• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.util.Random;
29 import jdk.internal.math.DoubleConsts;
30 import jdk.internal.HotSpotIntrinsicCandidate;
31 
32 /**
33  * The class {@code StrictMath} contains methods for performing basic
34  * numeric operations such as the elementary exponential, logarithm,
35  * square root, and trigonometric functions.
36  *
37  * <p>To help ensure portability of Java programs, the definitions of
38  * some of the numeric functions in this package require that they
39  * produce the same results as certain published algorithms. These
40  * algorithms are available from the well-known network library
41  * {@code netlib} as the package "Freely Distributable Math
42  * Library," <a
43  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
44  * algorithms, which are written in the C programming language, are
45  * then to be understood as executed with all floating-point
46  * operations following the rules of Java floating-point arithmetic.
47  *
48  * <p>The Java math library is defined with respect to
49  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
50  * more than one definition for a function (such as
51  * {@code acos}), use the "IEEE 754 core function" version
52  * (residing in a file whose name begins with the letter
53  * {@code e}).  The methods which require {@code fdlibm}
54  * semantics are {@code sin}, {@code cos}, {@code tan},
55  * {@code asin}, {@code acos}, {@code atan},
56  * {@code exp}, {@code log}, {@code log10},
57  * {@code cbrt}, {@code atan2}, {@code pow},
58  * {@code sinh}, {@code cosh}, {@code tanh},
59  * {@code hypot}, {@code expm1}, and {@code log1p}.
60  *
61  * <p>
62  * The platform uses signed two's complement integer arithmetic with
63  * int and long primitive types.  The developer should choose
64  * the primitive type to ensure that arithmetic operations consistently
65  * produce correct results, which in some cases means the operations
66  * will not overflow the range of values of the computation.
67  * The best practice is to choose the primitive type and algorithm to avoid
68  * overflow. In cases where the size is {@code int} or {@code long} and
69  * overflow errors need to be detected, the methods {@code addExact},
70  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
71  * throw an {@code ArithmeticException} when the results overflow.
72  * For other arithmetic operations such as divide, absolute value,
73  * increment by one, decrement by one, and negation overflow occurs only with
74  * a specific minimum or maximum value and should be checked against
75  * the minimum or maximum as appropriate.
76  *
77  * @author  unascribed
78  * @author  Joseph D. Darcy
79  * @since   1.3
80  */
81 
82 public final class StrictMath {
83 
84     /**
85      * Don't let anyone instantiate this class.
86      */
StrictMath()87     private StrictMath() {}
88 
89     /**
90      * The {@code double} value that is closer than any other to
91      * <i>e</i>, the base of the natural logarithms.
92      */
93     public static final double E = 2.7182818284590452354;
94 
95     /**
96      * The {@code double} value that is closer than any other to
97      * <i>pi</i>, the ratio of the circumference of a circle to its
98      * diameter.
99      */
100     public static final double PI = 3.14159265358979323846;
101 
102     /**
103      * Constant by which to multiply an angular value in degrees to obtain an
104      * angular value in radians.
105      */
106     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
107 
108     /**
109      * Constant by which to multiply an angular value in radians to obtain an
110      * angular value in degrees.
111      */
112 
113     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
114 
115     /**
116      * Returns the trigonometric sine of an angle. Special cases:
117      * <ul><li>If the argument is NaN or an infinity, then the
118      * result is NaN.
119      * <li>If the argument is zero, then the result is a zero with the
120      * same sign as the argument.</ul>
121      *
122      * @param   a   an angle, in radians.
123      * @return  the sine of the argument.
124      */
sin(double a)125     public static native double sin(double a);
126 
127     /**
128      * Returns the trigonometric cosine of an angle. Special cases:
129      * <ul><li>If the argument is NaN or an infinity, then the
130      * result is NaN.</ul>
131      *
132      * @param   a   an angle, in radians.
133      * @return  the cosine of the argument.
134      */
cos(double a)135     public static native double cos(double a);
136 
137     /**
138      * Returns the trigonometric tangent of an angle. Special cases:
139      * <ul><li>If the argument is NaN or an infinity, then the result
140      * is NaN.
141      * <li>If the argument is zero, then the result is a zero with the
142      * same sign as the argument.</ul>
143      *
144      * @param   a   an angle, in radians.
145      * @return  the tangent of the argument.
146      */
tan(double a)147     public static native double tan(double a);
148 
149     /**
150      * Returns the arc sine of a value; the returned angle is in the
151      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
152      * <ul><li>If the argument is NaN or its absolute value is greater
153      * than 1, then the result is NaN.
154      * <li>If the argument is zero, then the result is a zero with the
155      * same sign as the argument.</ul>
156      *
157      * @param   a   the value whose arc sine is to be returned.
158      * @return  the arc sine of the argument.
159      */
asin(double a)160     public static native double asin(double a);
161 
162     /**
163      * Returns the arc cosine of a value; the returned angle is in the
164      * range 0.0 through <i>pi</i>.  Special case:
165      * <ul><li>If the argument is NaN or its absolute value is greater
166      * than 1, then the result is NaN.</ul>
167      *
168      * @param   a   the value whose arc cosine is to be returned.
169      * @return  the arc cosine of the argument.
170      */
acos(double a)171     public static native double acos(double a);
172 
173     /**
174      * Returns the arc tangent of a value; the returned angle is in the
175      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
176      * <ul><li>If the argument is NaN, then the result is NaN.
177      * <li>If the argument is zero, then the result is a zero with the
178      * same sign as the argument.</ul>
179      *
180      * @param   a   the value whose arc tangent is to be returned.
181      * @return  the arc tangent of the argument.
182      */
atan(double a)183     public static native double atan(double a);
184 
185     /**
186      * Converts an angle measured in degrees to an approximately
187      * equivalent angle measured in radians.  The conversion from
188      * degrees to radians is generally inexact.
189      *
190      * @param   angdeg   an angle, in degrees
191      * @return  the measurement of the angle {@code angdeg}
192      *          in radians.
193      */
toRadians(double angdeg)194     public static strictfp double toRadians(double angdeg) {
195         // Do not delegate to Math.toRadians(angdeg) because
196         // this method has the strictfp modifier.
197         return angdeg * DEGREES_TO_RADIANS;
198     }
199 
200     /**
201      * Converts an angle measured in radians to an approximately
202      * equivalent angle measured in degrees.  The conversion from
203      * radians to degrees is generally inexact; users should
204      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
205      * equal {@code 0.0}.
206      *
207      * @param   angrad   an angle, in radians
208      * @return  the measurement of the angle {@code angrad}
209      *          in degrees.
210      */
toDegrees(double angrad)211     public static strictfp double toDegrees(double angrad) {
212         // Do not delegate to Math.toDegrees(angrad) because
213         // this method has the strictfp modifier.
214         return angrad * RADIANS_TO_DEGREES;
215     }
216 
217     /**
218      * Returns Euler's number <i>e</i> raised to the power of a
219      * {@code double} value. Special cases:
220      * <ul><li>If the argument is NaN, the result is NaN.
221      * <li>If the argument is positive infinity, then the result is
222      * positive infinity.
223      * <li>If the argument is negative infinity, then the result is
224      * positive zero.</ul>
225      *
226      * @param   a   the exponent to raise <i>e</i> to.
227      * @return  the value <i>e</i><sup>{@code a}</sup>,
228      *          where <i>e</i> is the base of the natural logarithms.
229      */
230     // BEGIN Android-changed: Reimplement in native
231     /*
232     public static double exp(double a) {
233         return FdLibm.Exp.compute(a);
234     }
235     */
236     // END Android-changed: Reimplement in native
exp(double a)237     public static native double exp(double a);
238 
239     /**
240      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
241      * value. Special cases:
242      * <ul><li>If the argument is NaN or less than zero, then the result
243      * is NaN.
244      * <li>If the argument is positive infinity, then the result is
245      * positive infinity.
246      * <li>If the argument is positive zero or negative zero, then the
247      * result is negative infinity.</ul>
248      *
249      * @param   a   a value
250      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
251      *          {@code a}.
252      */
log(double a)253     public static native double log(double a);
254 
255     /**
256      * Returns the base 10 logarithm of a {@code double} value.
257      * Special cases:
258      *
259      * <ul><li>If the argument is NaN or less than zero, then the result
260      * is NaN.
261      * <li>If the argument is positive infinity, then the result is
262      * positive infinity.
263      * <li>If the argument is positive zero or negative zero, then the
264      * result is negative infinity.
265      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
266      * integer <i>n</i>, then the result is <i>n</i>.
267      * </ul>
268      *
269      * @param   a   a value
270      * @return  the base 10 logarithm of  {@code a}.
