• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * f2fs_format.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * Dual licensed under the GPL or LGPL version 2 licenses.
8  */
9 #define _LARGEFILE64_SOURCE
10 
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <fcntl.h>
14 #include <string.h>
15 #include <unistd.h>
16 #ifndef ANDROID_WINDOWS_HOST
17 #include <sys/stat.h>
18 #include <sys/mount.h>
19 #endif
20 #include <time.h>
21 #include <uuid.h>
22 
23 #include "f2fs_fs.h"
24 #include "quota.h"
25 #include "f2fs_format_utils.h"
26 
27 extern struct f2fs_configuration c;
28 struct f2fs_super_block raw_sb;
29 struct f2fs_super_block *sb = &raw_sb;
30 struct f2fs_checkpoint *cp;
31 
32 /* Return first segment number of each area */
33 #define prev_zone(cur)		(c.cur_seg[cur] - c.segs_per_zone)
34 #define next_zone(cur)		(c.cur_seg[cur] + c.segs_per_zone)
35 #define last_zone(cur)		((cur - 1) * c.segs_per_zone)
36 #define last_section(cur)	(cur + (c.secs_per_zone - 1) * c.segs_per_sec)
37 
38 /* Return time fixed by the user or current time by default */
39 #define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time)
40 
41 const char *media_ext_lists[] = {
42 	/* common prefix */
43 	"mp", // Covers mp3, mp4, mpeg, mpg
44 	"wm", // Covers wma, wmb, wmv
45 	"og", // Covers oga, ogg, ogm, ogv
46 	"jp", // Covers jpg, jpeg, jp2
47 
48 	/* video */
49 	"avi",
50 	"m4v",
51 	"m4p",
52 	"mkv",
53 	"mov",
54 	"webm",
55 
56 	/* audio */
57 	"wav",
58 	"m4a",
59 	"3gp",
60 	"opus",
61 	"flac",
62 
63 	/* image */
64 	"gif",
65 	"png",
66 	"svg",
67 	"webp",
68 
69 	/* archives */
70 	"jar",
71 	"deb",
72 	"iso",
73 	"gz",
74 	"xz",
75 	"zst",
76 
77 	/* others */
78 	"pdf",
79 	"pyc", // Python bytecode
80 	"ttc",
81 	"ttf",
82 	"exe",
83 
84 	/* android */
85 	"apk",
86 	"cnt", // Image alias
87 	"exo", // YouTube
88 	"odex", // Android RunTime
89 	"vdex", // Android RunTime
90 	"so",
91 
92 	NULL
93 };
94 
95 const char *hot_ext_lists[] = {
96 	"db",
97 
98 #ifndef WITH_ANDROID
99 	/* Virtual machines */
100 	"vmdk", // VMware or VirtualBox
101 	"vdi", // VirtualBox
102 	"qcow2", // QEMU
103 #endif
104 	NULL
105 };
106 
107 const char **default_ext_list[] = {
108 	media_ext_lists,
109 	hot_ext_lists
110 };
111 
is_extension_exist(const char * name)112 static bool is_extension_exist(const char *name)
113 {
114 	int i;
115 
116 	for (i = 0; i < F2FS_MAX_EXTENSION; i++) {
117 		char *ext = (char *)sb->extension_list[i];
118 		if (!strcmp(ext, name))
119 			return 1;
120 	}
121 
122 	return 0;
123 }
124 
cure_extension_list(void)125 static void cure_extension_list(void)
126 {
127 	const char **extlist;
128 	char *ext_str;
129 	char *ue;
130 	int name_len;
131 	int i, pos = 0;
132 
133 	set_sb(extension_count, 0);
134 	memset(sb->extension_list, 0, sizeof(sb->extension_list));
135 
136 	for (i = 0; i < 2; i++) {
137 		ext_str = c.extension_list[i];
138 		extlist = default_ext_list[i];
139 
140 		while (*extlist) {
141 			name_len = strlen(*extlist);
142 			memcpy(sb->extension_list[pos++], *extlist, name_len);
143 			extlist++;
144 		}
145 		if (i == 0)
146 			set_sb(extension_count, pos);
147 		else
148 			sb->hot_ext_count = pos - get_sb(extension_count);;
149 
150 		if (!ext_str)
151 			continue;
152 
153 		/* add user ext list */
154 		ue = strtok(ext_str, ", ");
155 		while (ue != NULL) {
156 			name_len = strlen(ue);
157 			if (name_len >= F2FS_EXTENSION_LEN) {
158 				MSG(0, "\tWarn: Extension name (%s) is too long\n", ue);
159 				goto next;
160 			}
161 			if (!is_extension_exist(ue))
162 				memcpy(sb->extension_list[pos++], ue, name_len);
163 next:
164 			ue = strtok(NULL, ", ");
165 			if (pos >= F2FS_MAX_EXTENSION)
166 				break;
167 		}
168 
169 		if (i == 0)
170 			set_sb(extension_count, pos);
171 		else
172 			sb->hot_ext_count = pos - get_sb(extension_count);
173 
174 		free(c.extension_list[i]);
175 	}
176 }
177 
verify_cur_segs(void)178 static void verify_cur_segs(void)
179 {
180 	int i, j;
181 	int reorder = 0;
182 
183 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
184 		for (j = i + 1; j < NR_CURSEG_TYPE; j++) {
185 			if (c.cur_seg[i] == c.cur_seg[j]) {
186 				reorder = 1;
187 				break;
188 			}
189 		}
190 	}
191 
192 	if (!reorder)
193 		return;
194 
195 	c.cur_seg[0] = 0;
196 	for (i = 1; i < NR_CURSEG_TYPE; i++)
197 		c.cur_seg[i] = next_zone(i - 1);
198 }
199 
f2fs_prepare_super_block(void)200 static int f2fs_prepare_super_block(void)
201 {
202 	u_int32_t blk_size_bytes;
203 	u_int32_t log_sectorsize, log_sectors_per_block;
204 	u_int32_t log_blocksize, log_blks_per_seg;
205 	u_int32_t segment_size_bytes, zone_size_bytes;
206 	u_int32_t sit_segments, nat_segments;
207 	u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
208 	u_int32_t total_valid_blks_available;
209 	u_int64_t zone_align_start_offset, diff;
210 	u_int64_t total_meta_zones, total_meta_segments;
211 	u_int32_t sit_bitmap_size, max_sit_bitmap_size;
212 	u_int32_t max_nat_bitmap_size, max_nat_segments;
213 	u_int32_t total_zones, avail_zones;
214 	enum quota_type qtype;
215 	int i;
216 
217 	set_sb(magic, F2FS_SUPER_MAGIC);
218 	set_sb(major_ver, F2FS_MAJOR_VERSION);
219 	set_sb(minor_ver, F2FS_MINOR_VERSION);
220 
221 	log_sectorsize = log_base_2(c.sector_size);
222 	log_sectors_per_block = log_base_2(c.sectors_per_blk);
223 	log_blocksize = log_sectorsize + log_sectors_per_block;
224 	log_blks_per_seg = log_base_2(c.blks_per_seg);
225 
226 	set_sb(log_sectorsize, log_sectorsize);
227 	set_sb(log_sectors_per_block, log_sectors_per_block);
228 
229 	set_sb(log_blocksize, log_blocksize);
230 	set_sb(log_blocks_per_seg, log_blks_per_seg);
231 
232 	set_sb(segs_per_sec, c.segs_per_sec);
233 	set_sb(secs_per_zone, c.secs_per_zone);
234 
235 	blk_size_bytes = 1 << log_blocksize;
236 	segment_size_bytes = blk_size_bytes * c.blks_per_seg;
237 	zone_size_bytes =
238 		blk_size_bytes * c.secs_per_zone *
239 		c.segs_per_sec * c.blks_per_seg;
240 
241 	set_sb(checksum_offset, 0);
242 
243 	set_sb(block_count, c.total_sectors >> log_sectors_per_block);
244 
245 	zone_align_start_offset =
246 		((u_int64_t) c.start_sector * DEFAULT_SECTOR_SIZE +
247 		2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
248 		zone_size_bytes * zone_size_bytes -
249 		(u_int64_t) c.start_sector * DEFAULT_SECTOR_SIZE;
250 
251 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
252 		zone_align_start_offset = 8192;
253 
254 	if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
255 		MSG(1, "\t%s: Align start sector number to the page unit\n",
256 				c.zoned_mode ? "FAIL" : "WARN");
257 		MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
258 				c.start_sector,
259 				c.start_sector % DEFAULT_SECTORS_PER_BLOCK,
260 				DEFAULT_SECTORS_PER_BLOCK);
261 		if (c.zoned_mode)
262 			return -1;
263 	}
264 
265 	if (c.zoned_mode && c.ndevs > 1)
266 		zone_align_start_offset +=
267 			(c.devices[0].total_sectors * c.sector_size) % zone_size_bytes;
268 
269 	set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes);
270 	sb->cp_blkaddr = sb->segment0_blkaddr;
271 
