4753 * Other error.
4754 */
4755 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4756 save_errno,
4757 "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed",
4758 device);
4759 return -1;
4760 }
4761 }
4762 close(fd);
4763
4764 /*
4765 * Do we support hardware time stamping of *all* packets?
4766 */
4767 if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) {
4768 /*
4769 * No, so don't report any time stamp types.
4770 *
4771 * XXX - some devices either don't report
4772 * HWTSTAMP_FILTER_ALL when they do support it, or
4773 * report HWTSTAMP_FILTER_ALL but map it to only
4774 * time stamping a few PTP packets. See
4775 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2
4776 */
4777 handle->tstamp_type_list = NULL;
4778 return 0;
4779 }
4780
4781 num_ts_types = 0;
4782 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
4783 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val)
4784 num_ts_types++;
4785 }
4786 if (num_ts_types != 0) {
4787 handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int));
4788 if (handle->tstamp_type_list == NULL) {
4789 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4790 errno, "malloc");
4791 return -1;
4792 }
4793 for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
4794 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) {
4795 handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val;
4796 j++;
4797 }
4798 }
4799 handle->tstamp_type_count = num_ts_types;
4800 } else
4801 handle->tstamp_type_list = NULL;
4802
4803 return 0;
4804 }
4805 #else /* ETHTOOL_GET_TS_INFO */
4806 static int
iface_ethtool_get_ts_info(const char * device,pcap_t * handle,char * ebuf)4807 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf)
4808 {
4809 /*
4810 * This doesn't apply to the "any" device; you can't say "turn on
4811 * hardware time stamping for all devices that exist now and arrange
4812 * that it be turned on for any device that appears in the future",
4813 * and not all devices even necessarily *support* hardware time
4814 * stamping, so don't report any time stamp types.
4815 */
4816 if (strcmp(device, "any") == 0) {
4817 handle->tstamp_type_list = NULL;
4818 return 0;
4819 }
4820
4821 /*
4822 * We don't have an ioctl to use to ask what's supported,
4823 * so say we support everything.
4824 */
4825 if (iface_set_all_ts_types(handle, ebuf) == -1)
4826 return -1;
4827 return 0;
4828 }
4829 #endif /* ETHTOOL_GET_TS_INFO */
4830
4831 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
4832
4833 /*
4834 * Find out if we have any form of fragmentation/reassembly offloading.
4835 *
4836 * We do so using SIOCETHTOOL checking for various types of offloading;
4837 * if SIOCETHTOOL isn't defined, or we don't have any #defines for any
4838 * of the types of offloading, there's nothing we can do to check, so
4839 * we just say "no, we don't".
4840 *
4841 * We treat EOPNOTSUPP, EINVAL and, if eperm_ok is true, EPERM as
4842 * indications that the operation isn't supported. We do EPERM
4843 * weirdly because the SIOCETHTOOL code in later kernels 1) doesn't
4844 * support ETHTOOL_GUFO, 2) also doesn't include it in the list
4845 * of ethtool operations that don't require CAP_NET_ADMIN privileges,
4846 * and 3) does the "is this permitted" check before doing the "is
4847 * this even supported" check, so it fails with "this is not permitted"
4848 * rather than "this is not even supported". To work around this
4849 * annoyance, we only treat EPERM as an error for the first feature,
4850 * and assume that they all do the same permission checks, so if the
4851 * first one is allowed all the others are allowed if supported.
4852 */
4853 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO))
4854 static int
iface_ethtool_flag_ioctl(pcap_t * handle,int cmd,const char * cmdname,int eperm_ok)4855 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname,
4856 int eperm_ok)
4857 {
4858 struct ifreq ifr;
4859 struct ethtool_value eval;
4860
4861 memset(&ifr, 0, sizeof(ifr));
4862 pcap_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
4863 eval.cmd = cmd;
4864 eval.data = 0;
4865 ifr.ifr_data = (caddr_t)&eval;
4866 if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) {
4867 if (errno == EOPNOTSUPP || errno == EINVAL ||
4868 (errno == EPERM && eperm_ok)) {
4869 /*
4870 * OK, let's just return 0, which, in our
4871 * case, either means "no, what we're asking
4872 * about is not enabled" or "all the flags
4873 * are clear (i.e., nothing is enabled)".
