• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26 
27 #include <pcap-types.h>
28 #ifdef _WIN32
29   #include <ws2tcpip.h>
30 #else
31   #include <sys/socket.h>
32 
33   #ifdef __NetBSD__
34     #include <sys/param.h>
35   #endif
36 
37   #include <netinet/in.h>
38   #include <arpa/inet.h>
39 #endif /* _WIN32 */
40 
41 #include <stdlib.h>
42 #include <string.h>
43 #include <memory.h>
44 #include <setjmp.h>
45 #include <stdarg.h>
46 
47 #ifdef MSDOS
48 #include "pcap-dos.h"
49 #endif
50 
51 #ifdef HAVE_NET_PFVAR_H
52 /*
53  * In NetBSD <net/if.h> includes <net/dlt.h>, which is an older version of
54  * "pcap/dlt.h" with a lower value of DLT_MATCHING_MAX. Include the headers
55  * below before "pcap-int.h", which eventually includes "pcap/dlt.h", which
56  * redefines DLT_MATCHING_MAX from what this version of NetBSD has to what
57  * this version of libpcap has.
58  */
59 #include <sys/socket.h>
60 #include <net/if.h>
61 #include <net/pfvar.h>
62 #include <net/if_pflog.h>
63 #endif /* HAVE_NET_PFVAR_H */
64 
65 #include "pcap-int.h"
66 
67 #include "extract.h"
68 
69 #include "ethertype.h"
70 #include "nlpid.h"
71 #include "llc.h"
72 #include "gencode.h"
73 #include "ieee80211.h"
74 #include "atmuni31.h"
75 #include "sunatmpos.h"
76 #include "ppp.h"
77 #include "pcap/sll.h"
78 #include "pcap/ipnet.h"
79 #include "arcnet.h"
80 
81 #include "grammar.h"
82 #include "scanner.h"
83 
84 #if defined(linux)
85 #include <linux/types.h>
86 #include <linux/if_packet.h>
87 #include <linux/filter.h>
88 #endif
89 
90 #ifndef offsetof
91 #define offsetof(s, e) ((size_t)&((s *)0)->e)
92 #endif
93 
94 #ifdef _WIN32
95   #ifdef INET6
96     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
97 /* IPv6 address */
98 struct in6_addr
99   {
100     union
101       {
102 	uint8_t		u6_addr8[16];
103 	uint16_t	u6_addr16[8];
104 	uint32_t	u6_addr32[4];
105       } in6_u;
106 #define s6_addr			in6_u.u6_addr8
107 #define s6_addr16		in6_u.u6_addr16
108 #define s6_addr32		in6_u.u6_addr32
109 #define s6_addr64		in6_u.u6_addr64
110   };
111 
112 typedef unsigned short	sa_family_t;
113 
114 #define	__SOCKADDR_COMMON(sa_prefix) \
115   sa_family_t sa_prefix##family
116 
117 /* Ditto, for IPv6.  */
118 struct sockaddr_in6
119   {
120     __SOCKADDR_COMMON (sin6_);
121     uint16_t sin6_port;		/* Transport layer port # */
122     uint32_t sin6_flowinfo;	/* IPv6 flow information */
123     struct in6_addr sin6_addr;	/* IPv6 address */
124   };
125 
126       #ifndef EAI_ADDRFAMILY
127 struct addrinfo {
128 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
129 	int	ai_family;	/* PF_xxx */
130 	int	ai_socktype;	/* SOCK_xxx */
131 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
132 	size_t	ai_addrlen;	/* length of ai_addr */
133 	char	*ai_canonname;	/* canonical name for hostname */
134 	struct sockaddr *ai_addr;	/* binary address */
135 	struct addrinfo *ai_next;	/* next structure in linked list */
136 };
137       #endif /* EAI_ADDRFAMILY */
138     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
139   #endif /* INET6 */
140 #else /* _WIN32 */
141   #include <netdb.h>	/* for "struct addrinfo" */
142 #endif /* _WIN32 */
143 #include <pcap/namedb.h>
144 
145 #include "nametoaddr.h"
146 
147 #define ETHERMTU	1500
148 
149 #ifndef IPPROTO_HOPOPTS
150 #define IPPROTO_HOPOPTS 0
151 #endif
152 #ifndef IPPROTO_ROUTING
153 #define IPPROTO_ROUTING 43
154 #endif
155 #ifndef IPPROTO_FRAGMENT
156 #define IPPROTO_FRAGMENT 44
157 #endif
158 #ifndef IPPROTO_DSTOPTS
159 #define IPPROTO_DSTOPTS 60
160 #endif
161 #ifndef IPPROTO_SCTP
162 #define IPPROTO_SCTP 132
163 #endif
164 
165 #define GENEVE_PORT 6081
166 
167 #ifdef HAVE_OS_PROTO_H
168 #include "os-proto.h"
169 #endif
170 
171 #define JMP(c) ((c)|BPF_JMP|BPF_K)
172 
173 /*
174  * "Push" the current value of the link-layer header type and link-layer
175  * header offset onto a "stack", and set a new value.  (It's not a
176  * full-blown stack; we keep only the top two items.)
177  */
178 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
179 { \
180 	(cs)->prevlinktype = (cs)->linktype; \
181 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
182 	(cs)->linktype = (new_linktype); \
183 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
184 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
185 	(cs)->off_linkhdr.reg = (new_reg); \
186 	(cs)->is_geneve = 0; \
187 }
188 
189 /*
190  * Offset "not set" value.
191  */
192 #define OFFSET_NOT_SET	0xffffffffU
193 
194 /*
195  * Absolute offsets, which are offsets from the beginning of the raw
196  * packet data, are, in the general case, the sum of a variable value
197  * and a constant value; the variable value may be absent, in which
198  * case the offset is only the constant value, and the constant value
199  * may be zero, in which case the offset is only the variable value.
200  *
201  * bpf_abs_offset is a structure containing all that information:
202  *
203  *   is_variable is 1 if there's a variable part.
204  *
205  *   constant_part is the constant part of the value, possibly zero;
206  *
207  *   if is_variable is 1, reg is the register number for a register
208  *   containing the variable value if the register has been assigned,
209  *   and -1 otherwise.
210  */
211 typedef struct {
212 	int	is_variable;
213 	u_int	constant_part;
214 	int	reg;
215 } bpf_abs_offset;
216 
217 /*
218  * Value passed to gen_load_a() to indicate what the offset argument
219  * is relative to the beginning of.
220  */
221 enum e_offrel {
222 	OR_PACKET,		/* full packet data */
223 	OR_LINKHDR,		/* link-layer header */
224 	OR_PREVLINKHDR,		/* previous link-layer header */
225 	OR_LLC,			/* 802.2 LLC header */
226 	OR_PREVMPLSHDR,		/* previous MPLS header */
227 	OR_LINKTYPE,		/* link-layer type */
228 	OR_LINKPL,		/* link-layer payload */
229 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
230 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
231 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
232 };
233 
234 /*
235  * We divy out chunks of memory rather than call malloc each time so
236  * we don't have to worry about leaking memory.  It's probably
237  * not a big deal if all this memory was wasted but if this ever
238  * goes into a library that would probably not be a good idea.
239  *
240  * XXX - this *is* in a library....
241  */
242 #define NCHUNKS 16
243 #define CHUNK0SIZE 1024
244 struct chunk {
245 	size_t n_left;
246 	void *m;
247 };
248 
249 /* Code generator state */
250 
251 struct _compiler_state {
252 	jmp_buf top_ctx;
253 	pcap_t *bpf_pcap;
254 	int error_set;
255 
256 	struct icode ic;
257 
258 	int snaplen;
259 
260 	int linktype;
261 	int prevlinktype;
262 	int outermostlinktype;
263 
264 	bpf_u_int32 netmask;
265 	int no_optimize;
266 
267 	/* Hack for handling VLAN and MPLS stacks. */
268 	u_int label_stack_depth;
269 	u_int vlan_stack_depth;
270 
271 	/* XXX */
272 	u_int pcap_fddipad;
273 
274 	/*
275 	 * As errors are handled by a longjmp, anything allocated must
276 	 * be freed in the longjmp handler, so it must be reachable
277 	 * from that handler.
278 	 *
279 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
280 	 * it must be freed with freeaddrinfo().  This variable points to
281 	 * any addrinfo structure that would need to be freed.
282 	 */
283 	struct addrinfo *ai;
284 
285 	/*
286 	 * Another thing that's allocated is the result of pcap_ether_aton();
287 	 * it must be freed with free().  This variable points to any
288 	 * address that would need to be freed.
289 	 */
290 	u_char *e;
291 
292 	/*
293 	 * Various code constructs need to know the layout of the packet.
294 	 * These values give the necessary offsets from the beginning
295 	 * of the packet data.
296 	 */
297 
298 	/*
299 	 * Absolute offset of the beginning of the link-layer header.
300 	 */
301 	bpf_abs_offset off_linkhdr;
302 
303 	/*
304 	 * If we're checking a link-layer header for a packet encapsulated
305 	 * in another protocol layer, this is the equivalent information
306 	 * for the previous layers' link-layer header from the beginning
307 	 * of the raw packet data.
308 	 */
309 	bpf_abs_offset off_prevlinkhdr;
310 
311 	/*
312 	 * This is the equivalent information for the outermost layers'
313 	 * link-layer header.
314 	 */
315 	bpf_abs_offset off_outermostlinkhdr;
316 
317 	/*
318 	 * Absolute offset of the beginning of the link-layer payload.
319 	 */
320 	bpf_abs_offset off_linkpl;
321 
322 	/*
323 	 * "off_linktype" is the offset to information in the link-layer
324 	 * header giving the packet type. This is an absolute offset
325 	 * from the beginning of the packet.
326 	 *
327 	 * For Ethernet, it's the offset of the Ethernet type field; this
328 	 * means that it must have a value that skips VLAN tags.
329 	 *
330 	 * For link-layer types that always use 802.2 headers, it's the
331 	 * offset of the LLC header; this means that it must have a value
332 	 * that skips VLAN tags.
333 	 *
334 	 * For PPP, it's the offset of the PPP type field.
335 	 *
336 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
337 	 *
338 	 * For BSD loopback, it's the offset of the AF_ value.
339 	 *
340 	 * For Linux cooked sockets, it's the offset of the type field.
341 	 *
342 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
343 	 * encapsulation, in which case, IP is assumed.
344 	 */
345 	bpf_abs_offset off_linktype;
346 
347 	/*
348 	 * TRUE if the link layer includes an ATM pseudo-header.
349 	 */
350 	int is_atm;
351 
352 	/*
353 	 * TRUE if "geneve" appeared in the filter; it causes us to
354 	 * generate code that checks for a Geneve header and assume
355 	 * that later filters apply to the encapsulated payload.
356 	 */
357 	int is_geneve;
358 
359 	/*
360 	 * TRUE if we need variable length part of VLAN offset
361 	 */
362 	int is_vlan_vloffset;
363 
364 	/*
365 	 * These are offsets for the ATM pseudo-header.
366 	 */
367 	u_int off_vpi;
368 	u_int off_vci;
369 	u_int off_proto;
370 
371 	/*
372 	 * These are offsets for the MTP2 fields.
373 	 */
374 	u_int off_li;
375 	u_int off_li_hsl;
376 
377 	/*
378 	 * These are offsets for the MTP3 fields.
379 	 */
380 	u_int off_sio;
381 	u_int off_opc;
382 	u_int off_dpc;
383 	u_int off_sls;
384 
385 	/*
386 	 * This is the offset of the first byte after the ATM pseudo_header,
387 	 * or -1 if there is no ATM pseudo-header.
388 	 */
389 	u_int off_payload;
390 
391 	/*
392 	 * These are offsets to the beginning of the network-layer header.
393 	 * They are relative to the beginning of the link-layer payload
394 	 * (i.e., they don't include off_linkhdr.constant_part or
395 	 * off_linkpl.constant_part).
396 	 *
397 	 * If the link layer never uses 802.2 LLC:
398 	 *
399 	 *	"off_nl" and "off_nl_nosnap" are the same.
400 	 *
401 	 * If the link layer always uses 802.2 LLC:
402 	 *
403 	 *	"off_nl" is the offset if there's a SNAP header following
404 	 *	the 802.2 header;
405 	 *
406 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
407 	 *
408 	 * If the link layer is Ethernet:
409 	 *
410 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
411 	 *	(we assume no 802.3+802.2+SNAP);
412 	 *
413 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
414 	 *	with an 802.2 header following it.
415 	 */
416 	u_int off_nl;
417 	u_int off_nl_nosnap;
418 
419 	/*
420 	 * Here we handle simple allocation of the scratch registers.
421 	 * If too many registers are alloc'd, the allocator punts.
422 	 */
423 	int regused[BPF_MEMWORDS];
424 	int curreg;
425 
426 	/*
427 	 * Memory chunks.
428 	 */
429 	struct chunk chunks[NCHUNKS];
430 	int cur_chunk;
431 };
432 
433 /*
434  * For use by routines outside this file.
435  */
436 /* VARARGS */
437 void
bpf_set_error(compiler_state_t * cstate,const char * fmt,...)438 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
439 {
440 	va_list ap;
441 
442 	/*
443 	 * If we've already set an error, don't override it.
444 	 * The lexical analyzer reports some errors by setting
445 	 * the error and then returning a LEX_ERROR token, which
446 	 * is not recognized by any grammar rule, and thus forces
447 	 * the parse to stop.  We don't want the error reported
448 	 * by the lexical analyzer to be overwritten by the syntax
449 	 * error.
450 	 */
451 	if (!cstate->error_set) {
452 		va_start(ap, fmt);
453 		(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
454 		    fmt, ap);
455 		va_end(ap);
456 		cstate->error_set = 1;
457 	}
458 }
459 
460 /*
461  * For use *ONLY* in routines in this file.
462  */
463 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
464     PCAP_PRINTFLIKE(2, 3);
465 
466 /* VARARGS */
467 static void PCAP_NORETURN
bpf_error(compiler_state_t * cstate,const char * fmt,...)468 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
469 {
470 	va_list ap;
471 
472 	va_start(ap, fmt);
473 	(void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
474 	    fmt, ap);
475 	va_end(ap);
476 	longjmp(cstate->top_ctx, 1);
477 	/*NOTREACHED*/
478 }
479 
480 static int init_linktype(compiler_state_t *, pcap_t *);
481 
482 static void init_regs(compiler_state_t *);
483 static int alloc_reg(compiler_state_t *);
484 static void free_reg(compiler_state_t *, int);
485 
486 static void initchunks(compiler_state_t *cstate);
487 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
488 static void *newchunk(compiler_state_t *cstate, size_t);
489 static void freechunks(compiler_state_t *cstate);
490 static inline struct block *new_block(compiler_state_t *cstate, int);
491 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
492 static struct block *gen_retblk(compiler_state_t *cstate, int);
493 static inline void syntax(compiler_state_t *cstate);
494 
495 static void backpatch(struct block *, struct block *);
496 static void merge(struct block *, struct block *);
497 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
498     u_int, bpf_u_int32);
499 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
500     u_int, bpf_u_int32);
501 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
502     u_int, bpf_u_int32);
503 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
504     u_int, bpf_u_int32);
505 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
506     u_int, bpf_u_int32);
507 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
508     u_int, bpf_u_int32, bpf_u_int32);
509 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
510     u_int, const u_char *);
511 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
512     u_int, bpf_u_int32, int, int, bpf_u_int32);
513 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
514     u_int, u_int);
515 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
516     u_int);
517 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
518 static struct block *gen_uncond(compiler_state_t *, int);
519 static inline struct block *gen_true(compiler_state_t *);
520 static inline struct block *gen_false(compiler_state_t *);
521 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
522 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
523 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
524 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
525 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
526 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
527 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
528 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
529 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
530     bpf_abs_offset *);
531 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
532 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
533 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
534 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
535 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
536     int, bpf_u_int32, u_int, u_int);
537 #ifdef INET6
538 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
539     struct in6_addr *, int, bpf_u_int32, u_int, u_int);
540 #endif
541 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
542 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
543 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
544 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
545 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
546 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
547 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
548 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
549 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
550     int, int, int);
551 #ifdef INET6
552 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
553     struct in6_addr *, int, int, int);
554 #endif
555 #ifndef INET6
556 static struct block *gen_gateway(compiler_state_t *, const u_char *,
557     struct addrinfo *, int, int);
558 #endif
559 static struct block *gen_ipfrag(compiler_state_t *);
560 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
561 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
562     bpf_u_int32);
563 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
564 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
565     bpf_u_int32);
566 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
567 static struct block *gen_port(compiler_state_t *, u_int, int, int);
568 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
569     bpf_u_int32, int);
570 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
571 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
572 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
573 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
574     bpf_u_int32, int);
575 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
576 static int lookup_proto(compiler_state_t *, const char *, int);
577 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
578 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
579 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
580 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
581 static struct block *gen_mac_multicast(compiler_state_t *, int);
582 static struct block *gen_len(compiler_state_t *, int, int);
583 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
584 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
585 
586 static struct block *gen_ppi_dlt_check(compiler_state_t *);
587 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
588     bpf_u_int32, int, int);
589 static struct block *gen_atmtype_llc(compiler_state_t *);
590 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
591 
592 static void
initchunks(compiler_state_t * cstate)593 initchunks(compiler_state_t *cstate)
594 {
595 	int i;
596 
597 	for (i = 0; i < NCHUNKS; i++) {
598 		cstate->chunks[i].n_left = 0;
599 		cstate->chunks[i].m = NULL;
600 	}
601 	cstate->cur_chunk = 0;
602 }
603 
604 static void *
newchunk_nolongjmp(compiler_state_t * cstate,size_t n)605 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
606 {
607 	struct chunk *cp;
608 	int k;
609 	size_t size;
610 
611 #ifndef __NetBSD__
612 	/* XXX Round up to nearest long. */
613 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
614 #else
615 	/* XXX Round up to structure boundary. */
616 	n = ALIGN(n);
617 #endif
618 
619 	cp = &cstate->chunks[cstate->cur_chunk];
620 	if (n > cp->n_left) {
621 		++cp;
622 		k = ++cstate->cur_chunk;
623 		if (k >= NCHUNKS) {
624 			bpf_set_error(cstate, "out of memory");
625 			return (NULL);
626 		}
627 		size = CHUNK0SIZE << k;
628 		cp->m = (void *)malloc(size);
629 		if (cp->m == NULL) {
630 			bpf_set_error(cstate, "out of memory");
631 			return (NULL);
632 		}
633 		memset((char *)cp->m, 0, size);
634 		cp->n_left = size;
635 		if (n > size) {
636 			bpf_set_error(cstate, "out of memory");
637 			return (NULL);
638 		}
639 	}
640 	cp->n_left -= n;
641 	return (void *)((char *)cp->m + cp->n_left);
642 }
643 
644 static void *
newchunk(compiler_state_t * cstate,size_t n)645 newchunk(compiler_state_t *cstate, size_t n)
646 {
647 	void *p;
648 
649 	p = newchunk_nolongjmp(cstate, n);
650 	if (p == NULL) {
651 		longjmp(cstate->top_ctx, 1);
652 		/*NOTREACHED*/
653 	}
654 	return (p);
655 }
656 
657 static void
freechunks(compiler_state_t * cstate)658 freechunks(compiler_state_t *cstate)
659 {
660 	int i;
661 
662 	for (i = 0; i < NCHUNKS; ++i)
663 		if (cstate->chunks[i].m != NULL)
664 			free(cstate->chunks[i].m);
665 }
666 
667 /*
668  * A strdup whose allocations are freed after code generation is over.
669  * This is used by the lexical analyzer, so it can't longjmp; it just
670  * returns NULL on an allocation error, and the callers must check
671  * for it.
672  */
673 char *
sdup(compiler_state_t * cstate,const char * s)674 sdup(compiler_state_t *cstate, const char *s)
675 {
676 	size_t n = strlen(s) + 1;
677 	char *cp = newchunk_nolongjmp(cstate, n);
678 
679 	if (cp == NULL)
680 		return (NULL);
681 	pcap_strlcpy(cp, s, n);
682 	return (cp);
683 }
684 
685 static inline struct block *
new_block(compiler_state_t * cstate,int code)686 new_block(compiler_state_t *cstate, int code)
687 {
688 	struct block *p;
689 
690 	p = (struct block *)newchunk(cstate, sizeof(*p));
691 	p->s.code = code;
692 	p->head = p;
693 
694 	return p;
695 }
696 
697 static inline struct slist *
new_stmt(compiler_state_t * cstate,int code)698 new_stmt(compiler_state_t *cstate, int code)
699 {
700 	struct slist *p;
701 
702 	p = (struct slist *)newchunk(cstate, sizeof(*p));
703 	p->s.code = code;
704 
705 	return p;
706 }
707 
708 static struct block *
gen_retblk(compiler_state_t * cstate,int v)709 gen_retblk(compiler_state_t *cstate, int v)
710 {
711 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
712 
713 	b->s.k = v;
714 	return b;
715 }
716 
717 static inline PCAP_NORETURN_DEF void
syntax(compiler_state_t * cstate)718 syntax(compiler_state_t *cstate)
719 {
720 	bpf_error(cstate, "syntax error in filter expression");
721 }
722 
723 int
pcap_compile(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)724 pcap_compile(pcap_t *p, struct bpf_program *program,
725 	     const char *buf, int optimize, bpf_u_int32 mask)
726 {
727 #ifdef _WIN32
728 	static int done = 0;
729 #endif
730 	compiler_state_t cstate;
731 	const char * volatile xbuf = buf;
732 	yyscan_t scanner = NULL;
733 	volatile YY_BUFFER_STATE in_buffer = NULL;
734 	u_int len;
735 	int  rc;
736 
737 	/*
738 	 * If this pcap_t hasn't been activated, it doesn't have a
739 	 * link-layer type, so we can't use it.
740 	 */
741 	if (!p->activated) {
742 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
743 		    "not-yet-activated pcap_t passed to pcap_compile");
744 		return (-1);
745 	}
746 
747 #ifdef _WIN32
748 	if (!done)
749 		pcap_wsockinit();
750 	done = 1;
751 #endif
752 
753 #ifdef ENABLE_REMOTE
754 	/*
755 	 * If the device on which we're capturing need to be notified
756 	 * that a new filter is being compiled, do so.
757 	 *
758 	 * This allows them to save a copy of it, in case, for example,
759 	 * they're implementing a form of remote packet capture, and
760 	 * want the remote machine to filter out the packets in which
761 	 * it's sending the packets it's captured.
762 	 *
763 	 * XXX - the fact that we happen to be compiling a filter
764 	 * doesn't necessarily mean we'll be installing it as the
765 	 * filter for this pcap_t; we might be running it from userland
766 	 * on captured packets to do packet classification.  We really
767 	 * need a better way of handling this, but this is all that
768 	 * the WinPcap remote capture code did.
769 	 */
770 	if (p->save_current_filter_op != NULL)
771 		(p->save_current_filter_op)(p, buf);
772 #endif
773 
774 	initchunks(&cstate);
775 	cstate.no_optimize = 0;
776 #ifdef INET6
777 	cstate.ai = NULL;
778 #endif
779 	cstate.e = NULL;
780 	cstate.ic.root = NULL;
781 	cstate.ic.cur_mark = 0;
782 	cstate.bpf_pcap = p;
783 	cstate.error_set = 0;
784 	init_regs(&cstate);
785 
786 	cstate.netmask = mask;
787 
788 	cstate.snaplen = pcap_snapshot(p);
789 	if (cstate.snaplen == 0) {
790 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
791 			 "snaplen of 0 rejects all packets");
792 		rc = -1;
793 		goto quit;
794 	}
795 
796 	if (pcap_lex_init(&scanner) != 0)
797 		pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
798 		    errno, "can't initialize scanner");
799 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
800 
801 	/*
802 	 * Associate the compiler state with the lexical analyzer
803 	 * state.
804 	 */
805 	pcap_set_extra(&cstate, scanner);
806 
807 	if (init_linktype(&cstate, p) == -1) {
808 		rc = -1;
809 		goto quit;
810 	}
811 	if (pcap_parse(scanner, &cstate) != 0) {
812 #ifdef INET6
813 		if (cstate.ai != NULL)
814 			freeaddrinfo(cstate.ai);
815 #endif
816 		if (cstate.e != NULL)
817 			free(cstate.e);
818 		rc = -1;
819 		goto quit;
820 	}
821 
822 	if (cstate.ic.root == NULL) {
823 		/*
824 		 * Catch errors reported by gen_retblk().
825 		 */
826 		if (setjmp(cstate.top_ctx)) {
827 			rc = -1;
828 			goto quit;
829 		}
830 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
831 	}
832 
833 	if (optimize && !cstate.no_optimize) {
834 		if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
835 			/* Failure */
836 			rc = -1;
837 			goto quit;
838 		}
839 		if (cstate.ic.root == NULL ||
840 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
841 			(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
842 			    "expression rejects all packets");
843 			rc = -1;
844 			goto quit;
845 		}
846 	}
847 	program->bf_insns = icode_to_fcode(&cstate.ic,
848 	    cstate.ic.root, &len, p->errbuf);
849 	if (program->bf_insns == NULL) {
850 		/* Failure */
851 		rc = -1;
852 		goto quit;
853 	}
854 	program->bf_len = len;
855 
856 	rc = 0;  /* We're all okay */
857 
858 quit:
859 	/*
860 	 * Clean up everything for the lexical analyzer.
861 	 */
862 	if (in_buffer != NULL)
863 		pcap__delete_buffer(in_buffer, scanner);
864 	if (scanner != NULL)
865 		pcap_lex_destroy(scanner);
866 
867 	/*
868 	 * Clean up our own allocated memory.
869 	 */
870 	freechunks(&cstate);
871 
872 	return (rc);
873 }
874 
875 /*
876  * entry point for using the compiler with no pcap open
877  * pass in all the stuff that is needed explicitly instead.
878  */
879 int
pcap_compile_nopcap(int snaplen_arg,int linktype_arg,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)880 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
881 		    struct bpf_program *program,
882 	     const char *buf, int optimize, bpf_u_int32 mask)
883 {
884 	pcap_t *p;
885 	int ret;
886 
887 	p = pcap_open_dead(linktype_arg, snaplen_arg);
888 	if (p == NULL)
889 		return (-1);
890 	ret = pcap_compile(p, program, buf, optimize, mask);
891 	pcap_close(p);
892 	return (ret);
893 }
894 
895 /*
896  * Clean up a "struct bpf_program" by freeing all the memory allocated
897  * in it.