271      * @since 1.5
272      */
log10(double a)273     public static native double log10(double a);
274 
275     /**
276      * Returns the correctly rounded positive square root of a
277      * {@code double} value.
278      * Special cases:
279      * <ul><li>If the argument is NaN or less than zero, then the result
280      * is NaN.
281      * <li>If the argument is positive infinity, then the result is positive
282      * infinity.
283      * <li>If the argument is positive zero or negative zero, then the
284      * result is the same as the argument.</ul>
285      * Otherwise, the result is the {@code double} value closest to
286      * the true mathematical square root of the argument value.
287      *
288      * @param   a   a value.
289      * @return  the positive square root of {@code a}.
290      */
291     @HotSpotIntrinsicCandidate
sqrt(double a)292     public static native double sqrt(double a);
293 
294     /**
295      * Returns the cube root of a {@code double} value.  For
296      * positive finite {@code x}, {@code cbrt(-x) ==
297      * -cbrt(x)}; that is, the cube root of a negative value is
298      * the negative of the cube root of that value's magnitude.
299      * Special cases:
300      *
301      * <ul>
302      *
303      * <li>If the argument is NaN, then the result is NaN.
304      *
305      * <li>If the argument is infinite, then the result is an infinity
306      * with the same sign as the argument.
307      *
308      * <li>If the argument is zero, then the result is a zero with the
309      * same sign as the argument.
310      *
311      * </ul>
312      *
313      * @param   a   a value.
314      * @return  the cube root of {@code a}.
315      * @since 1.5
316      */
317     // BEGIN Android-changed: Reimplement in native
318     /*
319     public static double cbrt(double a) {
320         return FdLibm.Cbrt.compute(a);
321     }
322     */
323     // END Android-changed: Reimplement in native
cbrt(double a)324     public static native double cbrt(double a);
325 
326     /**
327      * Computes the remainder operation on two arguments as prescribed
328      * by the IEEE 754 standard.
329      * The remainder value is mathematically equal to
330      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
331      * where <i>n</i> is the mathematical integer closest to the exact
332      * mathematical value of the quotient {@code f1/f2}, and if two
333      * mathematical integers are equally close to {@code f1/f2},
334      * then <i>n</i> is the integer that is even. If the remainder is
335      * zero, its sign is the same as the sign of the first argument.
336      * Special cases:
337      * <ul><li>If either argument is NaN, or the first argument is infinite,
338      * or the second argument is positive zero or negative zero, then the
339      * result is NaN.
340      * <li>If the first argument is finite and the second argument is
341      * infinite, then the result is the same as the first argument.</ul>
342      *
343      * @param   f1   the dividend.
344      * @param   f2   the divisor.
345      * @return  the remainder when {@code f1} is divided by
346      *          {@code f2}.
347      */
IEEEremainder(double f1, double f2)348     public static native double IEEEremainder(double f1, double f2);
349 
350     /**
351      * Returns the smallest (closest to negative infinity)
352      * {@code double} value that is greater than or equal to the
353      * argument and is equal to a mathematical integer. Special cases:
354      * <ul><li>If the argument value is already equal to a
355      * mathematical integer, then the result is the same as the
356      * argument.  <li>If the argument is NaN or an infinity or
357      * positive zero or negative zero, then the result is the same as
358      * the argument.  <li>If the argument value is less than zero but
359      * greater than -1.0, then the result is negative zero.</ul> Note
360      * that the value of {@code StrictMath.ceil(x)} is exactly the
361      * value of {@code -StrictMath.floor(-x)}.
362      *
363      * @param   a   a value.
364      * @return  the smallest (closest to negative infinity)
365      *          floating-point value that is greater than or equal to
366      *          the argument and is equal to a mathematical integer.
367      */
ceil(double a)368     public static double ceil(double a) {
369         return floorOrCeil(a, -0.0, 1.0, 1.0);
370     }
371 
372     /**
373      * Returns the largest (closest to positive infinity)
374      * {@code double} value that is less than or equal to the
375      * argument and is equal to a mathematical integer. Special cases:
376      * <ul><li>If the argument value is already equal to a
377      * mathematical integer, then the result is the same as the
378      * argument.  <li>If the argument is NaN or an infinity or
379      * positive zero or negative zero, then the result is the same as
380      * the argument.</ul>
381      *
382      * @param   a   a value.
383      * @return  the largest (closest to positive infinity)
384      *          floating-point value that less than or equal to the argument
385      *          and is equal to a mathematical integer.
386      */
floor(double a)387     public static double floor(double a) {
388         return floorOrCeil(a, -1.0, 0.0, -1.0);
389     }
390 
391     /**
392      * Internal method to share logic between floor and ceil.
393      *
394      * @param a the value to be floored or ceiled
395      * @param negativeBoundary result for values in (-1, 0)
396      * @param positiveBoundary result for values in (0, 1)
397      * @param increment value to add when the argument is non-integral
398      */
floorOrCeil(double a, double negativeBoundary, double positiveBoundary, double sign)399     private static double floorOrCeil(double a,
400                                       double negativeBoundary,
401                                       double positiveBoundary,
402                                       double sign) {
403         int exponent = Math.getExponent(a);
404 
405         if (exponent < 0) {
406             /*
407              * Absolute value of argument is less than 1.
408              * floorOrceil(-0.0) => -0.0
409              * floorOrceil(+0.0) => +0.0
410              */
411             return ((a == 0.0) ? a :
412                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
413         } else if (exponent >= 52) {
414             /*
415              * Infinity, NaN, or a value so large it must be integral.
416              */
417             return a;
418         }
419         // Else the argument is either an integral value already XOR it
420         // has to be rounded to one.
421         assert exponent >= 0 && exponent <= 51;
422 
423         long doppel = Double.doubleToRawLongBits(a);
424         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
425 
426         if ( (mask & doppel) == 0L )
427             return a; // integral value
428         else {
429             double result = Double.longBitsToDouble(doppel & (~mask));
430             if (sign*a > 0.0)
431                 result = result + sign;
432             return result;
433         }
434     }
435 
436     /**
437      * Returns the {@code double} value that is closest in value
438      * to the argument and is equal to a mathematical integer. If two
439      * {@code double} values that are mathematical integers are
440      * equally close to the value of the argument, the result is the
441      * integer value that is even. Special cases:
442      * <ul><li>If the argument value is already equal to a mathematical
443      * integer, then the result is the same as the argument.
444      * <li>If the argument is NaN or an infinity or positive zero or negative
445      * zero, then the result is the same as the argument.</ul>
446      *
447      * @param   a   a value.
448      * @return  the closest floating-point value to {@code a} that is
449      *          equal to a mathematical integer.
450      * @author Joseph D. Darcy
451      */
rint(double a)452     public static double rint(double a) {
453         /*
454          * If the absolute value of a is not less than 2^52, it
455          * is either a finite integer (the double format does not have
456          * enough significand bits for a number that large to have any
457          * fractional portion), an infinity, or a NaN.  In any of
458          * these cases, rint of the argument is the argument.
459          *
460          * Otherwise, the sum (twoToThe52 + a ) will properly round
461          * away any fractional portion of a since ulp(twoToThe52) ==
462          * 1.0; subtracting out twoToThe52 from this sum will then be
463          * exact and leave the rounded integer portion of a.
464          *
465          * This method does *not* need to be declared strictfp to get
466          * fully reproducible results.  Whether or not a method is
467          * declared strictfp can only make a difference in the
468          * returned result if some operation would overflow or
469          * underflow with strictfp semantics.  The operation
470          * (twoToThe52 + a ) cannot overflow since large values of a
471          * are screened out; the add cannot underflow since twoToThe52
472          * is too large.  The subtraction ((twoToThe52 + a ) -
473          * twoToThe52) will be exact as discussed above and thus
474          * cannot overflow or meaningfully underflow.  Finally, the
475          * last multiply in the return statement is by plus or minus
476          * 1.0, which is exact too.
477          */
478         double twoToThe52 = (double)(1L << 52); // 2^52
479         double sign = Math.copySign(1.0, a); // preserve sign info
480         a = Math.abs(a);
481 
482         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
483             a = ((twoToThe52 + a ) - twoToThe52);
484         }
485 
486         return sign * a; // restore original sign
487     }
488 
489     /**
490      * Returns the angle <i>theta</i> from the conversion of rectangular
491      * coordinates ({@code x},&nbsp;{@code y}) to polar
492      * coordinates (r,&nbsp;<i>theta</i>).
493      * This method computes the phase <i>theta</i> by computing an arc tangent
494      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
495      * cases:
496      * <ul><li>If either argument is NaN, then the result is NaN.
