• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 Developers of the Rand project.
2 // Copyright 2017-2018 The Rust Project Developers.
3 //
4 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7 // option. This file may not be copied, modified, or distributed
8 // except according to those terms.
9 
10 //! Random number generation traits
11 //!
12 //! This crate is mainly of interest to crates publishing implementations of
13 //! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14 //! which re-exports the main traits and error types.
15 //!
16 //! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17 //! generators and external random-number sources.
18 //!
19 //! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20 //! other random number generators.
21 //!
22 //! [`Error`] is provided for error-handling. It is safe to use in `no_std`
23 //! environments.
24 //!
25 //! The [`impls`] and [`le`] sub-modules include a few small functions to assist
26 //! implementation of [`RngCore`].
27 //!
28 //! [`rand`]: https://docs.rs/rand
29 
30 #![doc(
31     html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
32     html_favicon_url = "https://www.rust-lang.org/favicon.ico",
33     html_root_url = "https://rust-random.github.io/rand/"
34 )]
35 #![deny(missing_docs)]
36 #![deny(missing_debug_implementations)]
37 #![doc(test(attr(allow(unused_variables), deny(warnings))))]
38 #![cfg_attr(doc_cfg, feature(doc_cfg))]
39 #![no_std]
40 
41 use core::convert::AsMut;
42 use core::default::Default;
43 
44 #[cfg(feature = "std")] extern crate std;
45 #[cfg(feature = "alloc")] extern crate alloc;
46 #[cfg(feature = "alloc")] use alloc::boxed::Box;
47 
48 pub use error::Error;
49 #[cfg(feature = "getrandom")] pub use os::OsRng;
50 
51 
52 pub mod block;
53 mod error;
54 pub mod impls;
55 pub mod le;
56 #[cfg(feature = "getrandom")] mod os;
57 
58 
59 /// The core of a random number generator.
60 ///
61 /// This trait encapsulates the low-level functionality common to all
62 /// generators, and is the "back end", to be implemented by generators.
63 /// End users should normally use the `Rng` trait from the [`rand`] crate,
64 /// which is automatically implemented for every type implementing `RngCore`.
65 ///
66 /// Three different methods for generating random data are provided since the
67 /// optimal implementation of each is dependent on the type of generator. There
68 /// is no required relationship between the output of each; e.g. many
69 /// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
70 /// values and drop any remaining unused bytes. The same can happen with the
71 /// [`next_u32`] and [`next_u64`] methods, implementations may discard some
72 /// random bits for efficiency.
73 ///
74 /// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error
75 /// handling; it is not deemed sufficiently useful to add equivalents for
76 /// [`next_u32`] or [`next_u64`] since the latter methods are almost always used
77 /// with algorithmic generators (PRNGs), which are normally infallible.
78 ///
79 /// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
80 /// returning the same value, or never setting certain bits) can break rejection
81 /// sampling used by random distributions, and also break other RNGs when
82 /// seeding them via [`SeedableRng::from_rng`].
83 ///
84 /// Algorithmic generators implementing [`SeedableRng`] should normally have
85 /// *portable, reproducible* output, i.e. fix Endianness when converting values
86 /// to avoid platform differences, and avoid making any changes which affect
87 /// output (except by communicating that the release has breaking changes).
88 ///
89 /// Typically an RNG will implement only one of the methods available
90 /// in this trait directly, then use the helper functions from the
91 /// [`impls`] module to implement the other methods.
92 ///
93 /// It is recommended that implementations also implement:
94 ///
95 /// - `Debug` with a custom implementation which *does not* print any internal
96 ///   state (at least, [`CryptoRng`]s should not risk leaking state through
97 ///   `Debug`).
98 /// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
99 ///   support optional at the crate level in PRNG libs.
100 /// - `Clone`, if possible.
101 /// - *never* implement `Copy` (accidental copies may cause repeated values).
