1/* 2 * Copyright (c) 2016-2020 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24#include "arm_compute/core/Error.h" 25 26#include <cmath> 27#include <numeric> 28 29namespace arm_compute 30{ 31template <size_t dimension> 32struct IncrementIterators 33{ 34 template <typename T, typename... Ts> 35 static void unroll(T &&it, Ts &&... iterators) 36 { 37 auto increment = [](T && it) 38 { 39 it.increment(dimension); 40 }; 41 utility::for_each(increment, std::forward<T>(it), std::forward<Ts>(iterators)...); 42 } 43 static void unroll() 44 { 45 // End of recursion 46 } 47}; 48 49template <size_t dim> 50struct ForEachDimension 51{ 52 template <typename L, typename... Ts> 53 static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators) 54 { 55 const auto &d = w[dim - 1]; 56 57 for(auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators < dim - 1 >::unroll(iterators...)) 58 { 59 id.set(dim - 1, v); 60 ForEachDimension < dim - 1 >::unroll(w, id, lambda_function, iterators...); 61 } 62 } 63}; 64 65template <> 66struct ForEachDimension<0> 67{ 68 template <typename L, typename... Ts> 69 static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators) 70 { 71 ARM_COMPUTE_UNUSED(w, iterators...); 72 lambda_function(id); 73 } 74}; 75 76template <typename L, typename... Ts> 77inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators) 78{ 79 w.validate(); 80 81 for(unsigned int i = 0; i < Coordinates::num_max_dimensions; ++i) 82 { 83 ARM_COMPUTE_ERROR_ON(w[i].step() == 0); 84 } 85 86 Coordinates id; 87 ForEachDimension<Coordinates::num_max_dimensions>::unroll(w, id, std::forward<L>(lambda_function), std::forward<Ts>(iterators)...); 88} 89 90inline constexpr Iterator::Iterator() 91 : _ptr(nullptr), _dims() 92{ 93} 94 95inline Iterator::Iterator(const ITensor *tensor, const Window &win) 96 : Iterator() 97{ 98 ARM_COMPUTE_ERROR_ON(tensor == nullptr); 99 ARM_COMPUTE_ERROR_ON(tensor->info() == nullptr); 100 101 const ITensorInfo *info = tensor->info(); 102 const Strides &strides = info->strides_in_bytes(); 103 104 _ptr = tensor->buffer() + info->offset_first_element_in_bytes(); 105 106 //Initialize the stride for each dimension and calculate the position of the first element of the iteration: 107 for(unsigned int n = 0; n < info->num_dimensions(); ++n) 108 { 109 _dims[n]._stride = win[n].step() * strides[n]; 110 std::get<0>(_dims)._dim_start += static_cast<size_t>(strides[n]) * win[n].start(); 111 } 112 113 //Copy the starting point to all the dimensions: 114 for(unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n) 115 { 116 _dims[n]._dim_start = std::get<0>(_dims)._dim_start; 117 } 118 119 ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, info->num_dimensions()); 120} 121 122inline void Iterator::increment(const size_t dimension) 123{ 124 ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions); 125 126 _dims[dimension]._dim_start += _dims[dimension]._stride; 127 128 for(unsigned int n = 0; n < dimension; ++n) 129 { 130 _dims[n]._dim_start = _dims[dimension]._dim_start; 131 } 132} 133 134inline constexpr size_t Iterator::offset() const 135{ 136 return _dims.at(0)._dim_start; 137} 138 139inline constexpr uint8_t *Iterator::ptr() const 140{ 141 return _ptr + _dims.at(0)._dim_start; 142} 143 144inline void Iterator::reset(const size_t dimension) 145{ 146 ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1); 147 148 _dims[dimension]._dim_start = _dims[dimension + 1]._dim_start; 149 150 for(unsigned int n = 0; n < dimension; ++n) 151 { 152 _dims[n]._dim_start = _dims[dimension]._dim_start; 153 } 154} 155 156inline Coordinates index2coords(const TensorShape &shape, int index) 157{ 158 int num_elements = shape.total_size(); 159 160 ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]!"); 161 ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape!"); 162 163 Coordinates coord{ 0 }; 164 165 for(int d = shape.num_dimensions() - 1; d >= 0; --d) 166 { 167 num_elements /= shape[d]; 168 coord.set(d, index / num_elements); 169 index %= num_elements; 170 } 171 172 return coord; 173} 174 175inline int coords2index(const TensorShape &shape, const Coordinates &coord) 176{ 177 int num_elements = shape.total_size(); 178 ARM_COMPUTE_UNUSED(num_elements); 179 ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create linear index from empty shape!"); 180 181 int index = 0; 182 int stride = 1; 183 184 for(unsigned int d = 0; d < coord.num_dimensions(); ++d) 185 { 186 index += coord[d] * stride; 187 stride *= shape[d]; 188 } 189 190 return index; 191} 192 193inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension) 194{ 195 ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!"); 196 197 /* Return the index based on the data layout 198 * [N C H W] 199 * [3 2 1 0] 200 * [N H W C] 201 */ 202 switch(data_layout_dimension) 203 { 204 case DataLayoutDimension::CHANNEL: 205 return (data_layout == DataLayout::NCHW) ? 2 : 0; 206 break; 207 case DataLayoutDimension::HEIGHT: 208 return (data_layout == DataLayout::NCHW) ? 1 : 2; 209 break; 210 case DataLayoutDimension::WIDTH: 211 return (data_layout == DataLayout::NCHW) ? 0 : 1; 212 break; 213 case DataLayoutDimension::BATCHES: 214 return 3; 215 break; 216 default: 217 break; 218 } 219 ARM_COMPUTE_ERROR("Data layout index not supported!"); 220} 221 222inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index) 223{ 224 ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!"); 225 226 /* Return the index based on the data layout 227 * [N C H W] 228 * [3 2 1 0] 229 * [N H W C] 230 */ 231 switch(index) 232 { 233 case 0: 234 return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::WIDTH : DataLayoutDimension::CHANNEL; 235 break; 236 case 1: 237 return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::HEIGHT : DataLayoutDimension::WIDTH; 238 break; 239 case 2: 240 return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::CHANNEL : DataLayoutDimension::HEIGHT; 241 break; 242 case 3: 243 return DataLayoutDimension::BATCHES; 244 break; 245 default: 246 ARM_COMPUTE_ERROR("Index value not supported!"); 247 break; 248 } 249} 250} // namespace arm_compute 251