1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "optimizing_compiler.h"
18
19 #include <fstream>
20 #include <memory>
21 #include <sstream>
22
23 #include <stdint.h>
24
25 #include "art_method-inl.h"
26 #include "base/arena_allocator.h"
27 #include "base/arena_containers.h"
28 #include "base/dumpable.h"
29 #include "base/logging.h"
30 #include "base/macros.h"
31 #include "base/mutex.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/timing_logger.h"
34 #include "builder.h"
35 #include "code_generator.h"
36 #include "compiled_method.h"
37 #include "compiler.h"
38 #include "debug/elf_debug_writer.h"
39 #include "debug/method_debug_info.h"
40 #include "dex/dex_file_types.h"
41 #include "driver/compiled_method_storage.h"
42 #include "driver/compiler_options.h"
43 #include "driver/dex_compilation_unit.h"
44 #include "graph_checker.h"
45 #include "graph_visualizer.h"
46 #include "inliner.h"
47 #include "jit/debugger_interface.h"
48 #include "jit/jit.h"
49 #include "jit/jit_code_cache.h"
50 #include "jit/jit_logger.h"
51 #include "jni/quick/jni_compiler.h"
52 #include "linker/linker_patch.h"
53 #include "nodes.h"
54 #include "oat_quick_method_header.h"
55 #include "prepare_for_register_allocation.h"
56 #include "reference_type_propagation.h"
57 #include "register_allocator_linear_scan.h"
58 #include "select_generator.h"
59 #include "ssa_builder.h"
60 #include "ssa_liveness_analysis.h"
61 #include "ssa_phi_elimination.h"
62 #include "stack_map_stream.h"
63 #include "utils/assembler.h"
64
65 namespace art {
66
67 static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
68
69 static constexpr const char* kPassNameSeparator = "$";
70
71 /**
72 * Used by the code generator, to allocate the code in a vector.
73 */
74 class CodeVectorAllocator final : public CodeAllocator {
75 public:
CodeVectorAllocator(ArenaAllocator * allocator)76 explicit CodeVectorAllocator(ArenaAllocator* allocator)
77 : memory_(allocator->Adapter(kArenaAllocCodeBuffer)) {}
78
Allocate(size_t size)79 uint8_t* Allocate(size_t size) override {
80 memory_.resize(size);
81 return &memory_[0];
82 }
83
GetMemory() const84 ArrayRef<const uint8_t> GetMemory() const override { return ArrayRef<const uint8_t>(memory_); }
GetData()85 uint8_t* GetData() { return memory_.data(); }
86
87 private:
88 ArenaVector<uint8_t> memory_;
89
90 DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
91 };
92
93 /**
94 * Filter to apply to the visualizer. Methods whose name contain that filter will
95 * be dumped.
96 */
97 static constexpr const char kStringFilter[] = "";
98
99 class PassScope;
100
101 class PassObserver : public ValueObject {
102 public:
PassObserver(HGraph * graph,CodeGenerator * codegen,std::ostream * visualizer_output,const CompilerOptions & compiler_options)103 PassObserver(HGraph* graph,
104 CodeGenerator* codegen,
105 std::ostream* visualizer_output,
106 const CompilerOptions& compiler_options)
107 : graph_(graph),
108 last_seen_graph_size_(0),
109 cached_method_name_(),
110 timing_logger_enabled_(compiler_options.GetDumpPassTimings()),
111 timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
112 disasm_info_(graph->GetAllocator()),
113 visualizer_oss_(),
114 visualizer_output_(visualizer_output),
115 visualizer_enabled_(!compiler_options.GetDumpCfgFileName().empty()),
116 visualizer_(&visualizer_oss_, graph, codegen),
117 codegen_(codegen),
118 graph_in_bad_state_(false) {
119 if (timing_logger_enabled_ || visualizer_enabled_) {
120 if (!IsVerboseMethod(compiler_options, GetMethodName())) {
121 timing_logger_enabled_ = visualizer_enabled_ = false;
122 }
123 if (visualizer_enabled_) {
124 visualizer_.PrintHeader(GetMethodName());
125 codegen->SetDisassemblyInformation(&disasm_info_);
126 }
127 }
128 }
129
~PassObserver()130 ~PassObserver() {
131 if (timing_logger_enabled_) {
132 LOG(INFO) << "TIMINGS " << GetMethodName();
133 LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
134 }
135 if (visualizer_enabled_) {
136 FlushVisualizer();
137 }
138 DCHECK(visualizer_oss_.str().empty());
139 }
140
DumpDisassembly()141 void DumpDisassembly() {
142 if (visualizer_enabled_) {
143 visualizer_.DumpGraphWithDisassembly();
144 FlushVisualizer();
145 }
146 }
147
SetGraphInBadState()148 void SetGraphInBadState() { graph_in_bad_state_ = true; }
149
GetMethodName()150 const char* GetMethodName() {
151 // PrettyMethod() is expensive, so we delay calling it until we actually have to.
152 if (cached_method_name_.empty()) {
153 cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
154 }
155 return cached_method_name_.c_str();
156 }
157
158 private:
StartPass(const char * pass_name)159 void StartPass(const char* pass_name) {
160 VLOG(compiler) << "Starting pass: " << pass_name;
161 // Dump graph first, then start timer.
162 if (visualizer_enabled_) {
163 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ false, graph_in_bad_state_);
164 FlushVisualizer();
165 }
166 if (timing_logger_enabled_) {
167 timing_logger_.StartTiming(pass_name);
168 }
169 }
170
FlushVisualizer()171 void FlushVisualizer() {
172 *visualizer_output_ << visualizer_oss_.str();
173 visualizer_output_->flush();
174 visualizer_oss_.str("");
175 visualizer_oss_.clear();
176 }
177
EndPass(const char * pass_name,bool pass_change)178 void EndPass(const char* pass_name, bool pass_change) {
179 // Pause timer first, then dump graph.
180 if (timing_logger_enabled_) {
181 timing_logger_.EndTiming();
182 }
183 if (visualizer_enabled_) {
184 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ true, graph_in_bad_state_);
185 FlushVisualizer();
186 }
187
188 // Validate the HGraph if running in debug mode.
189 if (kIsDebugBuild) {
190 if (!graph_in_bad_state_) {
191 GraphChecker checker(graph_, codegen_);
192 last_seen_graph_size_ = checker.Run(pass_change, last_seen_graph_size_);
193 if (!checker.IsValid()) {
194 std::ostringstream stream;
195 graph_->Dump(stream, codegen_);
196 LOG(FATAL_WITHOUT_ABORT) << "Error after " << pass_name << "(" << graph_->PrettyMethod()
197 << "): " << stream.str();
198 LOG(FATAL) << "(" << pass_name << "): " << Dumpable<GraphChecker>(checker);
199 }
200 }
201 }
202 }
203
IsVerboseMethod(const CompilerOptions & compiler_options,const char * method_name)204 static bool IsVerboseMethod(const CompilerOptions& compiler_options, const char* method_name) {
205 // Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
206 // empty kStringFilter matching all methods.