497      * <li>If the first argument is positive zero and the second argument
498      * is positive, or the first argument is positive and finite and the
499      * second argument is positive infinity, then the result is positive
500      * zero.
501      * <li>If the first argument is negative zero and the second argument
502      * is positive, or the first argument is negative and finite and the
503      * second argument is positive infinity, then the result is negative zero.
504      * <li>If the first argument is positive zero and the second argument
505      * is negative, or the first argument is positive and finite and the
506      * second argument is negative infinity, then the result is the
507      * {@code double} value closest to <i>pi</i>.
508      * <li>If the first argument is negative zero and the second argument
509      * is negative, or the first argument is negative and finite and the
510      * second argument is negative infinity, then the result is the
511      * {@code double} value closest to -<i>pi</i>.
512      * <li>If the first argument is positive and the second argument is
513      * positive zero or negative zero, or the first argument is positive
514      * infinity and the second argument is finite, then the result is the
515      * {@code double} value closest to <i>pi</i>/2.
516      * <li>If the first argument is negative and the second argument is
517      * positive zero or negative zero, or the first argument is negative
518      * infinity and the second argument is finite, then the result is the
519      * {@code double} value closest to -<i>pi</i>/2.
520      * <li>If both arguments are positive infinity, then the result is the
521      * {@code double} value closest to <i>pi</i>/4.
522      * <li>If the first argument is positive infinity and the second argument
523      * is negative infinity, then the result is the {@code double}
524      * value closest to 3*<i>pi</i>/4.
525      * <li>If the first argument is negative infinity and the second argument
526      * is positive infinity, then the result is the {@code double} value
527      * closest to -<i>pi</i>/4.
528      * <li>If both arguments are negative infinity, then the result is the
529      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
530      *
531      * @param   y   the ordinate coordinate
532      * @param   x   the abscissa coordinate
533      * @return  the <i>theta</i> component of the point
534      *          (<i>r</i>,&nbsp;<i>theta</i>)
535      *          in polar coordinates that corresponds to the point
536      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
537      */
atan2(double y, double x)538     public static native double atan2(double y, double x);
539 
540     /**
541      * Returns the value of the first argument raised to the power of the
542      * second argument. Special cases:
543      *
544      * <ul><li>If the second argument is positive or negative zero, then the
545      * result is 1.0.
546      * <li>If the second argument is 1.0, then the result is the same as the
547      * first argument.
548      * <li>If the second argument is NaN, then the result is NaN.
549      * <li>If the first argument is NaN and the second argument is nonzero,
550      * then the result is NaN.
551      *
552      * <li>If
553      * <ul>
554      * <li>the absolute value of the first argument is greater than 1
555      * and the second argument is positive infinity, or
556      * <li>the absolute value of the first argument is less than 1 and
557      * the second argument is negative infinity,
558      * </ul>
559      * then the result is positive infinity.
560      *
561      * <li>If
562      * <ul>
563      * <li>the absolute value of the first argument is greater than 1 and
564      * the second argument is negative infinity, or
565      * <li>the absolute value of the
566      * first argument is less than 1 and the second argument is positive
567      * infinity,
568      * </ul>
569      * then the result is positive zero.
570      *
571      * <li>If the absolute value of the first argument equals 1 and the
572      * second argument is infinite, then the result is NaN.
573      *
574      * <li>If
575      * <ul>
576      * <li>the first argument is positive zero and the second argument
577      * is greater than zero, or
578      * <li>the first argument is positive infinity and the second
579      * argument is less than zero,
580      * </ul>
581      * then the result is positive zero.
582      *
583      * <li>If
584      * <ul>
585      * <li>the first argument is positive zero and the second argument
586      * is less than zero, or
587      * <li>the first argument is positive infinity and the second
588      * argument is greater than zero,
589      * </ul>
590      * then the result is positive infinity.
591      *
592      * <li>If
593      * <ul>
594      * <li>the first argument is negative zero and the second argument
595      * is greater than zero but not a finite odd integer, or
596      * <li>the first argument is negative infinity and the second
597      * argument is less than zero but not a finite odd integer,
598      * </ul>
599      * then the result is positive zero.
600      *
601      * <li>If
602      * <ul>
603      * <li>the first argument is negative zero and the second argument
604      * is a positive finite odd integer, or
605      * <li>the first argument is negative infinity and the second
606      * argument is a negative finite odd integer,
607      * </ul>
608      * then the result is negative zero.
609      *
610      * <li>If
611      * <ul>
612      * <li>the first argument is negative zero and the second argument
613      * is less than zero but not a finite odd integer, or
614      * <li>the first argument is negative infinity and the second
615      * argument is greater than zero but not a finite odd integer,
616      * </ul>
617      * then the result is positive infinity.
618      *
619      * <li>If
620      * <ul>
621      * <li>the first argument is negative zero and the second argument
622      * is a negative finite odd integer, or
623      * <li>the first argument is negative infinity and the second
624      * argument is a positive finite odd integer,
625      * </ul>
626      * then the result is negative infinity.
627      *
628      * <li>If the first argument is finite and less than zero
629      * <ul>
630      * <li> if the second argument is a finite even integer, the
631      * result is equal to the result of raising the absolute value of
632      * the first argument to the power of the second argument
633      *
634      * <li>if the second argument is a finite odd integer, the result
635      * is equal to the negative of the result of raising the absolute
636      * value of the first argument to the power of the second
637      * argument
638      *
639      * <li>if the second argument is finite and not an integer, then
640      * the result is NaN.
641      * </ul>
642      *
643      * <li>If both arguments are integers, then the result is exactly equal
644      * to the mathematical result of raising the first argument to the power
645      * of the second argument if that result can in fact be represented
646      * exactly as a {@code double} value.</ul>
647      *
648      * <p>(In the foregoing descriptions, a floating-point value is
649      * considered to be an integer if and only if it is finite and a
650      * fixed point of the method {@link #ceil ceil} or,
651      * equivalently, a fixed point of the method {@link #floor
652      * floor}. A value is a fixed point of a one-argument
653      * method if and only if the result of applying the method to the
654      * value is equal to the value.)
655      *
656      * @param   a   base.
657      * @param   b   the exponent.
658      * @return  the value {@code a}<sup>{@code b}</sup>.
659      */
660     // BEGIN Android-changed: Reimplement in native
661     /*
662     public static double pow(double a, double b) {
663         return FdLibm.Pow.compute(a, b);
664     }
665     */
666     // END Android-changed: Reimplement in native
pow(double a, double b)667     public static native double pow(double a, double b);
668 
669     /**
670      * Returns the closest {@code int} to the argument, with ties
671      * rounding to positive infinity.
672      *
673      * <p>Special cases:
674      * <ul><li>If the argument is NaN, the result is 0.
675      * <li>If the argument is negative infinity or any value less than or
676      * equal to the value of {@code Integer.MIN_VALUE}, the result is
677      * equal to the value of {@code Integer.MIN_VALUE}.
678      * <li>If the argument is positive infinity or any value greater than or
679      * equal to the value of {@code Integer.MAX_VALUE}, the result is
680      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
681      *
682      * @param   a   a floating-point value to be rounded to an integer.
683      * @return  the value of the argument rounded to the nearest
684      *          {@code int} value.
685      * @see     java.lang.Integer#MAX_VALUE
686      * @see     java.lang.Integer#MIN_VALUE
687      */
round(float a)688     public static int round(float a) {
689         return Math.round(a);
690     }
691 
692     /**
693      * Returns the closest {@code long} to the argument, with ties
694      * rounding to positive infinity.
695      *
696      * <p>Special cases:
697      * <ul><li>If the argument is NaN, the result is 0.
698      * <li>If the argument is negative infinity or any value less than or
699      * equal to the value of {@code Long.MIN_VALUE}, the result is
700      * equal to the value of {@code Long.MIN_VALUE}.
701      * <li>If the argument is positive infinity or any value greater than or
702      * equal to the value of {@code Long.MAX_VALUE}, the result is
703      * equal to the value of {@code Long.MAX_VALUE}.</ul>
704      *
705      * @param   a  a floating-point value to be rounded to a
706      *          {@code long}.
707      * @return  the value of the argument rounded to the nearest
708      *          {@code long} value.
709      * @see     java.lang.Long#MAX_VALUE
710      * @see     java.lang.Long#MIN_VALUE
711      */
round(double a)712     public static long round(double a) {
713         return Math.round(a);
714     }
715 
716     private static final class RandomNumberGeneratorHolder {
717         static final Random randomNumberGenerator = new Random();
718     }
719 
720     /**
721      * Returns a {@code double} value with a positive sign, greater
722      * than or equal to {@code 0.0} and less than {@code 1.0}.
