• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Fast-Fourier Transform ops."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import re
21
22import numpy as np
23
24from tensorflow.python.framework import dtypes as _dtypes
25from tensorflow.python.framework import ops as _ops
26from tensorflow.python.framework import tensor_util as _tensor_util
27from tensorflow.python.ops import array_ops as _array_ops
28from tensorflow.python.ops import gen_spectral_ops
29from tensorflow.python.ops import manip_ops
30from tensorflow.python.ops import math_ops as _math_ops
31from tensorflow.python.util import dispatch
32from tensorflow.python.util.tf_export import tf_export
33
34
35def _infer_fft_length_for_rfft(input_tensor, fft_rank):
36  """Infers the `fft_length` argument for a `rank` RFFT from `input_tensor`."""
37  # A TensorShape for the inner fft_rank dimensions.
38  fft_shape = input_tensor.get_shape()[-fft_rank:]
39
40  # If any dim is unknown, fall back to tensor-based math.
41  if not fft_shape.is_fully_defined():
42    return _array_ops.shape(input_tensor)[-fft_rank:]
43
44  # Otherwise, return a constant.
45  return _ops.convert_to_tensor(fft_shape.as_list(), _dtypes.int32)
46
47
48def _infer_fft_length_for_irfft(input_tensor, fft_rank):
49  """Infers the `fft_length` argument for a `rank` IRFFT from `input_tensor`."""
50  # A TensorShape for the inner fft_rank dimensions.
51  fft_shape = input_tensor.get_shape()[-fft_rank:]
52
53  # If any dim is unknown, fall back to tensor-based math.
54  if not fft_shape.is_fully_defined():
55    fft_length = _array_ops.unstack(_array_ops.shape(input_tensor)[-fft_rank:])
56    fft_length[-1] = _math_ops.maximum(0, 2 * (fft_length[-1] - 1))
57    return _array_ops.stack(fft_length)
58
59  # Otherwise, return a constant.
60  fft_length = fft_shape.as_list()
61  if fft_length:
62    fft_length[-1] = max(0, 2 * (fft_length[-1] - 1))
63  return _ops.convert_to_tensor(fft_length, _dtypes.int32)
64
65
66def _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length, is_reverse=False):
67  """Pads `input_tensor` to `fft_length` on its inner-most `fft_rank` dims."""
68  fft_shape = _tensor_util.constant_value_as_shape(fft_length)
69
70  # Edge case: skip padding empty tensors.
71  if (input_tensor.shape.ndims is not None and
72      any(dim.value == 0 for dim in input_tensor.shape.dims)):
73    return input_tensor
74
75  # If we know the shapes ahead of time, we can either skip or pre-compute the
76  # appropriate paddings. Otherwise, fall back to computing paddings in
77  # TensorFlow.
78  if fft_shape.is_fully_defined() and input_tensor.shape.ndims is not None:
79    # Slice the last FFT-rank dimensions from input_tensor's shape.
80    input_fft_shape = input_tensor.shape[-fft_shape.ndims:]  # pylint: disable=invalid-unary-operand-type
81
82    if input_fft_shape.is_fully_defined():
83      # In reverse, we only pad the inner-most dimension to fft_length / 2 + 1.
84      if is_reverse:
85        fft_shape = fft_shape[:-1].concatenate(
86            fft_shape.dims[-1].value // 2 + 1)
87
88      paddings = [[0, max(fft_dim.value - input_dim.value, 0)]
89                  for fft_dim, input_dim in zip(
90                      fft_shape.dims, input_fft_shape.dims)]
91      if any(pad > 0 for _, pad in paddings):
92        outer_paddings = [[0, 0]] * max((input_tensor.shape.ndims -
93                                         fft_shape.ndims), 0)
94        return _array_ops.pad(input_tensor, outer_paddings + paddings)
95      return input_tensor
96
97  # If we can't determine the paddings ahead of time, then we have to pad. If
98  # the paddings end up as zero, tf.pad has a special-case that does no work.
99  input_rank = _array_ops.rank(input_tensor)
100  input_fft_shape = _array_ops.shape(input_tensor)[-fft_rank:]
101  outer_dims = _math_ops.maximum(0, input_rank - fft_rank)
102  outer_paddings = _array_ops.zeros([outer_dims], fft_length.dtype)
103  # In reverse, we only pad the inner-most dimension to fft_length / 2 + 1.