207 if (compiler_options.HasVerboseMethods()) {
208 return compiler_options.IsVerboseMethod(method_name);
209 }
210
211 // Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
212 // warning when the string is empty.
213 constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
214 if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
215 return true;
216 }
217
218 return false;
219 }
220
221 HGraph* const graph_;
222 size_t last_seen_graph_size_;
223
224 std::string cached_method_name_;
225
226 bool timing_logger_enabled_;
227 TimingLogger timing_logger_;
228
229 DisassemblyInformation disasm_info_;
230
231 std::ostringstream visualizer_oss_;
232 std::ostream* visualizer_output_;
233 bool visualizer_enabled_;
234 HGraphVisualizer visualizer_;
235 CodeGenerator* codegen_;
236
237 // Flag to be set by the compiler if the pass failed and the graph is not
238 // expected to validate.
239 bool graph_in_bad_state_;
240
241 friend PassScope;
242
243 DISALLOW_COPY_AND_ASSIGN(PassObserver);
244 };
245
246 class PassScope : public ValueObject {
247 public:
PassScope(const char * pass_name,PassObserver * pass_observer)248 PassScope(const char *pass_name, PassObserver* pass_observer)
249 : pass_name_(pass_name),
250 pass_change_(true), // assume change
251 pass_observer_(pass_observer) {
252 pass_observer_->StartPass(pass_name_);
253 }
254
SetPassNotChanged()255 void SetPassNotChanged() {
256 pass_change_ = false;
257 }
258
~PassScope()259 ~PassScope() {
260 pass_observer_->EndPass(pass_name_, pass_change_);
261 }
262
263 private:
264 const char* const pass_name_;
265 bool pass_change_;
266 PassObserver* const pass_observer_;
267 };
268
269 class OptimizingCompiler final : public Compiler {
270 public:
271 explicit OptimizingCompiler(const CompilerOptions& compiler_options,
272 CompiledMethodStorage* storage);
273 ~OptimizingCompiler() override;
274
275 bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const override;
276
277 CompiledMethod* Compile(const dex::CodeItem* code_item,
278 uint32_t access_flags,
279 InvokeType invoke_type,
280 uint16_t class_def_idx,
281 uint32_t method_idx,
282 Handle<mirror::ClassLoader> class_loader,
283 const DexFile& dex_file,
284 Handle<mirror::DexCache> dex_cache) const override;
285
286 CompiledMethod* JniCompile(uint32_t access_flags,
287 uint32_t method_idx,
288 const DexFile& dex_file,
289 Handle<mirror::DexCache> dex_cache) const override;
290
GetEntryPointOf(ArtMethod * method) const291 uintptr_t GetEntryPointOf(ArtMethod* method) const override
292 REQUIRES_SHARED(Locks::mutator_lock_) {
293 return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
294 InstructionSetPointerSize(GetCompilerOptions().GetInstructionSet())));
295 }
296
297 bool JitCompile(Thread* self,
298 jit::JitCodeCache* code_cache,
299 jit::JitMemoryRegion* region,
300 ArtMethod* method,
301 CompilationKind compilation_kind,
302 jit::JitLogger* jit_logger)
303 override
304 REQUIRES_SHARED(Locks::mutator_lock_);
305
306 private:
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef definitions[],size_t length) const307 bool RunOptimizations(HGraph* graph,
308 CodeGenerator* codegen,
309 const DexCompilationUnit& dex_compilation_unit,
310 PassObserver* pass_observer,
311 const OptimizationDef definitions[],
312 size_t length) const {
313 // Convert definitions to optimization passes.
314 ArenaVector<HOptimization*> optimizations = ConstructOptimizations(
315 definitions,
316 length,
317 graph->GetAllocator(),
318 graph,
319 compilation_stats_.get(),
320 codegen,
321 dex_compilation_unit);
322 DCHECK_EQ(length, optimizations.size());
323 // Run the optimization passes one by one. Any "depends_on" pass refers back to
324 // the most recent occurrence of that pass, skipped or executed.
325 std::bitset<static_cast<size_t>(OptimizationPass::kLast) + 1u> pass_changes;
326 pass_changes[static_cast<size_t>(OptimizationPass::kNone)] = true;
327 bool change = false;
328 for (size_t i = 0; i < length; ++i) {
329 if (pass_changes[static_cast<size_t>(definitions[i].depends_on)]) {
330 // Execute the pass and record whether it changed anything.
331 PassScope scope(optimizations[i]->GetPassName(), pass_observer);
332 bool pass_change = optimizations[i]->Run();
333 pass_changes[static_cast<size_t>(definitions[i].pass)] = pass_change;
334 if (pass_change) {
335 change = true;
336 } else {
337 scope.SetPassNotChanged();
338 }
339 } else {
340 // Skip the pass and record that nothing changed.
341 pass_changes[static_cast<size_t>(definitions[i].pass)] = false;
342 }
343 }
344 return change;
345 }
346
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef (& definitions)[length]) const347 template <size_t length> bool RunOptimizations(
348 HGraph* graph,
349 CodeGenerator* codegen,
350 const DexCompilationUnit& dex_compilation_unit,
351 PassObserver* pass_observer,
352 const OptimizationDef (&definitions)[length]) const {
353 return RunOptimizations(
354 graph, codegen, dex_compilation_unit, pass_observer, definitions, length);
355 }
356
357 void RunOptimizations(HGraph* graph,
358 CodeGenerator* codegen,
359 const DexCompilationUnit& dex_compilation_unit,
360 PassObserver* pass_observer) const;
361
362 private:
363 // Create a 'CompiledMethod' for an optimized graph.
364 CompiledMethod* Emit(ArenaAllocator* allocator,
365 CodeVectorAllocator* code_allocator,
366 CodeGenerator* codegen,
367 const dex::CodeItem* item) const;
368
369 // Try compiling a method and return the code generator used for
370 // compiling it.
371 // This method:
372 // 1) Builds the graph. Returns null if it failed to build it.
373 // 2) Transforms the graph to SSA. Returns null if it failed.
374 // 3) Runs optimizations on the graph, including register allocator.
375 // 4) Generates code with the `code_allocator` provided.
376 CodeGenerator* TryCompile(ArenaAllocator* allocator,
377 ArenaStack* arena_stack,
378 CodeVectorAllocator* code_allocator,
379 const DexCompilationUnit& dex_compilation_unit,
380 ArtMethod* method,
381 CompilationKind compilation_kind,
382 VariableSizedHandleScope* handles) const;
383
384 CodeGenerator* TryCompileIntrinsic(ArenaAllocator* allocator,
385 ArenaStack* arena_stack,
386 CodeVectorAllocator* code_allocator,
387 const DexCompilationUnit& dex_compilation_unit,
388 ArtMethod* method,
389 VariableSizedHandleScope* handles) const;
390
391 bool RunArchOptimizations(HGraph* graph,
392 CodeGenerator* codegen,
393 const DexCompilationUnit& dex_compilation_unit,
394 PassObserver* pass_observer) const;
395
396 bool RunBaselineOptimizations(HGraph* graph,
397 CodeGenerator* codegen,
398 const DexCompilationUnit& dex_compilation_unit,
399 PassObserver* pass_observer) const;
400
401 std::vector<uint8_t> GenerateJitDebugInfo(const debug::MethodDebugInfo& method_debug_info);
402
403 // This must be called before any other function that dumps data to the cfg
404 void DumpInstructionSetFeaturesToCfg() const;
405
406 std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
407
408 std::unique_ptr<std::ostream> visualizer_output_;
409
410 DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
411 };
412
413 static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
414
OptimizingCompiler(const CompilerOptions & compiler_options,CompiledMethodStorage * storage)415 OptimizingCompiler::OptimizingCompiler(const CompilerOptions& compiler_options,
416 CompiledMethodStorage* storage)
417 : Compiler(compiler_options, storage, kMaximumCompilationTimeBeforeWarning) {
418 // Enable C1visualizer output.