723      * Returned values are chosen pseudorandomly with (approximately)
724      * uniform distribution from that range.
725      *
726      * <p>When this method is first called, it creates a single new
727      * pseudorandom-number generator, exactly as if by the expression
728      *
729      * <blockquote>{@code new java.util.Random()}</blockquote>
730      *
731      * This new pseudorandom-number generator is used thereafter for
732      * all calls to this method and is used nowhere else.
733      *
734      * <p>This method is properly synchronized to allow correct use by
735      * more than one thread. However, if many threads need to generate
736      * pseudorandom numbers at a great rate, it may reduce contention
737      * for each thread to have its own pseudorandom-number generator.
738      *
739      * @return  a pseudorandom {@code double} greater than or equal
740      * to {@code 0.0} and less than {@code 1.0}.
741      * @see Random#nextDouble()
742      */
random()743     public static double random() {
744         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
745     }
746 
747     /**
748      * Returns the sum of its arguments,
749      * throwing an exception if the result overflows an {@code int}.
750      *
751      * @param x the first value
752      * @param y the second value
753      * @return the result
754      * @throws ArithmeticException if the result overflows an int
755      * @see Math#addExact(int,int)
756      * @since 1.8
757      */
addExact(int x, int y)758     public static int addExact(int x, int y) {
759         return Math.addExact(x, y);
760     }
761 
762     /**
763      * Returns the sum of its arguments,
764      * throwing an exception if the result overflows a {@code long}.
765      *
766      * @param x the first value
767      * @param y the second value
768      * @return the result
769      * @throws ArithmeticException if the result overflows a long
770      * @see Math#addExact(long,long)
771      * @since 1.8
772      */
addExact(long x, long y)773     public static long addExact(long x, long y) {
774         return Math.addExact(x, y);
775     }
776 
777     /**
778      * Returns the difference of the arguments,
779      * throwing an exception if the result overflows an {@code int}.
780      *
781      * @param x the first value
782      * @param y the second value to subtract from the first
783      * @return the result
784      * @throws ArithmeticException if the result overflows an int
785      * @see Math#subtractExact(int,int)
786      * @since 1.8
787      */
subtractExact(int x, int y)788     public static int subtractExact(int x, int y) {
789         return Math.subtractExact(x, y);
790     }
791 
792     /**
793      * Returns the difference of the arguments,
794      * throwing an exception if the result overflows a {@code long}.
795      *
796      * @param x the first value
797      * @param y the second value to subtract from the first
798      * @return the result
799      * @throws ArithmeticException if the result overflows a long
800      * @see Math#subtractExact(long,long)
801      * @since 1.8
802      */
subtractExact(long x, long y)803     public static long subtractExact(long x, long y) {
804         return Math.subtractExact(x, y);
805     }
806 
807     /**
808      * Returns the product of the arguments,
809      * throwing an exception if the result overflows an {@code int}.
810      *
811      * @param x the first value
812      * @param y the second value
813      * @return the result
814      * @throws ArithmeticException if the result overflows an int
815      * @see Math#multiplyExact(int,int)
816      * @since 1.8
817      */
multiplyExact(int x, int y)818     public static int multiplyExact(int x, int y) {
819         return Math.multiplyExact(x, y);
820     }
821 
822     /**
823      * Returns the product of the arguments, throwing an exception if the result
824      * overflows a {@code long}.
825      *
826      * @param x the first value
827      * @param y the second value
828      * @return the result
829      * @throws ArithmeticException if the result overflows a long
830      * @see Math#multiplyExact(long,int)
831      * @since 9
832      */
multiplyExact(long x, int y)833     public static long multiplyExact(long x, int y) {
834         return Math.multiplyExact(x, y);
835     }
836 
837     /**
838      * Returns the product of the arguments,
839      * throwing an exception if the result overflows a {@code long}.
840      *
841      * @param x the first value
842      * @param y the second value
843      * @return the result
844      * @throws ArithmeticException if the result overflows a long
845      * @see Math#multiplyExact(long,long)
846      * @since 1.8
847      */
multiplyExact(long x, long y)848     public static long multiplyExact(long x, long y) {
849         return Math.multiplyExact(x, y);
850     }
851 
852     /**
853      * Returns the value of the {@code long} argument;
854      * throwing an exception if the value overflows an {@code int}.
855      *
856      * @param value the long value
857      * @return the argument as an int
858      * @throws ArithmeticException if the {@code argument} overflows an int
859      * @see Math#toIntExact(long)
860      * @since 1.8
861      */
toIntExact(long value)862     public static int toIntExact(long value) {
863         return Math.toIntExact(value);
864     }
865 
866     /**
867      * Returns the exact mathematical product of the arguments.
868      *
869      * @param x the first value
870      * @param y the second value
871      * @return the result
872      * @see Math#multiplyFull(int,int)
873      * @since 9
874      */
multiplyFull(int x, int y)875     public static long multiplyFull(int x, int y) {
876         return Math.multiplyFull(x, y);
877     }
878 
879     /**
880      * Returns as a {@code long} the most significant 64 bits of the 128-bit
881      * product of two 64-bit factors.
882      *
883      * @param x the first value
884      * @param y the second value
885      * @return the result
886      * @see Math#multiplyHigh(long,long)
887      * @since 9
888      */
multiplyHigh(long x, long y)889     public static long multiplyHigh(long x, long y) {
890         return Math.multiplyHigh(x, y);
891     }
892 
893     /**
894      * Returns the largest (closest to positive infinity)
895      * {@code int} value that is less than or equal to the algebraic quotient.
896      * There is one special case, if the dividend is the
897      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
898      * then integer overflow occurs and
899      * the result is equal to the {@code Integer.MIN_VALUE}.
900      * <p>
901      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
902      * a comparison to the integer division {@code /} operator.
903      *
904      * @param x the dividend
905      * @param y the divisor
906      * @return the largest (closest to positive infinity)
907      * {@code int} value that is less than or equal to the algebraic quotient.
908      * @throws ArithmeticException if the divisor {@code y} is zero
909      * @see Math#floorDiv(int, int)
910      * @see Math#floor(double)
911      * @since 1.8
912      */
floorDiv(int x, int y)913     public static int floorDiv(int x, int y) {
914         return Math.floorDiv(x, y);
915     }
916 
917     /**
918      * Returns the largest (closest to positive infinity)
919      * {@code long} value that is less than or equal to the algebraic quotient.
920      * There is one special case, if the dividend is the
921      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
922      * then integer overflow occurs and
923      * the result is equal to {@code Long.MIN_VALUE}.
924      * <p>
925      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
926      * a comparison to the integer division {@code /} operator.
927      *
928      * @param x the dividend
929      * @param y the divisor
930      * @return the largest (closest to positive infinity)
931      * {@code int} value that is less than or equal to the algebraic quotient.
932      * @throws ArithmeticException if the divisor {@code y} is zero
933      * @see Math#floorDiv(long, int)
934      * @see Math#floor(double)
935      * @since 9
936      */
floorDiv(long x, int y)937     public static long floorDiv(long x, int y) {
938         return Math.floorDiv(x, y);
939     }
940 
941     /**
942      * Returns the largest (closest to positive infinity)
943      * {@code long} value that is less than or equal to the algebraic quotient.
944      * There is one special case, if the dividend is the
945      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
946      * then integer overflow occurs and
947      * the result is equal to the {@code Long.MIN_VALUE}.
948      * <p>
949      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
950      * a comparison to the integer division {@code /} operator.
951      *
952      * @param x the dividend
953      * @param y the divisor
954      * @return the largest (closest to positive infinity)
955      * {@code long} value that is less than or equal to the algebraic quotient.
956      * @throws ArithmeticException if the divisor {@code y} is zero
957      * @see Math#floorDiv(long, long)
958      * @see Math#floor(double)
959      * @since 1.8
960      */
floorDiv(long x, long y)961     public static long floorDiv(long x, long y) {
962         return Math.floorDiv(x, y);
963     }
964 
965     /**
966      * Returns the floor modulus of the {@code int} arguments.
967      * <p>
968      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
969      * has the same sign as the divisor {@code y}, and
970      * is in the range of {@code -abs(y) < r < +abs(y)}.
971      * <p>
972      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
973      * <ul>
974      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
975      * </ul>
976      * <p>
977      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
978      * a comparison to the {@code %} operator.
979      *
980      * @param x the dividend
981      * @param y the divisor
982      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
983      * @throws ArithmeticException if the divisor {@code y} is zero
984      * @see Math#floorMod(int, int)
985      * @see StrictMath#floorDiv(int, int)
986      * @since 1.8
987      */
floorMod(int x, int y)988     public static int floorMod(int x, int y) {
989         return Math.floorMod(x , y);
990     }
991 
992     /**
993      * Returns the floor modulus of the {@code long} and {@code int} arguments.