102 /// - *do not* implement `Default` for pseudorandom generators, but instead
103 ///   implement [`SeedableRng`], to guide users towards proper seeding.
104 ///   External / hardware RNGs can choose to implement `Default`.
105 /// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
106 ///
107 /// # Example
108 ///
109 /// A simple example, obviously not generating very *random* output:
110 ///
111 /// ```
112 /// #![allow(dead_code)]
113 /// use rand_core::{RngCore, Error, impls};
114 ///
115 /// struct CountingRng(u64);
116 ///
117 /// impl RngCore for CountingRng {
118 ///     fn next_u32(&mut self) -> u32 {
119 ///         self.next_u64() as u32
120 ///     }
121 ///
122 ///     fn next_u64(&mut self) -> u64 {
123 ///         self.0 += 1;
124 ///         self.0
125 ///     }
126 ///
127 ///     fn fill_bytes(&mut self, dest: &mut [u8]) {
128 ///         impls::fill_bytes_via_next(self, dest)
129 ///     }
130 ///
131 ///     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
132 ///         Ok(self.fill_bytes(dest))
133 ///     }
134 /// }
135 /// ```
136 ///
137 /// [`rand`]: https://docs.rs/rand
138 /// [`try_fill_bytes`]: RngCore::try_fill_bytes
139 /// [`fill_bytes`]: RngCore::fill_bytes
140 /// [`next_u32`]: RngCore::next_u32
141 /// [`next_u64`]: RngCore::next_u64
142 pub trait RngCore {
143     /// Return the next random `u32`.
144     ///
145     /// RNGs must implement at least one method from this trait directly. In
146     /// the case this method is not implemented directly, it can be implemented
147     /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
next_u32(&mut self) -> u32148     fn next_u32(&mut self) -> u32;
149 
150     /// Return the next random `u64`.
151     ///
152     /// RNGs must implement at least one method from this trait directly. In
153     /// the case this method is not implemented directly, it can be implemented
154     /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
next_u64(&mut self) -> u64155     fn next_u64(&mut self) -> u64;
156 
157     /// Fill `dest` with random data.
158     ///
159     /// RNGs must implement at least one method from this trait directly. In
160     /// the case this method is not implemented directly, it can be implemented
161     /// via [`impls::fill_bytes_via_next`] or
162     /// via [`RngCore::try_fill_bytes`]; if this generator can
163     /// fail the implementation must choose how best to handle errors here
164     /// (e.g. panic with a descriptive message or log a warning and retry a few
165     /// times).
166     ///
167     /// This method should guarantee that `dest` is entirely filled
168     /// with new data, and may panic if this is impossible
169     /// (e.g. reading past the end of a file that is being used as the
170     /// source of randomness).
fill_bytes(&mut self, dest: &mut [u8])171     fn fill_bytes(&mut self, dest: &mut [u8]);
172 
173     /// Fill `dest` entirely with random data.
174     ///
175     /// This is the only method which allows an RNG to report errors while
176     /// generating random data thus making this the primary method implemented
177     /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used
178     /// directly to generate keys and to seed (infallible) PRNGs.
179     ///
180     /// Other than error handling, this method is identical to [`RngCore::fill_bytes`];
181     /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or
182     /// `fill_bytes` may be implemented with
183     /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling.
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>184     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>;
185 }
186 
187 /// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`]
188 /// implementation is supposed to be cryptographically secure.
189 ///
190 /// *Cryptographically secure generators*, also known as *CSPRNGs*, should
191 /// satisfy an additional properties over other generators: given the first
192 /// *k* bits of an algorithm's output
193 /// sequence, it should not be possible using polynomial-time algorithms to
194 /// predict the next bit with probability significantly greater than 50%.
195 ///
196 /// Some generators may satisfy an additional property, however this is not
197 /// required by this trait: if the CSPRNG's state is revealed, it should not be
198 /// computationally-feasible to reconstruct output prior to this. Some other
199 /// generators allow backwards-computation and are consided *reversible*.