104  if is_reverse:
105    fft_length = _array_ops.concat([fft_length[:-1],
106                                    fft_length[-1:] // 2 + 1], 0)
107  fft_paddings = _math_ops.maximum(0, fft_length - input_fft_shape)
108  paddings = _array_ops.concat([outer_paddings, fft_paddings], 0)
109  paddings = _array_ops.stack([_array_ops.zeros_like(paddings), paddings],
110                              axis=1)
111  return _array_ops.pad(input_tensor, paddings)
112
113
114def _rfft_wrapper(fft_fn, fft_rank, default_name):
115  """Wrapper around gen_spectral_ops.rfft* that infers fft_length argument."""
116
117  def _rfft(input_tensor, fft_length=None, name=None):
118    """Wrapper around gen_spectral_ops.rfft* that infers fft_length argument."""
119    with _ops.name_scope(name, default_name,
120                         [input_tensor, fft_length]) as name:
121      input_tensor = _ops.convert_to_tensor(input_tensor,
122                                            preferred_dtype=_dtypes.float32)
123      if input_tensor.dtype not in (_dtypes.float32, _dtypes.float64):
124        raise ValueError(
125            "RFFT requires tf.float32 or tf.float64 inputs, got: %s" %
126            input_tensor)
127      real_dtype = input_tensor.dtype
128      if real_dtype == _dtypes.float32:
129        complex_dtype = _dtypes.complex64
130      else:
131        assert real_dtype == _dtypes.float64
132        complex_dtype = _dtypes.complex128
133      input_tensor.shape.with_rank_at_least(fft_rank)
134      if fft_length is None:
135        fft_length = _infer_fft_length_for_rfft(input_tensor, fft_rank)
136      else:
137        fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
138      input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length)
139
140      fft_length_static = _tensor_util.constant_value(fft_length)
141      if fft_length_static is not None:
142        fft_length = fft_length_static
143      return fft_fn(input_tensor, fft_length, Tcomplex=complex_dtype, name=name)
144  _rfft.__doc__ = re.sub("    Tcomplex.*?\n", "", fft_fn.__doc__)
145  return _rfft
146
147
148def _irfft_wrapper(ifft_fn, fft_rank, default_name):
149  """Wrapper around gen_spectral_ops.irfft* that infers fft_length argument."""
150
151  def _irfft(input_tensor, fft_length=None, name=None):
152    """Wrapper irfft* that infers fft_length argument."""
153    with _ops.name_scope(name, default_name,
154                         [input_tensor, fft_length]) as name:
155      input_tensor = _ops.convert_to_tensor(input_tensor,
156                                            preferred_dtype=_dtypes.complex64)
157      input_tensor.shape.with_rank_at_least(fft_rank)
158      if input_tensor.dtype not in (_dtypes.complex64, _dtypes.complex128):
159        raise ValueError(
160            "IRFFT requires tf.complex64 or tf.complex128 inputs, got: %s" %
161            input_tensor)
162      complex_dtype = input_tensor.dtype
163      real_dtype = complex_dtype.real_dtype
164      if fft_length is None:
165        fft_length = _infer_fft_length_for_irfft(input_tensor, fft_rank)
166      else:
167        fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
168      input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length,
169                                         is_reverse=True)
170      fft_length_static = _tensor_util.constant_value(fft_length)