898  */
899 void
pcap_freecode(struct bpf_program * program)900 pcap_freecode(struct bpf_program *program)
901 {
902 	program->bf_len = 0;
903 	if (program->bf_insns != NULL) {
904 		free((char *)program->bf_insns);
905 		program->bf_insns = NULL;
906 	}
907 }
908 
909 /*
910  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
911  * which of the jt and jf fields has been resolved and which is a pointer
912  * back to another unresolved block (or nil).  At least one of the fields
913  * in each block is already resolved.
914  */
915 static void
backpatch(struct block * list,struct block * target)916 backpatch(struct block *list, struct block *target)
917 {
918 	struct block *next;
919 
920 	while (list) {
921 		if (!list->sense) {
922 			next = JT(list);
923 			JT(list) = target;
924 		} else {
925 			next = JF(list);
926 			JF(list) = target;
927 		}
928 		list = next;
929 	}
930 }
931 
932 /*
933  * Merge the lists in b0 and b1, using the 'sense' field to indicate
934  * which of jt and jf is the link.
935  */
936 static void
merge(struct block * b0,struct block * b1)937 merge(struct block *b0, struct block *b1)
938 {
939 	register struct block **p = &b0;
940 
941 	/* Find end of list. */
942 	while (*p)
943 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
944 
945 	/* Concatenate the lists. */
946 	*p = b1;
947 }
948 
949 int
finish_parse(compiler_state_t * cstate,struct block * p)950 finish_parse(compiler_state_t *cstate, struct block *p)
951 {
952 	struct block *ppi_dlt_check;
953 
954 	/*
955 	 * Catch errors reported by us and routines below us, and return -1
956 	 * on an error.
957 	 */
958 	if (setjmp(cstate->top_ctx))
959 		return (-1);
960 
961 	/*
962 	 * Insert before the statements of the first (root) block any
963 	 * statements needed to load the lengths of any variable-length
964 	 * headers into registers.
965 	 *
966 	 * XXX - a fancier strategy would be to insert those before the
967 	 * statements of all blocks that use those lengths and that
968 	 * have no predecessors that use them, so that we only compute
969 	 * the lengths if we need them.  There might be even better
970 	 * approaches than that.
971 	 *
972 	 * However, those strategies would be more complicated, and
973 	 * as we don't generate code to compute a length if the
974 	 * program has no tests that use the length, and as most
975 	 * tests will probably use those lengths, we would just
976 	 * postpone computing the lengths so that it's not done
977 	 * for tests that fail early, and it's not clear that's
978 	 * worth the effort.
979 	 */
980 	insert_compute_vloffsets(cstate, p->head);
981 
982 	/*
983 	 * For DLT_PPI captures, generate a check of the per-packet
984 	 * DLT value to make sure it's DLT_IEEE802_11.
985 	 *
986 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
987 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
988 	 * with appropriate Ethernet information and use that rather
989 	 * than using something such as DLT_PPI where you don't know
990 	 * the link-layer header type until runtime, which, in the
991 	 * general case, would force us to generate both Ethernet *and*
992 	 * 802.11 code (*and* anything else for which PPI is used)
993 	 * and choose between them early in the BPF program?
994 	 */
995 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
996 	if (ppi_dlt_check != NULL)
997 		gen_and(ppi_dlt_check, p);
998 
999 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
1000 	p->sense = !p->sense;
1001 	backpatch(p, gen_retblk(cstate, 0));
1002 	cstate->ic.root = p->head;
1003 	return (0);
1004 }
1005 
1006 void
gen_and(struct block * b0,struct block * b1)1007 gen_and(struct block *b0, struct block *b1)
1008 {
1009 	backpatch(b0, b1->head);
1010 	b0->sense = !b0->sense;
1011 	b1->sense = !b1->sense;
1012 	merge(b1, b0);
1013 	b1->sense = !b1->sense;
1014 	b1->head = b0->head;
1015 }
1016 
1017 void
gen_or(struct block * b0,struct block * b1)1018 gen_or(struct block *b0, struct block *b1)
1019 {
1020 	b0->sense = !b0->sense;
1021 	backpatch(b0, b1->head);
1022 	b0->sense = !b0->sense;
1023 	merge(b1, b0);
1024 	b1->head = b0->head;
1025 }
1026 
1027 void
gen_not(struct block * b)1028 gen_not(struct block *b)
1029 {
1030 	b->sense = !b->sense;
1031 }
1032 
1033 static struct block *
gen_cmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1034 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1035     u_int size, bpf_u_int32 v)
1036 {
1037 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1038 }
1039 
1040 static struct block *
gen_cmp_gt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1041 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1042     u_int size, bpf_u_int32 v)
1043 {
1044 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1045 }
1046 
1047 static struct block *
gen_cmp_ge(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1048 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1049     u_int size, bpf_u_int32 v)
1050 {
1051 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1052 }
1053 
1054 static struct block *
gen_cmp_lt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1055 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1056     u_int size, bpf_u_int32 v)
1057 {
1058 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1059 }
1060 
1061 static struct block *
gen_cmp_le(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1062 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1063     u_int size, bpf_u_int32 v)
1064 {
1065 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1066 }
1067 
1068 static struct block *
gen_mcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v,bpf_u_int32 mask)1069 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1070     u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1071 {
1072 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1073 }
1074 
1075 static struct block *
gen_bcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,const u_char * v)1076 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1077     u_int size, const u_char *v)
1078 {
1079 	register struct block *b, *tmp;
1080 
1081 	b = NULL;
1082 	while (size >= 4) {
1083 		register const u_char *p = &v[size - 4];
1084 
1085 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1086 		    EXTRACT_BE_U_4(p));
1087 		if (b != NULL)
1088 			gen_and(b, tmp);
1089 		b = tmp;
1090 		size -= 4;
1091 	}
1092 	while (size >= 2) {
1093 		register const u_char *p = &v[size - 2];
1094 
1095 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1096 		    EXTRACT_BE_U_2(p));
1097 		if (b != NULL)
1098 			gen_and(b, tmp);
1099 		b = tmp;
1100 		size -= 2;
1101 	}
1102 	if (size > 0) {
1103 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1104 		if (b != NULL)
1105 			gen_and(b, tmp);
1106 		b = tmp;
1107 	}
1108 	return b;
1109 }
1110 
1111 /*
1112  * AND the field of size "size" at offset "offset" relative to the header
1113  * specified by "offrel" with "mask", and compare it with the value "v"
1114  * with the test specified by "jtype"; if "reverse" is true, the test
1115  * should test the opposite of "jtype".
1116  */
1117 static struct block *
gen_ncmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 mask,int jtype,int reverse,bpf_u_int32 v)1118 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1119     u_int size, bpf_u_int32 mask, int jtype, int reverse,
1120     bpf_u_int32 v)
1121 {
1122 	struct slist *s, *s2;
1123 	struct block *b;
1124 
1125 	s = gen_load_a(cstate, offrel, offset, size);
1126 
1127 	if (mask != 0xffffffff) {
1128 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1129 		s2->s.k = mask;
1130 		sappend(s, s2);
1131 	}
1132 
1133 	b = new_block(cstate, JMP(jtype));
1134 	b->stmts = s;
1135 	b->s.k = v;
1136 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1137 		gen_not(b);
1138 	return b;
1139 }
1140 
1141 static int
init_linktype(compiler_state_t * cstate,pcap_t * p)1142 init_linktype(compiler_state_t *cstate, pcap_t *p)
1143 {
1144 	cstate->pcap_fddipad = p->fddipad;
1145 
1146 	/*
1147 	 * We start out with only one link-layer header.
1148 	 */
1149 	cstate->outermostlinktype = pcap_datalink(p);
1150 	cstate->off_outermostlinkhdr.constant_part = 0;
1151 	cstate->off_outermostlinkhdr.is_variable = 0;
1152 	cstate->off_outermostlinkhdr.reg = -1;
1153 
1154 	cstate->prevlinktype = cstate->outermostlinktype;
1155 	cstate->off_prevlinkhdr.constant_part = 0;
1156 	cstate->off_prevlinkhdr.is_variable = 0;
1157 	cstate->off_prevlinkhdr.reg = -1;
1158 
1159 	cstate->linktype = cstate->outermostlinktype;
1160 	cstate->off_linkhdr.constant_part = 0;
1161 	cstate->off_linkhdr.is_variable = 0;
1162 	cstate->off_linkhdr.reg = -1;
1163 
1164 	/*
1165 	 * XXX
1166 	 */
1167 	cstate->off_linkpl.constant_part = 0;
1168 	cstate->off_linkpl.is_variable = 0;
1169 	cstate->off_linkpl.reg = -1;
1170 
1171 	cstate->off_linktype.constant_part = 0;
1172 	cstate->off_linktype.is_variable = 0;
1173 	cstate->off_linktype.reg = -1;
1174 
1175 	/*
1176 	 * Assume it's not raw ATM with a pseudo-header, for now.
1177 	 */
1178 	cstate->is_atm = 0;
1179 	cstate->off_vpi = OFFSET_NOT_SET;
1180 	cstate->off_vci = OFFSET_NOT_SET;
1181 	cstate->off_proto = OFFSET_NOT_SET;
1182 	cstate->off_payload = OFFSET_NOT_SET;
1183 
1184 	/*
1185 	 * And not Geneve.
1186 	 */
1187 	cstate->is_geneve = 0;
1188 
1189 	/*
1190 	 * No variable length VLAN offset by default
1191 	 */
1192 	cstate->is_vlan_vloffset = 0;
1193 
1194 	/*
1195 	 * And assume we're not doing SS7.
1196 	 */
1197 	cstate->off_li = OFFSET_NOT_SET;
1198 	cstate->off_li_hsl = OFFSET_NOT_SET;
1199 	cstate->off_sio = OFFSET_NOT_SET;
1200 	cstate->off_opc = OFFSET_NOT_SET;
1201 	cstate->off_dpc = OFFSET_NOT_SET;
1202 	cstate->off_sls = OFFSET_NOT_SET;
1203 
1204 	cstate->label_stack_depth = 0;
1205 	cstate->vlan_stack_depth = 0;
1206 
1207 	switch (cstate->linktype) {
1208 
1209 	case DLT_ARCNET:
1210 		cstate->off_linktype.constant_part = 2;
1211 		cstate->off_linkpl.constant_part = 6;
1212 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1213 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1214 		break;
1215 
1216 	case DLT_ARCNET_LINUX:
1217 		cstate->off_linktype.constant_part = 4;
1218 		cstate->off_linkpl.constant_part = 8;
1219 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1220 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1221 		break;
1222 
1223 	case DLT_EN10MB:
1224 		cstate->off_linktype.constant_part = 12;
1225 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1226 		cstate->off_nl = 0;		/* Ethernet II */
1227 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1228 		break;
1229 
1230 	case DLT_SLIP:
1231 		/*
1232 		 * SLIP doesn't have a link level type.  The 16 byte
1233 		 * header is hacked into our SLIP driver.
1234 		 */
1235 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1236 		cstate->off_linkpl.constant_part = 16;
1237 		cstate->off_nl = 0;
1238 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1239 		break;
1240 
1241 	case DLT_SLIP_BSDOS:
1242 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1243 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1244 		/* XXX end */
1245 		cstate->off_linkpl.constant_part = 24;
1246 		cstate->off_nl = 0;
1247 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1248 		break;
1249 
1250 	case DLT_NULL:
1251 	case DLT_LOOP:
1252 		cstate->off_linktype.constant_part = 0;
1253 		cstate->off_linkpl.constant_part = 4;
1254 		cstate->off_nl = 0;
1255 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1256 		break;
1257 
1258 	case DLT_ENC:
1259 		cstate->off_linktype.constant_part = 0;
1260 		cstate->off_linkpl.constant_part = 12;
1261 		cstate->off_nl = 0;
1262 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1263 		break;
1264 
1265 	case DLT_PPP:
1266 	case DLT_PPP_PPPD:
1267 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1268 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1269 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1270 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1271 		cstate->off_nl = 0;
1272 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1273 		break;
1274 
1275 	case DLT_PPP_ETHER:
1276 		/*
1277 		 * This does no include the Ethernet header, and
1278 		 * only covers session state.
1279 		 */
1280 		cstate->off_linktype.constant_part = 6;
1281 		cstate->off_linkpl.constant_part = 8;
1282 		cstate->off_nl = 0;
1283 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1284 		break;
1285 
1286 	case DLT_PPP_BSDOS:
1287 		cstate->off_linktype.constant_part = 5;
1288 		cstate->off_linkpl.constant_part = 24;
1289 		cstate->off_nl = 0;
1290 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1291 		break;
1292 
1293 	case DLT_FDDI:
1294 		/*
1295 		 * FDDI doesn't really have a link-level type field.
1296 		 * We set "off_linktype" to the offset of the LLC header.
1297 		 *
1298 		 * To check for Ethernet types, we assume that SSAP = SNAP
1299 		 * is being used and pick out the encapsulated Ethernet type.
1300 		 * XXX - should we generate code to check for SNAP?
1301 		 */
1302 		cstate->off_linktype.constant_part = 13;
1303 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1304 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1305 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1306 		cstate->off_nl = 8;		/* 802.2+SNAP */
1307 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1308 		break;
1309 
1310 	case DLT_IEEE802:
1311 		/*
1312 		 * Token Ring doesn't really have a link-level type field.
1313 		 * We set "off_linktype" to the offset of the LLC header.
1314 		 *
1315 		 * To check for Ethernet types, we assume that SSAP = SNAP
1316 		 * is being used and pick out the encapsulated Ethernet type.
1317 		 * XXX - should we generate code to check for SNAP?
1318 		 *
1319 		 * XXX - the header is actually variable-length.
1320 		 * Some various Linux patched versions gave 38
1321 		 * as "off_linktype" and 40 as "off_nl"; however,
1322 		 * if a token ring packet has *no* routing
1323 		 * information, i.e. is not source-routed, the correct
1324 		 * values are 20 and 22, as they are in the vanilla code.
1325 		 *
1326 		 * A packet is source-routed iff the uppermost bit
1327 		 * of the first byte of the source address, at an
1328 		 * offset of 8, has the uppermost bit set.  If the
1329 		 * packet is source-routed, the total number of bytes
1330 		 * of routing information is 2 plus bits 0x1F00 of
1331 		 * the 16-bit value at an offset of 14 (shifted right
1332 		 * 8 - figure out which byte that is).
1333 		 */
1334 		cstate->off_linktype.constant_part = 14;
1335 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1336 		cstate->off_nl = 8;		/* 802.2+SNAP */
1337 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1338 		break;
1339 
1340 	case DLT_PRISM_HEADER:
1341 	case DLT_IEEE802_11_RADIO_AVS:
1342 	case DLT_IEEE802_11_RADIO:
1343 		cstate->off_linkhdr.is_variable = 1;
1344 		/* Fall through, 802.11 doesn't have a variable link
1345 		 * prefix but is otherwise the same. */
1346 		/* FALLTHROUGH */
1347 
1348 	case DLT_IEEE802_11:
1349 		/*
1350 		 * 802.11 doesn't really have a link-level type field.
1351 		 * We set "off_linktype.constant_part" to the offset of
1352 		 * the LLC header.
1353 		 *
1354 		 * To check for Ethernet types, we assume that SSAP = SNAP
1355 		 * is being used and pick out the encapsulated Ethernet type.
1356 		 * XXX - should we generate code to check for SNAP?
1357 		 *
1358 		 * We also handle variable-length radio headers here.
1359 		 * The Prism header is in theory variable-length, but in
1360 		 * practice it's always 144 bytes long.  However, some
1361 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1362 		 * sometimes or always supply an AVS header, so we
1363 		 * have to check whether the radio header is a Prism
1364 		 * header or an AVS header, so, in practice, it's
1365 		 * variable-length.
1366 		 */
1367 		cstate->off_linktype.constant_part = 24;
1368 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1369 		cstate->off_linkpl.is_variable = 1;
1370 		cstate->off_nl = 8;		/* 802.2+SNAP */
1371 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1372 		break;
1373 
1374 	case DLT_PPI:
1375 		/*
1376 		 * At the moment we treat PPI the same way that we treat
1377 		 * normal Radiotap encoded packets. The difference is in
1378 		 * the function that generates the code at the beginning
1379 		 * to compute the header length.  Since this code generator
1380 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1381 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1382 		 * generate code to check for this too.
1383 		 */
1384 		cstate->off_linktype.constant_part = 24;
1385 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1386 		cstate->off_linkpl.is_variable = 1;
1387 		cstate->off_linkhdr.is_variable = 1;
1388 		cstate->off_nl = 8;		/* 802.2+SNAP */
1389 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1390 		break;
1391 
1392 	case DLT_ATM_RFC1483:
1393 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1394 		/*
1395 		 * assume routed, non-ISO PDUs
1396 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1397 		 *
1398 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1399 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1400 		 * latter would presumably be treated the way PPPoE
1401 		 * should be, so you can do "pppoe and udp port 2049"
1402 		 * or "pppoa and tcp port 80" and have it check for
1403 		 * PPPo{A,E} and a PPP protocol of IP and....
1404 		 */
1405 		cstate->off_linktype.constant_part = 0;
1406 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1407 		cstate->off_nl = 8;		/* 802.2+SNAP */
1408 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1409 		break;
1410 
1411 	case DLT_SUNATM:
1412 		/*
1413 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1414 		 * pseudo-header.
1415 		 */
1416 		cstate->is_atm = 1;
1417 		cstate->off_vpi = SUNATM_VPI_POS;
1418 		cstate->off_vci = SUNATM_VCI_POS;
1419 		cstate->off_proto = PROTO_POS;
1420 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1421 		cstate->off_linktype.constant_part = cstate->off_payload;
1422 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1423 		cstate->off_nl = 8;		/* 802.2+SNAP */
1424 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1425 		break;
1426 
1427 	case DLT_RAW:
1428 	case DLT_IPV4:
1429 	case DLT_IPV6:
1430 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1431 		cstate->off_linkpl.constant_part = 0;
1432 		cstate->off_nl = 0;
1433 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1434 		break;
1435 
1436 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket v1 */
1437 		cstate->off_linktype.constant_part = 14;
1438 		cstate->off_linkpl.constant_part = 16;
1439 		cstate->off_nl = 0;
1440 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1441 		break;
1442 
1443 	case DLT_LINUX_SLL2:	/* fake header for Linux cooked socket v2 */
1444 		cstate->off_linktype.constant_part = 0;
1445 		cstate->off_linkpl.constant_part = 20;
1446 		cstate->off_nl = 0;
1447 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1448 		break;
1449 
1450 	case DLT_LTALK:
1451 		/*
1452 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1453 		 * but really it just indicates whether there is a "short" or
1454 		 * "long" DDP packet following.
1455 		 */
1456 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1457 		cstate->off_linkpl.constant_part = 0;
1458 		cstate->off_nl = 0;
1459 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1460 		break;
1461 
1462 	case DLT_IP_OVER_FC:
1463 		/*
1464 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1465 		 * link-level type field.  We set "off_linktype" to the
1466 		 * offset of the LLC header.
1467 		 *
1468 		 * To check for Ethernet types, we assume that SSAP = SNAP
1469 		 * is being used and pick out the encapsulated Ethernet type.
1470 		 * XXX - should we generate code to check for SNAP? RFC
1471 		 * 2625 says SNAP should be used.
1472 		 */
1473 		cstate->off_linktype.constant_part = 16;
1474 		cstate->off_linkpl.constant_part = 16;
1475 		cstate->off_nl = 8;		/* 802.2+SNAP */
1476 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1477 		break;
1478 
1479 	case DLT_FRELAY:
1480 		/*
1481 		 * XXX - we should set this to handle SNAP-encapsulated
1482 		 * frames (NLPID of 0x80).
1483 		 */
1484 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1485 		cstate->off_linkpl.constant_part = 0;
1486 		cstate->off_nl = 0;
1487 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1488 		break;
1489 
1490                 /*
1491                  * the only BPF-interesting FRF.16 frames are non-control frames;
1492                  * Frame Relay has a variable length link-layer
1493                  * so lets start with offset 4 for now and increments later on (FIXME);
1494                  */
1495 	case DLT_MFR:
1496 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1497 		cstate->off_linkpl.constant_part = 0;
1498 		cstate->off_nl = 4;
1499 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1500 		break;
1501 
1502 	case DLT_APPLE_IP_OVER_IEEE1394:
1503 		cstate->off_linktype.constant_part = 16;
1504 		cstate->off_linkpl.constant_part = 18;
1505 		cstate->off_nl = 0;
1506 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1507 		break;
1508 
1509 	case DLT_SYMANTEC_FIREWALL:
1510 		cstate->off_linktype.constant_part = 6;
1511 		cstate->off_linkpl.constant_part = 44;
1512 		cstate->off_nl = 0;		/* Ethernet II */
1513 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1514 		break;
1515 
1516 #ifdef HAVE_NET_PFVAR_H
1517 	case DLT_PFLOG:
1518 		cstate->off_linktype.constant_part = 0;
1519 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1520 		cstate->off_nl = 0;
1521 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1522 		break;
1523 #endif
1524 
1525         case DLT_JUNIPER_MFR:
1526         case DLT_JUNIPER_MLFR:
1527         case DLT_JUNIPER_MLPPP:
1528         case DLT_JUNIPER_PPP:
1529         case DLT_JUNIPER_CHDLC:
1530         case DLT_JUNIPER_FRELAY:
1531 		cstate->off_linktype.constant_part = 4;
1532 		cstate->off_linkpl.constant_part = 4;
1533 		cstate->off_nl = 0;
1534 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1535                 break;
1536 
1537 	case DLT_JUNIPER_ATM1:
1538 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1539 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1540 		cstate->off_nl = 0;
1541 		cstate->off_nl_nosnap = 10;
1542 		break;
1543 
1544 	case DLT_JUNIPER_ATM2:
1545 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1546 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1547 		cstate->off_nl = 0;
1548 		cstate->off_nl_nosnap = 10;
1549 		break;
1550 
1551 		/* frames captured on a Juniper PPPoE service PIC
1552 		 * contain raw ethernet frames */
1553 	case DLT_JUNIPER_PPPOE:
1554         case DLT_JUNIPER_ETHER:
1555 		cstate->off_linkpl.constant_part = 14;
1556 		cstate->off_linktype.constant_part = 16;
1557 		cstate->off_nl = 18;		/* Ethernet II */
1558 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1559 		break;
1560 
1561 	case DLT_JUNIPER_PPPOE_ATM:
1562 		cstate->off_linktype.constant_part = 4;
1563 		cstate->off_linkpl.constant_part = 6;
1564 		cstate->off_nl = 0;
1565 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1566 		break;
1567 
1568 	case DLT_JUNIPER_GGSN:
1569 		cstate->off_linktype.constant_part = 6;
1570 		cstate->off_linkpl.constant_part = 12;
1571 		cstate->off_nl = 0;
1572 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1573 		break;
1574 
1575 	case DLT_JUNIPER_ES:
1576 		cstate->off_linktype.constant_part = 6;
1577 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1578 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1579 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1580 		break;
1581 
1582 	case DLT_JUNIPER_MONITOR:
1583 		cstate->off_linktype.constant_part = 12;
1584 		cstate->off_linkpl.constant_part = 12;
1585 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1586 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1587 		break;
1588 
1589 	case DLT_BACNET_MS_TP:
1590 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1591 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1592 		cstate->off_nl = OFFSET_NOT_SET;
1593 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1594 		break;
1595 
1596 	case DLT_JUNIPER_SERVICES:
1597 		cstate->off_linktype.constant_part = 12;
1598 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1599 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1600 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1601 		break;
1602 
1603 	case DLT_JUNIPER_VP:
1604 		cstate->off_linktype.constant_part = 18;
1605 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1606 		cstate->off_nl = OFFSET_NOT_SET;
1607 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1608 		break;
1609 
1610 	case DLT_JUNIPER_ST:
1611 		cstate->off_linktype.constant_part = 18;
1612 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1613 		cstate->off_nl = OFFSET_NOT_SET;
1614 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1615 		break;
1616 
1617 	case DLT_JUNIPER_ISM:
1618 		cstate->off_linktype.constant_part = 8;
1619 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1620 		cstate->off_nl = OFFSET_NOT_SET;
1621 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1622 		break;
1623 
1624 	case DLT_JUNIPER_VS:
1625 	case DLT_JUNIPER_SRX_E2E:
1626 	case DLT_JUNIPER_FIBRECHANNEL:
1627 	case DLT_JUNIPER_ATM_CEMIC:
1628 		cstate->off_linktype.constant_part = 8;
1629 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1630 		cstate->off_nl = OFFSET_NOT_SET;
1631 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1632 		break;
1633 
1634 	case DLT_MTP2:
1635 		cstate->off_li = 2;
1636 		cstate->off_li_hsl = 4;
1637 		cstate->off_sio = 3;
1638 		cstate->off_opc = 4;
1639 		cstate->off_dpc = 4;
1640 		cstate->off_sls = 7;
1641 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1642 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1643 		cstate->off_nl = OFFSET_NOT_SET;
1644 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1645 		break;
1646 
1647 	case DLT_MTP2_WITH_PHDR:
1648 		cstate->off_li = 6;
1649 		cstate->off_li_hsl = 8;
1650 		cstate->off_sio = 7;
1651 		cstate->off_opc = 8;
1652 		cstate->off_dpc = 8;
1653 		cstate->off_sls = 11;
1654 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1655 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1656 		cstate->off_nl = OFFSET_NOT_SET;
1657 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1658 		break;
1659 
1660 	case DLT_ERF:
1661 		cstate->off_li = 22;
1662 		cstate->off_li_hsl = 24;
1663 		cstate->off_sio = 23;
1664 		cstate->off_opc = 24;
1665 		cstate->off_dpc = 24;
1666 		cstate->off_sls = 27;
1667 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1668 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1669 		cstate->off_nl = OFFSET_NOT_SET;
1670 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1671 		break;
1672 
1673 	case DLT_PFSYNC:
1674 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1675 		cstate->off_linkpl.constant_part = 4;
1676 		cstate->off_nl = 0;
1677 		cstate->off_nl_nosnap = 0;
1678 		break;
1679 
1680 	case DLT_AX25_KISS:
1681 		/*
1682 		 * Currently, only raw "link[N:M]" filtering is supported.
1683 		 */
1684 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1685 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1686 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1687 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1688 		break;
1689 
1690 	case DLT_IPNET:
1691 		cstate->off_linktype.constant_part = 1;
1692 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1693 		cstate->off_nl = 0;
1694 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1695 		break;
1696 
1697 	case DLT_NETANALYZER:
1698 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1699 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1700 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1701 		cstate->off_nl = 0;		/* Ethernet II */
1702 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1703 		break;
1704 
1705 	case DLT_NETANALYZER_TRANSPARENT:
1706 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1707 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1708 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1709 		cstate->off_nl = 0;		/* Ethernet II */
1710 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1711 		break;
1712 
1713 	default:
1714 		/*
1715 		 * For values in the range in which we've assigned new
1716 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1717 		 */
1718 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1719 		    cstate->linktype <= DLT_MATCHING_MAX) {
1720 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1721 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1722 			cstate->off_nl = OFFSET_NOT_SET;
1723 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1724 		} else {
1725 			bpf_set_error(cstate, "unknown data link type %d", cstate->linktype);
1726 			return (-1);
1727 		}
1728 		break;
1729 	}
1730 
1731 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1732 	return (0);
1733 }
1734 
1735 /*
1736  * Load a value relative to the specified absolute offset.