200 ///
201 /// Note that this trait is provided for guidance only and cannot guarantee
202 /// suitability for cryptographic applications. In general it should only be
203 /// implemented for well-reviewed code implementing well-regarded algorithms.
204 ///
205 /// Note also that use of a `CryptoRng` does not protect against other
206 /// weaknesses such as seeding from a weak entropy source or leaking state.
207 ///
208 /// [`BlockRngCore`]: block::BlockRngCore
209 pub trait CryptoRng {}
210 
211 /// A random number generator that can be explicitly seeded.
212 ///
213 /// This trait encapsulates the low-level functionality common to all
214 /// pseudo-random number generators (PRNGs, or algorithmic generators).
215 ///
216 /// [`rand`]: https://docs.rs/rand
217 pub trait SeedableRng: Sized {
218     /// Seed type, which is restricted to types mutably-dereferencable as `u8`
219     /// arrays (we recommend `[u8; N]` for some `N`).
220     ///
221     /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
222     /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
223     /// partially overlapping periods.
224     ///
225     /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
226     ///
227     ///
228     /// # Implementing `SeedableRng` for RNGs with large seeds
229     ///
230     /// Note that the required traits `core::default::Default` and
231     /// `core::convert::AsMut<u8>` are not implemented for large arrays
232     /// `[u8; N]` with `N` > 32. To be able to implement the traits required by
233     /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be
234     /// used:
235     ///
236     /// ```
237     /// use rand_core::SeedableRng;
238     ///
239     /// const N: usize = 64;
240     /// pub struct MyRngSeed(pub [u8; N]);
241     /// pub struct MyRng(MyRngSeed);
242     ///
243     /// impl Default for MyRngSeed {
244     ///     fn default() -> MyRngSeed {
245     ///         MyRngSeed([0; N])
246     ///     }
247     /// }
248     ///
249     /// impl AsMut<[u8]> for MyRngSeed {
250     ///     fn as_mut(&mut self) -> &mut [u8] {
251     ///         &mut self.0
252     ///     }
253     /// }
254     ///
255     /// impl SeedableRng for MyRng {
256     ///     type Seed = MyRngSeed;
257     ///
258     ///     fn from_seed(seed: MyRngSeed) -> MyRng {
259     ///         MyRng(seed)
260     ///     }
261     /// }
262     /// ```
263     type Seed: Sized + Default + AsMut<[u8]>;
264 
265     /// Create a new PRNG using the given seed.
266     ///
267     /// PRNG implementations are allowed to assume that bits in the seed are
268     /// well distributed. That means usually that the number of one and zero
269     /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
270     /// Note that many non-cryptographic PRNGs will show poor quality output
271     /// if this is not adhered to. If you wish to seed from simple numbers, use
272     /// `seed_from_u64` instead.
273     ///
274     /// All PRNG implementations should be reproducible unless otherwise noted:
275     /// given a fixed `seed`, the same sequence of output should be produced
276     /// on all runs, library versions and architectures (e.g. check endianness).
277     /// Any "value-breaking" changes to the generator should require bumping at
278     /// least the minor version and documentation of the change.
279     ///
280     /// It is not required that this function yield the same state as a
281     /// reference implementation of the PRNG given equivalent seed; if necessary
282     /// another constructor replicating behaviour from a reference
283     /// implementation can be added.
284     ///
285     /// PRNG implementations should make sure `from_seed` never panics. In the
286     /// case that some special values (like an all zero seed) are not viable
287     /// seeds it is preferable to map these to alternative constant value(s),
288     /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
289     /// seed"). This is assuming only a small number of values must be rejected.
from_seed(seed: Self::Seed) -> Self290     fn from_seed(seed: Self::Seed) -> Self;
291 
292     /// Create a new PRNG using a `u64` seed.