419 const std::string& cfg_file_name = compiler_options.GetDumpCfgFileName();
420 if (!cfg_file_name.empty()) {
421 std::ios_base::openmode cfg_file_mode =
422 compiler_options.GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
423 visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
424 DumpInstructionSetFeaturesToCfg();
425 }
426 if (compiler_options.GetDumpStats()) {
427 compilation_stats_.reset(new OptimizingCompilerStats());
428 }
429 }
430
~OptimizingCompiler()431 OptimizingCompiler::~OptimizingCompiler() {
432 if (compilation_stats_.get() != nullptr) {
433 compilation_stats_->Log();
434 }
435 }
436
DumpInstructionSetFeaturesToCfg() const437 void OptimizingCompiler::DumpInstructionSetFeaturesToCfg() const {
438 const CompilerOptions& compiler_options = GetCompilerOptions();
439 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
440 std::string isa_string =
441 std::string("isa:") + GetInstructionSetString(features->GetInstructionSet());
442 std::string features_string = "isa_features:" + features->GetFeatureString();
443 // It is assumed that visualizer_output_ is empty when calling this function, hence the fake
444 // compilation block containing the ISA features will be printed at the beginning of the .cfg
445 // file.
446 *visualizer_output_
447 << HGraphVisualizer::InsertMetaDataAsCompilationBlock(isa_string + ' ' + features_string);
448 }
449
CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,const DexFile & dex_file ATTRIBUTE_UNUSED) const450 bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
451 const DexFile& dex_file ATTRIBUTE_UNUSED) const {
452 return true;
453 }
454
IsInstructionSetSupported(InstructionSet instruction_set)455 static bool IsInstructionSetSupported(InstructionSet instruction_set) {
456 return instruction_set == InstructionSet::kArm
457 || instruction_set == InstructionSet::kArm64
458 || instruction_set == InstructionSet::kThumb2
459 || instruction_set == InstructionSet::kX86
460 || instruction_set == InstructionSet::kX86_64;
461 }
462
RunBaselineOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const463 bool OptimizingCompiler::RunBaselineOptimizations(HGraph* graph,
464 CodeGenerator* codegen,
465 const DexCompilationUnit& dex_compilation_unit,
466 PassObserver* pass_observer) const {
467 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
468 #if defined(ART_ENABLE_CODEGEN_arm)
469 case InstructionSet::kThumb2:
470 case InstructionSet::kArm: {
471 OptimizationDef arm_optimizations[] = {
472 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
473 };
474 return RunOptimizations(graph,
475 codegen,
476 dex_compilation_unit,
477 pass_observer,
478 arm_optimizations);
479 }
480 #endif
481 #ifdef ART_ENABLE_CODEGEN_x86
482 case InstructionSet::kX86: {
483 OptimizationDef x86_optimizations[] = {
484 OptDef(OptimizationPass::kPcRelativeFixupsX86),
485 };
486 return RunOptimizations(graph,
487 codegen,
488 dex_compilation_unit,
489 pass_observer,
490 x86_optimizations);
491 }
492 #endif
493 default:
494 UNUSED(graph);
495 UNUSED(codegen);
496 UNUSED(dex_compilation_unit);
497 UNUSED(pass_observer);
498 return false;
499 }
500 }
501
RunArchOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const502 bool OptimizingCompiler::RunArchOptimizations(HGraph* graph,
503 CodeGenerator* codegen,
504 const DexCompilationUnit& dex_compilation_unit,
505 PassObserver* pass_observer) const {
506 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
507 #if defined(ART_ENABLE_CODEGEN_arm)
508 case InstructionSet::kThumb2:
509 case InstructionSet::kArm: {
510 OptimizationDef arm_optimizations[] = {
511 OptDef(OptimizationPass::kInstructionSimplifierArm),
512 OptDef(OptimizationPass::kSideEffectsAnalysis),
513 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
514 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
515 OptDef(OptimizationPass::kScheduling)
516 };
517 return RunOptimizations(graph,
518 codegen,
519 dex_compilation_unit,
520 pass_observer,
521 arm_optimizations);
522 }
523 #endif
524 #ifdef ART_ENABLE_CODEGEN_arm64
525 case InstructionSet::kArm64: {
526 OptimizationDef arm64_optimizations[] = {
527 OptDef(OptimizationPass::kInstructionSimplifierArm64),
528 OptDef(OptimizationPass::kSideEffectsAnalysis),
529 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
530 OptDef(OptimizationPass::kScheduling)
531 };
532 return RunOptimizations(graph,
533 codegen,
534 dex_compilation_unit,
535 pass_observer,
536 arm64_optimizations);
537 }
538 #endif
539 #ifdef ART_ENABLE_CODEGEN_x86
540 case InstructionSet::kX86: {
541 OptimizationDef x86_optimizations[] = {
542 OptDef(OptimizationPass::kInstructionSimplifierX86),
543 OptDef(OptimizationPass::kSideEffectsAnalysis),
544 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
545 OptDef(OptimizationPass::kPcRelativeFixupsX86),
546 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
547 };
548 return RunOptimizations(graph,
549 codegen,
550 dex_compilation_unit,
551 pass_observer,
552 x86_optimizations);
553 }
554 #endif
555 #ifdef ART_ENABLE_CODEGEN_x86_64
556 case InstructionSet::kX86_64: {
557 OptimizationDef x86_64_optimizations[] = {
558 OptDef(OptimizationPass::kInstructionSimplifierX86_64),
559 OptDef(OptimizationPass::kSideEffectsAnalysis),
560 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
561 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
562 };
563 return RunOptimizations(graph,
564 codegen,
565 dex_compilation_unit,
566 pass_observer,
567 x86_64_optimizations);
568 }
569 #endif
570 default:
571 return false;
572 }
573 }
574
575 NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
AllocateRegisters(HGraph * graph,CodeGenerator * codegen,PassObserver * pass_observer,RegisterAllocator::Strategy strategy,OptimizingCompilerStats * stats)576 static void AllocateRegisters(HGraph* graph,
577 CodeGenerator* codegen,
578 PassObserver* pass_observer,
579 RegisterAllocator::Strategy strategy,
580 OptimizingCompilerStats* stats) {
581 {
582 PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
583 pass_observer);
584 PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions(), stats).Run();
585 }
586 // Use local allocator shared by SSA liveness analysis and register allocator.
