1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fault_handler.h"
18
19 #include <string.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22
23 #include "art_method-inl.h"
24 #include "base/logging.h" // For VLOG
25 #include "base/safe_copy.h"
26 #include "base/stl_util.h"
27 #include "dex/dex_file_types.h"
28 #include "jit/jit.h"
29 #include "jit/jit_code_cache.h"
30 #include "mirror/class.h"
31 #include "mirror/object_reference.h"
32 #include "oat_file.h"
33 #include "oat_quick_method_header.h"
34 #include "sigchain.h"
35 #include "thread-current-inl.h"
36 #include "verify_object-inl.h"
37
38 namespace art {
39 // Static fault manger object accessed by signal handler.
40 FaultManager fault_manager;
41
42 // This needs to be NO_INLINE since some debuggers do not read the inline-info to set a breakpoint
43 // if it isn't.
art_sigsegv_fault()44 extern "C" NO_INLINE __attribute__((visibility("default"))) void art_sigsegv_fault() {
45 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
46 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
47 }
48
49 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)50 static bool art_fault_handler(int sig, siginfo_t* info, void* context) {
51 return fault_manager.HandleFault(sig, info, context);
52 }
53
54 #if defined(__linux__)
55
56 // Change to verify the safe implementations against the original ones.
57 constexpr bool kVerifySafeImpls = false;
58
59 // Provide implementations of ArtMethod::GetDeclaringClass and VerifyClassClass that use SafeCopy
60 // to safely dereference pointers which are potentially garbage.
61 // Only available on Linux due to availability of SafeCopy.
62
SafeGetDeclaringClass(ArtMethod * method)63 static mirror::Class* SafeGetDeclaringClass(ArtMethod* method)
64 REQUIRES_SHARED(Locks::mutator_lock_) {
65 char* method_declaring_class =
66 reinterpret_cast<char*>(method) + ArtMethod::DeclaringClassOffset().SizeValue();
67
68 // ArtMethod::declaring_class_ is a GcRoot<mirror::Class>.
69 // Read it out into as a CompressedReference directly for simplicity's sake.
70 mirror::CompressedReference<mirror::Class> cls;
71 ssize_t rc = SafeCopy(&cls, method_declaring_class, sizeof(cls));
72 CHECK_NE(-1, rc);
73
74 if (kVerifySafeImpls) {
75 ObjPtr<mirror::Class> actual_class = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
76 CHECK_EQ(actual_class, cls.AsMirrorPtr());
77 }
78
79 if (rc != sizeof(cls)) {
80 return nullptr;
81 }
82
83 return cls.AsMirrorPtr();
84 }
85
SafeGetClass(mirror::Object * obj)86 static mirror::Class* SafeGetClass(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
87 char* obj_cls = reinterpret_cast<char*>(obj) + mirror::Object::ClassOffset().SizeValue();
88
89 mirror::HeapReference<mirror::Class> cls;
90 ssize_t rc = SafeCopy(&cls, obj_cls, sizeof(cls));
91 CHECK_NE(-1, rc);
92
93 if (kVerifySafeImpls) {
94 mirror::Class* actual_class = obj->GetClass<kVerifyNone>();
95 CHECK_EQ(actual_class, cls.AsMirrorPtr());
96 }
97
98 if (rc != sizeof(cls)) {
99 return nullptr;
100 }
101
102 return cls.AsMirrorPtr();
103 }
104
SafeVerifyClassClass(mirror::Class * cls)105 static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
106 mirror::Class* c_c = SafeGetClass(cls);
107 bool result = c_c != nullptr && c_c == SafeGetClass(c_c);