293     ///
294     /// This is a convenience-wrapper around `from_seed` to allow construction
295     /// of any `SeedableRng` from a simple `u64` value. It is designed such that
296     /// low Hamming Weight numbers like 0 and 1 can be used and should still
297     /// result in good, independent seeds to the PRNG which is returned.
298     ///
299     /// This **is not suitable for cryptography**, as should be clear given that
300     /// the input size is only 64 bits.
301     ///
302     /// Implementations for PRNGs *may* provide their own implementations of
303     /// this function, but the default implementation should be good enough for
304     /// all purposes. *Changing* the implementation of this function should be
305     /// considered a value-breaking change.
seed_from_u64(mut state: u64) -> Self306     fn seed_from_u64(mut state: u64) -> Self {
307         // We use PCG32 to generate a u32 sequence, and copy to the seed
308         fn pcg32(state: &mut u64) -> [u8; 4] {
309             const MUL: u64 = 6364136223846793005;
310             const INC: u64 = 11634580027462260723;
311 
312             // We advance the state first (to get away from the input value,
313             // in case it has low Hamming Weight).
314             *state = state.wrapping_mul(MUL).wrapping_add(INC);
315             let state = *state;
316 
317             // Use PCG output function with to_le to generate x:
318             let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
319             let rot = (state >> 59) as u32;
320             let x = xorshifted.rotate_right(rot);
321             x.to_le_bytes()
322         }
323 
324         let mut seed = Self::Seed::default();
325         let mut iter = seed.as_mut().chunks_exact_mut(4);
326         for chunk in &mut iter {
327             chunk.copy_from_slice(&pcg32(&mut state));
328         }
329         let rem = iter.into_remainder();
330         if !rem.is_empty() {
331             rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
332         }
333 
334         Self::from_seed(seed)
335     }
336 
337     /// Create a new PRNG seeded from another `Rng`.
338     ///
339     /// This may be useful when needing to rapidly seed many PRNGs from a master
340     /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
341     ///
342     /// The master PRNG should be at least as high quality as the child PRNGs.
343     /// When seeding non-cryptographic child PRNGs, we recommend using a
344     /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
345     /// correlations between the child PRNGs. If this is not possible (e.g.
346     /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
347     /// mixing function on the output or consider use of a hash function with
348     /// `from_seed`.
349     ///
350     /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
351     /// extreme example of what can go wrong: the new PRNG will be a clone
352     /// of the parent.
353     ///
354     /// PRNG implementations are allowed to assume that a good RNG is provided
355     /// for seeding, and that it is cryptographically secure when appropriate.
356     /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
357     /// method should ensure the implementation satisfies reproducibility
358     /// (in prior versions this was not required).
359     ///
360     /// [`rand`]: https://docs.rs/rand
from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error>361     fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
362         let mut seed = Self::Seed::default();
363         rng.try_fill_bytes(seed.as_mut())?;
364         Ok(Self::from_seed(seed))
365     }
366 
367     /// Creates a new instance of the RNG seeded via [`getrandom`].
368     ///
369     /// This method is the recommended way to construct non-deterministic PRNGs
370     /// since it is convenient and secure.
371     ///
372     /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
373     /// issue, one may prefer to seed from a local PRNG, e.g.
374     /// `from_rng(thread_rng()).unwrap()`.
375     ///
376     /// # Panics
377     ///
378     /// If [`getrandom`] is unable to provide secure entropy this method will panic.
379     ///
380     /// [`getrandom`]: https://docs.rs/getrandom
381     #[cfg(feature = "getrandom")]
382     #[cfg_attr(doc_cfg, doc(cfg(feature = "getrandom")))]
from_entropy() -> Self383     fn from_entropy() -> Self {
384         let mut seed = Self::Seed::default();
385         if let Err(err) = getrandom::getrandom(seed.as_mut()) {
386             panic!("from_entropy failed: {}", err);
387         }
388         Self::from_seed(seed)
389     }
390 }
391 
392 // Implement `RngCore` for references to an `RngCore`.