4874 */
4875 return 0;
4876 }
4877 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4878 errno, "%s: SIOCETHTOOL(%s) ioctl failed",
4879 handle->opt.device, cmdname);
4880 return -1;
4881 }
4882 return eval.data;
4883 }
4884
4885 /*
4886 * XXX - it's annoying that we have to check for offloading at all, but,
4887 * given that we have to, it's still annoying that we have to check for
4888 * particular types of offloading, especially that shiny new types of
4889 * offloading may be added - and, worse, may not be checkable with
4890 * a particular ETHTOOL_ operation; ETHTOOL_GFEATURES would, in
4891 * theory, give those to you, but the actual flags being used are
4892 * opaque (defined in a non-uapi header), and there doesn't seem to
4893 * be any obvious way to ask the kernel what all the offloading flags
4894 * are - at best, you can ask for a set of strings(!) to get *names*
4895 * for various flags. (That whole mechanism appears to have been
4896 * designed for the sole purpose of letting ethtool report flags
4897 * by name and set flags by name, with the names having no semantics
4898 * ethtool understands.)
4899 */
4900 static int
iface_get_offload(pcap_t * handle)4901 iface_get_offload(pcap_t *handle)
4902 {
4903 int ret;
4904
4905 #ifdef ETHTOOL_GTSO
4906 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO", 0);
4907 if (ret == -1)
4908 return -1;
4909 if (ret)
4910 return 1; /* TCP segmentation offloading on */
4911 #endif
4912
4913 #ifdef ETHTOOL_GGSO
4914 /*
4915 * XXX - will this cause large unsegmented packets to be
4916 * handed to PF_PACKET sockets on transmission? If not,
4917 * this need not be checked.
4918 */
4919 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO", 0);
4920 if (ret == -1)
4921 return -1;
4922 if (ret)
4923 return 1; /* generic segmentation offloading on */
4924 #endif
4925
4926 #ifdef ETHTOOL_GFLAGS
4927 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS", 0);
4928 if (ret == -1)
4929 return -1;
4930 if (ret & ETH_FLAG_LRO)
4931 return 1; /* large receive offloading on */
4932 #endif
4933
4934 #ifdef ETHTOOL_GGRO
4935 /*
4936 * XXX - will this cause large reassembled packets to be
4937 * handed to PF_PACKET sockets on receipt? If not,
4938 * this need not be checked.
4939 */
4940 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO", 0);
4941 if (ret == -1)
4942 return -1;
4943 if (ret)
4944 return 1; /* generic (large) receive offloading on */
4945 #endif
4946
4947 #ifdef ETHTOOL_GUFO
4948 /*
4949 * Do this one last, as support for it was removed in later
4950 * kernels, and it fails with EPERM on those kernels rather
4951 * than with EOPNOTSUPP (see explanation in comment for
4952 * iface_ethtool_flag_ioctl()).
4953 */
4954 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO", 1);
4955 if (ret == -1)
4956 return -1;
4957 if (ret)
4958 return 1; /* UDP fragmentation offloading on */
4959 #endif
4960
4961 return 0;
4962 }
4963 #else /* SIOCETHTOOL */
4964 static int
iface_get_offload(pcap_t * handle _U_)4965 iface_get_offload(pcap_t *handle _U_)
4966 {
4967 /*
4968 * XXX - do we need to get this information if we don't
4969 * have the ethtool ioctls? If so, how do we do that?
4970 */
4971 return 0;
4972 }
4973 #endif /* SIOCETHTOOL */
4974
4975 static struct dsa_proto {
4976 const char *name;
4977 bpf_u_int32 linktype;
4978 } dsa_protos[] = {
4979 /*
4980 * None is special and indicates that the interface does not have
4981 * any tagging protocol configured, and is therefore a standard
4982 * Ethernet interface.
4983 */
4984 { "none", DLT_EN10MB },
4985 { "brcm", DLT_DSA_TAG_BRCM },
4986 { "brcm-prepend", DLT_DSA_TAG_BRCM_PREPEND },
4987 { "dsa", DLT_DSA_TAG_DSA },
4988 { "edsa", DLT_DSA_TAG_EDSA },
4989 };
4990
4991 static int
iface_dsa_get_proto_info(const char * device,pcap_t * handle)4992 iface_dsa_get_proto_info(const char *device, pcap_t *handle)
4993 {
4994 char *pathstr;
4995 unsigned int i;
4996 /*
4997 * Make this significantly smaller than PCAP_ERRBUF_SIZE;
4998 * the tag *shouldn't* have some huge long name, and making
4999 * it smaller keeps newer versions of GCC from whining that
5000 * the error message if we don't support the tag could
5001 * overflow the error message buffer.