1737  */
1738 static struct slist *
gen_load_absoffsetrel(compiler_state_t * cstate,bpf_abs_offset * abs_offset,u_int offset,u_int size)1739 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1740     u_int offset, u_int size)
1741 {
1742 	struct slist *s, *s2;
1743 
1744 	s = gen_abs_offset_varpart(cstate, abs_offset);
1745 
1746 	/*
1747 	 * If "s" is non-null, it has code to arrange that the X register
1748 	 * contains the variable part of the absolute offset, so we
1749 	 * generate a load relative to that, with an offset of
1750 	 * abs_offset->constant_part + offset.
1751 	 *
1752 	 * Otherwise, we can do an absolute load with an offset of
1753 	 * abs_offset->constant_part + offset.
1754 	 */
1755 	if (s != NULL) {
1756 		/*
1757 		 * "s" points to a list of statements that puts the
1758 		 * variable part of the absolute offset into the X register.
1759 		 * Do an indirect load, to use the X register as an offset.
1760 		 */
1761 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1762 		s2->s.k = abs_offset->constant_part + offset;
1763 		sappend(s, s2);
1764 	} else {
1765 		/*
1766 		 * There is no variable part of the absolute offset, so
1767 		 * just do an absolute load.
1768 		 */
1769 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1770 		s->s.k = abs_offset->constant_part + offset;
1771 	}
1772 	return s;
1773 }
1774 
1775 /*
1776  * Load a value relative to the beginning of the specified header.
1777  */
1778 static struct slist *
gen_load_a(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size)1779 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1780     u_int size)
1781 {
1782 	struct slist *s, *s2;
1783 
1784 	/*
1785 	 * Squelch warnings from compilers that *don't* assume that
1786 	 * offrel always has a valid enum value and therefore don't
1787 	 * assume that we'll always go through one of the case arms.
1788 	 *
1789 	 * If we have a default case, compilers that *do* assume that
1790 	 * will then complain about the default case code being
1791 	 * unreachable.
1792 	 *
1793 	 * Damned if you do, damned if you don't.
1794 	 */
1795 	s = NULL;
1796 
1797 	switch (offrel) {
1798 
1799 	case OR_PACKET:
1800                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1801                 s->s.k = offset;
1802 		break;
1803 
1804 	case OR_LINKHDR:
1805 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1806 		break;
1807 
1808 	case OR_PREVLINKHDR:
1809 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1810 		break;
1811 
1812 	case OR_LLC:
1813 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1814 		break;
1815 
1816 	case OR_PREVMPLSHDR:
1817 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1818 		break;
1819 
1820 	case OR_LINKPL:
1821 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1822 		break;
1823 
1824 	case OR_LINKPL_NOSNAP:
1825 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1826 		break;
1827 
1828 	case OR_LINKTYPE:
1829 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1830 		break;
1831 
1832 	case OR_TRAN_IPV4:
1833 		/*
1834 		 * Load the X register with the length of the IPv4 header
1835 		 * (plus the offset of the link-layer header, if it's
1836 		 * preceded by a variable-length header such as a radio
1837 		 * header), in bytes.
1838 		 */
1839 		s = gen_loadx_iphdrlen(cstate);
1840 
1841 		/*
1842 		 * Load the item at {offset of the link-layer payload} +
1843 		 * {offset, relative to the start of the link-layer
1844 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1845 		 * {specified offset}.
1846 		 *
1847 		 * If the offset of the link-layer payload is variable,
1848 		 * the variable part of that offset is included in the
1849 		 * value in the X register, and we include the constant
1850 		 * part in the offset of the load.
1851 		 */
1852 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1853 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1854 		sappend(s, s2);
1855 		break;
1856 
1857 	case OR_TRAN_IPV6:
1858 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1859 		break;
1860 	}
1861 	return s;
1862 }
1863 
1864 /*
1865  * Generate code to load into the X register the sum of the length of
1866  * the IPv4 header and the variable part of the offset of the link-layer
1867  * payload.
1868  */
1869 static struct slist *
gen_loadx_iphdrlen(compiler_state_t * cstate)1870 gen_loadx_iphdrlen(compiler_state_t *cstate)
1871 {
1872 	struct slist *s, *s2;
1873 
1874 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1875 	if (s != NULL) {
1876 		/*
1877 		 * The offset of the link-layer payload has a variable
1878 		 * part.  "s" points to a list of statements that put
1879 		 * the variable part of that offset into the X register.
1880 		 *
1881 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1882 		 * don't have a constant offset, so we have to load the
1883 		 * value in question into the A register and add to it
1884 		 * the value from the X register.
1885 		 */
1886 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1887 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1888 		sappend(s, s2);
1889 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1890 		s2->s.k = 0xf;
1891 		sappend(s, s2);
1892 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1893 		s2->s.k = 2;
1894 		sappend(s, s2);
1895 
1896 		/*
1897 		 * The A register now contains the length of the IP header.
1898 		 * We need to add to it the variable part of the offset of
1899 		 * the link-layer payload, which is still in the X
1900 		 * register, and move the result into the X register.
1901 		 */
1902 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1903 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1904 	} else {
1905 		/*
1906 		 * The offset of the link-layer payload is a constant,
1907 		 * so no code was generated to load the (non-existent)
1908 		 * variable part of that offset.
1909 		 *
1910 		 * This means we can use the 4*([k]&0xf) addressing
1911 		 * mode.  Load the length of the IPv4 header, which
1912 		 * is at an offset of cstate->off_nl from the beginning of
1913 		 * the link-layer payload, and thus at an offset of
1914 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1915 		 * of the raw packet data, using that addressing mode.
1916 		 */
1917 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1918 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1919 	}
1920 	return s;
1921 }
1922 
1923 
1924 static struct block *
gen_uncond(compiler_state_t * cstate,int rsense)1925 gen_uncond(compiler_state_t *cstate, int rsense)
1926 {
1927 	struct block *b;
1928 	struct slist *s;
1929 
1930 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1931 	s->s.k = !rsense;
1932 	b = new_block(cstate, JMP(BPF_JEQ));
1933 	b->stmts = s;
1934 
1935 	return b;
1936 }
1937 
1938 static inline struct block *
gen_true(compiler_state_t * cstate)1939 gen_true(compiler_state_t *cstate)
1940 {
1941 	return gen_uncond(cstate, 1);
1942 }
1943 
1944 static inline struct block *
gen_false(compiler_state_t * cstate)1945 gen_false(compiler_state_t *cstate)
1946 {
1947 	return gen_uncond(cstate, 0);
1948 }
1949 
1950 /*
1951  * Byte-swap a 32-bit number.
1952  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1953  * big-endian platforms.)
1954  */
1955 #define	SWAPLONG(y) \
1956 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1957 
1958 /*
1959  * Generate code to match a particular packet type.
1960  *
1961  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1962  * value, if <= ETHERMTU.  We use that to determine whether to
1963  * match the type/length field or to check the type/length field for
1964  * a value <= ETHERMTU to see whether it's a type field and then do
1965  * the appropriate test.
1966  */
1967 static struct block *
gen_ether_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)1968 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1969 {
1970 	struct block *b0, *b1;
1971 
1972 	switch (ll_proto) {
1973 
1974 	case LLCSAP_ISONS:
1975 	case LLCSAP_IP:
1976 	case LLCSAP_NETBEUI:
1977 		/*
1978 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1979 		 * so we check the DSAP and SSAP.
1980 		 *
1981 		 * LLCSAP_IP checks for IP-over-802.2, rather
1982 		 * than IP-over-Ethernet or IP-over-SNAP.
1983 		 *
1984 		 * XXX - should we check both the DSAP and the
1985 		 * SSAP, like this, or should we check just the
1986 		 * DSAP, as we do for other types <= ETHERMTU
1987 		 * (i.e., other SAP values)?
1988 		 */
1989 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1990 		gen_not(b0);
1991 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1992 		gen_and(b0, b1);
1993 		return b1;
1994 
1995 	case LLCSAP_IPX:
1996 		/*
1997 		 * Check for;
1998 		 *
1999 		 *	Ethernet_II frames, which are Ethernet
2000 		 *	frames with a frame type of ETHERTYPE_IPX;
2001 		 *
2002 		 *	Ethernet_802.3 frames, which are 802.3
2003 		 *	frames (i.e., the type/length field is
2004 		 *	a length field, <= ETHERMTU, rather than
2005 		 *	a type field) with the first two bytes
2006 		 *	after the Ethernet/802.3 header being
2007 		 *	0xFFFF;
2008 		 *
2009 		 *	Ethernet_802.2 frames, which are 802.3
2010 		 *	frames with an 802.2 LLC header and
2011 		 *	with the IPX LSAP as the DSAP in the LLC
2012 		 *	header;
2013 		 *
2014 		 *	Ethernet_SNAP frames, which are 802.3
2015 		 *	frames with an LLC header and a SNAP
2016 		 *	header and with an OUI of 0x000000
2017 		 *	(encapsulated Ethernet) and a protocol
2018 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2019 		 *
2020 		 * XXX - should we generate the same code both
2021 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2022 		 */
2023 
2024 		/*
2025 		 * This generates code to check both for the
2026 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2027 		 */
2028 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2029 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2030 		gen_or(b0, b1);
2031 
2032 		/*
2033 		 * Now we add code to check for SNAP frames with
2034 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2035 		 */
2036 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2037 		gen_or(b0, b1);
2038 
2039 		/*
2040 		 * Now we generate code to check for 802.3
2041 		 * frames in general.
2042 		 */
2043 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2044 		gen_not(b0);
2045 
2046 		/*
2047 		 * Now add the check for 802.3 frames before the
2048 		 * check for Ethernet_802.2 and Ethernet_802.3,
2049 		 * as those checks should only be done on 802.3
2050 		 * frames, not on Ethernet frames.
2051 		 */
2052 		gen_and(b0, b1);
2053 
2054 		/*
2055 		 * Now add the check for Ethernet_II frames, and
2056 		 * do that before checking for the other frame
2057 		 * types.
2058 		 */
2059 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2060 		gen_or(b0, b1);
2061 		return b1;
2062 
2063 	case ETHERTYPE_ATALK:
2064 	case ETHERTYPE_AARP:
2065 		/*
2066 		 * EtherTalk (AppleTalk protocols on Ethernet link
2067 		 * layer) may use 802.2 encapsulation.
2068 		 */
2069 
2070 		/*
2071 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2072 		 * we check for an Ethernet type field less than
2073 		 * 1500, which means it's an 802.3 length field.
2074 		 */
2075 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2076 		gen_not(b0);
2077 
2078 		/*
2079 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2080 		 * SNAP packets with an organization code of
2081 		 * 0x080007 (Apple, for Appletalk) and a protocol
2082 		 * type of ETHERTYPE_ATALK (Appletalk).
2083 		 *
2084 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2085 		 * SNAP packets with an organization code of
2086 		 * 0x000000 (encapsulated Ethernet) and a protocol
2087 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2088 		 */
2089 		if (ll_proto == ETHERTYPE_ATALK)
2090 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2091 		else	/* ll_proto == ETHERTYPE_AARP */
2092 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2093 		gen_and(b0, b1);
2094 
2095 		/*
2096 		 * Check for Ethernet encapsulation (Ethertalk
2097 		 * phase 1?); we just check for the Ethernet
2098 		 * protocol type.
2099 		 */
2100 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2101 
2102 		gen_or(b0, b1);
2103 		return b1;
2104 
2105 	default:
2106 		if (ll_proto <= ETHERMTU) {
2107 			/*
2108 			 * This is an LLC SAP value, so the frames
2109 			 * that match would be 802.2 frames.
2110 			 * Check that the frame is an 802.2 frame
2111 			 * (i.e., that the length/type field is
2112 			 * a length field, <= ETHERMTU) and
2113 			 * then check the DSAP.
2114 			 */
2115 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2116 			gen_not(b0);
2117 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2118 			gen_and(b0, b1);
2119 			return b1;
2120 		} else {
2121 			/*
2122 			 * This is an Ethernet type, so compare
2123 			 * the length/type field with it (if
2124 			 * the frame is an 802.2 frame, the length
2125 			 * field will be <= ETHERMTU, and, as
2126 			 * "ll_proto" is > ETHERMTU, this test
2127 			 * will fail and the frame won't match,
2128 			 * which is what we want).
2129 			 */
2130 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2131 		}
2132 	}
2133 }
2134 
2135 static struct block *
gen_loopback_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)2136 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2137 {
2138 	/*
2139 	 * For DLT_NULL, the link-layer header is a 32-bit word
2140 	 * containing an AF_ value in *host* byte order, and for
2141 	 * DLT_ENC, the link-layer header begins with a 32-bit
2142 	 * word containing an AF_ value in host byte order.
2143 	 *
2144 	 * In addition, if we're reading a saved capture file,
2145 	 * the host byte order in the capture may not be the
2146 	 * same as the host byte order on this machine.
2147 	 *
2148 	 * For DLT_LOOP, the link-layer header is a 32-bit
2149 	 * word containing an AF_ value in *network* byte order.
2150 	 */
2151 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2152 		/*
2153 		 * The AF_ value is in host byte order, but the BPF
2154 		 * interpreter will convert it to network byte order.
2155 		 *
2156 		 * If this is a save file, and it's from a machine
2157 		 * with the opposite byte order to ours, we byte-swap
2158 		 * the AF_ value.
2159 		 *
2160 		 * Then we run it through "htonl()", and generate
2161 		 * code to compare against the result.
2162 		 */
2163 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2164 			ll_proto = SWAPLONG(ll_proto);
2165 		ll_proto = htonl(ll_proto);
2166 	}
2167 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2168 }
2169 
2170 /*
2171  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2172  * or IPv6 then we have an error.
2173  */
2174 static struct block *
gen_ipnet_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)2175 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2176 {
2177 	switch (ll_proto) {
2178 
2179 	case ETHERTYPE_IP:
2180 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2181 		/*NOTREACHED*/
2182 
2183 	case ETHERTYPE_IPV6:
2184 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2185 		/*NOTREACHED*/
2186 
2187 	default:
2188 		break;
2189 	}
2190 
2191 	return gen_false(cstate);
2192 }
2193 
2194 /*
2195  * Generate code to match a particular packet type.
2196  *
2197  * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2198  * value, if <= ETHERMTU.  We use that to determine whether to
2199  * match the type field or to check the type field for the special
2200  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2201  */
2202 static struct block *
gen_linux_sll_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)2203 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2204 {
2205 	struct block *b0, *b1;
2206 
2207 	switch (ll_proto) {
2208 
2209 	case LLCSAP_ISONS:
2210 	case LLCSAP_IP:
2211 	case LLCSAP_NETBEUI:
2212 		/*
2213 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2214 		 * so we check the DSAP and SSAP.
2215 		 *
2216 		 * LLCSAP_IP checks for IP-over-802.2, rather
2217 		 * than IP-over-Ethernet or IP-over-SNAP.
2218 		 *
2219 		 * XXX - should we check both the DSAP and the
2220 		 * SSAP, like this, or should we check just the
2221 		 * DSAP, as we do for other types <= ETHERMTU
2222 		 * (i.e., other SAP values)?
2223 		 */
2224 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2225 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2226 		gen_and(b0, b1);
2227 		return b1;
2228 
2229 	case LLCSAP_IPX:
2230 		/*
2231 		 *	Ethernet_II frames, which are Ethernet
2232 		 *	frames with a frame type of ETHERTYPE_IPX;
2233 		 *
2234 		 *	Ethernet_802.3 frames, which have a frame
2235 		 *	type of LINUX_SLL_P_802_3;
2236 		 *
2237 		 *	Ethernet_802.2 frames, which are 802.3
2238 		 *	frames with an 802.2 LLC header (i.e, have
2239 		 *	a frame type of LINUX_SLL_P_802_2) and
2240 		 *	with the IPX LSAP as the DSAP in the LLC
2241 		 *	header;
2242 		 *
2243 		 *	Ethernet_SNAP frames, which are 802.3
2244 		 *	frames with an LLC header and a SNAP
2245 		 *	header and with an OUI of 0x000000
2246 		 *	(encapsulated Ethernet) and a protocol
2247 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2248 		 *
2249 		 * First, do the checks on LINUX_SLL_P_802_2
2250 		 * frames; generate the check for either
2251 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2252 		 * then put a check for LINUX_SLL_P_802_2 frames
2253 		 * before it.
2254 		 */
2255 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2256 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2257 		gen_or(b0, b1);
2258 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2259 		gen_and(b0, b1);
2260 
2261 		/*
2262 		 * Now check for 802.3 frames and OR that with
2263 		 * the previous test.
2264 		 */
2265 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2266 		gen_or(b0, b1);
2267 
2268 		/*
2269 		 * Now add the check for Ethernet_II frames, and
2270 		 * do that before checking for the other frame
2271 		 * types.
2272 		 */
2273 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2274 		gen_or(b0, b1);
2275 		return b1;
2276 
2277 	case ETHERTYPE_ATALK:
2278 	case ETHERTYPE_AARP:
2279 		/*
2280 		 * EtherTalk (AppleTalk protocols on Ethernet link
2281 		 * layer) may use 802.2 encapsulation.
2282 		 */
2283 
2284 		/*
2285 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2286 		 * we check for the 802.2 protocol type in the
2287 		 * "Ethernet type" field.
2288 		 */
2289 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2290 
2291 		/*
2292 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2293 		 * SNAP packets with an organization code of
2294 		 * 0x080007 (Apple, for Appletalk) and a protocol
2295 		 * type of ETHERTYPE_ATALK (Appletalk).
2296 		 *
2297 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2298 		 * SNAP packets with an organization code of
2299 		 * 0x000000 (encapsulated Ethernet) and a protocol
2300 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2301 		 */
2302 		if (ll_proto == ETHERTYPE_ATALK)
2303 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2304 		else	/* ll_proto == ETHERTYPE_AARP */
2305 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2306 		gen_and(b0, b1);
2307 
2308 		/*
2309 		 * Check for Ethernet encapsulation (Ethertalk
2310 		 * phase 1?); we just check for the Ethernet
2311 		 * protocol type.
2312 		 */
2313 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2314 
2315 		gen_or(b0, b1);
2316 		return b1;
2317 
2318 	default:
2319 		if (ll_proto <= ETHERMTU) {
2320 			/*
2321 			 * This is an LLC SAP value, so the frames
2322 			 * that match would be 802.2 frames.
2323 			 * Check for the 802.2 protocol type
2324 			 * in the "Ethernet type" field, and
2325 			 * then check the DSAP.
2326 			 */
2327 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2328 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2329 			     ll_proto);
2330 			gen_and(b0, b1);
2331 			return b1;
2332 		} else {
2333 			/*
2334 			 * This is an Ethernet type, so compare
2335 			 * the length/type field with it (if
2336 			 * the frame is an 802.2 frame, the length
2337 			 * field will be <= ETHERMTU, and, as
2338 			 * "ll_proto" is > ETHERMTU, this test
2339 			 * will fail and the frame won't match,
2340 			 * which is what we want).
2341 			 */
2342 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2343 		}
2344 	}
2345 }
2346 
2347 static struct slist *
gen_load_prism_llprefixlen(compiler_state_t * cstate)2348 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2349 {
2350 	struct slist *s1, *s2;
2351 	struct slist *sjeq_avs_cookie;
2352 	struct slist *sjcommon;
2353 
2354 	/*
2355 	 * This code is not compatible with the optimizer, as
2356 	 * we are generating jmp instructions within a normal
2357 	 * slist of instructions
2358 	 */
2359 	cstate->no_optimize = 1;
2360 
2361 	/*
2362 	 * Generate code to load the length of the radio header into
2363 	 * the register assigned to hold that length, if one has been
2364 	 * assigned.  (If one hasn't been assigned, no code we've
2365 	 * generated uses that prefix, so we don't need to generate any
2366 	 * code to load it.)
2367 	 *
2368 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2369 	 * or always use the AVS header rather than the Prism header.
2370 	 * We load a 4-byte big-endian value at the beginning of the
2371 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2372 	 * it's equal to 0x80211000.  If so, that indicates that it's
2373 	 * an AVS header (the masked-out bits are the version number).
2374 	 * Otherwise, it's a Prism header.
2375 	 *
2376 	 * XXX - the Prism header is also, in theory, variable-length,
2377 	 * but no known software generates headers that aren't 144
2378 	 * bytes long.
2379 	 */
2380 	if (cstate->off_linkhdr.reg != -1) {
2381 		/*
2382 		 * Load the cookie.
2383 		 */
2384 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2385 		s1->s.k = 0;
2386 
2387 		/*
2388 		 * AND it with 0xFFFFF000.
2389 		 */
2390 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2391 		s2->s.k = 0xFFFFF000;
2392 		sappend(s1, s2);
2393 
2394 		/*
2395 		 * Compare with 0x80211000.
2396 		 */
2397 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2398 		sjeq_avs_cookie->s.k = 0x80211000;
2399 		sappend(s1, sjeq_avs_cookie);
2400 
2401 		/*
2402 		 * If it's AVS:
2403 		 *
2404 		 * The 4 bytes at an offset of 4 from the beginning of
2405 		 * the AVS header are the length of the AVS header.
2406 		 * That field is big-endian.
2407 		 */
2408 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2409 		s2->s.k = 4;
2410 		sappend(s1, s2);
2411 		sjeq_avs_cookie->s.jt = s2;
2412 
2413 		/*
2414 		 * Now jump to the code to allocate a register
2415 		 * into which to save the header length and
2416 		 * store the length there.  (The "jump always"
2417 		 * instruction needs to have the k field set;
2418 		 * it's added to the PC, so, as we're jumping
2419 		 * over a single instruction, it should be 1.)
2420 		 */
2421 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2422 		sjcommon->s.k = 1;
2423 		sappend(s1, sjcommon);
2424 
2425 		/*
2426 		 * Now for the code that handles the Prism header.
2427 		 * Just load the length of the Prism header (144)
2428 		 * into the A register.  Have the test for an AVS
2429 		 * header branch here if we don't have an AVS header.
2430 		 */
2431 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2432 		s2->s.k = 144;
2433 		sappend(s1, s2);
2434 		sjeq_avs_cookie->s.jf = s2;
2435 
2436 		/*
2437 		 * Now allocate a register to hold that value and store
2438 		 * it.  The code for the AVS header will jump here after
2439 		 * loading the length of the AVS header.
2440 		 */
2441 		s2 = new_stmt(cstate, BPF_ST);
2442 		s2->s.k = cstate->off_linkhdr.reg;
2443 		sappend(s1, s2);
2444 		sjcommon->s.jf = s2;
2445 
2446 		/*
2447 		 * Now move it into the X register.
2448 		 */
2449 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2450 		sappend(s1, s2);
2451 
2452 		return (s1);
2453 	} else
2454 		return (NULL);
2455 }
2456 
2457 static struct slist *
gen_load_avs_llprefixlen(compiler_state_t * cstate)2458 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2459 {
2460 	struct slist *s1, *s2;
2461 
2462 	/*
2463 	 * Generate code to load the length of the AVS header into
2464 	 * the register assigned to hold that length, if one has been
2465 	 * assigned.  (If one hasn't been assigned, no code we've
2466 	 * generated uses that prefix, so we don't need to generate any
2467 	 * code to load it.)
2468 	 */
2469 	if (cstate->off_linkhdr.reg != -1) {
2470 		/*
2471 		 * The 4 bytes at an offset of 4 from the beginning of
2472 		 * the AVS header are the length of the AVS header.
2473 		 * That field is big-endian.
2474 		 */
2475 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2476 		s1->s.k = 4;
2477 
2478 		/*
2479 		 * Now allocate a register to hold that value and store
2480 		 * it.
2481 		 */
2482 		s2 = new_stmt(cstate, BPF_ST);
2483 		s2->s.k = cstate->off_linkhdr.reg;
2484 		sappend(s1, s2);
2485 
2486 		/*
2487 		 * Now move it into the X register.
2488 		 */
2489 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2490 		sappend(s1, s2);
2491 
2492 		return (s1);
2493 	} else
2494 		return (NULL);
2495 }
2496 
2497 static struct slist *
gen_load_radiotap_llprefixlen(compiler_state_t * cstate)2498 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2499 {
2500 	struct slist *s1, *s2;
2501 
2502 	/*
2503 	 * Generate code to load the length of the radiotap header into
2504 	 * the register assigned to hold that length, if one has been
2505 	 * assigned.  (If one hasn't been assigned, no code we've
2506 	 * generated uses that prefix, so we don't need to generate any
2507 	 * code to load it.)
2508 	 */
2509 	if (cstate->off_linkhdr.reg != -1) {
2510 		/*
2511 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2512 		 * of the radiotap header are the length of the radiotap
2513 		 * header; unfortunately, it's little-endian, so we have
2514 		 * to load it a byte at a time and construct the value.
2515 		 */
2516 
2517 		/*
2518 		 * Load the high-order byte, at an offset of 3, shift it
2519 		 * left a byte, and put the result in the X register.
2520 		 */
2521 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2522 		s1->s.k = 3;
2523 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2524 		sappend(s1, s2);
2525 		s2->s.k = 8;
2526 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2527 		sappend(s1, s2);
2528 
2529 		/*
2530 		 * Load the next byte, at an offset of 2, and OR the
2531 		 * value from the X register into it.
2532 		 */
2533 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2534 		sappend(s1, s2);
2535 		s2->s.k = 2;
2536 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2537 		sappend(s1, s2);
2538 
2539 		/*
2540 		 * Now allocate a register to hold that value and store
2541 		 * it.
2542 		 */
2543 		s2 = new_stmt(cstate, BPF_ST);
2544 		s2->s.k = cstate->off_linkhdr.reg;
2545 		sappend(s1, s2);
2546 
2547 		/*
2548 		 * Now move it into the X register.
2549 		 */
2550 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2551 		sappend(s1, s2);
2552 
2553 		return (s1);
2554 	} else
2555 		return (NULL);
2556 }
2557 
2558 /*
2559  * At the moment we treat PPI as normal Radiotap encoded
2560  * packets. The difference is in the function that generates
2561  * the code at the beginning to compute the header length.
2562  * Since this code generator of PPI supports bare 802.11
2563  * encapsulation only (i.e. the encapsulated DLT should be
2564  * DLT_IEEE802_11) we generate code to check for this too;
2565  * that's done in finish_parse().