108
109 if (kVerifySafeImpls) {
110 CHECK_EQ(VerifyClassClass(cls), result);
111 }
112
113 return result;
114 }
115
116 #else
117
SafeGetDeclaringClass(ArtMethod * method_obj)118 static mirror::Class* SafeGetDeclaringClass(ArtMethod* method_obj)
119 REQUIRES_SHARED(Locks::mutator_lock_) {
120 return method_obj->GetDeclaringClassUnchecked<kWithoutReadBarrier>().Ptr();
121 }
122
SafeVerifyClassClass(mirror::Class * cls)123 static bool SafeVerifyClassClass(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
124 return VerifyClassClass(cls);
125 }
126 #endif
127
128
FaultManager()129 FaultManager::FaultManager() : initialized_(false) {
130 sigaction(SIGSEGV, nullptr, &oldaction_);
131 }
132
~FaultManager()133 FaultManager::~FaultManager() {
134 }
135
Init()136 void FaultManager::Init() {
137 CHECK(!initialized_);
138 sigset_t mask;
139 sigfillset(&mask);
140 sigdelset(&mask, SIGABRT);
141 sigdelset(&mask, SIGBUS);
142 sigdelset(&mask, SIGFPE);
143 sigdelset(&mask, SIGILL);
144 sigdelset(&mask, SIGSEGV);
145
146 SigchainAction sa = {
147 .sc_sigaction = art_fault_handler,
148 .sc_mask = mask,
149 .sc_flags = 0UL,
150 };
151
152 AddSpecialSignalHandlerFn(SIGSEGV, &sa);
153 initialized_ = true;
154 }
155
Release()156 void FaultManager::Release() {
157 if (initialized_) {
158 RemoveSpecialSignalHandlerFn(SIGSEGV, art_fault_handler);
159 initialized_ = false;
160 }
161 }
162
Shutdown()163 void FaultManager::Shutdown() {
164 if (initialized_) {
165 Release();
166
167 // Free all handlers.
168 STLDeleteElements(&generated_code_handlers_);
169 STLDeleteElements(&other_handlers_);
170 }
171 }
172
HandleFaultByOtherHandlers(int sig,siginfo_t * info,void * context)173 bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) {
174 if (other_handlers_.empty()) {
175 return false;
176 }
177
178 Thread* self = Thread::Current();
179
180 DCHECK(self != nullptr);
181 DCHECK(Runtime::Current() != nullptr);
182 DCHECK(Runtime::Current()->IsStarted());
183 for (const auto& handler : other_handlers_) {
184 if (handler->Action(sig, info, context)) {
185 return true;
186 }
187 }
188 return false;
189 }
190
SignalCodeName(int sig,int code)191 static const char* SignalCodeName(int sig, int code) {
192 if (sig != SIGSEGV) {
193 return "UNKNOWN";
194 } else {
195 switch (code) {
196 case SEGV_MAPERR: return "SEGV_MAPERR";
197 case SEGV_ACCERR: return "SEGV_ACCERR";
198 case 8: return "SEGV_MTEAERR";
199 case 9: return "SEGV_MTESERR";
200 default: return "UNKNOWN";
201 }
202 }
203 }
PrintSignalInfo(std::ostream & os,siginfo_t * info)204 static std::ostream& PrintSignalInfo(std::ostream& os, siginfo_t* info) {
205 os << " si_signo: " << info->si_signo << " (" << strsignal(info->si_signo) << ")\n"
206 << " si_code: " << info->si_code
207 << " (" << SignalCodeName(info->si_signo, info->si_code) << ")";
208 if (info->si_signo == SIGSEGV) {
209 os << "\n" << " si_addr: " << info->si_addr;
210 }
211 return os;
212 }
213
HandleFault(int sig,siginfo_t * info,void * context)214 bool FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
215 if (VLOG_IS_ON(signals)) {
216 PrintSignalInfo(VLOG_STREAM(signals) << "Handling fault:" << "\n", info);
217 }
218
219 #ifdef TEST_NESTED_SIGNAL
220 // Simulate a crash in a handler.