5002 */
5003 char buf[128];
5004 ssize_t r;
5005 int fd;
5006
5007 fd = asprintf(&pathstr, "/sys/class/net/%s/dsa/tagging", device);
5008 if (fd < 0) {
5009 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5010 fd, "asprintf");
5011 return PCAP_ERROR;
5012 }
5013
5014 fd = open(pathstr, O_RDONLY);
5015 free(pathstr);
5016 /*
5017 * This is not fatal, kernel >= 4.20 *might* expose this attribute
5018 */
5019 if (fd < 0)
5020 return 0;
5021
5022 r = read(fd, buf, sizeof(buf) - 1);
5023 if (r <= 0) {
5024 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5025 errno, "read");
5026 close(fd);
5027 return PCAP_ERROR;
5028 }
5029 close(fd);
5030
5031 /*
5032 * Buffer should be LF terminated.
5033 */
5034 if (buf[r - 1] == '\n')
5035 r--;
5036 buf[r] = '\0';
5037
5038 for (i = 0; i < sizeof(dsa_protos) / sizeof(dsa_protos[0]); i++) {
5039 if (strlen(dsa_protos[i].name) == (size_t)r &&
5040 strcmp(buf, dsa_protos[i].name) == 0) {
5041 handle->linktype = dsa_protos[i].linktype;
5042 switch (dsa_protos[i].linktype) {
5043 case DLT_EN10MB:
5044 return 0;
5045 default:
5046 return 1;
5047 }
5048 }
5049 }
5050
5051 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
5052 "unsupported DSA tag: %s", buf);
5053
5054 return PCAP_ERROR;
5055 }
5056
5057 /*
5058 * Query the kernel for the MTU of the given interface.
5059 */
5060 static int
iface_get_mtu(int fd,const char * device,char * ebuf)5061 iface_get_mtu(int fd, const char *device, char *ebuf)
5062 {
5063 struct ifreq ifr;
5064
5065 if (!device)
5066 return BIGGER_THAN_ALL_MTUS;
5067
5068 memset(&ifr, 0, sizeof(ifr));
5069 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5070
5071 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
5072 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5073 errno, "SIOCGIFMTU");
5074 return -1;
5075 }
5076
5077 return ifr.ifr_mtu;
5078 }
5079
5080 /*
5081 * Get the hardware type of the given interface as ARPHRD_xxx constant.
5082 */
5083 static int
iface_get_arptype(int fd,const char * device,char * ebuf)5084 iface_get_arptype(int fd, const char *device, char *ebuf)
5085 {
5086 struct ifreq ifr;
5087 int ret;
5088
5089 memset(&ifr, 0, sizeof(ifr));
5090 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5091
5092 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
5093 if (errno == ENODEV) {
5094 /*
5095 * No such device.
5096 */
5097 ret = PCAP_ERROR_NO_SUCH_DEVICE;
5098 } else
5099 ret = PCAP_ERROR;
5100 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5101 errno, "SIOCGIFHWADDR");
5102 return ret;
5103 }
5104
5105 return ifr.ifr_hwaddr.sa_family;
5106 }
5107
5108 static int
fix_program(pcap_t * handle,struct sock_fprog * fcode)5109 fix_program(pcap_t *handle, struct sock_fprog *fcode)
5110 {
5111 struct pcap_linux *handlep = handle->priv;
5112 size_t prog_size;
5113 register int i;
5114 register struct bpf_insn *p;
5115 struct bpf_insn *f;
5116 int len;
5117
5118 /*
5119 * Make a copy of the filter, and modify that copy if
5120 * necessary.
5121 */
5122 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
5123 len = handle->fcode.bf_len;
5124 f = (struct bpf_insn *)malloc(prog_size);
5125 if (f == NULL) {
5126 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5127 errno, "malloc");
5128 return -1;
5129 }
5130 memcpy(f, handle->fcode.bf_insns, prog_size);
5131 fcode->len = len;
5132 fcode->filter = (struct sock_filter *) f;
5133
5134 for (i = 0; i < len; ++i) {
5135 p = &f[i];
5136 /*
5137 * What type of instruction is this?
5138 */
5139 switch (BPF_CLASS(p->code)) {
5140
5141 case BPF_LD:
5142 case BPF_LDX:
5143 /*
5144 * It's a load instruction; is it loading
5145 * from the packet?
5146 */
5147 switch (BPF_MODE(p->code)) {
5148
5149 case BPF_ABS:
5150 case BPF_IND:
5151 case BPF_MSH:
5152 /*
5153 * Yes; are we in cooked mode?
5154 */
5155 if (handlep->cooked) {
5156 /*
5157 * Yes, so we need to fix this
5158 * instruction.
5159 */
5160 if (fix_offset(handle, p) < 0) {
5161 /*
5162 * We failed to do so.
5163 * Return 0, so our caller
5164 * knows to punt to userland.