587 // (Register allocator creates new objects in the liveness data.)
588 ScopedArenaAllocator local_allocator(graph->GetArenaStack());
589 SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
590 {
591 PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
592 liveness.Analyze();
593 }
594 {
595 PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
596 std::unique_ptr<RegisterAllocator> register_allocator =
597 RegisterAllocator::Create(&local_allocator, codegen, liveness, strategy);
598 register_allocator->AllocateRegisters();
599 }
600 }
601
602 // Strip pass name suffix to get optimization name.
ConvertPassNameToOptimizationName(const std::string & pass_name)603 static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
604 size_t pos = pass_name.find(kPassNameSeparator);
605 return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
606 }
607
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const608 void OptimizingCompiler::RunOptimizations(HGraph* graph,
609 CodeGenerator* codegen,
610 const DexCompilationUnit& dex_compilation_unit,
611 PassObserver* pass_observer) const {
612 const std::vector<std::string>* pass_names = GetCompilerOptions().GetPassesToRun();
613 if (pass_names != nullptr) {
614 // If passes were defined on command-line, build the optimization
615 // passes and run these instead of the built-in optimizations.
616 // TODO: a way to define depends_on via command-line?
617 const size_t length = pass_names->size();
618 std::vector<OptimizationDef> optimizations;
619 for (const std::string& pass_name : *pass_names) {
620 std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
621 optimizations.push_back(OptDef(OptimizationPassByName(opt_name), pass_name.c_str()));
622 }
623 RunOptimizations(graph,
624 codegen,
625 dex_compilation_unit,
626 pass_observer,
627 optimizations.data(),
628 length);
629 return;
630 }
631
632 OptimizationDef optimizations[] = {
633 // Initial optimizations.
634 OptDef(OptimizationPass::kConstantFolding),
635 OptDef(OptimizationPass::kInstructionSimplifier),
636 OptDef(OptimizationPass::kDeadCodeElimination,
637 "dead_code_elimination$initial"),
638 // Inlining.
639 OptDef(OptimizationPass::kInliner),
640 // Simplification (if inlining occurred, or if we analyzed the invoke as "always throwing").
641 OptDef(OptimizationPass::kConstantFolding,
642 "constant_folding$after_inlining",
643 OptimizationPass::kInliner),
644 OptDef(OptimizationPass::kInstructionSimplifier,
645 "instruction_simplifier$after_inlining",
646 OptimizationPass::kInliner),
647 OptDef(OptimizationPass::kDeadCodeElimination,
648 "dead_code_elimination$after_inlining",
649 OptimizationPass::kInliner),
650 // GVN.
651 OptDef(OptimizationPass::kSideEffectsAnalysis,
652 "side_effects$before_gvn"),
653 OptDef(OptimizationPass::kGlobalValueNumbering),
654 // Simplification (TODO: only if GVN occurred).
655 OptDef(OptimizationPass::kSelectGenerator),
656 OptDef(OptimizationPass::kConstantFolding,
657 "constant_folding$after_gvn"),
658 OptDef(OptimizationPass::kInstructionSimplifier,
659 "instruction_simplifier$after_gvn"),
660 OptDef(OptimizationPass::kDeadCodeElimination,
661 "dead_code_elimination$after_gvn"),
662 // High-level optimizations.
663 OptDef(OptimizationPass::kSideEffectsAnalysis,
664 "side_effects$before_licm"),
665 OptDef(OptimizationPass::kInvariantCodeMotion),
666 OptDef(OptimizationPass::kInductionVarAnalysis),
667 OptDef(OptimizationPass::kBoundsCheckElimination),
668 OptDef(OptimizationPass::kLoopOptimization),
669 // Simplification.
670 OptDef(OptimizationPass::kConstantFolding,
671 "constant_folding$after_bce"),
672 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
673 "instruction_simplifier$after_bce"),
674 // Other high-level optimizations.
675 OptDef(OptimizationPass::kLoadStoreElimination),
676 OptDef(OptimizationPass::kCHAGuardOptimization),
677 OptDef(OptimizationPass::kDeadCodeElimination,
678 "dead_code_elimination$final"),
679 OptDef(OptimizationPass::kCodeSinking),
680 // The codegen has a few assumptions that only the instruction simplifier
681 // can satisfy. For example, the code generator does not expect to see a
682 // HTypeConversion from a type to the same type.
683 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
684 "instruction_simplifier$before_codegen"),
685 // Eliminate constructor fences after code sinking to avoid
686 // complicated sinking logic to split a fence with many inputs.
687 OptDef(OptimizationPass::kConstructorFenceRedundancyElimination)
688 };
689 RunOptimizations(graph,
690 codegen,
691 dex_compilation_unit,
692 pass_observer,
693 optimizations);
694
695 RunArchOptimizations(graph, codegen, dex_compilation_unit, pass_observer);
696 }
697
EmitAndSortLinkerPatches(CodeGenerator * codegen)698 static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
699 ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
700 codegen->EmitLinkerPatches(&linker_patches);
701
702 // Sort patches by literal offset. Required for .oat_patches encoding.
703 std::sort(linker_patches.begin(), linker_patches.end(),
704 [](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
705 return lhs.LiteralOffset() < rhs.LiteralOffset();
706 });
707
708 return linker_patches;
709 }
710
Emit(ArenaAllocator * allocator,CodeVectorAllocator * code_allocator,CodeGenerator * codegen,const dex::CodeItem * code_item_for_osr_check) const711 CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
712 CodeVectorAllocator* code_allocator,
713 CodeGenerator* codegen,
714 const dex::CodeItem* code_item_for_osr_check) const {
715 ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
716 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item_for_osr_check);
717
718 CompiledMethodStorage* storage = GetCompiledMethodStorage();
719 CompiledMethod* compiled_method = CompiledMethod::SwapAllocCompiledMethod(
720 storage,
721 codegen->GetInstructionSet(),
722 code_allocator->GetMemory(),
723 ArrayRef<const uint8_t>(stack_map),
724 ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
725 ArrayRef<const linker::LinkerPatch>(linker_patches));
726
727 for (const linker::LinkerPatch& patch : linker_patches) {
728 if (codegen->NeedsThunkCode(patch) && storage->GetThunkCode(patch).empty()) {
729 ArenaVector<uint8_t> code(allocator->Adapter());
730 std::string debug_name;
731 codegen->EmitThunkCode(patch, &code, &debug_name);
732 storage->SetThunkCode(patch, ArrayRef<const uint8_t>(code), debug_name);
733 }
734 }
735
736 return compiled_method;
737 }
738
TryCompile(ArenaAllocator * allocator,ArenaStack * arena_stack,CodeVectorAllocator * code_allocator,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,CompilationKind compilation_kind,VariableSizedHandleScope * handles) const739 CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
740 ArenaStack* arena_stack,
741 CodeVectorAllocator* code_allocator,
742 const DexCompilationUnit& dex_compilation_unit,
743 ArtMethod* method,
744 CompilationKind compilation_kind,
745 VariableSizedHandleScope* handles) const {
746 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptBytecodeCompilation);
747 const CompilerOptions& compiler_options = GetCompilerOptions();
748 InstructionSet instruction_set = compiler_options.GetInstructionSet();
749 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
750 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
751 const dex::CodeItem* code_item = dex_compilation_unit.GetCodeItem();
752
753 // Always use the Thumb-2 assembler: some runtime functionality
754 // (like implicit stack overflow checks) assume Thumb-2.