171      if fft_length_static is not None:
172        fft_length = fft_length_static
173      return ifft_fn(input_tensor, fft_length, Treal=real_dtype, name=name)
174  _irfft.__doc__ = re.sub("    Treal.*?\n", "", ifft_fn.__doc__)
175  return _irfft
176
177
178# FFT/IFFT 1/2/3D are exported via
179# third_party/tensorflow/core/api_def/python_api/
180fft = gen_spectral_ops.fft
181ifft = gen_spectral_ops.ifft
182fft2d = gen_spectral_ops.fft2d
183ifft2d = gen_spectral_ops.ifft2d
184fft3d = gen_spectral_ops.fft3d
185ifft3d = gen_spectral_ops.ifft3d
186rfft = _rfft_wrapper(gen_spectral_ops.rfft, 1, "rfft")
187tf_export("signal.rfft", v1=["signal.rfft", "spectral.rfft"])(
188    dispatch.add_dispatch_support(rfft))
189irfft = _irfft_wrapper(gen_spectral_ops.irfft, 1, "irfft")
190tf_export("signal.irfft", v1=["signal.irfft", "spectral.irfft"])(
191    dispatch.add_dispatch_support(irfft))
192rfft2d = _rfft_wrapper(gen_spectral_ops.rfft2d, 2, "rfft2d")
193tf_export("signal.rfft2d", v1=["signal.rfft2d", "spectral.rfft2d"])(
194    dispatch.add_dispatch_support(rfft2d))
195irfft2d = _irfft_wrapper(gen_spectral_ops.irfft2d, 2, "irfft2d")
196tf_export("signal.irfft2d", v1=["signal.irfft2d", "spectral.irfft2d"])(
197    dispatch.add_dispatch_support(irfft2d))
198rfft3d = _rfft_wrapper(gen_spectral_ops.rfft3d, 3, "rfft3d")
199tf_export("signal.rfft3d", v1=["signal.rfft3d", "spectral.rfft3d"])(
200    dispatch.add_dispatch_support(rfft3d))
201irfft3d = _irfft_wrapper(gen_spectral_ops.irfft3d, 3, "irfft3d")
202tf_export("signal.irfft3d", v1=["signal.irfft3d", "spectral.irfft3d"])(
203    dispatch.add_dispatch_support(irfft3d))
204
205
206def _fft_size_for_grad(grad, rank):
207  return _math_ops.reduce_prod(_array_ops.shape(grad)[-rank:])
208
209
210@_ops.RegisterGradient("FFT")
211def _fft_grad(_, grad):
212  size = _math_ops.cast(_fft_size_for_grad(grad, 1), grad.dtype)
213  return ifft(grad) * size
214
215
216@_ops.RegisterGradient("IFFT")
217def _ifft_grad(_, grad):
218  rsize = _math_ops.cast(
219      1. / _math_ops.cast(_fft_size_for_grad(grad, 1), grad.dtype.real_dtype),
220      grad.dtype)
221  return fft(grad) * rsize
222
223
224@_ops.RegisterGradient("FFT2D")
225def _fft2d_grad(_, grad):
226  size = _math_ops.cast(_fft_size_for_grad(grad, 2), grad.dtype)
227  return ifft2d(grad) * size
228
229
230@_ops.RegisterGradient("IFFT2D")
231def _ifft2d_grad(_, grad):
232  rsize = _math_ops.cast(
233      1. / _math_ops.cast(_fft_size_for_grad(grad, 2), grad.dtype.real_dtype),
234      grad.dtype)
235  return fft2d(grad) * rsize
236
237
238@_ops.RegisterGradient("FFT3D")
239def _fft3d_grad(_, grad):
240  size = _math_ops.cast(_fft_size_for_grad(grad, 3), grad.dtype)
241  return ifft3d(grad) * size
242
243
244@_ops.RegisterGradient("IFFT3D")
245def _ifft3d_grad(_, grad):
246  rsize = _math_ops.cast(
247      1. / _math_ops.cast(_fft_size_for_grad(grad, 3), grad.dtype.real_dtype),
248      grad.dtype)
249  return fft3d(grad) * rsize
250
251
252def _rfft_grad_helper(rank, irfft_fn):
253  """Returns a gradient function for an RFFT of the provided rank."""
254  # Can't happen because we don't register a gradient for RFFT3D.
255  assert rank in (1, 2), "Gradient for RFFT3D is not implemented."
256
257  def _grad(op, grad):
258    """A gradient function for RFFT with the provided `rank` and `irfft_fn`."""