272 	MSG(0, "Info: zone aligned segment0 blkaddr: %u\n",
273 					get_sb(segment0_blkaddr));
274 
275 	if (c.zoned_mode &&
276 		((c.ndevs == 1 &&
277 			(get_sb(segment0_blkaddr) + c.start_sector /
278 			DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) ||
279 		(c.ndevs > 1 &&
280 			c.devices[1].start_blkaddr % c.zone_blocks))) {
281 		MSG(1, "\tError: Unaligned segment0 block address %u\n",
282 				get_sb(segment0_blkaddr));
283 		return -1;
284 	}
285 
286 	for (i = 0; i < c.ndevs; i++) {
287 		if (i == 0) {
288 			c.devices[i].total_segments =
289 				(c.devices[i].total_sectors *
290 				c.sector_size - zone_align_start_offset) /
291 				segment_size_bytes;
292 			c.devices[i].start_blkaddr = 0;
293 			c.devices[i].end_blkaddr = c.devices[i].total_segments *
294 						c.blks_per_seg - 1 +
295 						sb->segment0_blkaddr;
296 		} else {
297 			c.devices[i].total_segments =
298 				c.devices[i].total_sectors /
299 				(c.sectors_per_blk * c.blks_per_seg);
300 			c.devices[i].start_blkaddr =
301 					c.devices[i - 1].end_blkaddr + 1;
302 			c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
303 					c.devices[i].total_segments *
304 					c.blks_per_seg - 1;
305 		}
306 		if (c.ndevs > 1) {
307 			memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN);
308 			sb->devs[i].total_segments =
309 					cpu_to_le32(c.devices[i].total_segments);
310 		}
311 
312 		c.total_segments += c.devices[i].total_segments;
313 	}
314 	set_sb(segment_count, (c.total_segments / c.segs_per_zone *
315 						c.segs_per_zone));
316 	set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK);
317 
318 	set_sb(sit_blkaddr, get_sb(segment0_blkaddr) +
319 			get_sb(segment_count_ckpt) * c.blks_per_seg);
320 
321 	blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
322 
323 	sit_segments = SEG_ALIGN(blocks_for_sit);
324 
325 	set_sb(segment_count_sit, sit_segments * 2);
326 
327 	set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) *
328 			c.blks_per_seg);
329 
330 	total_valid_blks_available = (get_sb(segment_count) -
331 			(get_sb(segment_count_ckpt) +
332 			get_sb(segment_count_sit))) * c.blks_per_seg;
333 
334 	blocks_for_nat = SIZE_ALIGN(total_valid_blks_available,
335 			NAT_ENTRY_PER_BLOCK);
336 
337 	if (c.large_nat_bitmap) {
338 		nat_segments = SEG_ALIGN(blocks_for_nat) *
339 						DEFAULT_NAT_ENTRY_RATIO / 100;
340 		set_sb(segment_count_nat, nat_segments ? nat_segments : 1);
341 		max_nat_bitmap_size = (get_sb(segment_count_nat) <<
342 						log_blks_per_seg) / 8;
343 		set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
344 	} else {
345 		set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
346 		max_nat_bitmap_size = 0;
347 	}
348 
349 	/*
350 	 * The number of node segments should not be exceeded a "Threshold".
351 	 * This number resizes NAT bitmap area in a CP page.
352 	 * So the threshold is determined not to overflow one CP page
353 	 */
354 	sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
355 				log_blks_per_seg) / 8;
356 
357 	if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
358 		max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
359 	else
360 		max_sit_bitmap_size = sit_bitmap_size;
361 
362 	if (c.large_nat_bitmap) {
363 		/* use cp_payload if free space of f2fs_checkpoint is not enough */
364 		if (max_sit_bitmap_size + max_nat_bitmap_size >
365 						MAX_BITMAP_SIZE_IN_CKPT) {
366 			u_int32_t diff =  max_sit_bitmap_size +
367 						max_nat_bitmap_size -
368 						MAX_BITMAP_SIZE_IN_CKPT;
369 			set_sb(cp_payload, F2FS_BLK_ALIGN(diff));
370 		} else {
371 			set_sb(cp_payload, 0);
372 		}
373 	} else {
374 		/*
375 		 * It should be reserved minimum 1 segment for nat.
376 		 * When sit is too large, we should expand cp area.
377 		 * It requires more pages for cp.
378 		 */
379 		if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) {
380 			max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT;
381 			set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
382 	        } else {
383 			max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT -
384 							max_sit_bitmap_size;
385 			set_sb(cp_payload, 0);
386 		}
387 		max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
388 
389 		if (get_sb(segment_count_nat) > max_nat_segments)
390 			set_sb(segment_count_nat, max_nat_segments);
391 
392 		set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
393 	}
394 
395 	set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) *
396 			c.blks_per_seg);
397 
398 	total_valid_blks_available = (get_sb(segment_count) -
399 			(get_sb(segment_count_ckpt) +
400 			get_sb(segment_count_sit) +
401 			get_sb(segment_count_nat))) *
402 			c.blks_per_seg;
403 
404 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
405 		blocks_for_ssa = 0;
406 	else
407 		blocks_for_ssa = total_valid_blks_available /
408 				c.blks_per_seg + 1;
409 
410 	set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
411 
412 	total_meta_segments = get_sb(segment_count_ckpt) +
413 		get_sb(segment_count_sit) +
414 		get_sb(segment_count_nat) +
415 		get_sb(segment_count_ssa);
416 	diff = total_meta_segments % (c.segs_per_zone);
417 	if (diff)
418 		set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
419 			(c.segs_per_zone - diff));
420 
421 	total_meta_zones = ZONE_ALIGN(total_meta_segments *
422 						c.blks_per_seg);
423 
424 	set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones *
425 				c.segs_per_zone * c.blks_per_seg);
426 
427 	if (c.zoned_mode) {
428 		/*
429 		 * Make sure there is enough randomly writeable
430 		 * space at the beginning of the disk.
431 		 */
432 		unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks;
433 
434 		if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
435 				c.devices[0].nr_rnd_zones < main_blkzone) {
436 			MSG(0, "\tError: Device does not have enough random "
437 					"write zones for F2FS volume (%lu needed)\n",
438 					main_blkzone);
439 			return -1;
440 		}
441 		/*
442 		 * Check if conventional device has enough space
443 		 * to accommodate all metadata, zoned device should
444 		 * not overlap to metadata area.
445 		 */
446 		for (i = 1; i < c.ndevs; i++) {
447 			if (c.devices[i].zoned_model == F2FS_ZONED_HM &&
448 				c.devices[i].start_blkaddr < get_sb(main_blkaddr)) {
449 				MSG(0, "\tError: Conventional device %s is too small,"
450 					" (%"PRIu64" MiB needed).\n", c.devices[0].path,
451 					(get_sb(main_blkaddr) -
452 					c.devices[i].start_blkaddr) >> 8);
453 				return -1;
454 			}
455 		}
456 	}
457 
458 	total_zones = get_sb(segment_count) / (c.segs_per_zone) -
459 							total_meta_zones;
460 
461 	set_sb(section_count, total_zones * c.secs_per_zone);
462 
463 	set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec);
464 
465 	/*
466 	 * Let's determine the best reserved and overprovisioned space.
467 	 * For Zoned device, if zone capacity less than zone size, the segments
468 	 * starting after the zone capacity are unusable in each zone. So get
469 	 * overprovision ratio and reserved seg count based on avg usable
470 	 * segs_per_sec.