755 DCHECK_NE(instruction_set, InstructionSet::kArm);
756
757 // Do not attempt to compile on architectures we do not support.
758 if (!IsInstructionSetSupported(instruction_set)) {
759 MaybeRecordStat(compilation_stats_.get(),
760 MethodCompilationStat::kNotCompiledUnsupportedIsa);
761 return nullptr;
762 }
763
764 if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
765 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledPathological);
766 return nullptr;
767 }
768
769 // Implementation of the space filter: do not compile a code item whose size in
770 // code units is bigger than 128.
771 static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
772 if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
773 && (CodeItemInstructionAccessor(dex_file, code_item).InsnsSizeInCodeUnits() >
774 kSpaceFilterOptimizingThreshold)) {
775 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledSpaceFilter);
776 return nullptr;
777 }
778
779 CodeItemDebugInfoAccessor code_item_accessor(dex_file, code_item, method_idx);
780
781 bool dead_reference_safe;
782 // For AOT compilation, we may not get a method, for example if its class is erroneous,
783 // possibly due to an unavailable superclass. JIT should always have a method.
784 DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
785 if (method != nullptr) {
786 const dex::ClassDef* containing_class;
787 {
788 ScopedObjectAccess soa(Thread::Current());
789 containing_class = &method->GetClassDef();
790 }
791 // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
792 // is currently rarely true.
793 dead_reference_safe =
794 annotations::HasDeadReferenceSafeAnnotation(dex_file, *containing_class)
795 && !annotations::MethodContainsRSensitiveAccess(dex_file, *containing_class, method_idx);
796 } else {
797 // If we could not resolve the class, conservatively assume it's dead-reference unsafe.
798 dead_reference_safe = false;
799 }
800
801 HGraph* graph = new (allocator) HGraph(
802 allocator,
803 arena_stack,
804 handles,
805 dex_file,
806 method_idx,
807 compiler_options.GetInstructionSet(),
808 kInvalidInvokeType,
809 dead_reference_safe,
810 compiler_options.GetDebuggable(),
811 compilation_kind);
812
813 if (method != nullptr) {
814 graph->SetArtMethod(method);
815 }
816
817 jit::Jit* jit = Runtime::Current()->GetJit();
818 if (jit != nullptr) {
819 ProfilingInfo* info = jit->GetCodeCache()->GetProfilingInfo(method, Thread::Current());
820 DCHECK_IMPLIES(compilation_kind == CompilationKind::kBaseline, info != nullptr)
821 << "Compiling a method baseline should always have a ProfilingInfo";
822 graph->SetProfilingInfo(info);
823 }
824
825 std::unique_ptr<CodeGenerator> codegen(
826 CodeGenerator::Create(graph,
827 compiler_options,
828 compilation_stats_.get()));
829 if (codegen.get() == nullptr) {
830 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledNoCodegen);
831 return nullptr;
832 }
833 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
834
835 PassObserver pass_observer(graph,
836 codegen.get(),
837 visualizer_output_.get(),
838 compiler_options);
839
840 {
841 VLOG(compiler) << "Building " << pass_observer.GetMethodName();
842 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
843 HGraphBuilder builder(graph,
844 code_item_accessor,
845 &dex_compilation_unit,
846 &dex_compilation_unit,
847 codegen.get(),
848 compilation_stats_.get());
849 GraphAnalysisResult result = builder.BuildGraph();
850 if (result != kAnalysisSuccess) {
851 switch (result) {
852 case kAnalysisSkipped: {
853 MaybeRecordStat(compilation_stats_.get(),
854 MethodCompilationStat::kNotCompiledSkipped);
855 break;
856 }
857 case kAnalysisInvalidBytecode: {
858 MaybeRecordStat(compilation_stats_.get(),
859 MethodCompilationStat::kNotCompiledInvalidBytecode);
860 break;
861 }
862 case kAnalysisFailThrowCatchLoop: {
863 MaybeRecordStat(compilation_stats_.get(),
864 MethodCompilationStat::kNotCompiledThrowCatchLoop);
865 break;
866 }
867 case kAnalysisFailAmbiguousArrayOp: {
868 MaybeRecordStat(compilation_stats_.get(),
869 MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
870 break;
871 }
872 case kAnalysisFailIrreducibleLoopAndStringInit: {
873 MaybeRecordStat(compilation_stats_.get(),
874 MethodCompilationStat::kNotCompiledIrreducibleLoopAndStringInit);
875 break;
876 }
877 case kAnalysisFailPhiEquivalentInOsr: {
878 MaybeRecordStat(compilation_stats_.get(),
879 MethodCompilationStat::kNotCompiledPhiEquivalentInOsr);
880 break;
881 }
882 case kAnalysisSuccess:
883 UNREACHABLE();
884 }
885 pass_observer.SetGraphInBadState();
886 return nullptr;
887 }
888 }
889
890 if (compilation_kind == CompilationKind::kBaseline) {
891 RunBaselineOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
892 } else {
893 RunOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
894 }
895
896 RegisterAllocator::Strategy regalloc_strategy =
897 compiler_options.GetRegisterAllocationStrategy();
898 AllocateRegisters(graph,
899 codegen.get(),
900 &pass_observer,
901 regalloc_strategy,
902 compilation_stats_.get());
903
904 codegen->Compile(code_allocator);
905 pass_observer.DumpDisassembly();
906
907 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledBytecode);
908 return codegen.release();
909 }
910
TryCompileIntrinsic(ArenaAllocator * allocator,ArenaStack * arena_stack,CodeVectorAllocator * code_allocator,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,VariableSizedHandleScope * handles) const911 CodeGenerator* OptimizingCompiler::TryCompileIntrinsic(
912 ArenaAllocator* allocator,
913 ArenaStack* arena_stack,
914 CodeVectorAllocator* code_allocator,
915 const DexCompilationUnit& dex_compilation_unit,
916 ArtMethod* method,
917 VariableSizedHandleScope* handles) const {
918 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptIntrinsicCompilation);
919 const CompilerOptions& compiler_options = GetCompilerOptions();
920 InstructionSet instruction_set = compiler_options.GetInstructionSet();
921 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
922 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
923
924 // Always use the Thumb-2 assembler: some runtime functionality
925 // (like implicit stack overflow checks) assume Thumb-2.
926 DCHECK_NE(instruction_set, InstructionSet::kArm);
927
928 // Do not attempt to compile on architectures we do not support.
929 if (!IsInstructionSetSupported(instruction_set)) {
930 return nullptr;
931 }
932
933 HGraph* graph = new (allocator) HGraph(
934 allocator,
935 arena_stack,
936 handles,
937 dex_file,
938 method_idx,
939 compiler_options.GetInstructionSet(),
940 kInvalidInvokeType,
941 /* dead_reference_safe= */ true, // Intrinsics don't affect dead reference safety.