259    fft_length = op.inputs[1]
260    complex_dtype = grad.dtype
261    real_dtype = complex_dtype.real_dtype
262    input_shape = _array_ops.shape(op.inputs[0])
263    is_even = _math_ops.cast(1 - (fft_length[-1] % 2), complex_dtype)
264
265    def _tile_for_broadcasting(matrix, t):
266      expanded = _array_ops.reshape(
267          matrix,
268          _array_ops.concat([
269              _array_ops.ones([_array_ops.rank(t) - 2], _dtypes.int32),
270              _array_ops.shape(matrix)
271          ], 0))
272      return _array_ops.tile(
273          expanded, _array_ops.concat([_array_ops.shape(t)[:-2], [1, 1]], 0))
274
275    def _mask_matrix(length):
276      """Computes t_n = exp(sqrt(-1) * pi * n^2 / line_len)."""
277      # TODO(rjryan): Speed up computation of twiddle factors using the
278      # following recurrence relation and cache them across invocations of RFFT.
279      #
280      # t_n = exp(sqrt(-1) * pi * n^2 / line_len)
281      # for n = 0, 1,..., line_len-1.
282      # For n > 2, use t_n = t_{n-1}^2 / t_{n-2} * t_1^2
283      a = _array_ops.tile(
284          _array_ops.expand_dims(_math_ops.range(length), 0), (length, 1))
285      b = _array_ops.transpose(a, [1, 0])
286      return _math_ops.exp(
287          -2j * np.pi * _math_ops.cast(a * b, complex_dtype) /
288          _math_ops.cast(length, complex_dtype))
289
290    def _ymask(length):
291      """A sequence of [1+0j, -1+0j, 1+0j, -1+0j, ...] with length `length`."""
292      return _math_ops.cast(1 - 2 * (_math_ops.range(length) % 2),
293                            complex_dtype)
294
295    y0 = grad[..., 0:1]
296    if rank == 1:
297      ym = grad[..., -1:]
298      extra_terms = y0 + is_even * ym * _ymask(input_shape[-1])
299    elif rank == 2:
300      # Create a mask matrix for y0 and ym.
301      base_mask = _mask_matrix(input_shape[-2])
302
303      # Tile base_mask to match y0 in shape so that we can batch-matmul the
304      # inner 2 dimensions.
305      tiled_mask = _tile_for_broadcasting(base_mask, y0)
306
307      y0_term = _math_ops.matmul(tiled_mask, _math_ops.conj(y0))
308      extra_terms = y0_term
309
310      ym = grad[..., -1:]
311      ym_term = _math_ops.matmul(tiled_mask, _math_ops.conj(ym))
312
313      inner_dim = input_shape[-1]
314      ym_term = _array_ops.tile(
315          ym_term,
316          _array_ops.concat([
317              _array_ops.ones([_array_ops.rank(grad) - 1], _dtypes.int32),
318              [inner_dim]
319          ], 0)) * _ymask(inner_dim)
320
321      extra_terms += is_even * ym_term
322
323    # The gradient of RFFT is the IRFFT of the incoming gradient times a scaling
324    # factor, plus some additional terms to make up for the components dropped
325    # due to Hermitian symmetry.
326    input_size = _math_ops.cast(
327        _fft_size_for_grad(op.inputs[0], rank), real_dtype)
328    the_irfft = irfft_fn(grad, fft_length)
329    return 0.5 * (the_irfft * input_size + _math_ops.real(extra_terms)), None
330
331  return _grad
332
333
334def _irfft_grad_helper(rank, rfft_fn):
335  """Returns a gradient function for an IRFFT of the provided rank."""
336  # Can't happen because we don't register a gradient for IRFFT3D.
337  assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."
338
339  def _grad(op, grad):
340    """A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
341    # Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
342    # and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
343    # graph we special-case the situation where the FFT length and last
344    # dimension of the input are known at graph construction time.
345    fft_length = op.inputs[1]
346    fft_length_static = _tensor_util.constant_value(fft_length)
347    if fft_length_static is not None:
348      fft_length = fft_length_static
349    real_dtype = grad.dtype
350    if real_dtype == _dtypes.float32:
351      complex_dtype = _dtypes.complex64
352    elif real_dtype == _dtypes.float64:
353      complex_dtype = _dtypes.complex128
354    is_odd = _math_ops.mod(fft_length[-1], 2)
355    input_last_dimension = _array_ops.shape(op.inputs[0])[-1]
356    mask = _array_ops.concat(
357        [[1.0], 2.0 * _array_ops.ones(
358            [input_last_dimension - 2 + is_odd], real_dtype),
359         _array_ops.ones([1 - is_odd], real_dtype)], 0)
360
361    rsize = _math_ops.reciprocal(_math_ops.cast(
362        _fft_size_for_grad(grad, rank), real_dtype))
363
364    # The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
365    # factor and a mask. The mask scales the gradient for the Hermitian
366    # symmetric components of the RFFT by a factor of two, since these
367    # components are de-duplicated in the RFFT.