2566  */
2567 static struct slist *
gen_load_ppi_llprefixlen(compiler_state_t * cstate)2568 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2569 {
2570 	struct slist *s1, *s2;
2571 
2572 	/*
2573 	 * Generate code to load the length of the radiotap header
2574 	 * into the register assigned to hold that length, if one has
2575 	 * been assigned.
2576 	 */
2577 	if (cstate->off_linkhdr.reg != -1) {
2578 		/*
2579 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2580 		 * of the radiotap header are the length of the radiotap
2581 		 * header; unfortunately, it's little-endian, so we have
2582 		 * to load it a byte at a time and construct the value.
2583 		 */
2584 
2585 		/*
2586 		 * Load the high-order byte, at an offset of 3, shift it
2587 		 * left a byte, and put the result in the X register.
2588 		 */
2589 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2590 		s1->s.k = 3;
2591 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2592 		sappend(s1, s2);
2593 		s2->s.k = 8;
2594 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2595 		sappend(s1, s2);
2596 
2597 		/*
2598 		 * Load the next byte, at an offset of 2, and OR the
2599 		 * value from the X register into it.
2600 		 */
2601 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2602 		sappend(s1, s2);
2603 		s2->s.k = 2;
2604 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2605 		sappend(s1, s2);
2606 
2607 		/*
2608 		 * Now allocate a register to hold that value and store
2609 		 * it.
2610 		 */
2611 		s2 = new_stmt(cstate, BPF_ST);
2612 		s2->s.k = cstate->off_linkhdr.reg;
2613 		sappend(s1, s2);
2614 
2615 		/*
2616 		 * Now move it into the X register.
2617 		 */
2618 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2619 		sappend(s1, s2);
2620 
2621 		return (s1);
2622 	} else
2623 		return (NULL);
2624 }
2625 
2626 /*
2627  * Load a value relative to the beginning of the link-layer header after the 802.11
2628  * header, i.e. LLC_SNAP.
2629  * The link-layer header doesn't necessarily begin at the beginning
2630  * of the packet data; there might be a variable-length prefix containing
2631  * radio information.
2632  */
2633 static struct slist *
gen_load_802_11_header_len(compiler_state_t * cstate,struct slist * s,struct slist * snext)2634 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2635 {
2636 	struct slist *s2;
2637 	struct slist *sjset_data_frame_1;
2638 	struct slist *sjset_data_frame_2;
2639 	struct slist *sjset_qos;
2640 	struct slist *sjset_radiotap_flags_present;
2641 	struct slist *sjset_radiotap_ext_present;
2642 	struct slist *sjset_radiotap_tsft_present;
2643 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2644 	struct slist *s_roundup;
2645 
2646 	if (cstate->off_linkpl.reg == -1) {
2647 		/*
2648 		 * No register has been assigned to the offset of
2649 		 * the link-layer payload, which means nobody needs
2650 		 * it; don't bother computing it - just return
2651 		 * what we already have.
2652 		 */
2653 		return (s);
2654 	}
2655 
2656 	/*
2657 	 * This code is not compatible with the optimizer, as
2658 	 * we are generating jmp instructions within a normal
2659 	 * slist of instructions
2660 	 */
2661 	cstate->no_optimize = 1;
2662 
2663 	/*
2664 	 * If "s" is non-null, it has code to arrange that the X register
2665 	 * contains the length of the prefix preceding the link-layer
2666 	 * header.
2667 	 *
2668 	 * Otherwise, the length of the prefix preceding the link-layer
2669 	 * header is "off_outermostlinkhdr.constant_part".
2670 	 */
2671 	if (s == NULL) {
2672 		/*
2673 		 * There is no variable-length header preceding the
2674 		 * link-layer header.
2675 		 *
2676 		 * Load the length of the fixed-length prefix preceding
2677 		 * the link-layer header (if any) into the X register,
2678 		 * and store it in the cstate->off_linkpl.reg register.
2679 		 * That length is off_outermostlinkhdr.constant_part.
2680 		 */
2681 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2682 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2683 	}
2684 
2685 	/*
2686 	 * The X register contains the offset of the beginning of the
2687 	 * link-layer header; add 24, which is the minimum length
2688 	 * of the MAC header for a data frame, to that, and store it
2689 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2690 	 * which is at the offset in the X register, with an indexed load.
2691 	 */
2692 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2693 	sappend(s, s2);
2694 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2695 	s2->s.k = 24;
2696 	sappend(s, s2);
2697 	s2 = new_stmt(cstate, BPF_ST);
2698 	s2->s.k = cstate->off_linkpl.reg;
2699 	sappend(s, s2);
2700 
2701 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2702 	s2->s.k = 0;
2703 	sappend(s, s2);
2704 
2705 	/*
2706 	 * Check the Frame Control field to see if this is a data frame;
2707 	 * a data frame has the 0x08 bit (b3) in that field set and the
2708 	 * 0x04 bit (b2) clear.
2709 	 */
2710 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2711 	sjset_data_frame_1->s.k = 0x08;
2712 	sappend(s, sjset_data_frame_1);
2713 
2714 	/*
2715 	 * If b3 is set, test b2, otherwise go to the first statement of
2716 	 * the rest of the program.
2717 	 */
2718 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2719 	sjset_data_frame_2->s.k = 0x04;
2720 	sappend(s, sjset_data_frame_2);
2721 	sjset_data_frame_1->s.jf = snext;
2722 
2723 	/*
2724 	 * If b2 is not set, this is a data frame; test the QoS bit.
2725 	 * Otherwise, go to the first statement of the rest of the
2726 	 * program.
2727 	 */
2728 	sjset_data_frame_2->s.jt = snext;
2729 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2730 	sjset_qos->s.k = 0x80;	/* QoS bit */
2731 	sappend(s, sjset_qos);
2732 
2733 	/*
2734 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2735 	 * field.
2736 	 * Otherwise, go to the first statement of the rest of the
2737 	 * program.
2738 	 */
2739 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2740 	s2->s.k = cstate->off_linkpl.reg;
2741 	sappend(s, s2);
2742 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2743 	s2->s.k = 2;
2744 	sappend(s, s2);
2745 	s2 = new_stmt(cstate, BPF_ST);
2746 	s2->s.k = cstate->off_linkpl.reg;
2747 	sappend(s, s2);
2748 
2749 	/*
2750 	 * If we have a radiotap header, look at it to see whether
2751 	 * there's Atheros padding between the MAC-layer header
2752 	 * and the payload.
2753 	 *
2754 	 * Note: all of the fields in the radiotap header are
2755 	 * little-endian, so we byte-swap all of the values
2756 	 * we test against, as they will be loaded as big-endian
2757 	 * values.
2758 	 *
2759 	 * XXX - in the general case, we would have to scan through
2760 	 * *all* the presence bits, if there's more than one word of
2761 	 * presence bits.  That would require a loop, meaning that
2762 	 * we wouldn't be able to run the filter in the kernel.
2763 	 *
2764 	 * We assume here that the Atheros adapters that insert the
2765 	 * annoying padding don't have multiple antennae and therefore
2766 	 * do not generate radiotap headers with multiple presence words.
2767 	 */
2768 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2769 		/*
2770 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2771 		 * in the first presence flag word?
2772 		 */
2773 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2774 		s2->s.k = 4;
2775 		sappend(s, s2);
2776 
2777 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2778 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2779 		sappend(s, sjset_radiotap_flags_present);
2780 
2781 		/*
2782 		 * If not, skip all of this.
2783 		 */
2784 		sjset_radiotap_flags_present->s.jf = snext;
2785 
2786 		/*
2787 		 * Otherwise, is the "extension" bit set in that word?
2788 		 */
2789 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2790 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2791 		sappend(s, sjset_radiotap_ext_present);
2792 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2793 
2794 		/*
2795 		 * If so, skip all of this.
2796 		 */
2797 		sjset_radiotap_ext_present->s.jt = snext;
2798 
2799 		/*
2800 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2801 		 */
2802 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2803 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2804 		sappend(s, sjset_radiotap_tsft_present);
2805 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2806 
2807 		/*
2808 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2809 		 * at an offset of 16 from the beginning of the raw packet
2810 		 * data (8 bytes for the radiotap header and 8 bytes for
2811 		 * the TSFT field).
2812 		 *
2813 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2814 		 * is set.
2815 		 */
2816 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2817 		s2->s.k = 16;
2818 		sappend(s, s2);
2819 		sjset_radiotap_tsft_present->s.jt = s2;
2820 
2821 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2822 		sjset_tsft_datapad->s.k = 0x20;
2823 		sappend(s, sjset_tsft_datapad);
2824 
2825 		/*
2826 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2827 		 * at an offset of 8 from the beginning of the raw packet
2828 		 * data (8 bytes for the radiotap header).
2829 		 *
2830 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2831 		 * is set.
2832 		 */
2833 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2834 		s2->s.k = 8;
2835 		sappend(s, s2);
2836 		sjset_radiotap_tsft_present->s.jf = s2;
2837 
2838 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2839 		sjset_notsft_datapad->s.k = 0x20;
2840 		sappend(s, sjset_notsft_datapad);
2841 
2842 		/*
2843 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2844 		 * set, round the length of the 802.11 header to
2845 		 * a multiple of 4.  Do that by adding 3 and then
2846 		 * dividing by and multiplying by 4, which we do by
2847 		 * ANDing with ~3.
2848 		 */
2849 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2850 		s_roundup->s.k = cstate->off_linkpl.reg;
2851 		sappend(s, s_roundup);
2852 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2853 		s2->s.k = 3;
2854 		sappend(s, s2);
2855 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2856 		s2->s.k = (bpf_u_int32)~3;
2857 		sappend(s, s2);
2858 		s2 = new_stmt(cstate, BPF_ST);
2859 		s2->s.k = cstate->off_linkpl.reg;
2860 		sappend(s, s2);
2861 
2862 		sjset_tsft_datapad->s.jt = s_roundup;
2863 		sjset_tsft_datapad->s.jf = snext;
2864 		sjset_notsft_datapad->s.jt = s_roundup;
2865 		sjset_notsft_datapad->s.jf = snext;
2866 	} else
2867 		sjset_qos->s.jf = snext;
2868 
2869 	return s;
2870 }
2871 
2872 static void
insert_compute_vloffsets(compiler_state_t * cstate,struct block * b)2873 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2874 {
2875 	struct slist *s;
2876 
2877 	/* There is an implicit dependency between the link
2878 	 * payload and link header since the payload computation
2879 	 * includes the variable part of the header. Therefore,
2880 	 * if nobody else has allocated a register for the link
2881 	 * header and we need it, do it now. */
2882 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2883 	    cstate->off_linkhdr.reg == -1)
2884 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2885 
2886 	/*
2887 	 * For link-layer types that have a variable-length header
2888 	 * preceding the link-layer header, generate code to load
2889 	 * the offset of the link-layer header into the register
2890 	 * assigned to that offset, if any.
2891 	 *
2892 	 * XXX - this, and the next switch statement, won't handle
2893 	 * encapsulation of 802.11 or 802.11+radio information in
2894 	 * some other protocol stack.  That's significantly more
2895 	 * complicated.
2896 	 */
2897 	switch (cstate->outermostlinktype) {
2898 
2899 	case DLT_PRISM_HEADER:
2900 		s = gen_load_prism_llprefixlen(cstate);
2901 		break;
2902 
2903 	case DLT_IEEE802_11_RADIO_AVS:
2904 		s = gen_load_avs_llprefixlen(cstate);
2905 		break;
2906 
2907 	case DLT_IEEE802_11_RADIO:
2908 		s = gen_load_radiotap_llprefixlen(cstate);
2909 		break;
2910 
2911 	case DLT_PPI:
2912 		s = gen_load_ppi_llprefixlen(cstate);
2913 		break;
2914 
2915 	default:
2916 		s = NULL;
2917 		break;
2918 	}
2919 
2920 	/*
2921 	 * For link-layer types that have a variable-length link-layer
2922 	 * header, generate code to load the offset of the link-layer
2923 	 * payload into the register assigned to that offset, if any.
2924 	 */
2925 	switch (cstate->outermostlinktype) {
2926 
2927 	case DLT_IEEE802_11:
2928 	case DLT_PRISM_HEADER:
2929 	case DLT_IEEE802_11_RADIO_AVS:
2930 	case DLT_IEEE802_11_RADIO:
2931 	case DLT_PPI:
2932 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2933 		break;
2934 	}
2935 
2936 	/*
2937 	 * If there is no initialization yet and we need variable
2938 	 * length offsets for VLAN, initialize them to zero
2939 	 */
2940 	if (s == NULL && cstate->is_vlan_vloffset) {
2941 		struct slist *s2;
2942 
2943 		if (cstate->off_linkpl.reg == -1)
2944 			cstate->off_linkpl.reg = alloc_reg(cstate);
2945 		if (cstate->off_linktype.reg == -1)
2946 			cstate->off_linktype.reg = alloc_reg(cstate);
2947 
2948 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2949 		s->s.k = 0;
2950 		s2 = new_stmt(cstate, BPF_ST);
2951 		s2->s.k = cstate->off_linkpl.reg;
2952 		sappend(s, s2);
2953 		s2 = new_stmt(cstate, BPF_ST);
2954 		s2->s.k = cstate->off_linktype.reg;
2955 		sappend(s, s2);
2956 	}
2957 
2958 	/*
2959 	 * If we have any offset-loading code, append all the
2960 	 * existing statements in the block to those statements,
2961 	 * and make the resulting list the list of statements
2962 	 * for the block.
2963 	 */
2964 	if (s != NULL) {
2965 		sappend(s, b->stmts);
2966 		b->stmts = s;
2967 	}
2968 }
2969 
2970 static struct block *
gen_ppi_dlt_check(compiler_state_t * cstate)2971 gen_ppi_dlt_check(compiler_state_t *cstate)
2972 {
2973 	struct slist *s_load_dlt;
2974 	struct block *b;
2975 
2976 	if (cstate->linktype == DLT_PPI)
2977 	{
2978 		/* Create the statements that check for the DLT
2979 		 */
2980 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2981 		s_load_dlt->s.k = 4;
2982 
2983 		b = new_block(cstate, JMP(BPF_JEQ));
2984 
2985 		b->stmts = s_load_dlt;
2986 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2987 	}
2988 	else
2989 	{
2990 		b = NULL;
2991 	}
2992 
2993 	return b;
2994 }
2995 
2996 /*
2997  * Take an absolute offset, and:
2998  *
2999  *    if it has no variable part, return NULL;
3000  *
3001  *    if it has a variable part, generate code to load the register
3002  *    containing that variable part into the X register, returning
3003  *    a pointer to that code - if no register for that offset has
3004  *    been allocated, allocate it first.
3005  *
3006  * (The code to set that register will be generated later, but will
3007  * be placed earlier in the code sequence.)
3008  */
3009 static struct slist *
gen_abs_offset_varpart(compiler_state_t * cstate,bpf_abs_offset * off)3010 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3011 {
3012 	struct slist *s;
3013 
3014 	if (off->is_variable) {
3015 		if (off->reg == -1) {
3016 			/*
3017 			 * We haven't yet assigned a register for the
3018 			 * variable part of the offset of the link-layer
3019 			 * header; allocate one.
3020 			 */
3021 			off->reg = alloc_reg(cstate);
3022 		}
3023 
3024 		/*
3025 		 * Load the register containing the variable part of the
3026 		 * offset of the link-layer header into the X register.
3027 		 */
3028 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3029 		s->s.k = off->reg;
3030 		return s;
3031 	} else {
3032 		/*
3033 		 * That offset isn't variable, there's no variable part,
3034 		 * so we don't need to generate any code.
3035 		 */
3036 		return NULL;
3037 	}
3038 }
3039 
3040 /*
3041  * Map an Ethernet type to the equivalent PPP type.
3042  */
3043 static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32 ll_proto)3044 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3045 {
3046 	switch (ll_proto) {
3047 
3048 	case ETHERTYPE_IP:
3049 		ll_proto = PPP_IP;
3050 		break;
3051 
3052 	case ETHERTYPE_IPV6:
3053 		ll_proto = PPP_IPV6;
3054 		break;
3055 
3056 	case ETHERTYPE_DN:
3057 		ll_proto = PPP_DECNET;
3058 		break;
3059 
3060 	case ETHERTYPE_ATALK:
3061 		ll_proto = PPP_APPLE;
3062 		break;
3063 
3064 	case ETHERTYPE_NS:
3065 		ll_proto = PPP_NS;
3066 		break;
3067 
3068 	case LLCSAP_ISONS:
3069 		ll_proto = PPP_OSI;
3070 		break;
3071 
3072 	case LLCSAP_8021D:
3073 		/*
3074 		 * I'm assuming the "Bridging PDU"s that go
3075 		 * over PPP are Spanning Tree Protocol
3076 		 * Bridging PDUs.
3077 		 */
3078 		ll_proto = PPP_BRPDU;
3079 		break;
3080 
3081 	case LLCSAP_IPX:
3082 		ll_proto = PPP_IPX;
3083 		break;
3084 	}
3085 	return (ll_proto);
3086 }
3087 
3088 /*
3089  * Generate any tests that, for encapsulation of a link-layer packet
3090  * inside another protocol stack, need to be done to check for those
3091  * link-layer packets (and that haven't already been done by a check
3092  * for that encapsulation).
3093  */
3094 static struct block *
gen_prevlinkhdr_check(compiler_state_t * cstate)3095 gen_prevlinkhdr_check(compiler_state_t *cstate)
3096 {
3097 	struct block *b0;
3098 
3099 	if (cstate->is_geneve)
3100 		return gen_geneve_ll_check(cstate);
3101 
3102 	switch (cstate->prevlinktype) {
3103 
3104 	case DLT_SUNATM:
3105 		/*
3106 		 * This is LANE-encapsulated Ethernet; check that the LANE
3107 		 * packet doesn't begin with an LE Control marker, i.e.
3108 		 * that it's data, not a control message.
3109 		 *
3110 		 * (We've already generated a test for LANE.)
3111 		 */
3112 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3113 		gen_not(b0);
3114 		return b0;
3115 
3116 	default:
3117 		/*
3118 		 * No such tests are necessary.
3119 		 */
3120 		return NULL;
3121 	}
3122 	/*NOTREACHED*/
3123 }
3124 
3125 /*
3126  * The three different values we should check for when checking for an
3127  * IPv6 packet with DLT_NULL.
3128  */
3129 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3130 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3131 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3132 
3133 /*
3134  * Generate code to match a particular packet type by matching the
3135  * link-layer type field or fields in the 802.2 LLC header.
3136  *
3137  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3138  * value, if <= ETHERMTU.
3139  */
3140 static struct block *
gen_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)3141 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3142 {
3143 	struct block *b0, *b1, *b2;
3144 	const char *description;
3145 
3146 	/* are we checking MPLS-encapsulated packets? */
3147 	if (cstate->label_stack_depth > 0)
3148 		return gen_mpls_linktype(cstate, ll_proto);
3149 
3150 	switch (cstate->linktype) {
3151 
3152 	case DLT_EN10MB:
3153 	case DLT_NETANALYZER:
3154 	case DLT_NETANALYZER_TRANSPARENT:
3155 		/* Geneve has an EtherType regardless of whether there is an
3156 		 * L2 header. */
3157 		if (!cstate->is_geneve)
3158 			b0 = gen_prevlinkhdr_check(cstate);
3159 		else
3160 			b0 = NULL;
3161 
3162 		b1 = gen_ether_linktype(cstate, ll_proto);
3163 		if (b0 != NULL)
3164 			gen_and(b0, b1);
3165 		return b1;
3166 		/*NOTREACHED*/
3167 
3168 	case DLT_C_HDLC:
3169 		switch (ll_proto) {
3170 
3171 		case LLCSAP_ISONS:
3172 			ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3173 			/* fall through */
3174 
3175 		default:
3176 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3177 			/*NOTREACHED*/
3178 		}
3179 
3180 	case DLT_IEEE802_11:
3181 	case DLT_PRISM_HEADER:
3182 	case DLT_IEEE802_11_RADIO_AVS:
3183 	case DLT_IEEE802_11_RADIO:
3184 	case DLT_PPI:
3185 		/*
3186 		 * Check that we have a data frame.
3187 		 */
3188 		b0 = gen_check_802_11_data_frame(cstate);
3189 
3190 		/*
3191 		 * Now check for the specified link-layer type.
3192 		 */
3193 		b1 = gen_llc_linktype(cstate, ll_proto);
3194 		gen_and(b0, b1);
3195 		return b1;
3196 		/*NOTREACHED*/
3197 
3198 	case DLT_FDDI:
3199 		/*
3200 		 * XXX - check for LLC frames.
3201 		 */
3202 		return gen_llc_linktype(cstate, ll_proto);
3203 		/*NOTREACHED*/
3204 
3205 	case DLT_IEEE802:
3206 		/*
3207 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3208 		 */
3209 		return gen_llc_linktype(cstate, ll_proto);
3210 		/*NOTREACHED*/
3211 
3212 	case DLT_ATM_RFC1483:
3213 	case DLT_ATM_CLIP:
3214 	case DLT_IP_OVER_FC:
3215 		return gen_llc_linktype(cstate, ll_proto);
3216 		/*NOTREACHED*/
3217 
3218 	case DLT_SUNATM:
3219 		/*
3220 		 * Check for an LLC-encapsulated version of this protocol;
3221 		 * if we were checking for LANE, linktype would no longer
3222 		 * be DLT_SUNATM.
3223 		 *
3224 		 * Check for LLC encapsulation and then check the protocol.
3225 		 */
3226 		b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3227 		b1 = gen_llc_linktype(cstate, ll_proto);
3228 		gen_and(b0, b1);
3229 		return b1;
3230 		/*NOTREACHED*/
3231 
3232 	case DLT_LINUX_SLL:
3233 		return gen_linux_sll_linktype(cstate, ll_proto);
3234 		/*NOTREACHED*/
3235 
3236 	case DLT_SLIP:
3237 	case DLT_SLIP_BSDOS:
3238 	case DLT_RAW:
3239 		/*
3240 		 * These types don't provide any type field; packets
3241 		 * are always IPv4 or IPv6.
3242 		 *
3243 		 * XXX - for IPv4, check for a version number of 4, and,
3244 		 * for IPv6, check for a version number of 6?
3245 		 */
3246 		switch (ll_proto) {
3247 
3248 		case ETHERTYPE_IP:
3249 			/* Check for a version number of 4. */
3250 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3251 
3252 		case ETHERTYPE_IPV6:
3253 			/* Check for a version number of 6. */
3254 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3255 
3256 		default:
3257 			return gen_false(cstate);	/* always false */
3258 		}
3259 		/*NOTREACHED*/
3260 
3261 	case DLT_IPV4:
3262 		/*
3263 		 * Raw IPv4, so no type field.
3264 		 */
3265 		if (ll_proto == ETHERTYPE_IP)
3266 			return gen_true(cstate);	/* always true */
3267 
3268 		/* Checking for something other than IPv4; always false */
3269 		return gen_false(cstate);
3270 		/*NOTREACHED*/
3271 
3272 	case DLT_IPV6:
3273 		/*
3274 		 * Raw IPv6, so no type field.
3275 		 */
3276 		if (ll_proto == ETHERTYPE_IPV6)
3277 			return gen_true(cstate);	/* always true */
3278 
3279 		/* Checking for something other than IPv6; always false */
3280 		return gen_false(cstate);
3281 		/*NOTREACHED*/
3282 
3283 	case DLT_PPP:
3284 	case DLT_PPP_PPPD:
3285 	case DLT_PPP_SERIAL:
3286 	case DLT_PPP_ETHER:
3287 		/*
3288 		 * We use Ethernet protocol types inside libpcap;
3289 		 * map them to the corresponding PPP protocol types.
3290 		 */
3291 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3292 		    ethertype_to_ppptype(ll_proto));
3293 		/*NOTREACHED*/
3294 
3295 	case DLT_PPP_BSDOS:
3296 		/*
3297 		 * We use Ethernet protocol types inside libpcap;
3298 		 * map them to the corresponding PPP protocol types.
3299 		 */
3300 		switch (ll_proto) {
3301 
3302 		case ETHERTYPE_IP:
3303 			/*
3304 			 * Also check for Van Jacobson-compressed IP.
3305 			 * XXX - do this for other forms of PPP?
3306 			 */
3307 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3308 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3309 			gen_or(b0, b1);
3310 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3311 			gen_or(b1, b0);
3312 			return b0;
3313 
3314 		default:
3315 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3316 			    ethertype_to_ppptype(ll_proto));
3317 		}
3318 		/*NOTREACHED*/
3319 
3320 	case DLT_NULL:
3321 	case DLT_LOOP:
3322 	case DLT_ENC:
3323 		switch (ll_proto) {
3324 
3325 		case ETHERTYPE_IP:
3326 			return (gen_loopback_linktype(cstate, AF_INET));
3327 
3328 		case ETHERTYPE_IPV6:
3329 			/*
3330 			 * AF_ values may, unfortunately, be platform-
3331 			 * dependent; AF_INET isn't, because everybody
3332 			 * used 4.2BSD's value, but AF_INET6 is, because
3333 			 * 4.2BSD didn't have a value for it (given that
3334 			 * IPv6 didn't exist back in the early 1980's),
3335 			 * and they all picked their own values.
3336 			 *
3337 			 * This means that, if we're reading from a
3338 			 * savefile, we need to check for all the
3339 			 * possible values.
3340 			 *
3341 			 * If we're doing a live capture, we only need
3342 			 * to check for this platform's value; however,
3343 			 * Npcap uses 24, which isn't Windows's AF_INET6
3344 			 * value.  (Given the multiple different values,
3345 			 * programs that read pcap files shouldn't be
3346 			 * checking for their platform's AF_INET6 value
3347 			 * anyway, they should check for all of the
3348 			 * possible values. and they might as well do
3349 			 * that even for live captures.)
3350 			 */
3351 			if (cstate->bpf_pcap->rfile != NULL) {
3352 				/*
3353 				 * Savefile - check for all three
3354 				 * possible IPv6 values.
3355 				 */
3356 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3357 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3358 				gen_or(b0, b1);
3359 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3360 				gen_or(b0, b1);
3361 				return (b1);
3362 			} else {
3363 				/*
3364 				 * Live capture, so we only need to
3365 				 * check for the value used on this
3366 				 * platform.
3367 				 */
3368 #ifdef _WIN32
3369 				/*
3370 				 * Npcap doesn't use Windows's AF_INET6,
3371 				 * as that collides with AF_IPX on
3372 				 * some BSDs (both have the value 23).
3373 				 * Instead, it uses 24.