221 raise(SIGSEGV);
222 #endif
223
224 if (IsInGeneratedCode(info, context, true)) {
225 VLOG(signals) << "in generated code, looking for handler";
226 for (const auto& handler : generated_code_handlers_) {
227 VLOG(signals) << "invoking Action on handler " << handler;
228 if (handler->Action(sig, info, context)) {
229 // We have handled a signal so it's time to return from the
230 // signal handler to the appropriate place.
231 return true;
232 }
233 }
234 }
235
236 // We hit a signal we didn't handle. This might be something for which
237 // we can give more information about so call all registered handlers to
238 // see if it is.
239 if (HandleFaultByOtherHandlers(sig, info, context)) {
240 return true;
241 }
242
243 // Set a breakpoint in this function to catch unhandled signals.
244 art_sigsegv_fault();
245 return false;
246 }
247
AddHandler(FaultHandler * handler,bool generated_code)248 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
249 DCHECK(initialized_);
250 if (generated_code) {
251 generated_code_handlers_.push_back(handler);
252 } else {
253 other_handlers_.push_back(handler);
254 }
255 }
256
RemoveHandler(FaultHandler * handler)257 void FaultManager::RemoveHandler(FaultHandler* handler) {
258 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
259 if (it != generated_code_handlers_.end()) {
260 generated_code_handlers_.erase(it);
261 return;
262 }
263 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
264 if (it2 != other_handlers_.end()) {
265 other_handlers_.erase(it2);
266 return;
267 }
268 LOG(FATAL) << "Attempted to remove non existent handler " << handler;
269 }
270
IsKnownPc(uintptr_t pc,ArtMethod * method)271 static bool IsKnownPc(uintptr_t pc, ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
272 // Check whether the pc is within nterp range.
273 if (OatQuickMethodHeader::IsNterpPc(pc)) {
274 return true;
275 }
276
277 // Check whether the pc is in the JIT code cache.
278 jit::Jit* jit = Runtime::Current()->GetJit();
279 if (jit != nullptr && jit->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(pc))) {
280 return true;
281 }
282
283 if (method->IsObsolete()) {
284 // Obsolete methods never happen on AOT code.
285 return false;
286 }
287
288 // Note: at this point, we trust it's truly an ArtMethod we found at the bottom of the stack,
289 // and we can find its oat file through it.
290 const OatDexFile* oat_dex_file = method->GetDeclaringClass()->GetDexFile().GetOatDexFile();
291 if (oat_dex_file != nullptr &&
292 oat_dex_file->GetOatFile()->Contains(reinterpret_cast<const void*>(pc))) {
293 return true;
294 }
295
296 return false;
297 }
298
299 // This function is called within the signal handler. It checks that
300 // the mutator_lock is held (shared). No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)301 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
302 // We can only be running Java code in the current thread if it
303 // is in Runnable state.
304 VLOG(signals) << "Checking for generated code";
305 Thread* thread = Thread::Current();
306 if (thread == nullptr) {
307 VLOG(signals) << "no current thread";
308 return false;
309 }
310
311 ThreadState state = thread->GetState();
312 if (state != ThreadState::kRunnable) {
313 VLOG(signals) << "not runnable";
314 return false;
315 }
316
317 // Current thread is runnable.
318 // Make sure it has the mutator lock.
319 if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
320 VLOG(signals) << "no lock";
321 return false;
322 }
323
324 ArtMethod* method_obj = nullptr;
325 uintptr_t return_pc = 0;
326 uintptr_t sp = 0;
327 bool is_stack_overflow = false;
328
329 // Get the architecture specific method address and return address. These
330 // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
331 GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp, &is_stack_overflow);
332
333 // If we don't have a potential method, we're outta here.
334 VLOG(signals) << "potential method: " << method_obj;
335 // TODO: Check linear alloc and image.