368    the_rfft = rfft_fn(grad, fft_length)
369    return the_rfft * _math_ops.cast(rsize * mask, complex_dtype), None
370
371  return _grad
372
373
374@tf_export("signal.fftshift")
375@dispatch.add_dispatch_support
376def fftshift(x, axes=None, name=None):
377  """Shift the zero-frequency component to the center of the spectrum.
378
379  This function swaps half-spaces for all axes listed (defaults to all).
380  Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
381
382  @compatibility(numpy)
383  Equivalent to numpy.fft.fftshift.
384  https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fftshift.html
385  @end_compatibility
386
387  For example:
388
389  ```python
390  x = tf.signal.fftshift([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
391  x.numpy() # array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])
392  ```
393
394  Args:
395    x: `Tensor`, input tensor.
396    axes: `int` or shape `tuple`, optional Axes over which to shift.  Default is
397      None, which shifts all axes.
398    name: An optional name for the operation.
399
400  Returns:
401    A `Tensor`, The shifted tensor.
402  """
403  with _ops.name_scope(name, "fftshift") as name:
404    x = _ops.convert_to_tensor(x)
405    if axes is None:
406      axes = tuple(range(x.shape.ndims))
407      shift = _array_ops.shape(x) // 2
408    elif isinstance(axes, int):
409      shift = _array_ops.shape(x)[axes] // 2
410    else:
411      rank = _array_ops.rank(x)
412      # allows negative axis
413      axes = _array_ops.where(_math_ops.less(axes, 0), axes + rank, axes)
414      shift = _array_ops.gather(_array_ops.shape(x), axes) // 2
415
416    return manip_ops.roll(x, shift, axes, name)
417
418
419@tf_export("signal.ifftshift")
420@dispatch.add_dispatch_support
421def ifftshift(x, axes=None, name=None):
422  """The inverse of fftshift.
423
424  Although identical for even-length x,
425  the functions differ by one sample for odd-length x.
426
427  @compatibility(numpy)
428  Equivalent to numpy.fft.ifftshift.
429  https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.ifftshift.html
430  @end_compatibility
431
432  For example:
433
434  ```python
435  x = tf.signal.ifftshift([[ 0.,  1.,  2.],[ 3.,  4., -4.],[-3., -2., -1.]])
436  x.numpy() # array([[ 4., -4.,  3.],[-2., -1., -3.],[ 1.,  2.,  0.]])
437  ```
438
439  Args:
440    x: `Tensor`, input tensor.
441    axes: `int` or shape `tuple` Axes over which to calculate. Defaults to None,
442      which shifts all axes.
443    name: An optional name for the operation.
444
445  Returns:
446    A `Tensor`, The shifted tensor.
447  """
448  with _ops.name_scope(name, "ifftshift") as name:
449    x = _ops.convert_to_tensor(x)
450    if axes is None:
451      axes = tuple(range(x.shape.ndims))
452      shift = -(_array_ops.shape(x) // 2)
453    elif isinstance(axes, int):
454      shift = -(_array_ops.shape(x)[axes] // 2)
455    else:
456      rank = _array_ops.rank(x)
457      # allows negative axis
458      axes = _array_ops.where(_math_ops.less(axes, 0), axes + rank, axes)
459      shift = -(_array_ops.gather(_array_ops.shape(x), axes) // 2)
460
461    return manip_ops.roll(x, shift, axes, name)
462
463
464_ops.RegisterGradient("RFFT")(_rfft_grad_helper(1, irfft))
465_ops.RegisterGradient("IRFFT")(_irfft_grad_helper(1, rfft))
466_ops.RegisterGradient("RFFT2D")(_rfft_grad_helper(2, irfft2d))
467_ops.RegisterGradient("IRFFT2D")(_irfft_grad_helper(2, rfft2d))
468