3374 				 */
3375 				return (gen_loopback_linktype(cstate, 24));
3376 #else /* _WIN32 */
3377 #ifdef AF_INET6
3378 				return (gen_loopback_linktype(cstate, AF_INET6));
3379 #else /* AF_INET6 */
3380 				/*
3381 				 * I guess this platform doesn't support
3382 				 * IPv6, so we just reject all packets.
3383 				 */
3384 				return gen_false(cstate);
3385 #endif /* AF_INET6 */
3386 #endif /* _WIN32 */
3387 			}
3388 
3389 		default:
3390 			/*
3391 			 * Not a type on which we support filtering.
3392 			 * XXX - support those that have AF_ values
3393 			 * #defined on this platform, at least?
3394 			 */
3395 			return gen_false(cstate);
3396 		}
3397 
3398 #ifdef HAVE_NET_PFVAR_H
3399 	case DLT_PFLOG:
3400 		/*
3401 		 * af field is host byte order in contrast to the rest of
3402 		 * the packet.
3403 		 */
3404 		if (ll_proto == ETHERTYPE_IP)
3405 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3406 			    BPF_B, AF_INET));
3407 		else if (ll_proto == ETHERTYPE_IPV6)
3408 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3409 			    BPF_B, AF_INET6));
3410 		else
3411 			return gen_false(cstate);
3412 		/*NOTREACHED*/
3413 #endif /* HAVE_NET_PFVAR_H */
3414 
3415 	case DLT_ARCNET:
3416 	case DLT_ARCNET_LINUX:
3417 		/*
3418 		 * XXX should we check for first fragment if the protocol
3419 		 * uses PHDS?
3420 		 */
3421 		switch (ll_proto) {
3422 
3423 		default:
3424 			return gen_false(cstate);
3425 
3426 		case ETHERTYPE_IPV6:
3427 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3428 				ARCTYPE_INET6));
3429 
3430 		case ETHERTYPE_IP:
3431 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3432 			    ARCTYPE_IP);
3433 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3434 			    ARCTYPE_IP_OLD);
3435 			gen_or(b0, b1);
3436 			return (b1);
3437 
3438 		case ETHERTYPE_ARP:
3439 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3440 			    ARCTYPE_ARP);
3441 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3442 			    ARCTYPE_ARP_OLD);
3443 			gen_or(b0, b1);
3444 			return (b1);
3445 
3446 		case ETHERTYPE_REVARP:
3447 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3448 			    ARCTYPE_REVARP));
3449 
3450 		case ETHERTYPE_ATALK:
3451 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3452 			    ARCTYPE_ATALK));
3453 		}
3454 		/*NOTREACHED*/
3455 
3456 	case DLT_LTALK:
3457 		switch (ll_proto) {
3458 		case ETHERTYPE_ATALK:
3459 			return gen_true(cstate);
3460 		default:
3461 			return gen_false(cstate);
3462 		}
3463 		/*NOTREACHED*/
3464 
3465 	case DLT_FRELAY:
3466 		/*
3467 		 * XXX - assumes a 2-byte Frame Relay header with
3468 		 * DLCI and flags.  What if the address is longer?
3469 		 */
3470 		switch (ll_proto) {
3471 
3472 		case ETHERTYPE_IP:
3473 			/*
3474 			 * Check for the special NLPID for IP.
3475 			 */
3476 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3477 
3478 		case ETHERTYPE_IPV6:
3479 			/*
3480 			 * Check for the special NLPID for IPv6.
3481 			 */
3482 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3483 
3484 		case LLCSAP_ISONS:
3485 			/*
3486 			 * Check for several OSI protocols.
3487 			 *
3488 			 * Frame Relay packets typically have an OSI
3489 			 * NLPID at the beginning; we check for each
3490 			 * of them.
3491 			 *
3492 			 * What we check for is the NLPID and a frame
3493 			 * control field of UI, i.e. 0x03 followed
3494 			 * by the NLPID.
3495 			 */
3496 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3497 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3498 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3499 			gen_or(b1, b2);
3500 			gen_or(b0, b2);
3501 			return b2;
3502 
3503 		default:
3504 			return gen_false(cstate);
3505 		}
3506 		/*NOTREACHED*/
3507 
3508 	case DLT_MFR:
3509 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3510 
3511         case DLT_JUNIPER_MFR:
3512         case DLT_JUNIPER_MLFR:
3513         case DLT_JUNIPER_MLPPP:
3514 	case DLT_JUNIPER_ATM1:
3515 	case DLT_JUNIPER_ATM2:
3516 	case DLT_JUNIPER_PPPOE:
3517 	case DLT_JUNIPER_PPPOE_ATM:
3518         case DLT_JUNIPER_GGSN:
3519         case DLT_JUNIPER_ES:
3520         case DLT_JUNIPER_MONITOR:
3521         case DLT_JUNIPER_SERVICES:
3522         case DLT_JUNIPER_ETHER:
3523         case DLT_JUNIPER_PPP:
3524         case DLT_JUNIPER_FRELAY:
3525         case DLT_JUNIPER_CHDLC:
3526         case DLT_JUNIPER_VP:
3527         case DLT_JUNIPER_ST:
3528         case DLT_JUNIPER_ISM:
3529         case DLT_JUNIPER_VS:
3530         case DLT_JUNIPER_SRX_E2E:
3531         case DLT_JUNIPER_FIBRECHANNEL:
3532 	case DLT_JUNIPER_ATM_CEMIC:
3533 
3534 		/* just lets verify the magic number for now -
3535 		 * on ATM we may have up to 6 different encapsulations on the wire
3536 		 * and need a lot of heuristics to figure out that the payload
3537 		 * might be;
3538 		 *
3539 		 * FIXME encapsulation specific BPF_ filters
3540 		 */
3541 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3542 
3543 	case DLT_BACNET_MS_TP:
3544 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3545 
3546 	case DLT_IPNET:
3547 		return gen_ipnet_linktype(cstate, ll_proto);
3548 
3549 	case DLT_LINUX_IRDA:
3550 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3551 
3552 	case DLT_DOCSIS:
3553 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3554 
3555 	case DLT_MTP2:
3556 	case DLT_MTP2_WITH_PHDR:
3557 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3558 
3559 	case DLT_ERF:
3560 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3561 
3562 	case DLT_PFSYNC:
3563 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3564 
3565 	case DLT_LINUX_LAPD:
3566 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3567 
3568 	case DLT_USB_FREEBSD:
3569 	case DLT_USB_LINUX:
3570 	case DLT_USB_LINUX_MMAPPED:
3571 	case DLT_USBPCAP:
3572 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3573 
3574 	case DLT_BLUETOOTH_HCI_H4:
3575 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3576 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3577 
3578 	case DLT_CAN20B:
3579 	case DLT_CAN_SOCKETCAN:
3580 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3581 
3582 	case DLT_IEEE802_15_4:
3583 	case DLT_IEEE802_15_4_LINUX:
3584 	case DLT_IEEE802_15_4_NONASK_PHY:
3585 	case DLT_IEEE802_15_4_NOFCS:
3586 	case DLT_IEEE802_15_4_TAP:
3587 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3588 
3589 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3590 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3591 
3592 	case DLT_SITA:
3593 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3594 
3595 	case DLT_RAIF1:
3596 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3597 
3598 	case DLT_IPMB_KONTRON:
3599 	case DLT_IPMB_LINUX:
3600 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3601 
3602 	case DLT_AX25_KISS:
3603 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3604 
3605 	case DLT_NFLOG:
3606 		/* Using the fixed-size NFLOG header it is possible to tell only
3607 		 * the address family of the packet, other meaningful data is
3608 		 * either missing or behind TLVs.
3609 		 */
3610 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3611 
3612 	default:
3613 		/*
3614 		 * Does this link-layer header type have a field
3615 		 * indicating the type of the next protocol?  If
3616 		 * so, off_linktype.constant_part will be the offset of that
3617 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3618 		 */
3619 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3620 			/*
3621 			 * Yes; assume it's an Ethernet type.  (If
3622 			 * it's not, it needs to be handled specially
3623 			 * above.)
3624 			 */
3625 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3626 			/*NOTREACHED */
3627 		} else {
3628 			/*
3629 			 * No; report an error.
3630 			 */
3631 			description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3632 			bpf_error(cstate, "%s link-layer type filtering not implemented",
3633 			    description);
3634 			/*NOTREACHED */
3635 		}
3636 	}
3637 }
3638 
3639 /*
3640  * Check for an LLC SNAP packet with a given organization code and
3641  * protocol type; we check the entire contents of the 802.2 LLC and
3642  * snap headers, checking for DSAP and SSAP of SNAP and a control
3643  * field of 0x03 in the LLC header, and for the specified organization
3644  * code and protocol type in the SNAP header.
3645  */
3646 static struct block *
gen_snap(compiler_state_t * cstate,bpf_u_int32 orgcode,bpf_u_int32 ptype)3647 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3648 {
3649 	u_char snapblock[8];
3650 
3651 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3652 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3653 	snapblock[2] = 0x03;			/* control = UI */
3654 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3655 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3656 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3657 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3658 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3659 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3660 }
3661 
3662 /*
3663  * Generate code to match frames with an LLC header.
3664  */
3665 static struct block *
gen_llc_internal(compiler_state_t * cstate)3666 gen_llc_internal(compiler_state_t *cstate)
3667 {
3668 	struct block *b0, *b1;
3669 
3670 	switch (cstate->linktype) {
3671 
3672 	case DLT_EN10MB:
3673 		/*
3674 		 * We check for an Ethernet type field less than
3675 		 * 1500, which means it's an 802.3 length field.
3676 		 */
3677 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3678 		gen_not(b0);
3679 
3680 		/*
3681 		 * Now check for the purported DSAP and SSAP not being
3682 		 * 0xFF, to rule out NetWare-over-802.3.
3683 		 */
3684 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3685 		gen_not(b1);
3686 		gen_and(b0, b1);
3687 		return b1;
3688 
3689 	case DLT_SUNATM:
3690 		/*
3691 		 * We check for LLC traffic.
3692 		 */
3693 		b0 = gen_atmtype_llc(cstate);
3694 		return b0;
3695 
3696 	case DLT_IEEE802:	/* Token Ring */
3697 		/*
3698 		 * XXX - check for LLC frames.
3699 		 */
3700 		return gen_true(cstate);
3701 
3702 	case DLT_FDDI:
3703 		/*
3704 		 * XXX - check for LLC frames.
3705 		 */
3706 		return gen_true(cstate);
3707 
3708 	case DLT_ATM_RFC1483:
3709 		/*
3710 		 * For LLC encapsulation, these are defined to have an
3711 		 * 802.2 LLC header.
3712 		 *
3713 		 * For VC encapsulation, they don't, but there's no
3714 		 * way to check for that; the protocol used on the VC
3715 		 * is negotiated out of band.
3716 		 */
3717 		return gen_true(cstate);
3718 
3719 	case DLT_IEEE802_11:
3720 	case DLT_PRISM_HEADER:
3721 	case DLT_IEEE802_11_RADIO:
3722 	case DLT_IEEE802_11_RADIO_AVS:
3723 	case DLT_PPI:
3724 		/*
3725 		 * Check that we have a data frame.
3726 		 */
3727 		b0 = gen_check_802_11_data_frame(cstate);
3728 		return b0;
3729 
3730 	default:
3731 		bpf_error(cstate, "'llc' not supported for %s",
3732 			  pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3733 		/*NOTREACHED*/
3734 	}
3735 }
3736 
3737 struct block *
gen_llc(compiler_state_t * cstate)3738 gen_llc(compiler_state_t *cstate)
3739 {
3740 	/*
3741 	 * Catch errors reported by us and routines below us, and return NULL
3742 	 * on an error.
3743 	 */
3744 	if (setjmp(cstate->top_ctx))
3745 		return (NULL);
3746 
3747 	return gen_llc_internal(cstate);
3748 }
3749 
3750 struct block *
gen_llc_i(compiler_state_t * cstate)3751 gen_llc_i(compiler_state_t *cstate)
3752 {
3753 	struct block *b0, *b1;
3754 	struct slist *s;
3755 
3756 	/*
3757 	 * Catch errors reported by us and routines below us, and return NULL
3758 	 * on an error.
3759 	 */
3760 	if (setjmp(cstate->top_ctx))
3761 		return (NULL);
3762 
3763 	/*
3764 	 * Check whether this is an LLC frame.
3765 	 */
3766 	b0 = gen_llc_internal(cstate);
3767 
3768 	/*
3769 	 * Load the control byte and test the low-order bit; it must
3770 	 * be clear for I frames.
3771 	 */
3772 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3773 	b1 = new_block(cstate, JMP(BPF_JSET));
3774 	b1->s.k = 0x01;
3775 	b1->stmts = s;
3776 	gen_not(b1);
3777 	gen_and(b0, b1);
3778 	return b1;
3779 }
3780 
3781 struct block *
gen_llc_s(compiler_state_t * cstate)3782 gen_llc_s(compiler_state_t *cstate)
3783 {
3784 	struct block *b0, *b1;
3785 
3786 	/*
3787 	 * Catch errors reported by us and routines below us, and return NULL
3788 	 * on an error.
3789 	 */
3790 	if (setjmp(cstate->top_ctx))
3791 		return (NULL);
3792 
3793 	/*
3794 	 * Check whether this is an LLC frame.
3795 	 */
3796 	b0 = gen_llc_internal(cstate);
3797 
3798 	/*
3799 	 * Now compare the low-order 2 bit of the control byte against
3800 	 * the appropriate value for S frames.
3801 	 */
3802 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3803 	gen_and(b0, b1);
3804 	return b1;
3805 }
3806 
3807 struct block *
gen_llc_u(compiler_state_t * cstate)3808 gen_llc_u(compiler_state_t *cstate)
3809 {
3810 	struct block *b0, *b1;
3811 
3812 	/*
3813 	 * Catch errors reported by us and routines below us, and return NULL
3814 	 * on an error.
3815 	 */
3816 	if (setjmp(cstate->top_ctx))
3817 		return (NULL);
3818 
3819 	/*
3820 	 * Check whether this is an LLC frame.
3821 	 */
3822 	b0 = gen_llc_internal(cstate);
3823 
3824 	/*
3825 	 * Now compare the low-order 2 bit of the control byte against
3826 	 * the appropriate value for U frames.
3827 	 */
3828 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3829 	gen_and(b0, b1);
3830 	return b1;
3831 }
3832 
3833 struct block *
gen_llc_s_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3834 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3835 {
3836 	struct block *b0, *b1;
3837 
3838 	/*
3839 	 * Catch errors reported by us and routines below us, and return NULL
3840 	 * on an error.
3841 	 */
3842 	if (setjmp(cstate->top_ctx))
3843 		return (NULL);
3844 
3845 	/*
3846 	 * Check whether this is an LLC frame.
3847 	 */
3848 	b0 = gen_llc_internal(cstate);
3849 
3850 	/*
3851 	 * Now check for an S frame with the appropriate type.
3852 	 */
3853 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3854 	gen_and(b0, b1);
3855 	return b1;
3856 }
3857 
3858 struct block *
gen_llc_u_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3859 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3860 {
3861 	struct block *b0, *b1;
3862 
3863 	/*
3864 	 * Catch errors reported by us and routines below us, and return NULL
3865 	 * on an error.
3866 	 */
3867 	if (setjmp(cstate->top_ctx))
3868 		return (NULL);
3869 
3870 	/*
3871 	 * Check whether this is an LLC frame.
3872 	 */
3873 	b0 = gen_llc_internal(cstate);
3874 
3875 	/*
3876 	 * Now check for a U frame with the appropriate type.
3877 	 */
3878 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3879 	gen_and(b0, b1);
3880 	return b1;
3881 }
3882 
3883 /*
3884  * Generate code to match a particular packet type, for link-layer types
3885  * using 802.2 LLC headers.
3886  *
3887  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3888  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3889  *
3890  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3891  * value, if <= ETHERMTU.  We use that to determine whether to
3892  * match the DSAP or both DSAP and LSAP or to check the OUI and
3893  * protocol ID in a SNAP header.
3894  */
3895 static struct block *
gen_llc_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)3896 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3897 {
3898 	/*
3899 	 * XXX - handle token-ring variable-length header.
3900 	 */
3901 	switch (ll_proto) {
3902 
3903 	case LLCSAP_IP:
3904 	case LLCSAP_ISONS:
3905 	case LLCSAP_NETBEUI:
3906 		/*
3907 		 * XXX - should we check both the DSAP and the
3908 		 * SSAP, like this, or should we check just the
3909 		 * DSAP, as we do for other SAP values?
3910 		 */
3911 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3912 			     ((ll_proto << 8) | ll_proto));
3913 
3914 	case LLCSAP_IPX:
3915 		/*
3916 		 * XXX - are there ever SNAP frames for IPX on
3917 		 * non-Ethernet 802.x networks?
3918 		 */
3919 		return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3920 
3921 	case ETHERTYPE_ATALK:
3922 		/*
3923 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3924 		 * SNAP packets with an organization code of
3925 		 * 0x080007 (Apple, for Appletalk) and a protocol
3926 		 * type of ETHERTYPE_ATALK (Appletalk).
3927 		 *
3928 		 * XXX - check for an organization code of
3929 		 * encapsulated Ethernet as well?
3930 		 */
3931 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3932 
3933 	default:
3934 		/*
3935 		 * XXX - we don't have to check for IPX 802.3
3936 		 * here, but should we check for the IPX Ethertype?
3937 		 */
3938 		if (ll_proto <= ETHERMTU) {
3939 			/*
3940 			 * This is an LLC SAP value, so check
3941 			 * the DSAP.
3942 			 */
3943 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
3944 		} else {
3945 			/*
3946 			 * This is an Ethernet type; we assume that it's
3947 			 * unlikely that it'll appear in the right place
3948 			 * at random, and therefore check only the
3949 			 * location that would hold the Ethernet type
3950 			 * in a SNAP frame with an organization code of
3951 			 * 0x000000 (encapsulated Ethernet).
3952 			 *
3953 			 * XXX - if we were to check for the SNAP DSAP and
3954 			 * LSAP, as per XXX, and were also to check for an
3955 			 * organization code of 0x000000 (encapsulated
3956 			 * Ethernet), we'd do
3957 			 *
3958 			 *	return gen_snap(cstate, 0x000000, ll_proto);
3959 			 *
3960 			 * here; for now, we don't, as per the above.
3961 			 * I don't know whether it's worth the extra CPU
3962 			 * time to do the right check or not.
3963 			 */
3964 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
3965 		}
3966 	}
3967 }
3968 
3969 static struct block *
gen_hostop(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int dir,bpf_u_int32 ll_proto,u_int src_off,u_int dst_off)3970 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3971     int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
3972 {
3973 	struct block *b0, *b1;
3974 	u_int offset;
3975 
3976 	switch (dir) {
3977 
3978 	case Q_SRC:
3979 		offset = src_off;
3980 		break;
3981 
3982 	case Q_DST:
3983 		offset = dst_off;
3984 		break;
3985 
3986 	case Q_AND:
3987 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
3988 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
3989 		gen_and(b0, b1);
3990 		return b1;
3991 
3992 	case Q_DEFAULT:
3993 	case Q_OR:
3994 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
3995 		b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
3996 		gen_or(b0, b1);
3997 		return b1;
3998 
3999 	case Q_ADDR1:
4000 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4001 		/*NOTREACHED*/
4002 
4003 	case Q_ADDR2:
4004 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4005 		/*NOTREACHED*/
4006 
4007 	case Q_ADDR3:
4008 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4009 		/*NOTREACHED*/
4010 
4011 	case Q_ADDR4:
4012 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4013 		/*NOTREACHED*/
4014 
4015 	case Q_RA:
4016 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4017 		/*NOTREACHED*/
4018 
4019 	case Q_TA:
4020 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4021 		/*NOTREACHED*/
4022 
4023 	default:
4024 		abort();
4025 		/*NOTREACHED*/
4026 	}
4027 	b0 = gen_linktype(cstate, ll_proto);
4028 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4029 	gen_and(b0, b1);
4030 	return b1;
4031 }
4032 
4033 #ifdef INET6
4034 static struct block *
gen_hostop6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int dir,bpf_u_int32 ll_proto,u_int src_off,u_int dst_off)4035 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4036     struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4037     u_int dst_off)
4038 {
4039 	struct block *b0, *b1;
4040 	u_int offset;
4041 	uint32_t *a, *m;
4042 
4043 	switch (dir) {
4044 
4045 	case Q_SRC:
4046 		offset = src_off;
4047 		break;
4048 
4049 	case Q_DST:
4050 		offset = dst_off;
4051 		break;
4052 
4053 	case Q_AND:
4054 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4055 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4056 		gen_and(b0, b1);
4057 		return b1;
4058 
4059 	case Q_DEFAULT:
4060 	case Q_OR:
4061 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4062 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4063 		gen_or(b0, b1);
4064 		return b1;
4065 
4066 	case Q_ADDR1:
4067 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4068 		/*NOTREACHED*/
4069 
4070 	case Q_ADDR2:
4071 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4072 		/*NOTREACHED*/
4073 
4074 	case Q_ADDR3:
4075 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4076 		/*NOTREACHED*/
4077 
4078 	case Q_ADDR4:
4079 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4080 		/*NOTREACHED*/
4081 
4082 	case Q_RA:
4083 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4084 		/*NOTREACHED*/
4085 
4086 	case Q_TA:
4087 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4088 		/*NOTREACHED*/
4089 
4090 	default:
4091 		abort();
4092 		/*NOTREACHED*/
4093 	}
4094 	/* this order is important */
4095 	a = (uint32_t *)addr;
4096 	m = (uint32_t *)mask;
4097 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4098 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4099 	gen_and(b0, b1);
4100 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4101 	gen_and(b0, b1);
4102 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4103 	gen_and(b0, b1);
4104 	b0 = gen_linktype(cstate, ll_proto);
4105 	gen_and(b0, b1);
4106 	return b1;
4107 }
4108 #endif
4109 
4110 static struct block *
gen_ehostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4111 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4112 {
4113 	register struct block *b0, *b1;
4114 
4115 	switch (dir) {
4116 	case Q_SRC:
4117 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4118 
4119 	case Q_DST:
4120 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4121 
4122 	case Q_AND:
4123 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4124 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4125 		gen_and(b0, b1);
4126 		return b1;
4127 
4128 	case Q_DEFAULT:
4129 	case Q_OR:
4130 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4131 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4132 		gen_or(b0, b1);
4133 		return b1;
4134 
4135 	case Q_ADDR1:
4136 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4137 		/*NOTREACHED*/
4138 
4139 	case Q_ADDR2:
4140 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4141 		/*NOTREACHED*/
4142 
4143 	case Q_ADDR3:
4144 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4145 		/*NOTREACHED*/
4146 
4147 	case Q_ADDR4:
4148 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4149 		/*NOTREACHED*/
4150 
4151 	case Q_RA:
4152 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4153 		/*NOTREACHED*/
4154 
4155 	case Q_TA:
4156 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4157 		/*NOTREACHED*/
4158 	}
4159 	abort();
4160 	/*NOTREACHED*/
4161 }
4162 
4163 /*
4164  * Like gen_ehostop, but for DLT_FDDI
4165  */
4166 static struct block *
gen_fhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4167 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4168 {
4169 	struct block *b0, *b1;
4170 
4171 	switch (dir) {
4172 	case Q_SRC:
4173 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4174 
4175 	case Q_DST:
4176 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4177 
4178 	case Q_AND:
4179 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4180 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4181 		gen_and(b0, b1);
4182 		return b1;
4183 
4184 	case Q_DEFAULT:
4185 	case Q_OR:
4186 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4187 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4188 		gen_or(b0, b1);
4189 		return b1;
4190 
4191 	case Q_ADDR1:
4192 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4193 		/*NOTREACHED*/
4194 
4195 	case Q_ADDR2:
4196 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4197 		/*NOTREACHED*/
4198 
4199 	case Q_ADDR3:
4200 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4201 		/*NOTREACHED*/
4202 
4203 	case Q_ADDR4:
4204 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4205 		/*NOTREACHED*/
4206 
4207 	case Q_RA:
4208 		bpf_error(cstate, "'ra' is only supported on 802.11");
4209 		/*NOTREACHED*/
4210 
4211 	case Q_TA:
4212 		bpf_error(cstate, "'ta' is only supported on 802.11");
4213 		/*NOTREACHED*/
4214 	}
4215 	abort();
4216 	/*NOTREACHED*/
4217 }
4218 
4219 /*
4220  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4221  */
4222 static struct block *
gen_thostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4223 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4224 {
4225 	register struct block *b0, *b1;
4226 
4227 	switch (dir) {
4228 	case Q_SRC:
4229 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4230 
4231 	case Q_DST:
4232 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4233 
4234 	case Q_AND:
4235 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4236 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4237 		gen_and(b0, b1);
4238 		return b1;
4239 
4240 	case Q_DEFAULT:
4241 	case Q_OR:
4242 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4243 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4244 		gen_or(b0, b1);
4245 		return b1;
4246 
4247 	case Q_ADDR1:
4248 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4249 		/*NOTREACHED*/
4250 
4251 	case Q_ADDR2:
4252 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4253 		/*NOTREACHED*/
4254 
4255 	case Q_ADDR3:
4256 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4257 		/*NOTREACHED*/
4258 
4259 	case Q_ADDR4:
4260 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4261 		/*NOTREACHED*/
4262 
4263 	case Q_RA:
4264 		bpf_error(cstate, "'ra' is only supported on 802.11");
4265 		/*NOTREACHED*/
4266 
4267 	case Q_TA:
4268 		bpf_error(cstate, "'ta' is only supported on 802.11");
4269 		/*NOTREACHED*/
4270 	}
4271 	abort();
4272 	/*NOTREACHED*/
4273 }
4274 
4275 /*
4276  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4277  * various 802.11 + radio headers.
4278  */
4279 static struct block *
gen_wlanhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4280 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4281 {
4282 	register struct block *b0, *b1, *b2;
4283 	register struct slist *s;
4284 
4285 #ifdef ENABLE_WLAN_FILTERING_PATCH
4286 	/*
4287 	 * TODO GV 20070613
4288 	 * We need to disable the optimizer because the optimizer is buggy
4289 	 * and wipes out some LD instructions generated by the below
4290 	 * code to validate the Frame Control bits
4291 	 */
4292 	cstate->no_optimize = 1;
4293 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4294 
4295 	switch (dir) {
4296 	case Q_SRC:
4297 		/*
4298 		 * Oh, yuk.
4299 		 *
4300 		 *	For control frames, there is no SA.
4301 		 *
4302 		 *	For management frames, SA is at an
4303 		 *	offset of 10 from the beginning of
4304 		 *	the packet.