994      * <p>
995      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
996      * has the same sign as the divisor {@code y}, and
997      * is in the range of {@code -abs(y) < r < +abs(y)}.
998      *
999      * <p>
1000      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1001      * <ul>
1002      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1003      * </ul>
1004      * <p>
1005      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1006      * a comparison to the {@code %} operator.
1007      *
1008      * @param x the dividend
1009      * @param y the divisor
1010      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1011      * @throws ArithmeticException if the divisor {@code y} is zero
1012      * @see Math#floorMod(long, int)
1013      * @see StrictMath#floorDiv(long, int)
1014      * @since 9
1015      */
floorMod(long x, int y)1016     public static int floorMod(long x, int y) {
1017         return Math.floorMod(x , y);
1018     }
1019 
1020     /**
1021      * Returns the floor modulus of the {@code long} arguments.
1022      * <p>
1023      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1024      * has the same sign as the divisor {@code y}, and
1025      * is in the range of {@code -abs(y) < r < +abs(y)}.
1026      * <p>
1027      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1028      * <ul>
1029      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1030      * </ul>
1031      * <p>
1032      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1033      * a comparison to the {@code %} operator.
1034      *
1035      * @param x the dividend
1036      * @param y the divisor
1037      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1038      * @throws ArithmeticException if the divisor {@code y} is zero
1039      * @see Math#floorMod(long, long)
1040      * @see StrictMath#floorDiv(long, long)
1041      * @since 1.8
1042      */
floorMod(long x, long y)1043     public static long floorMod(long x, long y) {
1044         return Math.floorMod(x, y);
1045     }
1046 
1047     /**
1048      * Returns the absolute value of an {@code int} value.
1049      * If the argument is not negative, the argument is returned.
1050      * If the argument is negative, the negation of the argument is returned.
1051      *
1052      * <p>Note that if the argument is equal to the value of
1053      * {@link Integer#MIN_VALUE}, the most negative representable
1054      * {@code int} value, the result is that same value, which is
1055      * negative.
1056      *
1057      * @param   a   the  argument whose absolute value is to be determined.
1058      * @return  the absolute value of the argument.
1059      */
abs(int a)1060     public static int abs(int a) {
1061         return Math.abs(a);
1062     }
1063 
1064     /**
1065      * Returns the absolute value of a {@code long} value.
1066      * If the argument is not negative, the argument is returned.
1067      * If the argument is negative, the negation of the argument is returned.
1068      *
1069      * <p>Note that if the argument is equal to the value of
1070      * {@link Long#MIN_VALUE}, the most negative representable
1071      * {@code long} value, the result is that same value, which
1072      * is negative.
1073      *
1074      * @param   a   the  argument whose absolute value is to be determined.
1075      * @return  the absolute value of the argument.
1076      */
abs(long a)1077     public static long abs(long a) {
1078         return Math.abs(a);
1079     }
1080 
1081     /**
1082      * Returns the absolute value of a {@code float} value.
1083      * If the argument is not negative, the argument is returned.
1084      * If the argument is negative, the negation of the argument is returned.
1085      * Special cases:
1086      * <ul><li>If the argument is positive zero or negative zero, the
1087      * result is positive zero.
1088      * <li>If the argument is infinite, the result is positive infinity.
1089      * <li>If the argument is NaN, the result is NaN.</ul>
1090      *
1091      * @apiNote As implied by the above, one valid implementation of
1092      * this method is given by the expression below which computes a
1093      * {@code float} with the same exponent and significand as the
1094      * argument but with a guaranteed zero sign bit indicating a
1095      * positive value: <br>
1096      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
1097      *
1098      * @param   a   the argument whose absolute value is to be determined
1099      * @return  the absolute value of the argument.
1100      */
abs(float a)1101     public static float abs(float a) {
1102         return Math.abs(a);
1103     }
1104 
1105     /**
1106      * Returns the absolute value of a {@code double} value.
1107      * If the argument is not negative, the argument is returned.
1108      * If the argument is negative, the negation of the argument is returned.
1109      * Special cases:
1110      * <ul><li>If the argument is positive zero or negative zero, the result
1111      * is positive zero.
1112      * <li>If the argument is infinite, the result is positive infinity.
1113      * <li>If the argument is NaN, the result is NaN.</ul>
1114      *
1115      * @apiNote As implied by the above, one valid implementation of
1116      * this method is given by the expression below which computes a
1117      * {@code double} with the same exponent and significand as the
1118      * argument but with a guaranteed zero sign bit indicating a
1119      * positive value: <br>
1120      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
1121      *
1122      * @param   a   the argument whose absolute value is to be determined
1123      * @return  the absolute value of the argument.
1124      */
abs(double a)1125     public static double abs(double a) {
1126         return Math.abs(a);
1127     }
1128 
1129     /**
1130      * Returns the greater of two {@code int} values. That is, the
1131      * result is the argument closer to the value of
1132      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1133      * the result is that same value.
1134      *
1135      * @param   a   an argument.
1136      * @param   b   another argument.
1137      * @return  the larger of {@code a} and {@code b}.
1138      */
1139     @HotSpotIntrinsicCandidate
max(int a, int b)1140     public static int max(int a, int b) {
1141         return Math.max(a, b);
1142     }
1143 
1144     /**
1145      * Returns the greater of two {@code long} values. That is, the
1146      * result is the argument closer to the value of
1147      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1148      * the result is that same value.
1149      *
1150      * @param   a   an argument.
1151      * @param   b   another argument.
1152      * @return  the larger of {@code a} and {@code b}.
1153         */
max(long a, long b)1154     public static long max(long a, long b) {
1155         return Math.max(a, b);
1156     }
1157 
1158     /**
1159      * Returns the greater of two {@code float} values.  That is,
1160      * the result is the argument closer to positive infinity. If the
1161      * arguments have the same value, the result is that same
1162      * value. If either value is NaN, then the result is NaN.  Unlike
1163      * the numerical comparison operators, this method considers
1164      * negative zero to be strictly smaller than positive zero. If one
1165      * argument is positive zero and the other negative zero, the
1166      * result is positive zero.
1167      *
1168      * @param   a   an argument.
1169      * @param   b   another argument.
1170      * @return  the larger of {@code a} and {@code b}.
1171      */
1172     @HotSpotIntrinsicCandidate
max(float a, float b)1173     public static float max(float a, float b) {
1174         return Math.max(a, b);
1175     }
1176 
1177     /**
1178      * Returns the greater of two {@code double} values.  That
1179      * is, the result is the argument closer to positive infinity. If
1180      * the arguments have the same value, the result is that same
1181      * value. If either value is NaN, then the result is NaN.  Unlike
1182      * the numerical comparison operators, this method considers
1183      * negative zero to be strictly smaller than positive zero. If one
1184      * argument is positive zero and the other negative zero, the
1185      * result is positive zero.
1186      *
1187      * @param   a   an argument.
1188      * @param   b   another argument.
1189      * @return  the larger of {@code a} and {@code b}.
1190      */
1191     @HotSpotIntrinsicCandidate
max(double a, double b)1192     public static double max(double a, double b) {
1193         return Math.max(a, b);
1194     }
1195 
1196     /**
1197      * Returns the smaller of two {@code int} values. That is,
1198      * the result the argument closer to the value of
1199      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1200      * value, the result is that same value.
1201      *
1202      * @param   a   an argument.
1203      * @param   b   another argument.
1204      * @return  the smaller of {@code a} and {@code b}.
1205      */
1206     @HotSpotIntrinsicCandidate
min(int a, int b)1207     public static int min(int a, int b) {
1208         return Math.min(a, b);
1209     }
1210 
1211     /**
1212      * Returns the smaller of two {@code long} values. That is,
1213      * the result is the argument closer to the value of
1214      * {@link Long#MIN_VALUE}. If the arguments have the same
1215      * value, the result is that same value.
1216      *
1217      * @param   a   an argument.
1218      * @param   b   another argument.
1219      * @return  the smaller of {@code a} and {@code b}.
1220      */
min(long a, long b)1221     public static long min(long a, long b) {
1222         return Math.min(a, b);
1223     }
1224 
1225     /**
1226      * Returns the smaller of two {@code float} values.  That is,
1227      * the result is the value closer to negative infinity. If the
1228      * arguments have the same value, the result is that same
1229      * value. If either value is NaN, then the result is NaN.  Unlike
1230      * the numerical comparison operators, this method considers
1231      * negative zero to be strictly smaller than positive zero.  If
1232      * one argument is positive zero and the other is negative zero,
1233      * the result is negative zero.