393 // Force inlining all functions, so that it is up to the `RngCore`
394 // implementation and the optimizer to decide on inlining.
395 impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R {
396     #[inline(always)]
next_u32(&mut self) -> u32397     fn next_u32(&mut self) -> u32 {
398         (**self).next_u32()
399     }
400 
401     #[inline(always)]
next_u64(&mut self) -> u64402     fn next_u64(&mut self) -> u64 {
403         (**self).next_u64()
404     }
405 
406     #[inline(always)]
fill_bytes(&mut self, dest: &mut [u8])407     fn fill_bytes(&mut self, dest: &mut [u8]) {
408         (**self).fill_bytes(dest)
409     }
410 
411     #[inline(always)]
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>412     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
413         (**self).try_fill_bytes(dest)
414     }
415 }
416 
417 // Implement `RngCore` for boxed references to an `RngCore`.
418 // Force inlining all functions, so that it is up to the `RngCore`
419 // implementation and the optimizer to decide on inlining.
420 #[cfg(feature = "alloc")]
421 impl<R: RngCore + ?Sized> RngCore for Box<R> {
422     #[inline(always)]
next_u32(&mut self) -> u32423     fn next_u32(&mut self) -> u32 {
424         (**self).next_u32()
425     }
426 
427     #[inline(always)]
next_u64(&mut self) -> u64428     fn next_u64(&mut self) -> u64 {
429         (**self).next_u64()
430     }
431 
432     #[inline(always)]
fill_bytes(&mut self, dest: &mut [u8])433     fn fill_bytes(&mut self, dest: &mut [u8]) {
434         (**self).fill_bytes(dest)
435     }
436 
437     #[inline(always)]
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>438     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
439         (**self).try_fill_bytes(dest)
440     }
441 }
442 
443 #[cfg(feature = "std")]
444 impl std::io::Read for dyn RngCore {
read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error>445     fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
446         self.try_fill_bytes(buf)?;
447         Ok(buf.len())
448     }
449 }
450 
451 // Implement `CryptoRng` for references to an `CryptoRng`.
452 impl<'a, R: CryptoRng + ?Sized> CryptoRng for &'a mut R {}
453 
454 // Implement `CryptoRng` for boxed references to an `CryptoRng`.
455 #[cfg(feature = "alloc")]
456 impl<R: CryptoRng + ?Sized> CryptoRng for Box<R> {}
457 
458 #[cfg(test)]
459 mod test {
460     use super::*;
461 
462     #[test]
test_seed_from_u64()463     fn test_seed_from_u64() {
464         struct SeedableNum(u64);
465         impl SeedableRng for SeedableNum {
466             type Seed = [u8; 8];
467 
468             fn from_seed(seed: Self::Seed) -> Self {
469                 let mut x = [0u64; 1];
470                 le::read_u64_into(&seed, &mut x);
471                 SeedableNum(x[0])
472             }
473         }
474 
475         const N: usize = 8;
476         const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
477         let mut results = [0u64; N];
478         for (i, seed) in SEEDS.iter().enumerate() {
479             let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
480             results[i] = x;
481         }
482 
483         for (i1, r1) in results.iter().enumerate() {
484             let weight = r1.count_ones();
485             // This is the binomial distribution B(64, 0.5), so chance of
486             // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
487             // weight > 44.
488             assert!((20..=44).contains(&weight));
489 
490             for (i2, r2) in results.iter().enumerate() {
491                 if i1 == i2 {
492                     continue;
493                 }
494                 let diff_weight = (r1 ^ r2).count_ones();
495                 assert!(diff_weight >= 20);
496             }
497         }
498 
499         // value-breakage test:
500         assert_eq!(results[0], 5029875928683246316);
501     }
502 }
503