4305 		 *
4306 		 *	For data frames, SA is at an offset
4307 		 *	of 10 from the beginning of the packet
4308 		 *	if From DS is clear, at an offset of
4309 		 *	16 from the beginning of the packet
4310 		 *	if From DS is set and To DS is clear,
4311 		 *	and an offset of 24 from the beginning
4312 		 *	of the packet if From DS is set and To DS
4313 		 *	is set.
4314 		 */
4315 
4316 		/*
4317 		 * Generate the tests to be done for data frames
4318 		 * with From DS set.
4319 		 *
4320 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4321 		 */
4322 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4323 		b1 = new_block(cstate, JMP(BPF_JSET));
4324 		b1->s.k = 0x01;	/* To DS */
4325 		b1->stmts = s;
4326 
4327 		/*
4328 		 * If To DS is set, the SA is at 24.
4329 		 */
4330 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4331 		gen_and(b1, b0);
4332 
4333 		/*
4334 		 * Now, check for To DS not set, i.e. check
4335 		 * "!(link[1] & 0x01)".
4336 		 */
4337 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4338 		b2 = new_block(cstate, JMP(BPF_JSET));
4339 		b2->s.k = 0x01;	/* To DS */
4340 		b2->stmts = s;
4341 		gen_not(b2);
4342 
4343 		/*
4344 		 * If To DS is not set, the SA is at 16.
4345 		 */
4346 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4347 		gen_and(b2, b1);
4348 
4349 		/*
4350 		 * Now OR together the last two checks.  That gives
4351 		 * the complete set of checks for data frames with
4352 		 * From DS set.
4353 		 */
4354 		gen_or(b1, b0);
4355 
4356 		/*
4357 		 * Now check for From DS being set, and AND that with
4358 		 * the ORed-together checks.
4359 		 */
4360 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4361 		b1 = new_block(cstate, JMP(BPF_JSET));
4362 		b1->s.k = 0x02;	/* From DS */
4363 		b1->stmts = s;
4364 		gen_and(b1, b0);
4365 
4366 		/*
4367 		 * Now check for data frames with From DS not set.
4368 		 */
4369 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4370 		b2 = new_block(cstate, JMP(BPF_JSET));
4371 		b2->s.k = 0x02;	/* From DS */
4372 		b2->stmts = s;
4373 		gen_not(b2);
4374 
4375 		/*
4376 		 * If From DS isn't set, the SA is at 10.
4377 		 */
4378 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4379 		gen_and(b2, b1);
4380 
4381 		/*
4382 		 * Now OR together the checks for data frames with
4383 		 * From DS not set and for data frames with From DS
4384 		 * set; that gives the checks done for data frames.
4385 		 */
4386 		gen_or(b1, b0);
4387 
4388 		/*
4389 		 * Now check for a data frame.
4390 		 * I.e, check "link[0] & 0x08".
4391 		 */
4392 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4393 		b1 = new_block(cstate, JMP(BPF_JSET));
4394 		b1->s.k = 0x08;
4395 		b1->stmts = s;
4396 
4397 		/*
4398 		 * AND that with the checks done for data frames.
4399 		 */
4400 		gen_and(b1, b0);
4401 
4402 		/*
4403 		 * If the high-order bit of the type value is 0, this
4404 		 * is a management frame.
4405 		 * I.e, check "!(link[0] & 0x08)".
4406 		 */
4407 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4408 		b2 = new_block(cstate, JMP(BPF_JSET));
4409 		b2->s.k = 0x08;
4410 		b2->stmts = s;
4411 		gen_not(b2);
4412 
4413 		/*
4414 		 * For management frames, the SA is at 10.
4415 		 */
4416 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4417 		gen_and(b2, b1);
4418 
4419 		/*
4420 		 * OR that with the checks done for data frames.
4421 		 * That gives the checks done for management and
4422 		 * data frames.
4423 		 */
4424 		gen_or(b1, b0);
4425 
4426 		/*
4427 		 * If the low-order bit of the type value is 1,
4428 		 * this is either a control frame or a frame
4429 		 * with a reserved type, and thus not a
4430 		 * frame with an SA.
4431 		 *
4432 		 * I.e., check "!(link[0] & 0x04)".
4433 		 */
4434 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4435 		b1 = new_block(cstate, JMP(BPF_JSET));
4436 		b1->s.k = 0x04;
4437 		b1->stmts = s;
4438 		gen_not(b1);
4439 
4440 		/*
4441 		 * AND that with the checks for data and management
4442 		 * frames.
4443 		 */
4444 		gen_and(b1, b0);
4445 		return b0;
4446 
4447 	case Q_DST:
4448 		/*
4449 		 * Oh, yuk.
4450 		 *
4451 		 *	For control frames, there is no DA.
4452 		 *
4453 		 *	For management frames, DA is at an
4454 		 *	offset of 4 from the beginning of
4455 		 *	the packet.
4456 		 *
4457 		 *	For data frames, DA is at an offset
4458 		 *	of 4 from the beginning of the packet
4459 		 *	if To DS is clear and at an offset of
4460 		 *	16 from the beginning of the packet
4461 		 *	if To DS is set.
4462 		 */
4463 
4464 		/*
4465 		 * Generate the tests to be done for data frames.
4466 		 *
4467 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4468 		 */
4469 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4470 		b1 = new_block(cstate, JMP(BPF_JSET));
4471 		b1->s.k = 0x01;	/* To DS */
4472 		b1->stmts = s;
4473 
4474 		/*
4475 		 * If To DS is set, the DA is at 16.
4476 		 */
4477 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4478 		gen_and(b1, b0);
4479 
4480 		/*
4481 		 * Now, check for To DS not set, i.e. check
4482 		 * "!(link[1] & 0x01)".
4483 		 */
4484 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4485 		b2 = new_block(cstate, JMP(BPF_JSET));
4486 		b2->s.k = 0x01;	/* To DS */
4487 		b2->stmts = s;
4488 		gen_not(b2);
4489 
4490 		/*
4491 		 * If To DS is not set, the DA is at 4.
4492 		 */
4493 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4494 		gen_and(b2, b1);
4495 
4496 		/*
4497 		 * Now OR together the last two checks.  That gives
4498 		 * the complete set of checks for data frames.
4499 		 */
4500 		gen_or(b1, b0);
4501 
4502 		/*
4503 		 * Now check for a data frame.
4504 		 * I.e, check "link[0] & 0x08".
4505 		 */
4506 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4507 		b1 = new_block(cstate, JMP(BPF_JSET));
4508 		b1->s.k = 0x08;
4509 		b1->stmts = s;
4510 
4511 		/*
4512 		 * AND that with the checks done for data frames.
4513 		 */
4514 		gen_and(b1, b0);
4515 
4516 		/*
4517 		 * If the high-order bit of the type value is 0, this
4518 		 * is a management frame.
4519 		 * I.e, check "!(link[0] & 0x08)".
4520 		 */
4521 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4522 		b2 = new_block(cstate, JMP(BPF_JSET));
4523 		b2->s.k = 0x08;
4524 		b2->stmts = s;
4525 		gen_not(b2);
4526 
4527 		/*
4528 		 * For management frames, the DA is at 4.
4529 		 */
4530 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4531 		gen_and(b2, b1);
4532 
4533 		/*
4534 		 * OR that with the checks done for data frames.
4535 		 * That gives the checks done for management and
4536 		 * data frames.
4537 		 */
4538 		gen_or(b1, b0);
4539 
4540 		/*
4541 		 * If the low-order bit of the type value is 1,
4542 		 * this is either a control frame or a frame
4543 		 * with a reserved type, and thus not a
4544 		 * frame with an SA.
4545 		 *
4546 		 * I.e., check "!(link[0] & 0x04)".
4547 		 */
4548 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4549 		b1 = new_block(cstate, JMP(BPF_JSET));
4550 		b1->s.k = 0x04;
4551 		b1->stmts = s;
4552 		gen_not(b1);
4553 
4554 		/*
4555 		 * AND that with the checks for data and management
4556 		 * frames.
4557 		 */
4558 		gen_and(b1, b0);
4559 		return b0;
4560 
4561 	case Q_AND:
4562 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4563 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4564 		gen_and(b0, b1);
4565 		return b1;
4566 
4567 	case Q_DEFAULT:
4568 	case Q_OR:
4569 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4570 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4571 		gen_or(b0, b1);
4572 		return b1;
4573 
4574 	/*
4575 	 * XXX - add BSSID keyword?
4576 	 */
4577 	case Q_ADDR1:
4578 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4579 
4580 	case Q_ADDR2:
4581 		/*
4582 		 * Not present in CTS or ACK control frames.
4583 		 */
4584 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4585 			IEEE80211_FC0_TYPE_MASK);
4586 		gen_not(b0);
4587 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4588 			IEEE80211_FC0_SUBTYPE_MASK);
4589 		gen_not(b1);
4590 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4591 			IEEE80211_FC0_SUBTYPE_MASK);
4592 		gen_not(b2);
4593 		gen_and(b1, b2);
4594 		gen_or(b0, b2);
4595 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4596 		gen_and(b2, b1);
4597 		return b1;
4598 
4599 	case Q_ADDR3:
4600 		/*
4601 		 * Not present in control frames.
4602 		 */
4603 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4604 			IEEE80211_FC0_TYPE_MASK);
4605 		gen_not(b0);
4606 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4607 		gen_and(b0, b1);
4608 		return b1;
4609 
4610 	case Q_ADDR4:
4611 		/*
4612 		 * Present only if the direction mask has both "From DS"
4613 		 * and "To DS" set.  Neither control frames nor management
4614 		 * frames should have both of those set, so we don't
4615 		 * check the frame type.
4616 		 */
4617 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4618 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4619 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4620 		gen_and(b0, b1);
4621 		return b1;
4622 
4623 	case Q_RA:
4624 		/*
4625 		 * Not present in management frames; addr1 in other
4626 		 * frames.
4627 		 */
4628 
4629 		/*
4630 		 * If the high-order bit of the type value is 0, this
4631 		 * is a management frame.
4632 		 * I.e, check "(link[0] & 0x08)".
4633 		 */
4634 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4635 		b1 = new_block(cstate, JMP(BPF_JSET));
4636 		b1->s.k = 0x08;
4637 		b1->stmts = s;
4638 
4639 		/*
4640 		 * Check addr1.
4641 		 */
4642 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4643 
4644 		/*
4645 		 * AND that with the check of addr1.
4646 		 */
4647 		gen_and(b1, b0);
4648 		return (b0);
4649 
4650 	case Q_TA:
4651 		/*
4652 		 * Not present in management frames; addr2, if present,
4653 		 * in other frames.
4654 		 */
4655 
4656 		/*
4657 		 * Not present in CTS or ACK control frames.
4658 		 */
4659 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4660 			IEEE80211_FC0_TYPE_MASK);
4661 		gen_not(b0);
4662 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4663 			IEEE80211_FC0_SUBTYPE_MASK);
4664 		gen_not(b1);
4665 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4666 			IEEE80211_FC0_SUBTYPE_MASK);
4667 		gen_not(b2);
4668 		gen_and(b1, b2);
4669 		gen_or(b0, b2);
4670 
4671 		/*
4672 		 * If the high-order bit of the type value is 0, this
4673 		 * is a management frame.
4674 		 * I.e, check "(link[0] & 0x08)".
4675 		 */
4676 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4677 		b1 = new_block(cstate, JMP(BPF_JSET));
4678 		b1->s.k = 0x08;
4679 		b1->stmts = s;
4680 
4681 		/*
4682 		 * AND that with the check for frames other than
4683 		 * CTS and ACK frames.
4684 		 */
4685 		gen_and(b1, b2);
4686 
4687 		/*
4688 		 * Check addr2.
4689 		 */
4690 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4691 		gen_and(b2, b1);
4692 		return b1;
4693 	}
4694 	abort();
4695 	/*NOTREACHED*/
4696 }
4697 
4698 /*
4699  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4700  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4701  * as the RFC states.)
4702  */
4703 static struct block *
gen_ipfchostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4704 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4705 {
4706 	register struct block *b0, *b1;
4707 
4708 	switch (dir) {
4709 	case Q_SRC:
4710 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4711 
4712 	case Q_DST:
4713 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4714 
4715 	case Q_AND:
4716 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4717 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4718 		gen_and(b0, b1);
4719 		return b1;
4720 
4721 	case Q_DEFAULT:
4722 	case Q_OR:
4723 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4724 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4725 		gen_or(b0, b1);
4726 		return b1;
4727 
4728 	case Q_ADDR1:
4729 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4730 		/*NOTREACHED*/
4731 
4732 	case Q_ADDR2:
4733 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4734 		/*NOTREACHED*/
4735 
4736 	case Q_ADDR3:
4737 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4738 		/*NOTREACHED*/
4739 
4740 	case Q_ADDR4:
4741 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4742 		/*NOTREACHED*/
4743 
4744 	case Q_RA:
4745 		bpf_error(cstate, "'ra' is only supported on 802.11");
4746 		/*NOTREACHED*/
4747 
4748 	case Q_TA:
4749 		bpf_error(cstate, "'ta' is only supported on 802.11");
4750 		/*NOTREACHED*/
4751 	}
4752 	abort();
4753 	/*NOTREACHED*/
4754 }
4755 
4756 /*
4757  * This is quite tricky because there may be pad bytes in front of the
4758  * DECNET header, and then there are two possible data packet formats that
4759  * carry both src and dst addresses, plus 5 packet types in a format that
4760  * carries only the src node, plus 2 types that use a different format and
4761  * also carry just the src node.
4762  *
4763  * Yuck.
4764  *
4765  * Instead of doing those all right, we just look for data packets with
4766  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4767  * will require a lot more hacking.
4768  *
4769  * To add support for filtering on DECNET "areas" (network numbers)
4770  * one would want to add a "mask" argument to this routine.  That would
4771  * make the filter even more inefficient, although one could be clever
4772  * and not generate masking instructions if the mask is 0xFFFF.
4773  */
4774 static struct block *
gen_dnhostop(compiler_state_t * cstate,bpf_u_int32 addr,int dir)4775 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4776 {
4777 	struct block *b0, *b1, *b2, *tmp;
4778 	u_int offset_lh;	/* offset if long header is received */
4779 	u_int offset_sh;	/* offset if short header is received */
4780 
4781 	switch (dir) {
4782 
4783 	case Q_DST:
4784 		offset_sh = 1;	/* follows flags */
4785 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4786 		break;
4787 
4788 	case Q_SRC:
4789 		offset_sh = 3;	/* follows flags, dstnode */
4790 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4791 		break;
4792 
4793 	case Q_AND:
4794 		/* Inefficient because we do our Calvinball dance twice */
4795 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4796 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4797 		gen_and(b0, b1);
4798 		return b1;
4799 
4800 	case Q_DEFAULT:
4801 	case Q_OR:
4802 		/* Inefficient because we do our Calvinball dance twice */
4803 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4804 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4805 		gen_or(b0, b1);
4806 		return b1;
4807 
4808 	case Q_ADDR1:
4809 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4810 		/*NOTREACHED*/
4811 
4812 	case Q_ADDR2:
4813 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4814 		/*NOTREACHED*/
4815 
4816 	case Q_ADDR3:
4817 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4818 		/*NOTREACHED*/
4819 
4820 	case Q_ADDR4:
4821 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4822 		/*NOTREACHED*/
4823 
4824 	case Q_RA:
4825 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4826 		/*NOTREACHED*/
4827 
4828 	case Q_TA:
4829 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4830 		/*NOTREACHED*/
4831 
4832 	default:
4833 		abort();
4834 		/*NOTREACHED*/
4835 	}
4836 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4837 	/* Check for pad = 1, long header case */
4838 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4839 	    (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4840 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4841 	    BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4842 	gen_and(tmp, b1);
4843 	/* Check for pad = 0, long header case */
4844 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4845 	    (bpf_u_int32)0x7);
4846 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4847 	    (bpf_u_int32)ntohs((u_short)addr));
4848 	gen_and(tmp, b2);
4849 	gen_or(b2, b1);
4850 	/* Check for pad = 1, short header case */
4851 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4852 	    (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4853 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4854 	    (bpf_u_int32)ntohs((u_short)addr));
4855 	gen_and(tmp, b2);
4856 	gen_or(b2, b1);
4857 	/* Check for pad = 0, short header case */
4858 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4859 	    (bpf_u_int32)0x7);
4860 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4861 	    (bpf_u_int32)ntohs((u_short)addr));
4862 	gen_and(tmp, b2);
4863 	gen_or(b2, b1);
4864 
4865 	/* Combine with test for cstate->linktype */
4866 	gen_and(b0, b1);
4867 	return b1;
4868 }
4869 
4870 /*
4871  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4872  * test the bottom-of-stack bit, and then check the version number
4873  * field in the IP header.
4874  */
4875 static struct block *
gen_mpls_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)4876 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4877 {
4878 	struct block *b0, *b1;
4879 
4880         switch (ll_proto) {
4881 
4882         case ETHERTYPE_IP:
4883                 /* match the bottom-of-stack bit */
4884                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4885                 /* match the IPv4 version number */
4886                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4887                 gen_and(b0, b1);
4888                 return b1;
4889 
4890         case ETHERTYPE_IPV6:
4891                 /* match the bottom-of-stack bit */
4892                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4893                 /* match the IPv4 version number */
4894                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4895                 gen_and(b0, b1);
4896                 return b1;
4897 
4898         default:
4899                /* FIXME add other L3 proto IDs */
4900                bpf_error(cstate, "unsupported protocol over mpls");
4901                /*NOTREACHED*/
4902         }
4903 }
4904 
4905 static struct block *
gen_host(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int proto,int dir,int type)4906 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4907     int proto, int dir, int type)
4908 {
4909 	struct block *b0, *b1;
4910 	const char *typestr;
4911 
4912 	if (type == Q_NET)
4913 		typestr = "net";
4914 	else
4915 		typestr = "host";
4916 
4917 	switch (proto) {
4918 
4919 	case Q_DEFAULT:
4920 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4921 		/*
4922 		 * Only check for non-IPv4 addresses if we're not
4923 		 * checking MPLS-encapsulated packets.
4924 		 */
4925 		if (cstate->label_stack_depth == 0) {
4926 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4927 			gen_or(b0, b1);
4928 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4929 			gen_or(b1, b0);
4930 		}
4931 		return b0;
4932 
4933 	case Q_LINK:
4934 		bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4935 
4936 	case Q_IP:
4937 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4938 
4939 	case Q_RARP:
4940 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4941 
4942 	case Q_ARP:
4943 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4944 
4945 	case Q_SCTP:
4946 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4947 
4948 	case Q_TCP:
4949 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4950 
4951 	case Q_UDP:
4952 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4953 
4954 	case Q_ICMP:
4955 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4956 
4957 	case Q_IGMP:
4958 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4959 
4960 	case Q_IGRP:
4961 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4962 
4963 	case Q_ATALK:
4964 		bpf_error(cstate, "AppleTalk host filtering not implemented");
4965 
4966 	case Q_DECNET:
4967 		return gen_dnhostop(cstate, addr, dir);
4968 
4969 	case Q_LAT:
4970 		bpf_error(cstate, "LAT host filtering not implemented");
4971 
4972 	case Q_SCA:
4973 		bpf_error(cstate, "SCA host filtering not implemented");
4974 
4975 	case Q_MOPRC:
4976 		bpf_error(cstate, "MOPRC host filtering not implemented");
4977 
4978 	case Q_MOPDL:
4979 		bpf_error(cstate, "MOPDL host filtering not implemented");
4980 
4981 	case Q_IPV6:
4982 		bpf_error(cstate, "'ip6' modifier applied to ip host");
4983 
4984 	case Q_ICMPV6:
4985 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4986 
4987 	case Q_AH:
4988 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4989 
4990 	case Q_ESP:
4991 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4992 
4993 	case Q_PIM:
4994 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4995 
4996 	case Q_VRRP:
4997 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4998 
4999 	case Q_AARP:
5000 		bpf_error(cstate, "AARP host filtering not implemented");
5001 
5002 	case Q_ISO:
5003 		bpf_error(cstate, "ISO host filtering not implemented");
5004 
5005 	case Q_ESIS:
5006 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5007 
5008 	case Q_ISIS:
5009 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5010 
5011 	case Q_CLNP:
5012 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5013 
5014 	case Q_STP:
5015 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5016 
5017 	case Q_IPX:
5018 		bpf_error(cstate, "IPX host filtering not implemented");
5019 
5020 	case Q_NETBEUI:
5021 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5022 
5023 	case Q_ISIS_L1:
5024 		bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5025 
5026 	case Q_ISIS_L2:
5027 		bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5028 
5029 	case Q_ISIS_IIH:
5030 		bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5031 
5032 	case Q_ISIS_SNP:
5033 		bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5034 
5035 	case Q_ISIS_CSNP:
5036 		bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5037 
5038 	case Q_ISIS_PSNP:
5039 		bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5040 
5041 	case Q_ISIS_LSP:
5042 		bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5043 
5044 	case Q_RADIO:
5045 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5046 
5047 	case Q_CARP:
5048 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5049 
5050 	default:
5051 		abort();
5052 	}
5053 	/*NOTREACHED*/
5054 }
5055 
5056 #ifdef INET6
5057 static struct block *
gen_host6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int proto,int dir,int type)5058 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5059     struct in6_addr *mask, int proto, int dir, int type)
5060 {
5061 	const char *typestr;
5062 
5063 	if (type == Q_NET)
5064 		typestr = "net";
5065 	else
5066 		typestr = "host";
5067 
5068 	switch (proto) {
5069 
5070 	case Q_DEFAULT:
5071 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5072 
5073 	case Q_LINK:
5074 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5075 
5076 	case Q_IP:
5077 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5078 
5079 	case Q_RARP:
5080 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5081 
5082 	case Q_ARP:
5083 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5084 
5085 	case Q_SCTP:
5086 		bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5087 
5088 	case Q_TCP:
5089 		bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5090 
5091 	case Q_UDP:
5092 		bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5093 
5094 	case Q_ICMP:
5095 		bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5096 
5097 	case Q_IGMP:
5098 		bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5099 
5100 	case Q_IGRP:
5101 		bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5102 
5103 	case Q_ATALK:
5104 		bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5105 
5106 	case Q_DECNET:
5107 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5108 
5109 	case Q_LAT:
5110 		bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5111 
5112 	case Q_SCA:
5113 		bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5114 
5115 	case Q_MOPRC:
5116 		bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5117 
5118 	case Q_MOPDL:
5119 		bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5120 
5121 	case Q_IPV6:
5122 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5123 
5124 	case Q_ICMPV6:
5125 		bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5126 
5127 	case Q_AH:
5128 		bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5129 
5130 	case Q_ESP:
5131 		bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5132 
5133 	case Q_PIM:
5134 		bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5135 
5136 	case Q_VRRP:
5137 		bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5138 
5139 	case Q_AARP:
5140 		bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5141 
5142 	case Q_ISO:
5143 		bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5144 
5145 	case Q_ESIS:
5146 		bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5147 
5148 	case Q_ISIS:
5149 		bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5150 
5151 	case Q_CLNP:
5152 		bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5153 
5154 	case Q_STP:
5155 		bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5156 
5157 	case Q_IPX:
5158 		bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5159 
5160 	case Q_NETBEUI:
5161 		bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5162 
5163 	case Q_ISIS_L1:
5164 		bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5165 
5166 	case Q_ISIS_L2:
5167 		bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5168 
5169 	case Q_ISIS_IIH:
5170 		bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5171 
5172 	case Q_ISIS_SNP:
5173 		bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5174 
5175 	case Q_ISIS_CSNP:
5176 		bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5177 
5178 	case Q_ISIS_PSNP:
5179 		bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5180 
5181 	case Q_ISIS_LSP:
5182 		bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5183 
5184 	case Q_RADIO:
5185 		bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5186 
5187 	case Q_CARP:
5188 		bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5189 
5190 	default:
5191 		abort();
5192 	}
5193 	/*NOTREACHED*/
5194 }
5195 #endif
5196 
5197 #ifndef INET6
5198 static struct block *
gen_gateway(compiler_state_t * cstate,const u_char * eaddr,struct addrinfo * alist,int proto,int dir)5199 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5200     struct addrinfo *alist, int proto, int dir)
5201 {
5202 	struct block *b0, *b1, *tmp;
5203 	struct addrinfo *ai;
5204 	struct sockaddr_in *sin;
5205 
5206 	if (dir != 0)
5207 		bpf_error(cstate, "direction applied to 'gateway'");
5208 
5209 	switch (proto) {
5210 	case Q_DEFAULT:
5211 	case Q_IP:
5212 	case Q_ARP:
5213 	case Q_RARP:
5214 		switch (cstate->linktype) {
5215 		case DLT_EN10MB:
5216 		case DLT_NETANALYZER:
5217 		case DLT_NETANALYZER_TRANSPARENT:
5218 			b1 = gen_prevlinkhdr_check(cstate);
5219 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5220 			if (b1 != NULL)
5221 				gen_and(b1, b0);
5222 			break;
5223 		case DLT_FDDI:
5224 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5225 			break;
5226 		case DLT_IEEE802:
5227 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5228 			break;
5229 		case DLT_IEEE802_11:
5230 		case DLT_PRISM_HEADER:
5231 		case DLT_IEEE802_11_RADIO_AVS:
5232 		case DLT_IEEE802_11_RADIO:
5233 		case DLT_PPI:
5234 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5235 			break;
5236 		case DLT_SUNATM:
5237 			/*
5238 			 * This is LLC-multiplexed traffic; if it were
5239 			 * LANE, cstate->linktype would have been set to
5240 			 * DLT_EN10MB.
5241 			 */
5242 			bpf_error(cstate,
5243 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5244 			break;
5245 		case DLT_IP_OVER_FC:
5246 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5247 			break;
5248 		default:
5249 			bpf_error(cstate,
5250 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5251 		}
5252 		b1 = NULL;
5253 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5254 			/*
5255 			 * Does it have an address?
5256 			 */
5257 			if (ai->ai_addr != NULL) {
5258 				/*
5259 				 * Yes.  Is it an IPv4 address?
5260 				 */
5261 				if (ai->ai_addr->sa_family == AF_INET) {
5262 					/*
5263 					 * Generate an entry for it.
5264 					 */
5265 					sin = (struct sockaddr_in *)ai->ai_addr;
5266 					tmp = gen_host(cstate,
5267 					    ntohl(sin->sin_addr.s_addr),
5268 					    0xffffffff, proto, Q_OR, Q_HOST);
5269 					/*
5270 					 * Is it the *first* IPv4 address?
5271 					 */
5272 					if (b1 == NULL) {
5273 						/*
5274 						 * Yes, so start with it.
5275 						 */
5276 						b1 = tmp;
5277 					} else {
5278 						/*
5279 						 * No, so OR it into the
5280 						 * existing set of
5281 						 * addresses.