1234      *
1235      * @param   a   an argument.
1236      * @param   b   another argument.
1237      * @return  the smaller of {@code a} and {@code b.}
1238      */
1239     @HotSpotIntrinsicCandidate
min(float a, float b)1240     public static float min(float a, float b) {
1241         return Math.min(a, b);
1242     }
1243 
1244     /**
1245      * Returns the smaller of two {@code double} values.  That
1246      * is, the result is the value closer to negative infinity. If the
1247      * arguments have the same value, the result is that same
1248      * value. If either value is NaN, then the result is NaN.  Unlike
1249      * the numerical comparison operators, this method considers
1250      * negative zero to be strictly smaller than positive zero. If one
1251      * argument is positive zero and the other is negative zero, the
1252      * result is negative zero.
1253      *
1254      * @param   a   an argument.
1255      * @param   b   another argument.
1256      * @return  the smaller of {@code a} and {@code b}.
1257      */
1258     @HotSpotIntrinsicCandidate
min(double a, double b)1259     public static double min(double a, double b) {
1260         return Math.min(a, b);
1261     }
1262 
1263     /**
1264      * Returns the fused multiply add of the three arguments; that is,
1265      * returns the exact product of the first two arguments summed
1266      * with the third argument and then rounded once to the nearest
1267      * {@code double}.
1268      *
1269      * The rounding is done using the {@linkplain
1270      * java.math.RoundingMode#HALF_EVEN round to nearest even
1271      * rounding mode}.
1272      *
1273      * In contrast, if {@code a * b + c} is evaluated as a regular
1274      * floating-point expression, two rounding errors are involved,
1275      * the first for the multiply operation, the second for the
1276      * addition operation.
1277      *
1278      * <p>Special cases:
1279      * <ul>
1280      * <li> If any argument is NaN, the result is NaN.
1281      *
1282      * <li> If one of the first two arguments is infinite and the
1283      * other is zero, the result is NaN.
1284      *
1285      * <li> If the exact product of the first two arguments is infinite
1286      * (in other words, at least one of the arguments is infinite and
1287      * the other is neither zero nor NaN) and the third argument is an
1288      * infinity of the opposite sign, the result is NaN.
1289      *
1290      * </ul>
1291      *
1292      * <p>Note that {@code fusedMac(a, 1.0, c)} returns the same
1293      * result as ({@code a + c}).  However,
1294      * {@code fusedMac(a, b, +0.0)} does <em>not</em> always return the
1295      * same result as ({@code a * b}) since
1296      * {@code fusedMac(-0.0, +0.0, +0.0)} is {@code +0.0} while
1297      * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fusedMac(a, b, -0.0)} is
1298      * equivalent to ({@code a * b}) however.
1299      *
1300      * @apiNote This method corresponds to the fusedMultiplyAdd
1301      * operation defined in IEEE 754-2008.
1302      *
1303      * @param a a value
1304      * @param b a value
1305      * @param c a value
1306      *
1307      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1308      * computed, as if with unlimited range and precision, and rounded
1309      * once to the nearest {@code double} value
1310      *
1311      * @since 9
1312      */
fma(double a, double b, double c)1313     public static double fma(double a, double b, double c) {
1314         return Math.fma(a, b, c);
1315     }
1316 
1317     /**
1318      * Returns the fused multiply add of the three arguments; that is,
1319      * returns the exact product of the first two arguments summed
1320      * with the third argument and then rounded once to the nearest
1321      * {@code float}.
1322      *
1323      * The rounding is done using the {@linkplain
1324      * java.math.RoundingMode#HALF_EVEN round to nearest even
1325      * rounding mode}.
1326      *
1327      * In contrast, if {@code a * b + c} is evaluated as a regular
1328      * floating-point expression, two rounding errors are involved,
1329      * the first for the multiply operation, the second for the
1330      * addition operation.
1331      *
1332      * <p>Special cases:
1333      * <ul>
1334      * <li> If any argument is NaN, the result is NaN.
1335      *
1336      * <li> If one of the first two arguments is infinite and the
1337      * other is zero, the result is NaN.
1338      *
1339      * <li> If the exact product of the first two arguments is infinite
1340      * (in other words, at least one of the arguments is infinite and
1341      * the other is neither zero nor NaN) and the third argument is an
1342      * infinity of the opposite sign, the result is NaN.
1343      *
1344      * </ul>
1345      *
1346      * <p>Note that {@code fma(a, 1.0f, c)} returns the same
1347      * result as ({@code a + c}).  However,
1348      * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
1349      * same result as ({@code a * b}) since
1350      * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
1351      * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
1352      * equivalent to ({@code a * b}) however.
1353      *
1354      * @apiNote This method corresponds to the fusedMultiplyAdd
1355      * operation defined in IEEE 754-2008.
1356      *
1357      * @param a a value
1358      * @param b a value
1359      * @param c a value
1360      *
1361      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1362      * computed, as if with unlimited range and precision, and rounded
1363      * once to the nearest {@code float} value
1364      *
1365      * @since 9
1366      */
fma(float a, float b, float c)1367     public static float fma(float a, float b, float c) {
1368         return Math.fma(a, b, c);
1369     }
1370 
1371     /**
1372      * Returns the size of an ulp of the argument.  An ulp, unit in
1373      * the last place, of a {@code double} value is the positive
1374      * distance between this floating-point value and the {@code
1375      * double} value next larger in magnitude.  Note that for non-NaN
1376      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1377      *
1378      * <p>Special Cases:
1379      * <ul>
1380      * <li> If the argument is NaN, then the result is NaN.
1381      * <li> If the argument is positive or negative infinity, then the
1382      * result is positive infinity.
1383      * <li> If the argument is positive or negative zero, then the result is
1384      * {@code Double.MIN_VALUE}.
1385      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1386      * the result is equal to 2<sup>971</sup>.
1387      * </ul>
1388      *
1389      * @param d the floating-point value whose ulp is to be returned
1390      * @return the size of an ulp of the argument
1391      * @author Joseph D. Darcy
1392      * @since 1.5
1393      */
ulp(double d)1394     public static double ulp(double d) {
1395         return Math.ulp(d);
1396     }
1397 
1398     /**
1399      * Returns the size of an ulp of the argument.  An ulp, unit in
1400      * the last place, of a {@code float} value is the positive
1401      * distance between this floating-point value and the {@code
1402      * float} value next larger in magnitude.  Note that for non-NaN
1403      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1404      *
1405      * <p>Special Cases:
1406      * <ul>
1407      * <li> If the argument is NaN, then the result is NaN.
1408      * <li> If the argument is positive or negative infinity, then the
1409      * result is positive infinity.
1410      * <li> If the argument is positive or negative zero, then the result is
1411      * {@code Float.MIN_VALUE}.
1412      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1413      * the result is equal to 2<sup>104</sup>.
1414      * </ul>
1415      *
1416      * @param f the floating-point value whose ulp is to be returned
1417      * @return the size of an ulp of the argument
1418      * @author Joseph D. Darcy
1419      * @since 1.5
1420      */
ulp(float f)1421     public static float ulp(float f) {
1422         return Math.ulp(f);
1423     }
1424 
1425     /**
1426      * Returns the signum function of the argument; zero if the argument
1427      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1428      * argument is less than zero.
1429      *
1430      * <p>Special Cases:
1431      * <ul>
1432      * <li> If the argument is NaN, then the result is NaN.
1433      * <li> If the argument is positive zero or negative zero, then the
1434      *      result is the same as the argument.
1435      * </ul>
1436      *
1437      * @param d the floating-point value whose signum is to be returned
1438      * @return the signum function of the argument
1439      * @author Joseph D. Darcy
1440      * @since 1.5
1441      */
signum(double d)1442     public static double signum(double d) {
1443         return Math.signum(d);
1444     }
1445 
1446     /**
1447      * Returns the signum function of the argument; zero if the argument
1448      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1449      * argument is less than zero.
1450      *
1451      * <p>Special Cases:
1452      * <ul>
1453      * <li> If the argument is NaN, then the result is NaN.
1454      * <li> If the argument is positive zero or negative zero, then the
1455      *      result is the same as the argument.
1456      * </ul>
1457      *
1458      * @param f the floating-point value whose signum is to be returned
1459      * @return the signum function of the argument
1460      * @author Joseph D. Darcy
1461      * @since 1.5
1462      */
signum(float f)1463     public static float signum(float f) {
1464         return Math.signum(f);
1465     }
1466 
1467     /**
1468      * Returns the hyperbolic sine of a {@code double} value.