336 DCHECK_ALIGNED(ArtMethod::Size(kRuntimePointerSize), sizeof(void*))
337 << "ArtMethod is not pointer aligned";
338 if (method_obj == nullptr || !IsAligned<sizeof(void*)>(method_obj)) {
339 VLOG(signals) << "no method";
340 return false;
341 }
342
343 // Verify that the potential method is indeed a method.
344 // TODO: check the GC maps to make sure it's an object.
345 // Check that the class pointer inside the object is not null and is aligned.
346 // No read barrier because method_obj may not be a real object.
347 mirror::Class* cls = SafeGetDeclaringClass(method_obj);
348 if (cls == nullptr) {
349 VLOG(signals) << "not a class";
350 return false;
351 }
352
353 if (!IsAligned<kObjectAlignment>(cls)) {
354 VLOG(signals) << "not aligned";
355 return false;
356 }
357
358 if (!SafeVerifyClassClass(cls)) {
359 VLOG(signals) << "not a class class";
360 return false;
361 }
362
363 if (!IsKnownPc(return_pc, method_obj)) {
364 VLOG(signals) << "PC not in Java code";
365 return false;
366 }
367
368 const OatQuickMethodHeader* method_header = method_obj->GetOatQuickMethodHeader(return_pc);
369
370 if (method_header == nullptr) {
371 VLOG(signals) << "no compiled code";
372 return false;
373 }
374
375 // We can be certain that this is a method now. Check if we have a GC map
376 // at the return PC address.
377 if (true || kIsDebugBuild) {
378 VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
379 uint32_t sought_offset = return_pc -
380 reinterpret_cast<uintptr_t>(method_header->GetEntryPoint());
381 VLOG(signals) << "pc offset: " << std::hex << sought_offset;
382 }
383 uint32_t dexpc = dex::kDexNoIndex;
384 if (is_stack_overflow) {
385 // If it's an implicit stack overflow check, the frame is not setup, so we
386 // just infer the dex PC as zero.
387 dexpc = 0;
388 } else {
389 CHECK_EQ(*reinterpret_cast<ArtMethod**>(sp), method_obj);
390 dexpc = method_header->ToDexPc(reinterpret_cast<ArtMethod**>(sp), return_pc, false);
391 }
392 VLOG(signals) << "dexpc: " << dexpc;
393 return !check_dex_pc || dexpc != dex::kDexNoIndex;
394 }
395
FaultHandler(FaultManager * manager)396 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
397 }
398
399 //
400 // Null pointer fault handler
401 //
NullPointerHandler(FaultManager * manager)402 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
403 manager_->AddHandler(this, true);
404 }
405
406 //
407 // Suspension fault handler
408 //
SuspensionHandler(FaultManager * manager)409 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
410 manager_->AddHandler(this, true);
411 }
412
413 //
414 // Stack overflow fault handler
415 //
StackOverflowHandler(FaultManager * manager)416 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
417 manager_->AddHandler(this, true);
418 }
419
420 //
421 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
422 //
JavaStackTraceHandler(FaultManager * manager)423 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
424 manager_->AddHandler(this, false);
425 }
426
Action(int sig ATTRIBUTE_UNUSED,siginfo_t * siginfo,void * context)427 bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) {
428 // Make sure that we are in the generated code, but we may not have a dex pc.
429 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
430 if (in_generated_code) {
431 LOG(ERROR) << "Dumping java stack trace for crash in generated code";
432 ArtMethod* method = nullptr;
433 uintptr_t return_pc = 0;
434 uintptr_t sp = 0;
435 bool is_stack_overflow = false;
436 Thread* self = Thread::Current();
437
438 manager_->GetMethodAndReturnPcAndSp(
439 siginfo, context, &method, &return_pc, &sp, &is_stack_overflow);
440 // Inside of generated code, sp[0] is the method, so sp is the frame.
441 self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
442 self->DumpJavaStack(LOG_STREAM(ERROR));
443 }
444
445 return false; // Return false since we want to propagate the fault to the main signal handler.
446 }
447
448 } // namespace art
449