5282 						 */
5283 						gen_or(b1, tmp);
5284 						b1 = tmp;
5285 					}
5286 				}
5287 			}
5288 		}
5289 		if (b1 == NULL) {
5290 			/*
5291 			 * No IPv4 addresses found.
5292 			 */
5293 			return (NULL);
5294 		}
5295 		gen_not(b1);
5296 		gen_and(b0, b1);
5297 		return b1;
5298 	}
5299 	bpf_error(cstate, "illegal modifier of 'gateway'");
5300 	/*NOTREACHED*/
5301 }
5302 #endif
5303 
5304 static struct block *
gen_proto_abbrev_internal(compiler_state_t * cstate,int proto)5305 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5306 {
5307 	struct block *b0;
5308 	struct block *b1;
5309 
5310 	switch (proto) {
5311 
5312 	case Q_SCTP:
5313 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
5314 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
5315 		gen_or(b0, b1);
5316 		break;
5317 
5318 	case Q_TCP:
5319 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
5320 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
5321 		gen_or(b0, b1);
5322 		break;
5323 
5324 	case Q_UDP:
5325 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
5326 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5327 		gen_or(b0, b1);
5328 		break;
5329 
5330 	case Q_ICMP:
5331 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5332 		break;
5333 
5334 #ifndef	IPPROTO_IGMP
5335 #define	IPPROTO_IGMP	2
5336 #endif
5337 
5338 	case Q_IGMP:
5339 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5340 		break;
5341 
5342 #ifndef	IPPROTO_IGRP
5343 #define	IPPROTO_IGRP	9
5344 #endif
5345 	case Q_IGRP:
5346 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5347 		break;
5348 
5349 #ifndef IPPROTO_PIM
5350 #define IPPROTO_PIM	103
5351 #endif
5352 
5353 	case Q_PIM:
5354 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5355 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5356 		gen_or(b0, b1);
5357 		break;
5358 
5359 #ifndef IPPROTO_VRRP
5360 #define IPPROTO_VRRP	112
5361 #endif
5362 
5363 	case Q_VRRP:
5364 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5365 		break;
5366 
5367 #ifndef IPPROTO_CARP
5368 #define IPPROTO_CARP	112
5369 #endif
5370 
5371 	case Q_CARP:
5372 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5373 		break;
5374 
5375 	case Q_IP:
5376 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5377 		break;
5378 
5379 	case Q_ARP:
5380 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5381 		break;
5382 
5383 	case Q_RARP:
5384 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5385 		break;
5386 
5387 	case Q_LINK:
5388 		bpf_error(cstate, "link layer applied in wrong context");
5389 
5390 	case Q_ATALK:
5391 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5392 		break;
5393 
5394 	case Q_AARP:
5395 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5396 		break;
5397 
5398 	case Q_DECNET:
5399 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5400 		break;
5401 
5402 	case Q_SCA:
5403 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5404 		break;
5405 
5406 	case Q_LAT:
5407 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5408 		break;
5409 
5410 	case Q_MOPDL:
5411 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5412 		break;
5413 
5414 	case Q_MOPRC:
5415 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5416 		break;
5417 
5418 	case Q_IPV6:
5419 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5420 		break;
5421 
5422 #ifndef IPPROTO_ICMPV6
5423 #define IPPROTO_ICMPV6	58
5424 #endif
5425 	case Q_ICMPV6:
5426 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5427 		break;
5428 
5429 #ifndef IPPROTO_AH
5430 #define IPPROTO_AH	51
5431 #endif
5432 	case Q_AH:
5433 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5434 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5435 		gen_or(b0, b1);
5436 		break;
5437 
5438 #ifndef IPPROTO_ESP
5439 #define IPPROTO_ESP	50
5440 #endif
5441 	case Q_ESP:
5442 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5443 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5444 		gen_or(b0, b1);
5445 		break;
5446 
5447 	case Q_ISO:
5448 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5449 		break;
5450 
5451 	case Q_ESIS:
5452 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5453 		break;
5454 
5455 	case Q_ISIS:
5456 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5457 		break;
5458 
5459 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5460 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5461 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5462 		gen_or(b0, b1);
5463 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5464 		gen_or(b0, b1);
5465 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5466 		gen_or(b0, b1);
5467 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5468 		gen_or(b0, b1);
5469 		break;
5470 
5471 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5472 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5473 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5474 		gen_or(b0, b1);
5475 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5476 		gen_or(b0, b1);
5477 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5478 		gen_or(b0, b1);
5479 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5480 		gen_or(b0, b1);
5481 		break;
5482 
5483 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5484 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5485 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5486 		gen_or(b0, b1);
5487 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5488 		gen_or(b0, b1);
5489 		break;
5490 
5491 	case Q_ISIS_LSP:
5492 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5493 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5494 		gen_or(b0, b1);
5495 		break;
5496 
5497 	case Q_ISIS_SNP:
5498 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5499 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5500 		gen_or(b0, b1);
5501 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5502 		gen_or(b0, b1);
5503 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5504 		gen_or(b0, b1);
5505 		break;
5506 
5507 	case Q_ISIS_CSNP:
5508 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5509 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5510 		gen_or(b0, b1);
5511 		break;
5512 
5513 	case Q_ISIS_PSNP:
5514 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5515 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5516 		gen_or(b0, b1);
5517 		break;
5518 
5519 	case Q_CLNP:
5520 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5521 		break;
5522 
5523 	case Q_STP:
5524 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5525 		break;
5526 
5527 	case Q_IPX:
5528 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5529 		break;
5530 
5531 	case Q_NETBEUI:
5532 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5533 		break;
5534 
5535 	case Q_RADIO:
5536 		bpf_error(cstate, "'radio' is not a valid protocol type");
5537 
5538 	default:
5539 		abort();
5540 	}
5541 	return b1;
5542 }
5543 
5544 struct block *
gen_proto_abbrev(compiler_state_t * cstate,int proto)5545 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5546 {
5547 	/*
5548 	 * Catch errors reported by us and routines below us, and return NULL
5549 	 * on an error.
5550 	 */
5551 	if (setjmp(cstate->top_ctx))
5552 		return (NULL);
5553 
5554 	return gen_proto_abbrev_internal(cstate, proto);
5555 }
5556 
5557 static struct block *
gen_ipfrag(compiler_state_t * cstate)5558 gen_ipfrag(compiler_state_t *cstate)
5559 {
5560 	struct slist *s;
5561 	struct block *b;
5562 
5563 	/* not IPv4 frag other than the first frag */
5564 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5565 	b = new_block(cstate, JMP(BPF_JSET));
5566 	b->s.k = 0x1fff;
5567 	b->stmts = s;
5568 	gen_not(b);
5569 
5570 	return b;
5571 }
5572 
5573 /*
5574  * Generate a comparison to a port value in the transport-layer header
5575  * at the specified offset from the beginning of that header.
5576  *
5577  * XXX - this handles a variable-length prefix preceding the link-layer
5578  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5579  * variable-length link-layer headers (such as Token Ring or 802.11
5580  * headers).
5581  */
5582 static struct block *
gen_portatom(compiler_state_t * cstate,int off,bpf_u_int32 v)5583 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5584 {
5585 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5586 }
5587 
5588 static struct block *
gen_portatom6(compiler_state_t * cstate,int off,bpf_u_int32 v)5589 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5590 {
5591 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5592 }
5593 
5594 static struct block *
gen_portop(compiler_state_t * cstate,u_int port,u_int proto,int dir)5595 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5596 {
5597 	struct block *b0, *b1, *tmp;
5598 
5599 	/* ip proto 'proto' and not a fragment other than the first fragment */
5600 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5601 	b0 = gen_ipfrag(cstate);
5602 	gen_and(tmp, b0);
5603 
5604 	switch (dir) {
5605 	case Q_SRC:
5606 		b1 = gen_portatom(cstate, 0, port);
5607 		break;
5608 
5609 	case Q_DST:
5610 		b1 = gen_portatom(cstate, 2, port);
5611 		break;
5612 
5613 	case Q_AND:
5614 		tmp = gen_portatom(cstate, 0, port);
5615 		b1 = gen_portatom(cstate, 2, port);
5616 		gen_and(tmp, b1);
5617 		break;
5618 
5619 	case Q_DEFAULT:
5620 	case Q_OR:
5621 		tmp = gen_portatom(cstate, 0, port);
5622 		b1 = gen_portatom(cstate, 2, port);
5623 		gen_or(tmp, b1);
5624 		break;
5625 
5626 	case Q_ADDR1:
5627 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5628 		/*NOTREACHED*/
5629 
5630 	case Q_ADDR2:
5631 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5632 		/*NOTREACHED*/
5633 
5634 	case Q_ADDR3:
5635 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5636 		/*NOTREACHED*/
5637 
5638 	case Q_ADDR4:
5639 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5640 		/*NOTREACHED*/
5641 
5642 	case Q_RA:
5643 		bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5644 		/*NOTREACHED*/
5645 
5646 	case Q_TA:
5647 		bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5648 		/*NOTREACHED*/
5649 
5650 	default:
5651 		abort();
5652 		/*NOTREACHED*/
5653 	}
5654 	gen_and(b0, b1);
5655 
5656 	return b1;
5657 }
5658 
5659 static struct block *
gen_port(compiler_state_t * cstate,u_int port,int ip_proto,int dir)5660 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5661 {
5662 	struct block *b0, *b1, *tmp;
5663 
5664 	/*
5665 	 * ether proto ip
5666 	 *
5667 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5668 	 * not LLC encapsulation with LLCSAP_IP.
5669 	 *
5670 	 * For IEEE 802 networks - which includes 802.5 token ring
5671 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5672 	 * says that SNAP encapsulation is used, not LLC encapsulation
5673 	 * with LLCSAP_IP.
5674 	 *
5675 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5676 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5677 	 * encapsulation with LLCSAP_IP.
5678 	 *
5679 	 * So we always check for ETHERTYPE_IP.
5680 	 */
5681 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5682 
5683 	switch (ip_proto) {
5684 	case IPPROTO_UDP:
5685 	case IPPROTO_TCP:
5686 	case IPPROTO_SCTP:
5687 		b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5688 		break;
5689 
5690 	case PROTO_UNDEF:
5691 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5692 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5693 		gen_or(tmp, b1);
5694 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5695 		gen_or(tmp, b1);
5696 		break;
5697 
5698 	default:
5699 		abort();
5700 	}
5701 	gen_and(b0, b1);
5702 	return b1;
5703 }
5704 
5705 struct block *
gen_portop6(compiler_state_t * cstate,u_int port,u_int proto,int dir)5706 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5707 {
5708 	struct block *b0, *b1, *tmp;
5709 
5710 	/* ip6 proto 'proto' */
5711 	/* XXX - catch the first fragment of a fragmented packet? */
5712 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5713 
5714 	switch (dir) {
5715 	case Q_SRC:
5716 		b1 = gen_portatom6(cstate, 0, port);
5717 		break;
5718 
5719 	case Q_DST:
5720 		b1 = gen_portatom6(cstate, 2, port);
5721 		break;
5722 
5723 	case Q_AND:
5724 		tmp = gen_portatom6(cstate, 0, port);
5725 		b1 = gen_portatom6(cstate, 2, port);
5726 		gen_and(tmp, b1);
5727 		break;
5728 
5729 	case Q_DEFAULT:
5730 	case Q_OR:
5731 		tmp = gen_portatom6(cstate, 0, port);
5732 		b1 = gen_portatom6(cstate, 2, port);
5733 		gen_or(tmp, b1);
5734 		break;
5735 
5736 	default:
5737 		abort();
5738 	}
5739 	gen_and(b0, b1);
5740 
5741 	return b1;
5742 }
5743 
5744 static struct block *
gen_port6(compiler_state_t * cstate,u_int port,int ip_proto,int dir)5745 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5746 {
5747 	struct block *b0, *b1, *tmp;
5748 
5749 	/* link proto ip6 */
5750 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5751 
5752 	switch (ip_proto) {
5753 	case IPPROTO_UDP:
5754 	case IPPROTO_TCP:
5755 	case IPPROTO_SCTP:
5756 		b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5757 		break;
5758 
5759 	case PROTO_UNDEF:
5760 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5761 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5762 		gen_or(tmp, b1);
5763 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5764 		gen_or(tmp, b1);
5765 		break;
5766 
5767 	default:
5768 		abort();
5769 	}
5770 	gen_and(b0, b1);
5771 	return b1;
5772 }
5773 
5774 /* gen_portrange code */
5775 static struct block *
gen_portrangeatom(compiler_state_t * cstate,u_int off,bpf_u_int32 v1,bpf_u_int32 v2)5776 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5777     bpf_u_int32 v2)
5778 {
5779 	struct block *b1, *b2;
5780 
5781 	if (v1 > v2) {
5782 		/*
5783 		 * Reverse the order of the ports, so v1 is the lower one.
5784 		 */
5785 		bpf_u_int32 vtemp;
5786 
5787 		vtemp = v1;
5788 		v1 = v2;
5789 		v2 = vtemp;
5790 	}
5791 
5792 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5793 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5794 
5795 	gen_and(b1, b2);
5796 
5797 	return b2;
5798 }
5799 
5800 static struct block *
gen_portrangeop(compiler_state_t * cstate,u_int port1,u_int port2,bpf_u_int32 proto,int dir)5801 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5802     bpf_u_int32 proto, int dir)
5803 {
5804 	struct block *b0, *b1, *tmp;
5805 
5806 	/* ip proto 'proto' and not a fragment other than the first fragment */
5807 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5808 	b0 = gen_ipfrag(cstate);
5809 	gen_and(tmp, b0);
5810 
5811 	switch (dir) {
5812 	case Q_SRC:
5813 		b1 = gen_portrangeatom(cstate, 0, port1, port2);
5814 		break;
5815 
5816 	case Q_DST:
5817 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5818 		break;
5819 
5820 	case Q_AND:
5821 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5822 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5823 		gen_and(tmp, b1);
5824 		break;
5825 
5826 	case Q_DEFAULT:
5827 	case Q_OR:
5828 		tmp = gen_portrangeatom(cstate, 0, port1, port2);
5829 		b1 = gen_portrangeatom(cstate, 2, port1, port2);
5830 		gen_or(tmp, b1);
5831 		break;
5832 
5833 	case Q_ADDR1:
5834 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5835 		/*NOTREACHED*/
5836 
5837 	case Q_ADDR2:
5838 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5839 		/*NOTREACHED*/
5840 
5841 	case Q_ADDR3:
5842 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5843 		/*NOTREACHED*/
5844 
5845 	case Q_ADDR4:
5846 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5847 		/*NOTREACHED*/
5848 
5849 	case Q_RA:
5850 		bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5851 		/*NOTREACHED*/
5852 
5853 	case Q_TA:
5854 		bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5855 		/*NOTREACHED*/
5856 
5857 	default:
5858 		abort();
5859 		/*NOTREACHED*/
5860 	}
5861 	gen_and(b0, b1);
5862 
5863 	return b1;
5864 }
5865 
5866 static struct block *
gen_portrange(compiler_state_t * cstate,u_int port1,u_int port2,int ip_proto,int dir)5867 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5868     int dir)
5869 {
5870 	struct block *b0, *b1, *tmp;
5871 
5872 	/* link proto ip */
5873 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5874 
5875 	switch (ip_proto) {
5876 	case IPPROTO_UDP:
5877 	case IPPROTO_TCP:
5878 	case IPPROTO_SCTP:
5879 		b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5880 		    dir);
5881 		break;
5882 
5883 	case PROTO_UNDEF:
5884 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5885 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5886 		gen_or(tmp, b1);
5887 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5888 		gen_or(tmp, b1);
5889 		break;
5890 
5891 	default:
5892 		abort();
5893 	}
5894 	gen_and(b0, b1);
5895 	return b1;
5896 }
5897 
5898 static struct block *
gen_portrangeatom6(compiler_state_t * cstate,u_int off,bpf_u_int32 v1,bpf_u_int32 v2)5899 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5900     bpf_u_int32 v2)
5901 {
5902 	struct block *b1, *b2;
5903 
5904 	if (v1 > v2) {
5905 		/*
5906 		 * Reverse the order of the ports, so v1 is the lower one.
5907 		 */
5908 		bpf_u_int32 vtemp;
5909 
5910 		vtemp = v1;
5911 		v1 = v2;
5912 		v2 = vtemp;
5913 	}
5914 
5915 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5916 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5917 
5918 	gen_and(b1, b2);
5919 
5920 	return b2;
5921 }
5922 
5923 static struct block *
gen_portrangeop6(compiler_state_t * cstate,u_int port1,u_int port2,bpf_u_int32 proto,int dir)5924 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5925     bpf_u_int32 proto, int dir)
5926 {
5927 	struct block *b0, *b1, *tmp;
5928 
5929 	/* ip6 proto 'proto' */
5930 	/* XXX - catch the first fragment of a fragmented packet? */
5931 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5932 
5933 	switch (dir) {
5934 	case Q_SRC:
5935 		b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5936 		break;
5937 
5938 	case Q_DST:
5939 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5940 		break;
5941 
5942 	case Q_AND:
5943 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5944 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5945 		gen_and(tmp, b1);
5946 		break;
5947 
5948 	case Q_DEFAULT:
5949 	case Q_OR:
5950 		tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5951 		b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5952 		gen_or(tmp, b1);
5953 		break;
5954 
5955 	default:
5956 		abort();
5957 	}
5958 	gen_and(b0, b1);
5959 
5960 	return b1;
5961 }
5962 
5963 static struct block *
gen_portrange6(compiler_state_t * cstate,u_int port1,u_int port2,int ip_proto,int dir)5964 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5965     int dir)
5966 {
5967 	struct block *b0, *b1, *tmp;
5968 
5969 	/* link proto ip6 */
5970 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5971 
5972 	switch (ip_proto) {
5973 	case IPPROTO_UDP:
5974 	case IPPROTO_TCP:
5975 	case IPPROTO_SCTP:
5976 		b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
5977 		    dir);
5978 		break;
5979 
5980 	case PROTO_UNDEF:
5981 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5982 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5983 		gen_or(tmp, b1);
5984 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5985 		gen_or(tmp, b1);
5986 		break;
5987 
5988 	default:
5989 		abort();
5990 	}
5991 	gen_and(b0, b1);
5992 	return b1;
5993 }
5994 
5995 static int
lookup_proto(compiler_state_t * cstate,const char * name,int proto)5996 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5997 {
5998 	register int v;
5999 
6000 	switch (proto) {
6001 
6002 	case Q_DEFAULT:
6003 	case Q_IP:
6004 	case Q_IPV6:
6005 		v = pcap_nametoproto(name);
6006 		if (v == PROTO_UNDEF)
6007 			bpf_error(cstate, "unknown ip proto '%s'", name);
6008 		break;
6009 
6010 	case Q_LINK:
6011 		/* XXX should look up h/w protocol type based on cstate->linktype */
6012 		v = pcap_nametoeproto(name);
6013 		if (v == PROTO_UNDEF) {
6014 			v = pcap_nametollc(name);
6015 			if (v == PROTO_UNDEF)
6016 				bpf_error(cstate, "unknown ether proto '%s'", name);
6017 		}
6018 		break;
6019 
6020 	case Q_ISO:
6021 		if (strcmp(name, "esis") == 0)
6022 			v = ISO9542_ESIS;
6023 		else if (strcmp(name, "isis") == 0)
6024 			v = ISO10589_ISIS;
6025 		else if (strcmp(name, "clnp") == 0)
6026 			v = ISO8473_CLNP;
6027 		else
6028 			bpf_error(cstate, "unknown osi proto '%s'", name);
6029 		break;
6030 
6031 	default:
6032 		v = PROTO_UNDEF;
6033 		break;
6034 	}
6035 	return v;
6036 }
6037 
6038 #if 0
6039 struct stmt *
6040 gen_joinsp(struct stmt **s, int n)
6041 {
6042 	return NULL;
6043 }
6044 #endif
6045 
6046 static struct block *
gen_protochain(compiler_state_t * cstate,bpf_u_int32 v,int proto)6047 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6048 {
6049 #ifdef NO_PROTOCHAIN
6050 	return gen_proto(cstate, v, proto);
6051 #else
6052 	struct block *b0, *b;
6053 	struct slist *s[100];
6054 	int fix2, fix3, fix4, fix5;
6055 	int ahcheck, again, end;
6056 	int i, max;
6057 	int reg2 = alloc_reg(cstate);
6058 
6059 	memset(s, 0, sizeof(s));
6060 	fix3 = fix4 = fix5 = 0;
6061 
6062 	switch (proto) {
6063 	case Q_IP:
6064 	case Q_IPV6:
6065 		break;
6066 	case Q_DEFAULT:
6067 		b0 = gen_protochain(cstate, v, Q_IP);
6068 		b = gen_protochain(cstate, v, Q_IPV6);
6069 		gen_or(b0, b);
6070 		return b;
6071 	default:
6072 		bpf_error(cstate, "bad protocol applied for 'protochain'");
6073 		/*NOTREACHED*/
6074 	}
6075 
6076 	/*
6077 	 * We don't handle variable-length prefixes before the link-layer
6078 	 * header, or variable-length link-layer headers, here yet.
6079 	 * We might want to add BPF instructions to do the protochain
6080 	 * work, to simplify that and, on platforms that have a BPF
6081 	 * interpreter with the new instructions, let the filtering
6082 	 * be done in the kernel.  (We already require a modified BPF
6083 	 * engine to do the protochain stuff, to support backward
6084 	 * branches, and backward branch support is unlikely to appear
6085 	 * in kernel BPF engines.)
6086 	 */
6087 	if (cstate->off_linkpl.is_variable)
6088 		bpf_error(cstate, "'protochain' not supported with variable length headers");
6089 
6090 	/*
6091 	 * To quote a comment in optimize.c:
6092 	 *
6093 	 * "These data structures are used in a Cocke and Shwarz style
6094 	 * value numbering scheme.  Since the flowgraph is acyclic,
6095 	 * exit values can be propagated from a node's predecessors
6096 	 * provided it is uniquely defined."
6097 	 *
6098 	 * "Acyclic" means "no backward branches", which means "no
6099 	 * loops", so we have to turn the optimizer off.
6100 	 */
6101 	cstate->no_optimize = 1;
6102 
6103 	/*
6104 	 * s[0] is a dummy entry to protect other BPF insn from damage
6105 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
6106 	 * hard to find interdependency made by jump table fixup.
6107 	 */
6108 	i = 0;
6109 	s[i] = new_stmt(cstate, 0);	/*dummy*/
6110 	i++;
6111 
6112 	switch (proto) {
6113 	case Q_IP:
6114 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6115 
6116 		/* A = ip->ip_p */
6117 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6118 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6119 		i++;
6120 		/* X = ip->ip_hl << 2 */
6121 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6122 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6123 		i++;
6124 		break;
6125 
6126 	case Q_IPV6:
6127 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6128 
6129 		/* A = ip6->ip_nxt */
6130 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6131 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6132 		i++;
6133 		/* X = sizeof(struct ip6_hdr) */
6134 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6135 		s[i]->s.k = 40;
6136 		i++;
6137 		break;
6138 
6139 	default:
6140 		bpf_error(cstate, "unsupported proto to gen_protochain");
6141 		/*NOTREACHED*/
6142 	}
6143 
6144 	/* again: if (A == v) goto end; else fall through; */
6145 	again = i;
6146 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6147 	s[i]->s.k = v;
6148 	s[i]->s.jt = NULL;		/*later*/
6149 	s[i]->s.jf = NULL;		/*update in next stmt*/
6150 	fix5 = i;
6151 	i++;
6152 
6153 #ifndef IPPROTO_NONE
6154 #define IPPROTO_NONE	59
6155 #endif
6156 	/* if (A == IPPROTO_NONE) goto end */
6157 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6158 	s[i]->s.jt = NULL;	/*later*/
6159 	s[i]->s.jf = NULL;	/*update in next stmt*/
6160 	s[i]->s.k = IPPROTO_NONE;
6161 	s[fix5]->s.jf = s[i];
6162 	fix2 = i;
6163 	i++;
6164 
6165 	if (proto == Q_IPV6) {
6166 		int v6start, v6end, v6advance, j;
6167 
6168 		v6start = i;
6169 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6170 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6171 		s[i]->s.jt = NULL;	/*later*/
6172 		s[i]->s.jf = NULL;	/*update in next stmt*/
6173 		s[i]->s.k = IPPROTO_HOPOPTS;
6174 		s[fix2]->s.jf = s[i];
6175 		i++;
6176 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6177 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6178 		s[i]->s.jt = NULL;	/*later*/
6179 		s[i]->s.jf = NULL;	/*update in next stmt*/
6180 		s[i]->s.k = IPPROTO_DSTOPTS;
6181 		i++;
6182 		/* if (A == IPPROTO_ROUTING) goto v6advance */
6183 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6184 		s[i]->s.jt = NULL;	/*later*/
6185 		s[i]->s.jf = NULL;	/*update in next stmt*/
6186 		s[i]->s.k = IPPROTO_ROUTING;
6187 		i++;
6188 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6189 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6190 		s[i]->s.jt = NULL;	/*later*/
6191 		s[i]->s.jf = NULL;	/*later*/
6192 		s[i]->s.k = IPPROTO_FRAGMENT;
6193 		fix3 = i;
6194 		v6end = i;
6195 		i++;
6196 
6197 		/* v6advance: */
6198 		v6advance = i;
6199 
6200 		/*
6201 		 * in short,
6202 		 * A = P[X + packet head];
6203 		 * X = X + (P[X + packet head + 1] + 1) * 8;
6204 		 */
6205 		/* A = P[X + packet head] */
6206 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6207 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6208 		i++;
6209 		/* MEM[reg2] = A */
6210 		s[i] = new_stmt(cstate, BPF_ST);
6211 		s[i]->s.k = reg2;
6212 		i++;
6213 		/* A = P[X + packet head + 1]; */
6214 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6215 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6216 		i++;
6217 		/* A += 1 */
6218 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6219 		s[i]->s.k = 1;
6220 		i++;
6221 		/* A *= 8 */
6222 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6223 		s[i]->s.k = 8;
6224 		i++;
6225 		/* A += X */
6226 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6227 		s[i]->s.k = 0;
6228 		i++;
6229 		/* X = A; */
6230 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6231 		i++;
6232 		/* A = MEM[reg2] */
6233 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6234 		s[i]->s.k = reg2;
6235 		i++;
6236 
6237 		/* goto again; (must use BPF_JA for backward jump) */
6238 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6239 		s[i]->s.k = again - i - 1;
6240 		s[i - 1]->s.jf = s[i];
6241 		i++;
6242 
6243 		/* fixup */
6244 		for (j = v6start; j <= v6end; j++)
6245 			s[j]->s.jt = s[v6advance];
6246 	} else {
6247 		/* nop */
6248 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6249 		s[i]->s.k = 0;
6250 		s[fix2]->s.jf = s[i];
6251 		i++;
6252 	}
6253 
6254 	/* ahcheck: */
6255 	ahcheck = i;
6256 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
6257 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6258 	s[i]->s.jt = NULL;	/*later*/
6259 	s[i]->s.jf = NULL;	/*later*/
6260 	s[i]->s.k = IPPROTO_AH;
6261 	if (fix3)
6262 		s[fix3]->s.jf = s[ahcheck];
6263 	fix4 = i;
6264 	i++;
6265 
6266 	/*
6267 	 * in short,
6268 	 * A = P[X];
6269 	 * X = X + (P[X + 1] + 2) * 4;
6270 	 */
6271 	/* A = X */
6272 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6273 	i++;
6274 	/* A = P[X + packet head]; */
6275 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6276 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6277 	i++;
6278 	/* MEM[reg2] = A */
6279 	s[i] = new_stmt(cstate, BPF_ST);
6280 	s[i]->s.k = reg2;
6281 	i++;
6282 	/* A = X */
6283 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6284 	i++;
6285 	/* A += 1 */
6286 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6287 	s[i]->s.k = 1;
6288 	i++;
6289 	/* X = A */
6290 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6291 	i++;
6292 	/* A = P[X + packet head] */
6293 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6294 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6295 	i++;
6296 	/* A += 2 */
6297 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6298 	s[i]->s.k = 2;
6299 	i++;
6300 	/* A *= 4 */
6301 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6302 	s[i]->s.k = 4;
6303 	i++;
6304 	/* X = A; */
6305 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6306 	i++;
6307 	/* A = MEM[reg2] */
6308 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6309 	s[i]->s.k = reg2;
6310 	i++;
6311 
6312 	/* goto again; (must use BPF_JA for backward jump) */
6313 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6314 	s[i]->s.k = again - i - 1;
6315 	i++;
6316 
6317 	/* end: nop */
6318 	end = i;
6319 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6320 	s[i]->s.k = 0;
6321 	s[fix2]->s.jt = s[end];
6322 	s[fix4]->s.jf = s[end];
6323 	s[fix5]->s.jt = s[end];
6324 	i++;
6325 
6326 	/*
6327 	 * make slist chain
6328 	 */
6329 	max = i;
6330 	for (i = 0; i < max - 1; i++)
6331 		s[i]->next = s[i + 1];
6332 	s[max - 1]->next = NULL;
6333 
6334 	/*
6335 	 * emit final check
6336 	 */
6337 	b = new_block(cstate, JMP(BPF_JEQ));
6338 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6339 	b->s.k = v;
6340 
6341 	free_reg(cstate, reg2);
6342 
6343 	gen_and(b0, b);
6344 	return b;
6345 #endif
6346 }
6347 
6348 static struct block *
gen_check_802_11_data_frame(compiler_state_t * cstate)6349 gen_check_802_11_data_frame(compiler_state_t *cstate)
6350 {
6351 	struct slist *s;
6352 	struct block *b0, *b1;
6353 
6354 	/*
6355 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6356 	 * and the 0x04 bit (b2) clear.