5165 */
5166 return 0;
5167 }
5168 }
5169 break;
5170 }
5171 break;
5172 }
5173 }
5174 return 1; /* we succeeded */
5175 }
5176
5177 static int
fix_offset(pcap_t * handle,struct bpf_insn * p)5178 fix_offset(pcap_t *handle, struct bpf_insn *p)
5179 {
5180 /*
5181 * Existing references to auxiliary data shouldn't be adjusted.
5182 *
5183 * Note that SKF_AD_OFF is negative, but p->k is unsigned, so
5184 * we use >= and cast SKF_AD_OFF to unsigned.
5185 */
5186 if (p->k >= (bpf_u_int32)SKF_AD_OFF)
5187 return 0;
5188 if (handle->linktype == DLT_LINUX_SLL2) {
5189 /*
5190 * What's the offset?
5191 */
5192 if (p->k >= SLL2_HDR_LEN) {
5193 /*
5194 * It's within the link-layer payload; that starts
5195 * at an offset of 0, as far as the kernel packet
5196 * filter is concerned, so subtract the length of
5197 * the link-layer header.
5198 */
5199 p->k -= SLL2_HDR_LEN;
5200 } else if (p->k == 0) {
5201 /*
5202 * It's the protocol field; map it to the
5203 * special magic kernel offset for that field.
5204 */
5205 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5206 } else if (p->k == 4) {
5207 /*
5208 * It's the ifindex field; map it to the
5209 * special magic kernel offset for that field.
5210 */
5211 p->k = SKF_AD_OFF + SKF_AD_IFINDEX;
5212 } else if (p->k == 10) {
5213 /*
5214 * It's the packet type field; map it to the
5215 * special magic kernel offset for that field.
5216 */
5217 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5218 } else if ((bpf_int32)(p->k) > 0) {
5219 /*
5220 * It's within the header, but it's not one of
5221 * those fields; we can't do that in the kernel,
5222 * so punt to userland.
5223 */
5224 return -1;
5225 }
5226 } else {
5227 /*
5228 * What's the offset?
5229 */
5230 if (p->k >= SLL_HDR_LEN) {
5231 /*
5232 * It's within the link-layer payload; that starts
5233 * at an offset of 0, as far as the kernel packet
5234 * filter is concerned, so subtract the length of
5235 * the link-layer header.
5236 */
5237 p->k -= SLL_HDR_LEN;
5238 } else if (p->k == 0) {
5239 /*
5240 * It's the packet type field; map it to the
5241 * special magic kernel offset for that field.
5242 */
5243 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5244 } else if (p->k == 14) {
5245 /*
5246 * It's the protocol field; map it to the
5247 * special magic kernel offset for that field.
5248 */
5249 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5250 } else if ((bpf_int32)(p->k) > 0) {
5251 /*
5252 * It's within the header, but it's not one of
5253 * those fields; we can't do that in the kernel,
5254 * so punt to userland.
5255 */
5256 return -1;
5257 }
5258 }
5259 return 0;
5260 }
5261
5262 static int
set_kernel_filter(pcap_t * handle,struct sock_fprog * fcode)5263 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
5264 {
5265 int total_filter_on = 0;
5266 int save_mode;
5267 int ret;
5268 int save_errno;
5269
5270 /*
5271 * The socket filter code doesn't discard all packets queued
5272 * up on the socket when the filter is changed; this means
5273 * that packets that don't match the new filter may show up
5274 * after the new filter is put onto the socket, if those
5275 * packets haven't yet been read.
5276 *
5277 * This means, for example, that if you do a tcpdump capture
5278 * with a filter, the first few packets in the capture might
5279 * be packets that wouldn't have passed the filter.
5280 *
5281 * We therefore discard all packets queued up on the socket
5282 * when setting a kernel filter. (This isn't an issue for
5283 * userland filters, as the userland filtering is done after
5284 * packets are queued up.)
5285 *
5286 * To flush those packets, we put the socket in read-only mode,
5287 * and read packets from the socket until there are no more to
5288 * read.
5289 *
5290 * In order to keep that from being an infinite loop - i.e.,
5291 * to keep more packets from arriving while we're draining
5292 * the queue - we put the "total filter", which is a filter
5293 * that rejects all packets, onto the socket before draining
5294 * the queue.
5295 *
5296 * This code deliberately ignores any errors, so that you may
5297 * get bogus packets if an error occurs, rather than having
5298 * the filtering done in userland even if it could have been
5299 * done in the kernel.
5300 */
5301 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5302 &total_fcode, sizeof(total_fcode)) == 0) {
5303 char drain[1];
5304
5305 /*
5306 * Note that we've put the total filter onto the socket.