471 	 */
472 	if (c.overprovision == 0)
473 		c.overprovision = get_best_overprovision(sb);
474 
475 	c.reserved_segments =
476 			(2 * (100 / c.overprovision + 1) + NR_CURSEG_TYPE) *
477 			round_up(f2fs_get_usable_segments(sb), get_sb(section_count));
478 
479 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
480 		c.overprovision = 0;
481 		c.reserved_segments = 0;
482 	}
483 	if ((!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)) &&
484 		c.overprovision == 0) ||
485 		c.total_segments < F2FS_MIN_SEGMENTS ||
486 		(c.devices[0].total_sectors *
487 			c.sector_size < zone_align_start_offset) ||
488 		(get_sb(segment_count_main) - NR_CURSEG_TYPE) <
489 						c.reserved_segments) {
490 		MSG(0, "\tError: Device size is not sufficient for F2FS volume\n");
491 		return -1;
492 	}
493 
494 	if (c.vol_uuid) {
495 		if (uuid_parse(c.vol_uuid, sb->uuid)) {
496 			MSG(0, "\tError: supplied string is not a valid UUID\n");
497 			return -1;
498 		}
499 	} else {
500 		uuid_generate(sb->uuid);
501 	}
502 
503 	/* precompute checksum seed for metadata */
504 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
505 		c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
506 
507 	utf8_to_utf16(sb->volume_name, (const char *)c.vol_label,
508 				MAX_VOLUME_NAME, strlen(c.vol_label));
509 	set_sb(node_ino, 1);
510 	set_sb(meta_ino, 2);
511 	set_sb(root_ino, 3);
512 	c.next_free_nid = 4;
513 
514 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
515 		if (!((1 << qtype) & c.quota_bits))
516 			continue;
517 		sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++);
518 		MSG(0, "Info: add quota type = %u => %u\n",
519 					qtype, c.next_free_nid - 1);
520 	}
521 
522 	if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND))
523 		c.lpf_ino = c.next_free_nid++;
524 
525 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
526 		avail_zones = 2;
527 	else
528 		avail_zones = 6;
529 
530 	if (total_zones <= avail_zones) {
531 		MSG(1, "\tError: %d zones: Need more zones "
532 			"by shrinking zone size\n", total_zones);
533 		return -1;
534 	}
535 
536 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
537 		c.cur_seg[CURSEG_HOT_NODE] = 0;
538 		c.cur_seg[CURSEG_WARM_NODE] = 0;
539 		c.cur_seg[CURSEG_COLD_NODE] = 0;
540 		c.cur_seg[CURSEG_HOT_DATA] = 1;
541 		c.cur_seg[CURSEG_COLD_DATA] = 0;
542 		c.cur_seg[CURSEG_WARM_DATA] = 0;
543 	} else if (c.heap) {
544 		c.cur_seg[CURSEG_HOT_NODE] =
545 				last_section(last_zone(total_zones));
546 		c.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE);
547 		c.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE);
548 		c.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE);
549 		c.cur_seg[CURSEG_COLD_DATA] = 0;
550 		c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA);
551 	} else if (c.zoned_mode) {
552 		c.cur_seg[CURSEG_HOT_NODE] = 0;
553 		c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
554 		c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
555 		c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
556 		c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA);
557 		c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA);
558 	} else {
559 		c.cur_seg[CURSEG_HOT_NODE] = 0;
560 		c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
561 		c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
562 		c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
563 		c.cur_seg[CURSEG_COLD_DATA] =
564 				max(last_zone((total_zones >> 2)),
565 					next_zone(CURSEG_HOT_DATA));
566 		c.cur_seg[CURSEG_WARM_DATA] =
567 				max(last_zone((total_zones >> 1)),
568 					next_zone(CURSEG_COLD_DATA));
569 	}
570 
571 	/* if there is redundancy, reassign it */
572 	if (!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)))
573 		verify_cur_segs();
574 
575 	cure_extension_list();
576 
577 	/* get kernel version */
578 	if (c.kd >= 0) {
579 		dev_read_version(c.version, 0, VERSION_LEN);
580 		get_kernel_version(c.version);
581 	} else {
582 		get_kernel_uname_version(c.version);
583 	}
584 	MSG(0, "Info: format version with\n  \"%s\"\n", c.version);
585 
586 	memcpy(sb->version, c.version, VERSION_LEN);
587 	memcpy(sb->init_version, c.version, VERSION_LEN);
588 
589 	if (c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
590 		set_sb(s_encoding, c.s_encoding);
591 		set_sb(s_encoding_flags, c.s_encoding_flags);
592 	}
593 
594 	sb->feature = c.feature;
595 
596 	if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
597 		set_sb(checksum_offset, SB_CHKSUM_OFFSET);
598 		set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
599 						SB_CHKSUM_OFFSET));
600 		MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n",
601 					get_sb(checksum_offset), get_sb(crc));
602 	}
603 
604 	return 0;
605 }
606 
f2fs_init_sit_area(void)607 static int f2fs_init_sit_area(void)
608 {
609 	u_int32_t blk_size, seg_size;
610 	u_int32_t index = 0;
611 	u_int64_t sit_seg_addr = 0;
612 	u_int8_t *zero_buf = NULL;
613 
614 	blk_size = 1 << get_sb(log_blocksize);
615 	seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
616 
617 	zero_buf = calloc(sizeof(u_int8_t), seg_size);
618 	if(zero_buf == NULL) {
619 		MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
620 		return -1;
621 	}
622 
623 	sit_seg_addr = get_sb(sit_blkaddr);
624 	sit_seg_addr *= blk_size;
625 
626 	DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr);
627 	for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) {
628 		if (dev_fill(zero_buf, sit_seg_addr, seg_size)) {
629 			MSG(1, "\tError: While zeroing out the sit area "
630 					"on disk!!!\n");
631 			free(zero_buf);
632 			return -1;
633 		}
634 		sit_seg_addr += seg_size;
635 	}
636 
637 	free(zero_buf);
638 	return 0 ;
639 }
640 
f2fs_init_nat_area(void)641 static int f2fs_init_nat_area(void)
642 {
643 	u_int32_t blk_size, seg_size;
644 	u_int32_t index = 0;
645 	u_int64_t nat_seg_addr = 0;
646 	u_int8_t *nat_buf = NULL;
647 
648 	blk_size = 1 << get_sb(log_blocksize);
649 	seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
650 
651 	nat_buf = calloc(sizeof(u_int8_t), seg_size);
652 	if (nat_buf == NULL) {
653 		MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
654 		return -1;
655 	}
656 
657 	nat_seg_addr = get_sb(nat_blkaddr);
658 	nat_seg_addr *= blk_size;
659 
660 	DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr);
661 	for (index = 0; index < get_sb(segment_count_nat) / 2; index++) {
662 		if (dev_fill(nat_buf, nat_seg_addr, seg_size)) {
663 			MSG(1, "\tError: While zeroing out the nat area "
664 					"on disk!!!\n");
665 			free(nat_buf);
666 			return -1;
667 		}
668 		nat_seg_addr = nat_seg_addr + (2 * seg_size);
669 	}
670 
671 	free(nat_buf);
672 	return 0 ;
673 }
674 
f2fs_write_check_point_pack(void)675 static int f2fs_write_check_point_pack(void)
676 {
677 	struct f2fs_summary_block *sum = NULL;
678 	struct f2fs_journal *journal;
679 	u_int32_t blk_size_bytes;
680 	u_int32_t nat_bits_bytes, nat_bits_blocks;
681 	unsigned char *nat_bits = NULL, *empty_nat_bits;
682 	u_int64_t cp_seg_blk = 0;
683 	u_int32_t crc = 0, flags;
684 	unsigned int i;
685 	char *cp_payload = NULL;
686 	char *sum_compact, *sum_compact_p;
687 	struct f2fs_summary *sum_entry;
688 	enum quota_type qtype;
689 	int off;
690 	int ret = -1;
691 
692 	cp = calloc(F2FS_BLKSIZE, 1);
693 	if (cp == NULL) {
694 		MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n");
695 		return ret;
696 	}
697 
698 	sum = calloc(F2FS_BLKSIZE, 1);
699 	if (sum == NULL) {
700 		MSG(1, "\tError: Calloc failed for summary_node!!!\n");
701 		goto free_cp;
702 	}
703 
704 	sum_compact = calloc(F2FS_BLKSIZE, 1);
705 	if (sum_compact == NULL) {
706 		MSG(1, "\tError: Calloc failed for summary buffer!!!\n");
707 		goto free_sum;
708 	}
709 	sum_compact_p = sum_compact;
710 
711 	nat_bits_bytes = get_sb(segment_count_nat) << 5;
712 	nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
713 						F2FS_BLKSIZE - 1);
714 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
715 	if (nat_bits == NULL) {
716 		MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n");
717 		goto free_sum_compact;
718 	}
719 
720 	cp_payload = calloc(F2FS_BLKSIZE, 1);
721 	if (cp_payload == NULL) {
722 		MSG(1, "\tError: Calloc failed for cp_payload!!!\n");
723 		goto free_nat_bits;
724 	}
725 
726 	/* 1. cp page 1 of checkpoint pack 1 */
727 	srand((c.fake_seed) ? 0 : time(NULL));
728 	cp->checkpoint_ver = cpu_to_le64(rand() | 0x1);
729 	set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]);
730 	set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]);
731 	set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]);
732 	set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]);
733 	set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]);
734 	set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]);
735 	for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
736 		set_cp(cur_node_segno[i], 0xffffffff);
737 		set_cp(cur_data_segno[i], 0xffffffff);
738 	}
739 
740 	set_cp(cur_node_blkoff[0], 1 + c.quota_inum + c.lpf_inum);
741 	set_cp(cur_data_blkoff[0], 1 + c.quota_dnum + c.lpf_dnum);
742 	set_cp(valid_block_count, 2 + c.quota_inum + c.quota_dnum +
743 			c.lpf_inum + c.lpf_dnum);
744 	set_cp(rsvd_segment_count, c.reserved_segments);
745 
746 	/*
747 	 * For zoned devices, if zone capacity less than zone size, get
748 	 * overprovision segment count based on usable segments in the device.