942 compiler_options.GetDebuggable(),
943 CompilationKind::kOptimized);
944
945 DCHECK(Runtime::Current()->IsAotCompiler());
946 DCHECK(method != nullptr);
947 graph->SetArtMethod(method);
948
949 std::unique_ptr<CodeGenerator> codegen(
950 CodeGenerator::Create(graph,
951 compiler_options,
952 compilation_stats_.get()));
953 if (codegen.get() == nullptr) {
954 return nullptr;
955 }
956 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
957
958 PassObserver pass_observer(graph,
959 codegen.get(),
960 visualizer_output_.get(),
961 compiler_options);
962
963 {
964 VLOG(compiler) << "Building intrinsic graph " << pass_observer.GetMethodName();
965 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
966 HGraphBuilder builder(graph,
967 CodeItemDebugInfoAccessor(), // Null code item.
968 &dex_compilation_unit,
969 &dex_compilation_unit,
970 codegen.get(),
971 compilation_stats_.get());
972 builder.BuildIntrinsicGraph(method);
973 }
974
975 OptimizationDef optimizations[] = {
976 // The codegen has a few assumptions that only the instruction simplifier
977 // can satisfy.
978 OptDef(OptimizationPass::kInstructionSimplifier),
979 };
980 RunOptimizations(graph,
981 codegen.get(),
982 dex_compilation_unit,
983 &pass_observer,
984 optimizations);
985
986 RunArchOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
987
988 AllocateRegisters(graph,
989 codegen.get(),
990 &pass_observer,
991 compiler_options.GetRegisterAllocationStrategy(),
992 compilation_stats_.get());
993 if (!codegen->IsLeafMethod()) {
994 VLOG(compiler) << "Intrinsic method is not leaf: " << method->GetIntrinsic()
995 << " " << graph->PrettyMethod();
996 return nullptr;
997 }
998
999 codegen->Compile(code_allocator);
1000 pass_observer.DumpDisassembly();
1001
1002 VLOG(compiler) << "Compiled intrinsic: " << method->GetIntrinsic()
1003 << " " << graph->PrettyMethod();
1004 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledIntrinsic);
1005 return codegen.release();
1006 }
1007
Compile(const dex::CodeItem * code_item,uint32_t access_flags,InvokeType invoke_type,uint16_t class_def_idx,uint32_t method_idx,Handle<mirror::ClassLoader> jclass_loader,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1008 CompiledMethod* OptimizingCompiler::Compile(const dex::CodeItem* code_item,
1009 uint32_t access_flags,
1010 InvokeType invoke_type,
1011 uint16_t class_def_idx,
1012 uint32_t method_idx,
1013 Handle<mirror::ClassLoader> jclass_loader,
1014 const DexFile& dex_file,
1015 Handle<mirror::DexCache> dex_cache) const {
1016 const CompilerOptions& compiler_options = GetCompilerOptions();
1017 DCHECK(compiler_options.IsAotCompiler());
1018 CompiledMethod* compiled_method = nullptr;
1019 Runtime* runtime = Runtime::Current();
1020 DCHECK(runtime->IsAotCompiler());
1021 ArenaAllocator allocator(runtime->GetArenaPool());
1022 ArenaStack arena_stack(runtime->GetArenaPool());
1023 CodeVectorAllocator code_allocator(&allocator);
1024 std::unique_ptr<CodeGenerator> codegen;
1025 bool compiled_intrinsic = false;
1026 {
1027 ScopedObjectAccess soa(Thread::Current());
1028 ArtMethod* method =
1029 runtime->GetClassLinker()->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1030 method_idx, dex_cache, jclass_loader, /*referrer=*/ nullptr, invoke_type);
1031 DCHECK_EQ(method == nullptr, soa.Self()->IsExceptionPending());
1032 soa.Self()->ClearException(); // Suppress exception if any.
1033 VariableSizedHandleScope handles(soa.Self());
1034 Handle<mirror::Class> compiling_class =
1035 handles.NewHandle(method != nullptr ? method->GetDeclaringClass() : nullptr);
1036 DexCompilationUnit dex_compilation_unit(
1037 jclass_loader,
1038 runtime->GetClassLinker(),
1039 dex_file,
1040 code_item,
1041 class_def_idx,
1042 method_idx,
1043 access_flags,
1044 /*verified_method=*/ nullptr, // Not needed by the Optimizing compiler.
1045 dex_cache,
1046 compiling_class);
1047 // All signature polymorphic methods are native.
1048 DCHECK(method == nullptr || !method->IsSignaturePolymorphic());
1049 // Go to native so that we don't block GC during compilation.
1050 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1051 // Try to compile a fully intrinsified implementation.
1052 if (method != nullptr && UNLIKELY(method->IsIntrinsic())) {
1053 DCHECK(compiler_options.IsBootImage());
1054 codegen.reset(
1055 TryCompileIntrinsic(&allocator,
1056 &arena_stack,
1057 &code_allocator,
1058 dex_compilation_unit,
1059 method,
1060 &handles));
1061 if (codegen != nullptr) {
1062 compiled_intrinsic = true;
1063 }
1064 }
1065 if (codegen == nullptr) {
1066 codegen.reset(
1067 TryCompile(&allocator,
1068 &arena_stack,
1069 &code_allocator,
1070 dex_compilation_unit,
1071 method,
1072 compiler_options.IsBaseline()
1073 ? CompilationKind::kBaseline
1074 : CompilationKind::kOptimized,
1075 &handles));
1076 }
1077 }
1078 if (codegen.get() != nullptr) {
1079 compiled_method = Emit(&allocator,
1080 &code_allocator,
1081 codegen.get(),
1082 compiled_intrinsic ? nullptr : code_item);
1083 if (compiled_intrinsic) {
1084 compiled_method->MarkAsIntrinsic();
1085 }
1086
1087 if (kArenaAllocatorCountAllocations) {
1088 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1089 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1090 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1091 MemStats mem_stats(allocator.GetMemStats());
1092 MemStats peak_stats(arena_stack.GetPeakStats());
1093 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1094 << dex_file.PrettyMethod(method_idx)
1095 << "\n" << Dumpable<MemStats>(mem_stats)
1096 << "\n" << Dumpable<MemStats>(peak_stats);
1097 }
1098 }
1099 }
1100
1101 if (kIsDebugBuild &&
1102 compiler_options.CompileArtTest() &&
1103 IsInstructionSetSupported(compiler_options.GetInstructionSet())) {
1104 // For testing purposes, we put a special marker on method names
1105 // that should be compiled with this compiler (when the
1106 // instruction set is supported). This makes sure we're not
1107 // regressing.
1108 std::string method_name = dex_file.PrettyMethod(method_idx);
1109 bool shouldCompile = method_name.find("$opt$") != std::string::npos;
1110 DCHECK_IMPLIES(compiled_method == nullptr, !shouldCompile) << "Didn't compile " << method_name;
1111 }
1112
1113 return compiled_method;
1114 }
1115
CreateJniStackMap(ScopedArenaAllocator * allocator,const JniCompiledMethod & jni_compiled_method,size_t code_size)1116 static ScopedArenaVector<uint8_t> CreateJniStackMap(ScopedArenaAllocator* allocator,
1117 const JniCompiledMethod& jni_compiled_method,
1118 size_t code_size) {
1119 // StackMapStream is quite large, so allocate it using the ScopedArenaAllocator
1120 // to stay clear of the frame size limit.