1469      * The hyperbolic sine of <i>x</i> is defined to be
1470      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1471      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1472      *
1473      * <p>Special cases:
1474      * <ul>
1475      *
1476      * <li>If the argument is NaN, then the result is NaN.
1477      *
1478      * <li>If the argument is infinite, then the result is an infinity
1479      * with the same sign as the argument.
1480      *
1481      * <li>If the argument is zero, then the result is a zero with the
1482      * same sign as the argument.
1483      *
1484      * </ul>
1485      *
1486      * @param   x The number whose hyperbolic sine is to be returned.
1487      * @return  The hyperbolic sine of {@code x}.
1488      * @since 1.5
1489      */
sinh(double x)1490     public static native double sinh(double x);
1491 
1492     /**
1493      * Returns the hyperbolic cosine of a {@code double} value.
1494      * The hyperbolic cosine of <i>x</i> is defined to be
1495      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1496      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1497      *
1498      * <p>Special cases:
1499      * <ul>
1500      *
1501      * <li>If the argument is NaN, then the result is NaN.
1502      *
1503      * <li>If the argument is infinite, then the result is positive
1504      * infinity.
1505      *
1506      * <li>If the argument is zero, then the result is {@code 1.0}.
1507      *
1508      * </ul>
1509      *
1510      * @param   x The number whose hyperbolic cosine is to be returned.
1511      * @return  The hyperbolic cosine of {@code x}.
1512      * @since 1.5
1513      */
cosh(double x)1514     public static native double cosh(double x);
1515 
1516     /**
1517      * Returns the hyperbolic tangent of a {@code double} value.
1518      * The hyperbolic tangent of <i>x</i> is defined to be
1519      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1520      * in other words, {@linkplain Math#sinh
1521      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1522      * that the absolute value of the exact tanh is always less than
1523      * 1.
1524      *
1525      * <p>Special cases:
1526      * <ul>
1527      *
1528      * <li>If the argument is NaN, then the result is NaN.
1529      *
1530      * <li>If the argument is zero, then the result is a zero with the
1531      * same sign as the argument.
1532      *
1533      * <li>If the argument is positive infinity, then the result is
1534      * {@code +1.0}.
1535      *
1536      * <li>If the argument is negative infinity, then the result is
1537      * {@code -1.0}.
1538      *
1539      * </ul>
1540      *
1541      * @param   x The number whose hyperbolic tangent is to be returned.
1542      * @return  The hyperbolic tangent of {@code x}.
1543      * @since 1.5
1544      */
tanh(double x)1545     public static native double tanh(double x);
1546 
1547     /**
1548      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1549      * without intermediate overflow or underflow.
1550      *
1551      * <p>Special cases:
1552      * <ul>
1553      *
1554      * <li> If either argument is infinite, then the result
1555      * is positive infinity.
1556      *
1557      * <li> If either argument is NaN and neither argument is infinite,
1558      * then the result is NaN.
1559      *
1560      * </ul>
1561      *
1562      * @param x a value
1563      * @param y a value
1564      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1565      * without intermediate overflow or underflow
1566      * @since 1.5
1567      */
1568     // BEGIN Android-changed: Reimplement in native
1569     /*
1570     public static double hypot(double x, double y) {
1571         return FdLibm.Hypot.compute(x, y);
1572     }
1573     */
1574     // END Android-changed: Reimplement in native
hypot(double x, double y)1575     public static native double hypot(double x, double y);
1576 
1577     /**
1578      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1579      * <i>x</i> near 0, the exact sum of
1580      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1581      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1582      *
1583      * <p>Special cases:
1584      * <ul>
1585      * <li>If the argument is NaN, the result is NaN.
1586      *
1587      * <li>If the argument is positive infinity, then the result is
1588      * positive infinity.
1589      *
1590      * <li>If the argument is negative infinity, then the result is
1591      * -1.0.
1592      *
1593      * <li>If the argument is zero, then the result is a zero with the
1594      * same sign as the argument.
1595      *
1596      * </ul>
1597      *
1598      * @param   x   the exponent to raise <i>e</i> to in the computation of
1599      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1600      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1601      * @since 1.5
1602      */
expm1(double x)1603     public static native double expm1(double x);
1604 
1605     /**
1606      * Returns the natural logarithm of the sum of the argument and 1.
1607      * Note that for small values {@code x}, the result of
1608      * {@code log1p(x)} is much closer to the true result of ln(1
1609      * + {@code x}) than the floating-point evaluation of
1610      * {@code log(1.0+x)}.
1611      *
1612      * <p>Special cases:
1613      * <ul>
1614      *
1615      * <li>If the argument is NaN or less than -1, then the result is
1616      * NaN.
1617      *
1618      * <li>If the argument is positive infinity, then the result is
1619      * positive infinity.
1620      *
1621      * <li>If the argument is negative one, then the result is
1622      * negative infinity.
1623      *
1624      * <li>If the argument is zero, then the result is a zero with the
1625      * same sign as the argument.
1626      *
1627      * </ul>
1628      *
1629      * @param   x   a value
1630      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1631      * log of {@code x}&nbsp;+&nbsp;1
1632      * @since 1.5
1633      */
log1p(double x)1634     public static native double log1p(double x);
1635 
1636     /**
1637      * Returns the first floating-point argument with the sign of the
1638      * second floating-point argument.  For this method, a NaN
1639      * {@code sign} argument is always treated as if it were
1640      * positive.
1641      *
1642      * @param magnitude  the parameter providing the magnitude of the result
1643      * @param sign   the parameter providing the sign of the result
1644      * @return a value with the magnitude of {@code magnitude}
1645      * and the sign of {@code sign}.
1646      * @since 1.6
1647      */
copySign(double magnitude, double sign)1648     public static double copySign(double magnitude, double sign) {
1649         return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
1650     }
1651 
1652     /**
1653      * Returns the first floating-point argument with the sign of the
1654      * second floating-point argument.  For this method, a NaN
1655      * {@code sign} argument is always treated as if it were
1656      * positive.
1657      *
1658      * @param magnitude  the parameter providing the magnitude of the result
1659      * @param sign   the parameter providing the sign of the result
1660      * @return a value with the magnitude of {@code magnitude}
1661      * and the sign of {@code sign}.
1662      * @since 1.6
1663      */
copySign(float magnitude, float sign)1664     public static float copySign(float magnitude, float sign) {
1665         return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
1666     }
1667     /**
1668      * Returns the unbiased exponent used in the representation of a
1669      * {@code float}.  Special cases:
1670      *
1671      * <ul>
1672      * <li>If the argument is NaN or infinite, then the result is
1673      * {@link Float#MAX_EXPONENT} + 1.
1674      * <li>If the argument is zero or subnormal, then the result is
1675      * {@link Float#MIN_EXPONENT} -1.
1676      * </ul>
1677      * @param f a {@code float} value
1678      * @return the unbiased exponent of the argument
1679      * @since 1.6
1680      */
getExponent(float f)1681     public static int getExponent(float f) {
1682         return Math.getExponent(f);
1683     }
1684 
1685     /**
1686      * Returns the unbiased exponent used in the representation of a
1687      * {@code double}.  Special cases:
1688      *
1689      * <ul>
1690      * <li>If the argument is NaN or infinite, then the result is
1691      * {@link Double#MAX_EXPONENT} + 1.
1692      * <li>If the argument is zero or subnormal, then the result is
1693      * {@link Double#MIN_EXPONENT} -1.
1694      * </ul>
1695      * @param d a {@code double} value
1696      * @return the unbiased exponent of the argument
1697      * @since 1.6
1698      */
getExponent(double d)1699     public static int getExponent(double d) {
1700         return Math.getExponent(d);
1701     }
1702 
1703     /**
1704      * Returns the floating-point number adjacent to the first
1705      * argument in the direction of the second argument.  If both
1706      * arguments compare as equal the second argument is returned.
1707      *
1708      * <p>Special cases:
1709      * <ul>
1710      * <li> If either argument is a NaN, then NaN is returned.
1711      *
1712      * <li> If both arguments are signed zeros, {@code direction}
1713      * is returned unchanged (as implied by the requirement of
1714      * returning the second argument if the arguments compare as
1715      * equal).
1716      *
1717      * <li> If {@code start} is
1718      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1719      * has a value such that the result should have a smaller
1720      * magnitude, then a zero with the same sign as {@code start}
1721      * is returned.
1722      *
1723      * <li> If {@code start} is infinite and
1724      * {@code direction} has a value such that the result should
1725      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1726      * same sign as {@code start} is returned.
1727      *
1728      * <li> If {@code start} is equal to &plusmn;
1729      * {@link Double#MAX_VALUE} and {@code direction} has a
1730      * value such that the result should have a larger magnitude, an
1731      * infinity with same sign as {@code start} is returned.