749 	 */
750 	set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) -
751 			get_cp(rsvd_segment_count)) *
752 			c.overprovision / 100);
753 	set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
754 			get_cp(rsvd_segment_count));
755 
756 	if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) {
757 		MSG(0, "\tError: Not enough segments to create F2FS Volume\n");
758 		goto free_cp_payload;
759 	}
760 	MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision);
761 	MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n",
762 					get_cp(overprov_segment_count),
763 					c.reserved_segments);
764 
765 	/* main segments - reserved segments - (node + data segments) */
766 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
767 		set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 2);
768 		set_cp(user_block_count, ((get_cp(free_segment_count) + 2 -
769 			get_cp(overprov_segment_count)) * c.blks_per_seg));
770 	} else {
771 		set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 6);
772 		set_cp(user_block_count, ((get_cp(free_segment_count) + 6 -
773 			get_cp(overprov_segment_count)) * c.blks_per_seg));
774 	}
775 	/* cp page (2), data summaries (1), node summaries (3) */
776 	set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload));
777 	flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG;
778 	if (get_cp(cp_pack_total_block_count) <=
779 			(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
780 		flags |= CP_NAT_BITS_FLAG;
781 
782 	if (c.trimmed)
783 		flags |= CP_TRIMMED_FLAG;
784 
785 	if (c.large_nat_bitmap)
786 		flags |= CP_LARGE_NAT_BITMAP_FLAG;
787 
788 	set_cp(ckpt_flags, flags);
789 	set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload));
790 	set_cp(valid_node_count, 1 + c.quota_inum + c.lpf_inum);
791 	set_cp(valid_inode_count, 1 + c.quota_inum + c.lpf_inum);
792 	set_cp(next_free_nid, c.next_free_nid);
793 	set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) <<
794 			get_sb(log_blocks_per_seg)) / 8);
795 
796 	set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) <<
797 			 get_sb(log_blocks_per_seg)) / 8);
798 
799 	if (c.large_nat_bitmap)
800 		set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
801 	else
802 		set_cp(checksum_offset, CP_CHKSUM_OFFSET);
803 
804 	crc = f2fs_checkpoint_chksum(cp);
805 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
806 							cpu_to_le32(crc);
807 
808 	blk_size_bytes = 1 << get_sb(log_blocksize);
809 
810 	if (blk_size_bytes != F2FS_BLKSIZE) {
811 		MSG(1, "\tError: Wrong block size %d / %d!!!\n",
812 					blk_size_bytes, F2FS_BLKSIZE);
813 		goto free_cp_payload;
814 	}
815 
816 	cp_seg_blk = get_sb(segment0_blkaddr);
817 
818 	DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n",
819 						cp_seg_blk);
820 	if (dev_write_block(cp, cp_seg_blk)) {
821 		MSG(1, "\tError: While writing the cp to disk!!!\n");
822 		goto free_cp_payload;
823 	}
824 
825 	for (i = 0; i < get_sb(cp_payload); i++) {
826 		cp_seg_blk++;
827 		if (dev_fill_block(cp_payload, cp_seg_blk)) {
828 			MSG(1, "\tError: While zeroing out the sit bitmap area "
829 					"on disk!!!\n");
830 			goto free_cp_payload;
831 		}
832 	}
833 
834 	/* Prepare and write Segment summary for HOT/WARM/COLD DATA
835 	 *
836 	 * The structure of compact summary
837 	 * +-------------------+
838 	 * | nat_journal       |
839 	 * +-------------------+
840 	 * | sit_journal       |
841 	 * +-------------------+
842 	 * | hot data summary  |
843 	 * +-------------------+
844 	 * | warm data summary |
845 	 * +-------------------+
846 	 * | cold data summary |
847 	 * +-------------------+
848 	*/
849 	memset(sum, 0, sizeof(struct f2fs_summary_block));
850 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
851 
852 	journal = &sum->journal;
853 	journal->n_nats = cpu_to_le16(1 + c.quota_inum + c.lpf_inum);
854 	journal->nat_j.entries[0].nid = sb->root_ino;
855 	journal->nat_j.entries[0].ne.version = 0;
856 	journal->nat_j.entries[0].ne.ino = sb->root_ino;
857 	journal->nat_j.entries[0].ne.block_addr = cpu_to_le32(
858 			get_sb(main_blkaddr) +
859 			get_cp(cur_node_segno[0]) * c.blks_per_seg);
860 
861 	for (qtype = 0, i = 1; qtype < F2FS_MAX_QUOTAS; qtype++) {
862 		if (!((1 << qtype) & c.quota_bits))
863 			continue;
864 		journal->nat_j.entries[i].nid = sb->qf_ino[qtype];
865 		journal->nat_j.entries[i].ne.version = 0;
866 		journal->nat_j.entries[i].ne.ino = sb->qf_ino[qtype];
867 		journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
868 				get_sb(main_blkaddr) +
869 				get_cp(cur_node_segno[0]) *
870 				c.blks_per_seg + i);
871 		i++;
872 	}
873 
874 	if (c.lpf_inum) {
875 		journal->nat_j.entries[i].nid = cpu_to_le32(c.lpf_ino);
876 		journal->nat_j.entries[i].ne.version = 0;
877 		journal->nat_j.entries[i].ne.ino = cpu_to_le32(c.lpf_ino);
878 		journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
879 				get_sb(main_blkaddr) +
880 				get_cp(cur_node_segno[0]) *
881 				c.blks_per_seg + i);
882 	}
883 
884 	memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE);
885 	sum_compact_p += SUM_JOURNAL_SIZE;
886 
887 	memset(sum, 0, sizeof(struct f2fs_summary_block));
888 
889 	/* inode sit for root */
890 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
891 		journal->n_sits = cpu_to_le16(2);
892 	else
893 		journal->n_sits = cpu_to_le16(6);
894 
895 	journal->sit_j.entries[0].segno = cp->cur_node_segno[0];
896 	journal->sit_j.entries[0].se.vblocks =
897 				cpu_to_le16((CURSEG_HOT_NODE << 10) |
898 						(1 + c.quota_inum + c.lpf_inum));
899 	f2fs_set_bit(0, (char *)journal->sit_j.entries[0].se.valid_map);
900 	for (i = 1; i <= c.quota_inum; i++)
901 		f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
902 	if (c.lpf_inum)
903 		f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
904 
905 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
906 		/* data sit for root */
907 		journal->sit_j.entries[1].segno = cp->cur_data_segno[0];
908 		journal->sit_j.entries[1].se.vblocks =
909 					cpu_to_le16((CURSEG_HOT_DATA << 10) |
910 							(1 + c.quota_dnum + c.lpf_dnum));
911 		f2fs_set_bit(0, (char *)journal->sit_j.entries[1].se.valid_map);
912 		for (i = 1; i <= c.quota_dnum; i++)
913 			f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
914 		if (c.lpf_dnum)
915 			f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
916 	} else {
917 		journal->sit_j.entries[1].segno = cp->cur_node_segno[1];
918 		journal->sit_j.entries[1].se.vblocks =
919 					cpu_to_le16((CURSEG_WARM_NODE << 10));
920 		journal->sit_j.entries[2].segno = cp->cur_node_segno[2];
921 		journal->sit_j.entries[2].se.vblocks =
922 					cpu_to_le16((CURSEG_COLD_NODE << 10));
923 
924 		/* data sit for root */
925 		journal->sit_j.entries[3].segno = cp->cur_data_segno[0];
926 		journal->sit_j.entries[3].se.vblocks =
927 					cpu_to_le16((CURSEG_HOT_DATA << 10) |
928 							(1 + c.quota_dnum + c.lpf_dnum));