1121 std::unique_ptr<StackMapStream> stack_map_stream(
1122 new (allocator) StackMapStream(allocator, jni_compiled_method.GetInstructionSet()));
1123 stack_map_stream->BeginMethod(
1124 jni_compiled_method.GetFrameSize(),
1125 jni_compiled_method.GetCoreSpillMask(),
1126 jni_compiled_method.GetFpSpillMask(),
1127 /* num_dex_registers= */ 0,
1128 /* baseline= */ false);
1129 stack_map_stream->EndMethod(code_size);
1130 return stack_map_stream->Encode();
1131 }
1132
JniCompile(uint32_t access_flags,uint32_t method_idx,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1133 CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
1134 uint32_t method_idx,
1135 const DexFile& dex_file,
1136 Handle<mirror::DexCache> dex_cache) const {
1137 Runtime* runtime = Runtime::Current();
1138 ArenaAllocator allocator(runtime->GetArenaPool());
1139 ArenaStack arena_stack(runtime->GetArenaPool());
1140
1141 const CompilerOptions& compiler_options = GetCompilerOptions();
1142 if (compiler_options.IsBootImage()) {
1143 ScopedObjectAccess soa(Thread::Current());
1144 ArtMethod* method = runtime->GetClassLinker()->LookupResolvedMethod(
1145 method_idx, dex_cache.Get(), /*class_loader=*/ nullptr);
1146 // Try to compile a fully intrinsified implementation. Do not try to do this for
1147 // signature polymorphic methods as the InstructionBuilder cannot handle them;
1148 // and it would be useless as they always have a slow path for type conversions.
1149 if (method != nullptr && UNLIKELY(method->IsIntrinsic()) && !method->IsSignaturePolymorphic()) {
1150 VariableSizedHandleScope handles(soa.Self());
1151 ScopedNullHandle<mirror::ClassLoader> class_loader; // null means boot class path loader.
1152 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1153 DexCompilationUnit dex_compilation_unit(
1154 class_loader,
1155 runtime->GetClassLinker(),
1156 dex_file,
1157 /*code_item=*/ nullptr,
1158 /*class_def_idx=*/ DexFile::kDexNoIndex16,
1159 method_idx,
1160 access_flags,
1161 /*verified_method=*/ nullptr,
1162 dex_cache,
1163 compiling_class);
1164 CodeVectorAllocator code_allocator(&allocator);
1165 // Go to native so that we don't block GC during compilation.
1166 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1167 std::unique_ptr<CodeGenerator> codegen(
1168 TryCompileIntrinsic(&allocator,
1169 &arena_stack,
1170 &code_allocator,
1171 dex_compilation_unit,
1172 method,
1173 &handles));
1174 if (codegen != nullptr) {
1175 CompiledMethod* compiled_method = Emit(&allocator,
1176 &code_allocator,
1177 codegen.get(),
1178 /* item= */ nullptr);
1179 compiled_method->MarkAsIntrinsic();
1180 return compiled_method;
1181 }
1182 }
1183 }
1184
1185 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1186 compiler_options, access_flags, method_idx, dex_file, &allocator);
1187 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledNativeStub);
1188
1189 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1190 ScopedArenaVector<uint8_t> stack_map = CreateJniStackMap(
1191 &stack_map_allocator, jni_compiled_method, jni_compiled_method.GetCode().size());
1192 return CompiledMethod::SwapAllocCompiledMethod(
1193 GetCompiledMethodStorage(),
1194 jni_compiled_method.GetInstructionSet(),
1195 jni_compiled_method.GetCode(),
1196 ArrayRef<const uint8_t>(stack_map),
1197 jni_compiled_method.GetCfi(),
1198 /* patches= */ ArrayRef<const linker::LinkerPatch>());
1199 }
1200
CreateOptimizingCompiler(const CompilerOptions & compiler_options,CompiledMethodStorage * storage)1201 Compiler* CreateOptimizingCompiler(const CompilerOptions& compiler_options,
1202 CompiledMethodStorage* storage) {
1203 return new OptimizingCompiler(compiler_options, storage);
1204 }
1205
EncodeArtMethodInInlineInfo(ArtMethod * method ATTRIBUTE_UNUSED)1206 bool EncodeArtMethodInInlineInfo(ArtMethod* method ATTRIBUTE_UNUSED) {
1207 // Note: the runtime is null only for unit testing.
1208 return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
1209 }
1210
JitCompile(Thread * self,jit::JitCodeCache * code_cache,jit::JitMemoryRegion * region,ArtMethod * method,CompilationKind compilation_kind,jit::JitLogger * jit_logger)1211 bool OptimizingCompiler::JitCompile(Thread* self,
1212 jit::JitCodeCache* code_cache,
1213 jit::JitMemoryRegion* region,
1214 ArtMethod* method,
1215 CompilationKind compilation_kind,
1216 jit::JitLogger* jit_logger) {
1217 const CompilerOptions& compiler_options = GetCompilerOptions();
1218 DCHECK(compiler_options.IsJitCompiler());
1219 DCHECK_EQ(compiler_options.IsJitCompilerForSharedCode(), code_cache->IsSharedRegion(*region));
1220 StackHandleScope<3> hs(self);
1221 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1222 method->GetDeclaringClass()->GetClassLoader()));
1223 Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
1224 DCHECK(method->IsCompilable());
1225
1226 const DexFile* dex_file = method->GetDexFile();
1227 const uint16_t class_def_idx = method->GetClassDefIndex();
1228 const dex::CodeItem* code_item = method->GetCodeItem();
1229 const uint32_t method_idx = method->GetDexMethodIndex();
1230 const uint32_t access_flags = method->GetAccessFlags();
1231
1232 Runtime* runtime = Runtime::Current();
1233 ArenaAllocator allocator(runtime->GetJitArenaPool());
1234
1235 if (UNLIKELY(method->IsNative())) {
1236 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1237 compiler_options, access_flags, method_idx, *dex_file, &allocator);
1238 std::vector<Handle<mirror::Object>> roots;
1239 ArenaSet<ArtMethod*, std::less<ArtMethod*>> cha_single_implementation_list(
1240 allocator.Adapter(kArenaAllocCHA));
1241 ArenaStack arena_stack(runtime->GetJitArenaPool());
1242 // StackMapStream is large and it does not fit into this frame, so we need helper method.
1243 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1244 ScopedArenaVector<uint8_t> stack_map = CreateJniStackMap(
1245 &stack_map_allocator, jni_compiled_method, jni_compiled_method.GetCode().size());
1246
1247 ArrayRef<const uint8_t> reserved_code;
1248 ArrayRef<const uint8_t> reserved_data;
1249 if (!code_cache->Reserve(self,
1250 region,
1251 jni_compiled_method.GetCode().size(),
1252 stack_map.size(),
1253 /* number_of_roots= */ 0,
1254 method,
1255 /*out*/ &reserved_code,
1256 /*out*/ &reserved_data)) {
1257 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1258 return false;
1259 }
1260 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1261
1262 // Add debug info after we know the code location but before we update entry-point.