5307 */
5308 total_filter_on = 1;
5309
5310 /*
5311 * Save the socket's current mode, and put it in
5312 * non-blocking mode; we drain it by reading packets
5313 * until we get an error (which is normally a
5314 * "nothing more to be read" error).
5315 */
5316 save_mode = fcntl(handle->fd, F_GETFL, 0);
5317 if (save_mode == -1) {
5318 pcap_fmt_errmsg_for_errno(handle->errbuf,
5319 PCAP_ERRBUF_SIZE, errno,
5320 "can't get FD flags when changing filter");
5321 return -2;
5322 }
5323 if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) {
5324 pcap_fmt_errmsg_for_errno(handle->errbuf,
5325 PCAP_ERRBUF_SIZE, errno,
5326 "can't set nonblocking mode when changing filter");
5327 return -2;
5328 }
5329 while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0)
5330 ;
5331 save_errno = errno;
5332 if (save_errno != EAGAIN) {
5333 /*
5334 * Fatal error.
5335 *
5336 * If we can't restore the mode or reset the
5337 * kernel filter, there's nothing we can do.
5338 */
5339 (void)fcntl(handle->fd, F_SETFL, save_mode);
5340 (void)reset_kernel_filter(handle);
5341 pcap_fmt_errmsg_for_errno(handle->errbuf,
5342 PCAP_ERRBUF_SIZE, save_errno,
5343 "recv failed when changing filter");
5344 return -2;
5345 }
5346 if (fcntl(handle->fd, F_SETFL, save_mode) == -1) {
5347 pcap_fmt_errmsg_for_errno(handle->errbuf,
5348 PCAP_ERRBUF_SIZE, errno,
5349 "can't restore FD flags when changing filter");
5350 return -2;
5351 }
5352 }
5353
5354 /*
5355 * Now attach the new filter.
5356 */
5357 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5358 fcode, sizeof(*fcode));
5359 if (ret == -1 && total_filter_on) {
5360 /*
5361 * Well, we couldn't set that filter on the socket,
5362 * but we could set the total filter on the socket.
5363 *
5364 * This could, for example, mean that the filter was
5365 * too big to put into the kernel, so we'll have to
5366 * filter in userland; in any case, we'll be doing
5367 * filtering in userland, so we need to remove the
5368 * total filter so we see packets.
5369 */
5370 save_errno = errno;
5371
5372 /*
5373 * If this fails, we're really screwed; we have the
5374 * total filter on the socket, and it won't come off.
5375 * Report it as a fatal error.
5376 */
5377 if (reset_kernel_filter(handle) == -1) {
5378 pcap_fmt_errmsg_for_errno(handle->errbuf,
5379 PCAP_ERRBUF_SIZE, errno,
5380 "can't remove kernel total filter");
5381 return -2; /* fatal error */
5382 }
5383
5384 errno = save_errno;
5385 }
5386 return ret;
5387 }
5388
5389 static int
reset_kernel_filter(pcap_t * handle)5390 reset_kernel_filter(pcap_t *handle)
5391 {
5392 int ret;
5393 /*
5394 * setsockopt() barfs unless it get a dummy parameter.
5395 * valgrind whines unless the value is initialized,
5396 * as it has no idea that setsockopt() ignores its
5397 * parameter.
5398 */
5399 int dummy = 0;
5400
5401 ret = setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
5402 &dummy, sizeof(dummy));
5403 /*
5404 * Ignore ENOENT - it means "we don't have a filter", so there
5405 * was no filter to remove, and there's still no filter.
5406 *
5407 * Also ignore ENONET, as a lot of kernel versions had a
5408 * typo where ENONET, rather than ENOENT, was returned.
5409 */
5410 if (ret == -1 && errno != ENOENT && errno != ENONET)
5411 return -1;
5412 return 0;
5413 }
5414
5415 int
pcap_set_protocol_linux(pcap_t * p,int protocol)5416 pcap_set_protocol_linux(pcap_t *p, int protocol)
5417 {
5418 if (pcap_check_activated(p))
5419 return (PCAP_ERROR_ACTIVATED);
5420 p->opt.protocol = protocol;
5421 return (0);
5422 }
5423
5424 /*
5425 * Libpcap version string.
5426 */
5427 const char *
pcap_lib_version(void)5428 pcap_lib_version(void)
5429 {
5430 #if defined(HAVE_TPACKET3)
5431 return (PCAP_VERSION_STRING " (with TPACKET_V3)");
5432 #else
5433 return (PCAP_VERSION_STRING " (with TPACKET_V2)");
5434 #endif
5435 }
5436