929 		f2fs_set_bit(0, (char *)journal->sit_j.entries[3].se.valid_map);
930 		for (i = 1; i <= c.quota_dnum; i++)
931 			f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
932 		if (c.lpf_dnum)
933 			f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
934 
935 		journal->sit_j.entries[4].segno = cp->cur_data_segno[1];
936 		journal->sit_j.entries[4].se.vblocks =
937 					cpu_to_le16((CURSEG_WARM_DATA << 10));
938 		journal->sit_j.entries[5].segno = cp->cur_data_segno[2];
939 		journal->sit_j.entries[5].se.vblocks =
940 					cpu_to_le16((CURSEG_COLD_DATA << 10));
941 	}
942 
943 	memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE);
944 	sum_compact_p += SUM_JOURNAL_SIZE;
945 
946 	/* hot data summary */
947 	sum_entry = (struct f2fs_summary *)sum_compact_p;
948 	sum_entry->nid = sb->root_ino;
949 	sum_entry->ofs_in_node = 0;
950 
951 	off = 1;
952 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
953 		int j;
954 
955 		if (!((1 << qtype) & c.quota_bits))
956 			continue;
957 
958 		for (j = 0; j < QUOTA_DATA(qtype); j++) {
959 			(sum_entry + off + j)->nid = sb->qf_ino[qtype];
960 			(sum_entry + off + j)->ofs_in_node = cpu_to_le16(j);
961 		}
962 		off += QUOTA_DATA(qtype);
963 	}
964 
965 	if (c.lpf_dnum) {
966 		(sum_entry + off)->nid = cpu_to_le32(c.lpf_ino);
967 		(sum_entry + off)->ofs_in_node = 0;
968 	}
969 
970 	/* warm data summary, nothing to do */
971 	/* cold data summary, nothing to do */
972 
973 	cp_seg_blk++;
974 	DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n",
975 			cp_seg_blk);
976 	if (dev_write_block(sum_compact, cp_seg_blk)) {
977 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
978 		goto free_cp_payload;
979 	}
980 
981 	/* Prepare and write Segment summary for HOT_NODE */
982 	memset(sum, 0, sizeof(struct f2fs_summary_block));
983 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
984 
985 	sum->entries[0].nid = sb->root_ino;
986 	sum->entries[0].ofs_in_node = 0;
987 	for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
988 		if (!((1 << qtype) & c.quota_bits))
989 			continue;
990 		sum->entries[1 + i].nid = sb->qf_ino[qtype];
991 		sum->entries[1 + i].ofs_in_node = 0;
992 		i++;
993 	}
994 	if (c.lpf_inum) {
995 		i++;
996 		sum->entries[i].nid = cpu_to_le32(c.lpf_ino);
997 		sum->entries[i].ofs_in_node = 0;
998 	}
999 
1000 	cp_seg_blk++;
1001 	DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n",
1002 			cp_seg_blk);
1003 	if (dev_write_block(sum, cp_seg_blk)) {
1004 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1005 		goto free_cp_payload;
1006 	}
1007 
1008 	/* Fill segment summary for WARM_NODE to zero. */
1009 	memset(sum, 0, sizeof(struct f2fs_summary_block));
1010 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1011 
1012 	cp_seg_blk++;
1013 	DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n",
1014 			cp_seg_blk);
1015 	if (dev_write_block(sum, cp_seg_blk)) {
1016 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1017 		goto free_cp_payload;
1018 	}
1019 
1020 	/* Fill segment summary for COLD_NODE to zero. */
1021 	memset(sum, 0, sizeof(struct f2fs_summary_block));
1022 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1023 	cp_seg_blk++;
1024 	DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n",
1025 			cp_seg_blk);
1026 	if (dev_write_block(sum, cp_seg_blk)) {
1027 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1028 		goto free_cp_payload;
1029 	}
1030 
1031 	/* cp page2 */
1032 	cp_seg_blk++;
1033 	DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk);
1034 	if (dev_write_block(cp, cp_seg_blk)) {
1035 		MSG(1, "\tError: While writing the cp to disk!!!\n");
1036 		goto free_cp_payload;
1037 	}
1038 
1039 	/* write NAT bits, if possible */
1040 	if (flags & CP_NAT_BITS_FLAG) {
1041 		uint32_t i;
1042 
1043 		*(__le64 *)nat_bits = get_cp_crc(cp);
1044 		empty_nat_bits = nat_bits + 8 + nat_bits_bytes;
1045 		memset(empty_nat_bits, 0xff, nat_bits_bytes);
1046 		test_and_clear_bit_le(0, empty_nat_bits);
1047 
1048 		/* write the last blocks in cp pack */
1049 		cp_seg_blk = get_sb(segment0_blkaddr) + (1 <<
1050 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1051 
1052 		DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n",
1053 					cp_seg_blk);
1054 
1055 		for (i = 0; i < nat_bits_blocks; i++) {
1056 			if (dev_write_block(nat_bits + i *
1057 						F2FS_BLKSIZE, cp_seg_blk + i)) {
1058 				MSG(1, "\tError: write NAT bits to disk!!!\n");
1059 				goto free_cp_payload;
1060 			}
1061 		}
1062 	}
1063 
1064 	/* cp page 1 of check point pack 2
1065 	 * Initialize other checkpoint pack with version zero
1066 	 */
1067 	cp->checkpoint_ver = 0;
1068 
1069 	crc = f2fs_checkpoint_chksum(cp);
1070 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
1071 							cpu_to_le32(crc);
1072 	cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg;
1073 	DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1074 				cp_seg_blk);
1075 	if (dev_write_block(cp, cp_seg_blk)) {
1076 		MSG(1, "\tError: While writing the cp to disk!!!\n");
1077 		goto free_cp_payload;
1078 	}
1079 
1080 	for (i = 0; i < get_sb(cp_payload); i++) {
1081 		cp_seg_blk++;
1082 		if (dev_fill_block(cp_payload, cp_seg_blk)) {
1083 			MSG(1, "\tError: While zeroing out the sit bitmap area "
1084 					"on disk!!!\n");
1085 			goto free_cp_payload;
1086 		}
1087 	}
1088 
1089 	/* cp page 2 of check point pack 2 */
1090 	cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) -
1091 					get_sb(cp_payload) - 1);
1092 	DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1093 				cp_seg_blk);
1094 	if (dev_write_block(cp, cp_seg_blk)) {
1095 		MSG(1, "\tError: While writing the cp to disk!!!\n");
1096 		goto free_cp_payload;
1097 	}
1098 
1099 	ret = 0;
1100 
1101 free_cp_payload:
1102 	free(cp_payload);
1103 free_nat_bits:
1104 	free(nat_bits);
1105 free_sum_compact:
1106 	free(sum_compact);
1107 free_sum:
1108 	free(sum);
1109 free_cp:
1110 	free(cp);
1111 	return ret;
1112 }
1113 
f2fs_write_super_block(void)1114 static int f2fs_write_super_block(void)
1115 {
1116 	int index;
1117 	u_int8_t *zero_buff;
1118 
1119 	zero_buff = calloc(F2FS_BLKSIZE, 1);
1120 	if (zero_buff == NULL) {
1121 		MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n");
1122 		return -1;
1123 	}
1124 
1125 	memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
1126 	DBG(1, "\tWriting super block, at offset 0x%08x\n", 0);
1127 	for (index = 0; index < 2; index++) {
1128 		if (dev_write_block(zero_buff, index)) {
1129 			MSG(1, "\tError: While while writing super_blk "
1130 					"on disk!!! index : %d\n", index);
1131 			free(zero_buff);
1132 			return -1;
1133 		}
1134 	}
1135 
1136 	free(zero_buff);
1137 	return 0;
1138 }
1139 
1140 #ifndef WITH_ANDROID
f2fs_discard_obsolete_dnode(void)1141 static int f2fs_discard_obsolete_dnode(void)
1142 {
1143 	struct f2fs_node *raw_node;
1144 	u_int64_t next_blkaddr = 0, offset;
1145 	u64 end_blkaddr = (get_sb(segment_count_main) <<