1263 std::vector<uint8_t> debug_info;
1264 if (compiler_options.GenerateAnyDebugInfo()) {
1265 debug::MethodDebugInfo info = {};
1266 // Simpleperf relies on art_jni_trampoline to detect jni methods.
1267 info.custom_name = "art_jni_trampoline";
1268 info.dex_file = dex_file;
1269 info.class_def_index = class_def_idx;
1270 info.dex_method_index = method_idx;
1271 info.access_flags = access_flags;
1272 info.code_item = code_item;
1273 info.isa = jni_compiled_method.GetInstructionSet();
1274 info.deduped = false;
1275 info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1276 info.is_optimized = true;
1277 info.is_code_address_text_relative = false;
1278 info.code_address = reinterpret_cast<uintptr_t>(code);
1279 info.code_size = jni_compiled_method.GetCode().size();
1280 info.frame_size_in_bytes = jni_compiled_method.GetFrameSize();
1281 info.code_info = nullptr;
1282 info.cfi = jni_compiled_method.GetCfi();
1283 debug_info = GenerateJitDebugInfo(info);
1284 }
1285
1286 if (!code_cache->Commit(self,
1287 region,
1288 method,
1289 reserved_code,
1290 jni_compiled_method.GetCode(),
1291 reserved_data,
1292 roots,
1293 ArrayRef<const uint8_t>(stack_map),
1294 debug_info,
1295 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1296 compilation_kind,
1297 /* has_should_deoptimize_flag= */ false,
1298 cha_single_implementation_list)) {
1299 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1300 return false;
1301 }
1302
1303 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1304 if (jit_logger != nullptr) {
1305 jit_logger->WriteLog(code, jni_compiled_method.GetCode().size(), method);
1306 }
1307 return true;
1308 }
1309
1310 ArenaStack arena_stack(runtime->GetJitArenaPool());
1311 CodeVectorAllocator code_allocator(&allocator);
1312 VariableSizedHandleScope handles(self);
1313
1314 std::unique_ptr<CodeGenerator> codegen;
1315 {
1316 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1317 DexCompilationUnit dex_compilation_unit(
1318 class_loader,
1319 runtime->GetClassLinker(),
1320 *dex_file,
1321 code_item,
1322 class_def_idx,
1323 method_idx,
1324 access_flags,
1325 /*verified_method=*/ nullptr,
1326 dex_cache,
1327 compiling_class);
1328
1329 // Go to native so that we don't block GC during compilation.
1330 ScopedThreadSuspension sts(self, ThreadState::kNative);
1331 codegen.reset(
1332 TryCompile(&allocator,
1333 &arena_stack,
1334 &code_allocator,
1335 dex_compilation_unit,
1336 method,
1337 compilation_kind,
1338 &handles));
1339 if (codegen.get() == nullptr) {
1340 return false;
1341 }
1342 }
1343
1344 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item);
1345
1346 ArrayRef<const uint8_t> reserved_code;
1347 ArrayRef<const uint8_t> reserved_data;
1348 if (!code_cache->Reserve(self,
1349 region,
1350 code_allocator.GetMemory().size(),
1351 stack_map.size(),
1352 /*number_of_roots=*/codegen->GetNumberOfJitRoots(),
1353 method,
1354 /*out*/ &reserved_code,
1355 /*out*/ &reserved_data)) {
1356 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1357 return false;
1358 }
1359 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1360 const uint8_t* roots_data = reserved_data.data();
1361
1362 std::vector<Handle<mirror::Object>> roots;
1363 codegen->EmitJitRoots(code_allocator.GetData(), roots_data, &roots);
1364 // The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
1365 DCHECK(std::all_of(roots.begin(),
1366 roots.end(),
1367 [&handles](Handle<mirror::Object> root){
1368 return handles.Contains(root.GetReference());
1369 }));
1370
1371 // Add debug info after we know the code location but before we update entry-point.
1372 std::vector<uint8_t> debug_info;
1373 if (compiler_options.GenerateAnyDebugInfo()) {
1374 debug::MethodDebugInfo info = {};
1375 DCHECK(info.custom_name.empty());
1376 info.dex_file = dex_file;
1377 info.class_def_index = class_def_idx;
1378 info.dex_method_index = method_idx;
1379 info.access_flags = access_flags;
1380 info.code_item = code_item;
1381 info.isa = codegen->GetInstructionSet();
1382 info.deduped = false;
1383 info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1384 info.is_optimized = true;
1385 info.is_code_address_text_relative = false;
1386 info.code_address = reinterpret_cast<uintptr_t>(code);
1387 info.code_size = code_allocator.GetMemory().size();
1388 info.frame_size_in_bytes = codegen->GetFrameSize();
1389 info.code_info = stack_map.size() == 0 ? nullptr : stack_map.data();
1390 info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
1391 debug_info = GenerateJitDebugInfo(info);
1392 }
1393
1394 if (!code_cache->Commit(self,
1395 region,
1396 method,
1397 reserved_code,
1398 code_allocator.GetMemory(),
1399 reserved_data,
1400 roots,
1401 ArrayRef<const uint8_t>(stack_map),
1402 debug_info,
1403 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1404 compilation_kind,
1405 codegen->GetGraph()->HasShouldDeoptimizeFlag(),
1406 codegen->GetGraph()->GetCHASingleImplementationList())) {
1407 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1408 return false;
1409 }
1410
1411 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1412 if (jit_logger != nullptr) {
1413 jit_logger->WriteLog(code, code_allocator.GetMemory().size(), method);
1414 }
1415
1416 if (kArenaAllocatorCountAllocations) {
1417 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1418 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1419 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1420 MemStats mem_stats(allocator.GetMemStats());
1421 MemStats peak_stats(arena_stack.GetPeakStats());
1422 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1423 << dex_file->PrettyMethod(method_idx)
1424 << "\n" << Dumpable<MemStats>(mem_stats)
1425 << "\n" << Dumpable<MemStats>(peak_stats);
1426 }
1427 }
1428
1429 return true;
1430 }
1431
GenerateJitDebugInfo(const debug::MethodDebugInfo & info)1432 std::vector<uint8_t> OptimizingCompiler::GenerateJitDebugInfo(const debug::MethodDebugInfo& info) {
1433 const CompilerOptions& compiler_options = GetCompilerOptions();
1434 if (compiler_options.GenerateAnyDebugInfo()) {
1435 // If both flags are passed, generate full debug info.
1436 const bool mini_debug_info = !compiler_options.GetGenerateDebugInfo();
1437
1438 // Create entry for the single method that we just compiled.
1439 InstructionSet isa = compiler_options.GetInstructionSet();
1440 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
1441 return debug::MakeElfFileForJIT(isa, features, mini_debug_info, info);
1442 }
1443 return std::vector<uint8_t>();
1444 }
1445
1446 } // namespace art
1447