1732      * </ul>
1733      *
1734      * @param start  starting floating-point value
1735      * @param direction value indicating which of
1736      * {@code start}'s neighbors or {@code start} should
1737      * be returned
1738      * @return The floating-point number adjacent to {@code start} in the
1739      * direction of {@code direction}.
1740      * @since 1.6
1741      */
nextAfter(double start, double direction)1742     public static double nextAfter(double start, double direction) {
1743         return Math.nextAfter(start, direction);
1744     }
1745 
1746     /**
1747      * Returns the floating-point number adjacent to the first
1748      * argument in the direction of the second argument.  If both
1749      * arguments compare as equal a value equivalent to the second argument
1750      * is returned.
1751      *
1752      * <p>Special cases:
1753      * <ul>
1754      * <li> If either argument is a NaN, then NaN is returned.
1755      *
1756      * <li> If both arguments are signed zeros, a value equivalent
1757      * to {@code direction} is returned.
1758      *
1759      * <li> If {@code start} is
1760      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1761      * has a value such that the result should have a smaller
1762      * magnitude, then a zero with the same sign as {@code start}
1763      * is returned.
1764      *
1765      * <li> If {@code start} is infinite and
1766      * {@code direction} has a value such that the result should
1767      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1768      * same sign as {@code start} is returned.
1769      *
1770      * <li> If {@code start} is equal to &plusmn;
1771      * {@link Float#MAX_VALUE} and {@code direction} has a
1772      * value such that the result should have a larger magnitude, an
1773      * infinity with same sign as {@code start} is returned.
1774      * </ul>
1775      *
1776      * @param start  starting floating-point value
1777      * @param direction value indicating which of
1778      * {@code start}'s neighbors or {@code start} should
1779      * be returned
1780      * @return The floating-point number adjacent to {@code start} in the
1781      * direction of {@code direction}.
1782      * @since 1.6
1783      */
nextAfter(float start, double direction)1784     public static float nextAfter(float start, double direction) {
1785         return Math.nextAfter(start, direction);
1786     }
1787 
1788     /**
1789      * Returns the floating-point value adjacent to {@code d} in
1790      * the direction of positive infinity.  This method is
1791      * semantically equivalent to {@code nextAfter(d,
1792      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1793      * implementation may run faster than its equivalent
1794      * {@code nextAfter} call.
1795      *
1796      * <p>Special Cases:
1797      * <ul>
1798      * <li> If the argument is NaN, the result is NaN.
1799      *
1800      * <li> If the argument is positive infinity, the result is
1801      * positive infinity.
1802      *
1803      * <li> If the argument is zero, the result is
1804      * {@link Double#MIN_VALUE}
1805      *
1806      * </ul>
1807      *
1808      * @param d starting floating-point value
1809      * @return The adjacent floating-point value closer to positive
1810      * infinity.
1811      * @since 1.6
1812      */
nextUp(double d)1813     public static double nextUp(double d) {
1814         return Math.nextUp(d);
1815     }
1816 
1817     /**
1818      * Returns the floating-point value adjacent to {@code f} in
1819      * the direction of positive infinity.  This method is
1820      * semantically equivalent to {@code nextAfter(f,
1821      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1822      * implementation may run faster than its equivalent
1823      * {@code nextAfter} call.
1824      *
1825      * <p>Special Cases:
1826      * <ul>
1827      * <li> If the argument is NaN, the result is NaN.
1828      *
1829      * <li> If the argument is positive infinity, the result is
1830      * positive infinity.
1831      *
1832      * <li> If the argument is zero, the result is
1833      * {@link Float#MIN_VALUE}
1834      *
1835      * </ul>
1836      *
1837      * @param f starting floating-point value
1838      * @return The adjacent floating-point value closer to positive
1839      * infinity.
1840      * @since 1.6
1841      */
nextUp(float f)1842     public static float nextUp(float f) {
1843         return Math.nextUp(f);
1844     }
1845 
1846     /**
1847      * Returns the floating-point value adjacent to {@code d} in
1848      * the direction of negative infinity.  This method is
1849      * semantically equivalent to {@code nextAfter(d,
1850      * Double.NEGATIVE_INFINITY)}; however, a
1851      * {@code nextDown} implementation may run faster than its
1852      * equivalent {@code nextAfter} call.
1853      *
1854      * <p>Special Cases:
1855      * <ul>
1856      * <li> If the argument is NaN, the result is NaN.
1857      *
1858      * <li> If the argument is negative infinity, the result is
1859      * negative infinity.
1860      *
1861      * <li> If the argument is zero, the result is
1862      * {@code -Double.MIN_VALUE}
1863      *
1864      * </ul>
1865      *
1866      * @param d  starting floating-point value
1867      * @return The adjacent floating-point value closer to negative
1868      * infinity.
1869      * @since 1.8
1870      */
nextDown(double d)1871     public static double nextDown(double d) {
1872         return Math.nextDown(d);
1873     }
1874 
1875     /**
1876      * Returns the floating-point value adjacent to {@code f} in
1877      * the direction of negative infinity.  This method is
1878      * semantically equivalent to {@code nextAfter(f,
1879      * Float.NEGATIVE_INFINITY)}; however, a
1880      * {@code nextDown} implementation may run faster than its
1881      * equivalent {@code nextAfter} call.
1882      *
1883      * <p>Special Cases:
1884      * <ul>
1885      * <li> If the argument is NaN, the result is NaN.
1886      *
1887      * <li> If the argument is negative infinity, the result is
1888      * negative infinity.
1889      *
1890      * <li> If the argument is zero, the result is
1891      * {@code -Float.MIN_VALUE}
1892      *
1893      * </ul>
1894      *
1895      * @param f  starting floating-point value
1896      * @return The adjacent floating-point value closer to negative
1897      * infinity.
1898      * @since 1.8
1899      */
nextDown(float f)1900     public static float nextDown(float f) {
1901         return Math.nextDown(f);
1902     }
1903 
1904     /**
1905      * Returns {@code d} &times;
1906      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1907      * by a single correctly rounded floating-point multiply to a
1908      * member of the double value set.  See the Java
1909      * Language Specification for a discussion of floating-point
1910      * value sets.  If the exponent of the result is between {@link
1911      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1912      * answer is calculated exactly.  If the exponent of the result
1913      * would be larger than {@code Double.MAX_EXPONENT}, an
1914      * infinity is returned.  Note that if the result is subnormal,
1915      * precision may be lost; that is, when {@code scalb(x, n)}
1916      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1917      * <i>x</i>.  When the result is non-NaN, the result has the same
1918      * sign as {@code d}.
1919      *
1920      * <p>Special cases:
1921      * <ul>
1922      * <li> If the first argument is NaN, NaN is returned.
1923      * <li> If the first argument is infinite, then an infinity of the
1924      * same sign is returned.
1925      * <li> If the first argument is zero, then a zero of the same
1926      * sign is returned.
1927      * </ul>
1928      *
1929      * @param d number to be scaled by a power of two.
1930      * @param scaleFactor power of 2 used to scale {@code d}
1931      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1932      * @since 1.6
1933      */
scalb(double d, int scaleFactor)1934     public static double scalb(double d, int scaleFactor) {
1935         return Math.scalb(d, scaleFactor);
1936     }
1937 
1938     /**
1939      * Returns {@code f} &times;
1940      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1941      * by a single correctly rounded floating-point multiply to a
1942      * member of the float value set.  See the Java
1943      * Language Specification for a discussion of floating-point
1944      * value sets.  If the exponent of the result is between {@link
1945      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1946      * answer is calculated exactly.  If the exponent of the result
1947      * would be larger than {@code Float.MAX_EXPONENT}, an
1948      * infinity is returned.  Note that if the result is subnormal,
1949      * precision may be lost; that is, when {@code scalb(x, n)}
1950      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1951      * <i>x</i>.  When the result is non-NaN, the result has the same
1952      * sign as {@code f}.
1953      *
1954      * <p>Special cases:
1955      * <ul>
1956      * <li> If the first argument is NaN, NaN is returned.
1957      * <li> If the first argument is infinite, then an infinity of the
1958      * same sign is returned.
1959      * <li> If the first argument is zero, then a zero of the same
1960      * sign is returned.
1961      * </ul>
1962      *
1963      * @param f number to be scaled by a power of two.
1964      * @param scaleFactor power of 2 used to scale {@code f}
1965      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1966      * @since 1.6
1967      */
scalb(float f, int scaleFactor)1968     public static float scalb(float f, int scaleFactor) {
1969         return Math.scalb(f, scaleFactor);
1970     }
1971 }
1972