1146 			get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
1147 	u_int64_t start_inode_pos = get_sb(main_blkaddr);
1148 	u_int64_t last_inode_pos;
1149 
1150 	if (c.zoned_mode || c.feature & cpu_to_le32(F2FS_FEATURE_RO))
1151 		return 0;
1152 
1153 	raw_node = calloc(sizeof(struct f2fs_node), 1);
1154 	if (raw_node == NULL) {
1155 		MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n");
1156 		return -1;
1157 	}
1158 
1159 	/* avoid power-off-recovery based on roll-forward policy */
1160 	offset = get_sb(main_blkaddr);
1161 	offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg;
1162 
1163 	last_inode_pos = start_inode_pos +
1164 		c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + c.quota_inum + c.lpf_inum;
1165 
1166 	do {
1167 		if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr)
1168 			break;
1169 
1170 		if (dev_read_block(raw_node, offset)) {
1171 			MSG(1, "\tError: While traversing direct node!!!\n");
1172 			free(raw_node);
1173 			return -1;
1174 		}
1175 
1176 		next_blkaddr = le32_to_cpu(raw_node->footer.next_blkaddr);
1177 		memset(raw_node, 0, F2FS_BLKSIZE);
1178 
1179 		DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset);
1180 		if (dev_write_block(raw_node, offset)) {
1181 			MSG(1, "\tError: While discarding direct node!!!\n");
1182 			free(raw_node);
1183 			return -1;
1184 		}
1185 		offset = next_blkaddr;
1186 		/* should avoid recursive chain due to stale data */
1187 		if (offset >= start_inode_pos || offset <= last_inode_pos)
1188 			break;
1189 	} while (1);
1190 
1191 	free(raw_node);
1192 	return 0;
1193 }
1194 #endif
1195 
f2fs_write_root_inode(void)1196 static int f2fs_write_root_inode(void)
1197 {
1198 	struct f2fs_node *raw_node = NULL;
1199 	u_int64_t blk_size_bytes, data_blk_nor;
1200 	u_int64_t main_area_node_seg_blk_offset = 0;
1201 
1202 	raw_node = calloc(F2FS_BLKSIZE, 1);
1203 	if (raw_node == NULL) {
1204 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1205 		return -1;
1206 	}
1207 
1208 	raw_node->footer.nid = sb->root_ino;
1209 	raw_node->footer.ino = sb->root_ino;
1210 	raw_node->footer.cp_ver = cpu_to_le64(1);
1211 	raw_node->footer.next_blkaddr = cpu_to_le32(
1212 			get_sb(main_blkaddr) +
1213 			c.cur_seg[CURSEG_HOT_NODE] *
1214 			c.blks_per_seg + 1);
1215 
1216 	raw_node->i.i_mode = cpu_to_le16(0x41ed);
1217 	if (c.lpf_ino)
1218 		raw_node->i.i_links = cpu_to_le32(3);
1219 	else
1220 		raw_node->i.i_links = cpu_to_le32(2);
1221 	raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1222 	raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1223 
1224 	blk_size_bytes = 1 << get_sb(log_blocksize);
1225 	raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
1226 	raw_node->i.i_blocks = cpu_to_le64(2);
1227 
1228 	raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1229 	raw_node->i.i_atime_nsec = 0;
1230 	raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1231 	raw_node->i.i_ctime_nsec = 0;
1232 	raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1233 	raw_node->i.i_mtime_nsec = 0;
1234 	raw_node->i.i_generation = 0;
1235 	raw_node->i.i_xattr_nid = 0;
1236 	raw_node->i.i_flags = 0;
1237 	raw_node->i.i_current_depth = cpu_to_le32(1);
1238 	raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1239 
1240 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1241 		raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1242 		raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1243 	}
1244 
1245 	if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1246 		raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1247 
1248 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1249 		raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1250 		raw_node->i.i_crtime_nsec = 0;
1251 	}
1252 
1253 	if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1254 		raw_node->i.i_compress_algrithm = 0;
1255 		raw_node->i.i_log_cluster_size = 0;
1256 		raw_node->i.i_padding = 0;
1257 	}
1258 
1259 	data_blk_nor = get_sb(main_blkaddr) +
1260 		c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg;
1261 	raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1262 
1263 	raw_node->i.i_ext.fofs = 0;
1264 	raw_node->i.i_ext.blk_addr = 0;
1265 	raw_node->i.i_ext.len = 0;
1266 
1267 	main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1268 	main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1269 					c.blks_per_seg;
1270 
1271 	DBG(1, "\tWriting root inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1272 			get_sb(main_blkaddr),
1273 			c.cur_seg[CURSEG_HOT_NODE],
1274 			c.blks_per_seg, main_area_node_seg_blk_offset);
1275 	if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1276 		MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1277 		free(raw_node);
1278 		return -1;
1279 	}
1280 
1281 	free(raw_node);
1282 	return 0;
1283 }
1284 
f2fs_write_default_quota(int qtype,unsigned int blkaddr,__le32 raw_id)1285 static int f2fs_write_default_quota(int qtype, unsigned int blkaddr,
1286 						__le32 raw_id)
1287 {
1288 	char *filebuf = calloc(F2FS_BLKSIZE, 2);
1289 	int file_magics[] = INITQMAGICS;
1290 	struct v2_disk_dqheader ddqheader;
1291 	struct v2_disk_dqinfo ddqinfo;
1292 	struct v2r1_disk_dqblk dqblk;
1293 
1294 	if (filebuf == NULL) {
1295 		MSG(1, "\tError: Calloc Failed for filebuf!!!\n");
1296 		return -1;
1297 	}
1298 
1299 	/* Write basic quota header */
1300 	ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]);
1301 	/* only support QF_VFSV1 */
1302 	ddqheader.dqh_version = cpu_to_le32(1);
1303 
1304 	memcpy(filebuf, &ddqheader, sizeof(ddqheader));
1305 
1306 	/* Fill Initial quota file content */
1307 	ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME);
1308 	ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME);
1309 	ddqinfo.dqi_flags = cpu_to_le32(0);
1310 	ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5);
1311 	ddqinfo.dqi_free_blk = cpu_to_le32(0);
1312 	ddqinfo.dqi_free_entry = cpu_to_le32(5);
1313 
1314 	memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo));
1315 
1316 	filebuf[1024] = 2;
1317 	filebuf[2048] = 3;
1318 	filebuf[3072] = 4;
1319 	filebuf[4096] = 5;
1320 
1321 	filebuf[5120 + 8] = 1;
1322 
1323 	dqblk.dqb_id = raw_id;
1324 	dqblk.dqb_pad = cpu_to_le32(0);
1325 	dqblk.dqb_ihardlimit = cpu_to_le64(0);
1326 	dqblk.dqb_isoftlimit = cpu_to_le64(0);
1327 	if (c.lpf_ino)
1328 		dqblk.dqb_curinodes = cpu_to_le64(2);
1329 	else
1330 		dqblk.dqb_curinodes = cpu_to_le64(1);
1331 	dqblk.dqb_bhardlimit = cpu_to_le64(0);
1332 	dqblk.dqb_bsoftlimit = cpu_to_le64(0);
1333 	if (c.lpf_ino)
1334 		dqblk.dqb_curspace = cpu_to_le64(8192);
1335 	else
1336 		dqblk.dqb_curspace = cpu_to_le64(4096);
1337 	dqblk.dqb_btime = cpu_to_le64(0);
1338 	dqblk.dqb_itime = cpu_to_le64(0);
1339 
1340 	memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk));
1341 
1342 	/* Write two blocks */
1343 	if (dev_write_block(filebuf, blkaddr) ||
1344 	    dev_write_block(filebuf + F2FS_BLKSIZE, blkaddr + 1)) {
1345 		MSG(1, "\tError: While writing the quota_blk to disk!!!\n");
1346 		free(filebuf);
1347 		return -1;
1348 	}
1349 	DBG(1, "\tWriting quota data, at offset %08x, %08x\n",
1350 					blkaddr, blkaddr + 1);
1351 	free(filebuf);
1352 	c.quota_dnum += QUOTA_DATA(qtype);
1353 	return 0;
1354 }
1355 
f2fs_write_qf_inode(int qtype,int offset)1356 static int f2fs_write_qf_inode(int qtype, int offset)
1357 {
1358 	struct f2fs_node *raw_node = NULL;
1359 	u_int64_t data_blk_nor;
1360 	u_int64_t main_area_node_seg_blk_offset = 0;
1361 	__le32 raw_id;
1362 	int i;
1363 
1364 	raw_node = calloc(F2FS_BLKSIZE, 1);
1365 	if (raw_node == NULL) {
1366 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1367 		return -1;
1368 	}
1369 	f2fs_init_qf_inode(sb, raw_node, qtype, mkfs_time);
1370 
1371 	raw_node->footer.next_blkaddr = cpu_to_le32(
1372 			get_sb(main_blkaddr) +
1373 			c.cur_seg[CURSEG_HOT_NODE] *
1374 			c.blks_per_seg + 1 + qtype + 1);
1375 	raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA(qtype));
1376 
1377 	data_blk_nor = get_sb(main_blkaddr) +
1378 		c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg + 1
1379 		+ offset * QUOTA_DATA(i);
1380 
1381 	if (qtype == 0)
1382 		raw_id = raw_node->i.i_uid;
1383 	else if (qtype == 1)
1384 		raw_id = raw_node->i.i_gid;
1385 	else if (qtype == 2)
1386 		raw_id = raw_node->i.i_projid;
1387 	else
1388 		ASSERT(0);
1389 
1390 	/* write two blocks */
1391 	if (f2fs_write_default_quota(qtype, data_blk_nor, raw_id)) {
1392 		free(raw_node);
1393 		return -1;
1394 	}
1395 
1396 	for (i = 0; i < QUOTA_DATA(qtype); i++)
1397 		raw_node->i.i_addr[get_extra_isize(raw_node) + i] =
1398 					cpu_to_le32(data_blk_nor + i);
1399 
1400 	main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1401 	main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1402 					c.blks_per_seg + offset + 1;
1403 
1404 	DBG(1, "\tWriting quota inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1405 			get_sb(main_blkaddr),
1406 			c.cur_seg[CURSEG_HOT_NODE],
1407 			c.blks_per_seg, main_area_node_seg_blk_offset);
1408 	if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1409 		MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1410 		free(raw_node);
1411 		return -1;
1412 	}
1413 
1414 	free(raw_node);
1415 	c.quota_inum++;
1416 	return 0;
1417 }
1418 
f2fs_update_nat_root(void)1419 static int f2fs_update_nat_root(void)
1420 {
1421 	struct f2fs_nat_block *nat_blk = NULL;
1422 	u_int64_t nat_seg_blk_offset = 0;
1423 	enum quota_type qtype;
1424 	int i;
1425 
1426 	nat_blk = calloc(F2FS_BLKSIZE, 1);
1427 	if(nat_blk == NULL) {
1428 		MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
1429 		return -1;
1430 	}
1431 
1432 	/* update quota */
1433 	for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1434 		if (!((1 << qtype) & c.quota_bits))
1435 			continue;
1436 		nat_blk->entries[sb->qf_ino[qtype]].block_addr =
1437 				cpu_to_le32(get_sb(main_blkaddr) +
1438 				c.cur_seg[CURSEG_HOT_NODE] *
1439 				c.blks_per_seg + i + 1);
1440 		nat_blk->entries[sb->qf_ino[qtype]].ino = sb->qf_ino[qtype];
1441 		i++;
1442 	}
1443 
1444 	/* update root */
1445 	nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32(
1446 		get_sb(main_blkaddr) +
1447 		c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg);
1448 	nat_blk->entries[get_sb(root_ino)].ino = sb->root_ino;
1449 
1450 	/* update node nat */
1451 	nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1);
1452 	nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino;
1453 
1454 	/* update meta nat */
1455 	nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1);
1456 	nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino;
1457 
1458 	nat_seg_blk_offset = get_sb(nat_blkaddr);
1459 
1460 	DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n",
1461 					nat_seg_blk_offset);
1462 	if (dev_write_block(nat_blk, nat_seg_blk_offset)) {
1463 		MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
1464 		free(nat_blk);
1465 		return -1;
1466 	}
1467 
1468 	free(nat_blk);
1469 	return 0;
1470 }
1471 
f2fs_add_default_dentry_lpf(void)1472 static block_t f2fs_add_default_dentry_lpf(void)
1473 {
1474 	struct f2fs_dentry_block *dent_blk;
1475 	uint64_t data_blk_offset;
1476 
1477 	dent_blk = calloc(F2FS_BLKSIZE, 1);
1478 	if (dent_blk == NULL) {
1479 		MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1480 		return 0;
1481 	}
1482 
1483 	dent_blk->dentry[0].hash_code = 0;
1484 	dent_blk->dentry[0].ino = cpu_to_le32(c.lpf_ino);
1485 	dent_blk->dentry[0].name_len = cpu_to_le16(1);
1486 	dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1487 	memcpy(dent_blk->filename[0], ".", 1);
1488 
1489 	dent_blk->dentry[1].hash_code = 0;
1490 	dent_blk->dentry[1].ino = sb->root_ino;
1491 	dent_blk->dentry[1].name_len = cpu_to_le16(2);
1492 	dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1493 	memcpy(dent_blk->filename[1], "..", 2);
1494 
1495 	test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1496 	test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1497 
1498 	data_blk_offset = get_sb(main_blkaddr);
1499 	data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg +
1500 		1 + c.quota_dnum;
1501 
1502 	DBG(1, "\tWriting default dentry lost+found, at offset 0x%08"PRIx64"\n",
1503 			data_blk_offset);
1504 	if (dev_write_block(dent_blk, data_blk_offset)) {
1505 		MSG(1, "\tError While writing the dentry_blk to disk!!!\n");
1506 		free(dent_blk);
1507 		return 0;
1508 	}
1509 
1510 	free(dent_blk);
1511 	c.lpf_dnum++;
1512 	return data_blk_offset;
1513 }
1514 
f2fs_write_lpf_inode(void)1515 static int f2fs_write_lpf_inode(void)
1516 {
1517 	struct f2fs_node *raw_node;
1518 	u_int64_t blk_size_bytes, main_area_node_seg_blk_offset;
1519 	block_t data_blk_nor;
1520 	int err = 0;
1521 
1522 	ASSERT(c.lpf_ino);
1523 
1524 	raw_node = calloc(F2FS_BLKSIZE, 1);
1525 	if (raw_node == NULL) {
1526 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1527 		return -1;
1528 	}
1529 
1530 	raw_node->footer.nid = cpu_to_le32(c.lpf_ino);
1531 	raw_node->footer.ino = raw_node->footer.nid;
1532 	raw_node->footer.cp_ver = cpu_to_le64(1);
1533 	raw_node->footer.next_blkaddr = cpu_to_le32(
1534 			get_sb(main_blkaddr) +
1535 			c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg +
1536 			1 + c.quota_inum + 1);
1537 
1538 	raw_node->i.i_mode = cpu_to_le16(0x41c0); /* 0700 */
1539 	raw_node->i.i_links = cpu_to_le32(2);
1540 	raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1541 	raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1542 
1543 	blk_size_bytes = 1 << get_sb(log_blocksize);
1544 	raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes);
1545 	raw_node->i.i_blocks = cpu_to_le64(2);
1546 
1547 	raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1548 	raw_node->i.i_atime_nsec = 0;
1549 	raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1550 	raw_node->i.i_ctime_nsec = 0;
1551 	raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1552 	raw_node->i.i_mtime_nsec = 0;
1553 	raw_node->i.i_generation = 0;
1554 	raw_node->i.i_xattr_nid = 0;
1555 	raw_node->i.i_flags = 0;
1556 	raw_node->i.i_pino = le32_to_cpu(sb->root_ino);
1557 	raw_node->i.i_namelen = le32_to_cpu(strlen(LPF));
1558 	memcpy(raw_node->i.i_name, LPF, strlen(LPF));
1559 	raw_node->i.i_current_depth = cpu_to_le32(1);
1560 	raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1561 
1562 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1563 		raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1564 		raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1565 	}
1566 
1567 	if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1568 		raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1569 
1570 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1571 		raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1572 		raw_node->i.i_crtime_nsec = 0;
1573 	}
1574 
1575 	if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1576 		raw_node->i.i_compress_algrithm = 0;
1577 		raw_node->i.i_log_cluster_size = 0;
1578 		raw_node->i.i_padding = 0;
1579 	}
1580 
1581 	data_blk_nor = f2fs_add_default_dentry_lpf();
1582 	if (data_blk_nor == 0) {
1583 		MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n");
1584 		err = -1;
1585 		goto exit;
1586 	}
1587 	raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1588 
1589 	main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1590 	main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1591 		c.blks_per_seg + c.quota_inum + 1;
1592 
1593 	DBG(1, "\tWriting lost+found inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1594 			get_sb(main_blkaddr),
1595 			c.cur_seg[CURSEG_HOT_NODE],
1596 			c.blks_per_seg, main_area_node_seg_blk_offset);
1597 	if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1598 		MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1599 		err = -1;
1600 		goto exit;
1601 	}
1602 
1603 	c.lpf_inum++;
1604 exit:
1605 	free(raw_node);
1606 	return err;
1607 }
1608 
f2fs_add_default_dentry_root(void)1609 static int f2fs_add_default_dentry_root(void)
1610 {
1611 	struct f2fs_dentry_block *dent_blk = NULL;
1612 	u_int64_t data_blk_offset = 0;
1613 
1614 	dent_blk = calloc(F2FS_BLKSIZE, 1);
1615 	if(dent_blk == NULL) {
1616 		MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1617 		return -1;
1618 	}
1619 
1620 	dent_blk->dentry[0].hash_code = 0;
1621 	dent_blk->dentry[0].ino = sb->root_ino;
1622 	dent_blk->dentry[0].name_len = cpu_to_le16(1);
1623 	dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1624 	memcpy(dent_blk->filename[0], ".", 1);
1625 
1626 	dent_blk->dentry[1].hash_code = 0;
1627 	dent_blk->dentry[1].ino = sb->root_ino;
1628 	dent_blk->dentry[1].name_len = cpu_to_le16(2);
1629 	dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1630 	memcpy(dent_blk->filename[1], "..", 2);
1631 
1632 	/* bitmap for . and .. */
1633 	test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1634 	test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1635 
1636 	if (c.lpf_ino) {
1637 		int len = strlen(LPF);
1638 		f2fs_hash_t hash = f2fs_dentry_hash(0, 0, (unsigned char *)LPF, len);
1639 
1640 		dent_blk->dentry[2].hash_code = cpu_to_le32(hash);
1641 		dent_blk->dentry[2].ino = cpu_to_le32(c.lpf_ino);
1642 		dent_blk->dentry[2].name_len = cpu_to_le16(len);
1643 		dent_blk->dentry[2].file_type = F2FS_FT_DIR;
1644 		memcpy(dent_blk->filename[2], LPF, F2FS_SLOT_LEN);
1645 
1646 		memcpy(dent_blk->filename[3], LPF + F2FS_SLOT_LEN,
1647 				len - F2FS_SLOT_LEN);
1648 
1649 		test_and_set_bit_le(2, dent_blk->dentry_bitmap);
1650 		test_and_set_bit_le(3, dent_blk->dentry_bitmap);
1651 	}
1652 
1653 	data_blk_offset = get_sb(main_blkaddr);
1654 	data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] *
1655 				c.blks_per_seg;
1656 
1657 	DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n",
1658 				data_blk_offset);
1659 	if (dev_write_block(dent_blk, data_blk_offset)) {
1660 		MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
1661 		free(dent_blk);
1662 		return -1;
1663 	}
1664 
1665 	free(dent_blk);
1666 	return 0;
1667 }
1668 
f2fs_create_root_dir(void)1669 static int f2fs_create_root_dir(void)
1670 {
1671 	enum quota_type qtype;
1672 	int err = 0, i = 0;
1673 
1674 	err = f2fs_write_root_inode();
1675 	if (err < 0) {
1676 		MSG(1, "\tError: Failed to write root inode!!!\n");
1677 		goto exit;
1678 	}
1679 
1680 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++)  {
1681 		if (!((1 << qtype) & c.quota_bits))
1682 			continue;
1683 		err = f2fs_write_qf_inode(qtype, i++);
1684 		if (err < 0) {
1685 			MSG(1, "\tError: Failed to write quota inode!!!\n");
1686 			goto exit;
1687 		}
1688 	}
1689 
1690 	if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
1691 		err = f2fs_write_lpf_inode();
1692 		if (err < 0) {
1693 			MSG(1, "\tError: Failed to write lost+found inode!!!\n");
1694 			goto exit;
1695 		}
1696 	}
1697 
1698 #ifndef WITH_ANDROID
1699 	err = f2fs_discard_obsolete_dnode();
1700 	if (err < 0) {
1701 		MSG(1, "\tError: Failed to discard obsolete dnode!!!\n");
1702 		goto exit;
1703 	}
1704 #endif
1705 
1706 	err = f2fs_update_nat_root();
1707 	if (err < 0) {
1708 		MSG(1, "\tError: Failed to update NAT for root!!!\n");
1709 		goto exit;
1710 	}
1711 
1712 	err = f2fs_add_default_dentry_root();
1713 	if (err < 0) {
1714 		MSG(1, "\tError: Failed to add default dentries for root!!!\n");
1715 		goto exit;
1716 	}
1717 exit:
1718 	if (err)
1719 		MSG(1, "\tError: Could not create the root directory!!!\n");
1720 
1721 	return err;
1722 }
1723 
f2fs_format_device(void)1724 int f2fs_format_device(void)
1725 {
1726 	int err = 0;
1727 
1728 	err= f2fs_prepare_super_block();
1729 	if (err < 0) {
1730 		MSG(0, "\tError: Failed to prepare a super block!!!\n");
1731 		goto exit;
1732 	}
1733 
1734 	if (c.trim) {
1735 		err = f2fs_trim_devices();
1736 		if (err < 0) {
1737 			MSG(0, "\tError: Failed to trim whole device!!!\n");
1738 			goto exit;
1739 		}
1740 	}
1741 
1742 	err = f2fs_init_sit_area();
1743 	if (err < 0) {
1744 		MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n");
1745 		goto exit;
1746 	}
1747 
1748 	err = f2fs_init_nat_area();
1749 	if (err < 0) {
1750 		MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n");
1751 		goto exit;
1752 	}
1753 
1754 	err = f2fs_create_root_dir();
1755 	if (err < 0) {
1756 		MSG(0, "\tError: Failed to create the root directory!!!\n");
1757 		goto exit;
1758 	}
1759 
1760 	err = f2fs_write_check_point_pack();
1761 	if (err < 0) {
1762 		MSG(0, "\tError: Failed to write the check point pack!!!\n");
1763 		goto exit;
1764 	}
1765 
1766 	err = f2fs_write_super_block();
1767 	if (err < 0) {
1768 		MSG(0, "\tError: Failed to write the super block!!!\n");
1769 		goto exit;
1770 	}
1771 exit:
1772 	if (err)
1773 		MSG(0, "\tError: Could not format the device!!!\n");
1774 
1775 	return err;
1776 }
1777