6357 	 */
6358 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6359 	b0 = new_block(cstate, JMP(BPF_JSET));
6360 	b0->s.k = 0x08;
6361 	b0->stmts = s;
6362 
6363 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6364 	b1 = new_block(cstate, JMP(BPF_JSET));
6365 	b1->s.k = 0x04;
6366 	b1->stmts = s;
6367 	gen_not(b1);
6368 
6369 	gen_and(b1, b0);
6370 
6371 	return b0;
6372 }
6373 
6374 /*
6375  * Generate code that checks whether the packet is a packet for protocol
6376  * <proto> and whether the type field in that protocol's header has
6377  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6378  * IP packet and checks the protocol number in the IP header against <v>.
6379  *
6380  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6381  * against Q_IP and Q_IPV6.
6382  */
6383 static struct block *
gen_proto(compiler_state_t * cstate,bpf_u_int32 v,int proto,int dir)6384 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6385 {
6386 	struct block *b0, *b1;
6387 #ifndef CHASE_CHAIN
6388 	struct block *b2;
6389 #endif
6390 
6391 	if (dir != Q_DEFAULT)
6392 		bpf_error(cstate, "direction applied to 'proto'");
6393 
6394 	switch (proto) {
6395 	case Q_DEFAULT:
6396 		b0 = gen_proto(cstate, v, Q_IP, dir);
6397 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6398 		gen_or(b0, b1);
6399 		return b1;
6400 
6401 	case Q_LINK:
6402 		return gen_linktype(cstate, v);
6403 
6404 	case Q_IP:
6405 		/*
6406 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6407 		 * not LLC encapsulation with LLCSAP_IP.
6408 		 *
6409 		 * For IEEE 802 networks - which includes 802.5 token ring
6410 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6411 		 * says that SNAP encapsulation is used, not LLC encapsulation
6412 		 * with LLCSAP_IP.
6413 		 *
6414 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6415 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6416 		 * encapsulation with LLCSAP_IP.
6417 		 *
6418 		 * So we always check for ETHERTYPE_IP.
6419 		 */
6420 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6421 #ifndef CHASE_CHAIN
6422 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6423 #else
6424 		b1 = gen_protochain(cstate, v, Q_IP);
6425 #endif
6426 		gen_and(b0, b1);
6427 		return b1;
6428 
6429 	case Q_ARP:
6430 		bpf_error(cstate, "arp does not encapsulate another protocol");
6431 		/*NOTREACHED*/
6432 
6433 	case Q_RARP:
6434 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6435 		/*NOTREACHED*/
6436 
6437 	case Q_SCTP:
6438 		bpf_error(cstate, "'sctp proto' is bogus");
6439 		/*NOTREACHED*/
6440 
6441 	case Q_TCP:
6442 		bpf_error(cstate, "'tcp proto' is bogus");
6443 		/*NOTREACHED*/
6444 
6445 	case Q_UDP:
6446 		bpf_error(cstate, "'udp proto' is bogus");
6447 		/*NOTREACHED*/
6448 
6449 	case Q_ICMP:
6450 		bpf_error(cstate, "'icmp proto' is bogus");
6451 		/*NOTREACHED*/
6452 
6453 	case Q_IGMP:
6454 		bpf_error(cstate, "'igmp proto' is bogus");
6455 		/*NOTREACHED*/
6456 
6457 	case Q_IGRP:
6458 		bpf_error(cstate, "'igrp proto' is bogus");
6459 		/*NOTREACHED*/
6460 
6461 	case Q_ATALK:
6462 		bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6463 		/*NOTREACHED*/
6464 
6465 	case Q_DECNET:
6466 		bpf_error(cstate, "DECNET encapsulation is not specifiable");
6467 		/*NOTREACHED*/
6468 
6469 	case Q_LAT:
6470 		bpf_error(cstate, "LAT does not encapsulate another protocol");
6471 		/*NOTREACHED*/
6472 
6473 	case Q_SCA:
6474 		bpf_error(cstate, "SCA does not encapsulate another protocol");
6475 		/*NOTREACHED*/
6476 
6477 	case Q_MOPRC:
6478 		bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6479 		/*NOTREACHED*/
6480 
6481 	case Q_MOPDL:
6482 		bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6483 		/*NOTREACHED*/
6484 
6485 	case Q_IPV6:
6486 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6487 #ifndef CHASE_CHAIN
6488 		/*
6489 		 * Also check for a fragment header before the final
6490 		 * header.
6491 		 */
6492 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6493 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6494 		gen_and(b2, b1);
6495 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6496 		gen_or(b2, b1);
6497 #else
6498 		b1 = gen_protochain(cstate, v, Q_IPV6);
6499 #endif
6500 		gen_and(b0, b1);
6501 		return b1;
6502 
6503 	case Q_ICMPV6:
6504 		bpf_error(cstate, "'icmp6 proto' is bogus");
6505 		/*NOTREACHED*/
6506 
6507 	case Q_AH:
6508 		bpf_error(cstate, "'ah proto' is bogus");
6509 		/*NOTREACHED*/
6510 
6511 	case Q_ESP:
6512 		bpf_error(cstate, "'esp proto' is bogus");
6513 		/*NOTREACHED*/
6514 
6515 	case Q_PIM:
6516 		bpf_error(cstate, "'pim proto' is bogus");
6517 		/*NOTREACHED*/
6518 
6519 	case Q_VRRP:
6520 		bpf_error(cstate, "'vrrp proto' is bogus");
6521 		/*NOTREACHED*/
6522 
6523 	case Q_AARP:
6524 		bpf_error(cstate, "'aarp proto' is bogus");
6525 		/*NOTREACHED*/
6526 
6527 	case Q_ISO:
6528 		switch (cstate->linktype) {
6529 
6530 		case DLT_FRELAY:
6531 			/*
6532 			 * Frame Relay packets typically have an OSI
6533 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6534 			 * generates code to check for all the OSI
6535 			 * NLPIDs, so calling it and then adding a check
6536 			 * for the particular NLPID for which we're
6537 			 * looking is bogus, as we can just check for
6538 			 * the NLPID.
6539 			 *
6540 			 * What we check for is the NLPID and a frame
6541 			 * control field value of UI, i.e. 0x03 followed
6542 			 * by the NLPID.
6543 			 *
6544 			 * XXX - assumes a 2-byte Frame Relay header with
6545 			 * DLCI and flags.  What if the address is longer?
6546 			 *
6547 			 * XXX - what about SNAP-encapsulated frames?
6548 			 */
6549 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6550 			/*NOTREACHED*/
6551 
6552 		case DLT_C_HDLC:
6553 			/*
6554 			 * Cisco uses an Ethertype lookalike - for OSI,
6555 			 * it's 0xfefe.
6556 			 */
6557 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6558 			/* OSI in C-HDLC is stuffed with a fudge byte */
6559 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6560 			gen_and(b0, b1);
6561 			return b1;
6562 
6563 		default:
6564 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6565 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6566 			gen_and(b0, b1);
6567 			return b1;
6568 		}
6569 
6570 	case Q_ESIS:
6571 		bpf_error(cstate, "'esis proto' is bogus");
6572 		/*NOTREACHED*/
6573 
6574 	case Q_ISIS:
6575 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6576 		/*
6577 		 * 4 is the offset of the PDU type relative to the IS-IS
6578 		 * header.
6579 		 */
6580 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6581 		gen_and(b0, b1);
6582 		return b1;
6583 
6584 	case Q_CLNP:
6585 		bpf_error(cstate, "'clnp proto' is not supported");
6586 		/*NOTREACHED*/
6587 
6588 	case Q_STP:
6589 		bpf_error(cstate, "'stp proto' is bogus");
6590 		/*NOTREACHED*/
6591 
6592 	case Q_IPX:
6593 		bpf_error(cstate, "'ipx proto' is bogus");
6594 		/*NOTREACHED*/
6595 
6596 	case Q_NETBEUI:
6597 		bpf_error(cstate, "'netbeui proto' is bogus");
6598 		/*NOTREACHED*/
6599 
6600 	case Q_ISIS_L1:
6601 		bpf_error(cstate, "'l1 proto' is bogus");
6602 		/*NOTREACHED*/
6603 
6604 	case Q_ISIS_L2:
6605 		bpf_error(cstate, "'l2 proto' is bogus");
6606 		/*NOTREACHED*/
6607 
6608 	case Q_ISIS_IIH:
6609 		bpf_error(cstate, "'iih proto' is bogus");
6610 		/*NOTREACHED*/
6611 
6612 	case Q_ISIS_SNP:
6613 		bpf_error(cstate, "'snp proto' is bogus");
6614 		/*NOTREACHED*/
6615 
6616 	case Q_ISIS_CSNP:
6617 		bpf_error(cstate, "'csnp proto' is bogus");
6618 		/*NOTREACHED*/
6619 
6620 	case Q_ISIS_PSNP:
6621 		bpf_error(cstate, "'psnp proto' is bogus");
6622 		/*NOTREACHED*/
6623 
6624 	case Q_ISIS_LSP:
6625 		bpf_error(cstate, "'lsp proto' is bogus");
6626 		/*NOTREACHED*/
6627 
6628 	case Q_RADIO:
6629 		bpf_error(cstate, "'radio proto' is bogus");
6630 		/*NOTREACHED*/
6631 
6632 	case Q_CARP:
6633 		bpf_error(cstate, "'carp proto' is bogus");
6634 		/*NOTREACHED*/
6635 
6636 	default:
6637 		abort();
6638 		/*NOTREACHED*/
6639 	}
6640 	/*NOTREACHED*/
6641 }
6642 
6643 struct block *
gen_scode(compiler_state_t * cstate,const char * name,struct qual q)6644 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6645 {
6646 	int proto = q.proto;
6647 	int dir = q.dir;
6648 	int tproto;
6649 	u_char *eaddr;
6650 	bpf_u_int32 mask, addr;
6651 	struct addrinfo *res, *res0;
6652 	struct sockaddr_in *sin4;
6653 #ifdef INET6
6654 	int tproto6;
6655 	struct sockaddr_in6 *sin6;
6656 	struct in6_addr mask128;
6657 #endif /*INET6*/
6658 	struct block *b, *tmp;
6659 	int port, real_proto;
6660 	int port1, port2;
6661 
6662 	/*
6663 	 * Catch errors reported by us and routines below us, and return NULL
6664 	 * on an error.
6665 	 */
6666 	if (setjmp(cstate->top_ctx))
6667 		return (NULL);
6668 
6669 	switch (q.addr) {
6670 
6671 	case Q_NET:
6672 		addr = pcap_nametonetaddr(name);
6673 		if (addr == 0)
6674 			bpf_error(cstate, "unknown network '%s'", name);
6675 		/* Left justify network addr and calculate its network mask */
6676 		mask = 0xffffffff;
6677 		while (addr && (addr & 0xff000000) == 0) {
6678 			addr <<= 8;
6679 			mask <<= 8;
6680 		}
6681 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6682 
6683 	case Q_DEFAULT:
6684 	case Q_HOST:
6685 		if (proto == Q_LINK) {
6686 			switch (cstate->linktype) {
6687 
6688 			case DLT_EN10MB:
6689 			case DLT_NETANALYZER:
6690 			case DLT_NETANALYZER_TRANSPARENT:
6691 				eaddr = pcap_ether_hostton(name);
6692 				if (eaddr == NULL)
6693 					bpf_error(cstate,
6694 					    "unknown ether host '%s'", name);
6695 				tmp = gen_prevlinkhdr_check(cstate);
6696 				b = gen_ehostop(cstate, eaddr, dir);
6697 				if (tmp != NULL)
6698 					gen_and(tmp, b);
6699 				free(eaddr);
6700 				return b;
6701 
6702 			case DLT_FDDI:
6703 				eaddr = pcap_ether_hostton(name);
6704 				if (eaddr == NULL)
6705 					bpf_error(cstate,
6706 					    "unknown FDDI host '%s'", name);
6707 				b = gen_fhostop(cstate, eaddr, dir);
6708 				free(eaddr);
6709 				return b;
6710 
6711 			case DLT_IEEE802:
6712 				eaddr = pcap_ether_hostton(name);
6713 				if (eaddr == NULL)
6714 					bpf_error(cstate,
6715 					    "unknown token ring host '%s'", name);
6716 				b = gen_thostop(cstate, eaddr, dir);
6717 				free(eaddr);
6718 				return b;
6719 
6720 			case DLT_IEEE802_11:
6721 			case DLT_PRISM_HEADER:
6722 			case DLT_IEEE802_11_RADIO_AVS:
6723 			case DLT_IEEE802_11_RADIO:
6724 			case DLT_PPI:
6725 				eaddr = pcap_ether_hostton(name);
6726 				if (eaddr == NULL)
6727 					bpf_error(cstate,
6728 					    "unknown 802.11 host '%s'", name);
6729 				b = gen_wlanhostop(cstate, eaddr, dir);
6730 				free(eaddr);
6731 				return b;
6732 
6733 			case DLT_IP_OVER_FC:
6734 				eaddr = pcap_ether_hostton(name);
6735 				if (eaddr == NULL)
6736 					bpf_error(cstate,
6737 					    "unknown Fibre Channel host '%s'", name);
6738 				b = gen_ipfchostop(cstate, eaddr, dir);
6739 				free(eaddr);
6740 				return b;
6741 			}
6742 
6743 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6744 		} else if (proto == Q_DECNET) {
6745 			unsigned short dn_addr;
6746 
6747 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6748 #ifdef	DECNETLIB
6749 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6750 #else
6751 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6752 					name);
6753 #endif
6754 			}
6755 			/*
6756 			 * I don't think DECNET hosts can be multihomed, so
6757 			 * there is no need to build up a list of addresses
6758 			 */
6759 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6760 		} else {
6761 #ifdef INET6
6762 			memset(&mask128, 0xff, sizeof(mask128));
6763 #endif
6764 			res0 = res = pcap_nametoaddrinfo(name);
6765 			if (res == NULL)
6766 				bpf_error(cstate, "unknown host '%s'", name);
6767 			cstate->ai = res;
6768 			b = tmp = NULL;
6769 			tproto = proto;
6770 #ifdef INET6
6771 			tproto6 = proto;
6772 #endif
6773 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6774 			    tproto == Q_DEFAULT) {
6775 				tproto = Q_IP;
6776 #ifdef INET6
6777 				tproto6 = Q_IPV6;
6778 #endif
6779 			}
6780 			for (res = res0; res; res = res->ai_next) {
6781 				switch (res->ai_family) {
6782 				case AF_INET:
6783 #ifdef INET6
6784 					if (tproto == Q_IPV6)
6785 						continue;
6786 #endif
6787 
6788 					sin4 = (struct sockaddr_in *)
6789 						res->ai_addr;
6790 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6791 						0xffffffff, tproto, dir, q.addr);
6792 					break;
6793 #ifdef INET6
6794 				case AF_INET6:
6795 					if (tproto6 == Q_IP)
6796 						continue;
6797 
6798 					sin6 = (struct sockaddr_in6 *)
6799 						res->ai_addr;
6800 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6801 						&mask128, tproto6, dir, q.addr);
6802 					break;
6803 #endif
6804 				default:
6805 					continue;
6806 				}
6807 				if (b)
6808 					gen_or(b, tmp);
6809 				b = tmp;
6810 			}
6811 			cstate->ai = NULL;
6812 			freeaddrinfo(res0);
6813 			if (b == NULL) {
6814 				bpf_error(cstate, "unknown host '%s'%s", name,
6815 				    (proto == Q_DEFAULT)
6816 					? ""
6817 					: " for specified address family");
6818 			}
6819 			return b;
6820 		}
6821 
6822 	case Q_PORT:
6823 		if (proto != Q_DEFAULT &&
6824 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6825 			bpf_error(cstate, "illegal qualifier of 'port'");
6826 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6827 			bpf_error(cstate, "unknown port '%s'", name);
6828 		if (proto == Q_UDP) {
6829 			if (real_proto == IPPROTO_TCP)
6830 				bpf_error(cstate, "port '%s' is tcp", name);
6831 			else if (real_proto == IPPROTO_SCTP)
6832 				bpf_error(cstate, "port '%s' is sctp", name);
6833 			else
6834 				/* override PROTO_UNDEF */
6835 				real_proto = IPPROTO_UDP;
6836 		}
6837 		if (proto == Q_TCP) {
6838 			if (real_proto == IPPROTO_UDP)
6839 				bpf_error(cstate, "port '%s' is udp", name);
6840 
6841 			else if (real_proto == IPPROTO_SCTP)
6842 				bpf_error(cstate, "port '%s' is sctp", name);
6843 			else
6844 				/* override PROTO_UNDEF */
6845 				real_proto = IPPROTO_TCP;
6846 		}
6847 		if (proto == Q_SCTP) {
6848 			if (real_proto == IPPROTO_UDP)
6849 				bpf_error(cstate, "port '%s' is udp", name);
6850 
6851 			else if (real_proto == IPPROTO_TCP)
6852 				bpf_error(cstate, "port '%s' is tcp", name);
6853 			else
6854 				/* override PROTO_UNDEF */
6855 				real_proto = IPPROTO_SCTP;
6856 		}
6857 		if (port < 0)
6858 			bpf_error(cstate, "illegal port number %d < 0", port);
6859 		if (port > 65535)
6860 			bpf_error(cstate, "illegal port number %d > 65535", port);
6861 		b = gen_port(cstate, port, real_proto, dir);
6862 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6863 		return b;
6864 
6865 	case Q_PORTRANGE:
6866 		if (proto != Q_DEFAULT &&
6867 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6868 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6869 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6870 			bpf_error(cstate, "unknown port in range '%s'", name);
6871 		if (proto == Q_UDP) {
6872 			if (real_proto == IPPROTO_TCP)
6873 				bpf_error(cstate, "port in range '%s' is tcp", name);
6874 			else if (real_proto == IPPROTO_SCTP)
6875 				bpf_error(cstate, "port in range '%s' is sctp", name);
6876 			else
6877 				/* override PROTO_UNDEF */
6878 				real_proto = IPPROTO_UDP;
6879 		}
6880 		if (proto == Q_TCP) {
6881 			if (real_proto == IPPROTO_UDP)
6882 				bpf_error(cstate, "port in range '%s' is udp", name);
6883 			else if (real_proto == IPPROTO_SCTP)
6884 				bpf_error(cstate, "port in range '%s' is sctp", name);
6885 			else
6886 				/* override PROTO_UNDEF */
6887 				real_proto = IPPROTO_TCP;
6888 		}
6889 		if (proto == Q_SCTP) {
6890 			if (real_proto == IPPROTO_UDP)
6891 				bpf_error(cstate, "port in range '%s' is udp", name);
6892 			else if (real_proto == IPPROTO_TCP)
6893 				bpf_error(cstate, "port in range '%s' is tcp", name);
6894 			else
6895 				/* override PROTO_UNDEF */
6896 				real_proto = IPPROTO_SCTP;
6897 		}
6898 		if (port1 < 0)
6899 			bpf_error(cstate, "illegal port number %d < 0", port1);
6900 		if (port1 > 65535)
6901 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6902 		if (port2 < 0)
6903 			bpf_error(cstate, "illegal port number %d < 0", port2);
6904 		if (port2 > 65535)
6905 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6906 
6907 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6908 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6909 		return b;
6910 
6911 	case Q_GATEWAY:
6912 #ifndef INET6
6913 		eaddr = pcap_ether_hostton(name);
6914 		if (eaddr == NULL)
6915 			bpf_error(cstate, "unknown ether host: %s", name);
6916 
6917 		res = pcap_nametoaddrinfo(name);
6918 		cstate->ai = res;
6919 		if (res == NULL)
6920 			bpf_error(cstate, "unknown host '%s'", name);
6921 		b = gen_gateway(cstate, eaddr, res, proto, dir);
6922 		cstate->ai = NULL;
6923 		freeaddrinfo(res);
6924 		if (b == NULL)
6925 			bpf_error(cstate, "unknown host '%s'", name);
6926 		return b;
6927 #else
6928 		bpf_error(cstate, "'gateway' not supported in this configuration");
6929 #endif /*INET6*/
6930 
6931 	case Q_PROTO:
6932 		real_proto = lookup_proto(cstate, name, proto);
6933 		if (real_proto >= 0)
6934 			return gen_proto(cstate, real_proto, proto, dir);
6935 		else
6936 			bpf_error(cstate, "unknown protocol: %s", name);
6937 
6938 	case Q_PROTOCHAIN:
6939 		real_proto = lookup_proto(cstate, name, proto);
6940 		if (real_proto >= 0)
6941 			return gen_protochain(cstate, real_proto, proto);
6942 		else
6943 			bpf_error(cstate, "unknown protocol: %s", name);
6944 
6945 	case Q_UNDEF:
6946 		syntax(cstate);
6947 		/*NOTREACHED*/
6948 	}
6949 	abort();
6950 	/*NOTREACHED*/
6951 }
6952 
6953 struct block *
gen_mcode(compiler_state_t * cstate,const char * s1,const char * s2,bpf_u_int32 masklen,struct qual q)6954 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6955     bpf_u_int32 masklen, struct qual q)
6956 {
6957 	register int nlen, mlen;
6958 	bpf_u_int32 n, m;
6959 
6960 	/*
6961 	 * Catch errors reported by us and routines below us, and return NULL
6962 	 * on an error.
6963 	 */
6964 	if (setjmp(cstate->top_ctx))
6965 		return (NULL);
6966 
6967 	nlen = __pcap_atoin(s1, &n);
6968 	if (nlen < 0)
6969 		bpf_error(cstate, "invalid IPv4 address '%s'", s1);
6970 	/* Promote short ipaddr */
6971 	n <<= 32 - nlen;
6972 
6973 	if (s2 != NULL) {
6974 		mlen = __pcap_atoin(s2, &m);
6975 		if (mlen < 0)
6976 			bpf_error(cstate, "invalid IPv4 address '%s'", s2);
6977 		/* Promote short ipaddr */
6978 		m <<= 32 - mlen;
6979 		if ((n & ~m) != 0)
6980 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6981 			    s1, s2);
6982 	} else {
6983 		/* Convert mask len to mask */
6984 		if (masklen > 32)
6985 			bpf_error(cstate, "mask length must be <= 32");
6986 		if (masklen == 0) {
6987 			/*
6988 			 * X << 32 is not guaranteed by C to be 0; it's
6989 			 * undefined.
6990 			 */
6991 			m = 0;
6992 		} else
6993 			m = 0xffffffff << (32 - masklen);
6994 		if ((n & ~m) != 0)
6995 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6996 			    s1, masklen);
6997 	}
6998 
6999 	switch (q.addr) {
7000 
7001 	case Q_NET:
7002 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7003 
7004 	default:
7005 		bpf_error(cstate, "Mask syntax for networks only");
7006 		/*NOTREACHED*/
7007 	}
7008 	/*NOTREACHED*/
7009 }
7010 
7011 struct block *
gen_ncode(compiler_state_t * cstate,const char * s,bpf_u_int32 v,struct qual q)7012 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7013 {
7014 	bpf_u_int32 mask;
7015 	int proto;
7016 	int dir;
7017 	register int vlen;
7018 
7019 	/*
7020 	 * Catch errors reported by us and routines below us, and return NULL
7021 	 * on an error.
7022 	 */
7023 	if (setjmp(cstate->top_ctx))
7024 		return (NULL);
7025 
7026 	proto = q.proto;
7027 	dir = q.dir;
7028 	if (s == NULL)
7029 		vlen = 32;
7030 	else if (q.proto == Q_DECNET) {
7031 		vlen = __pcap_atodn(s, &v);
7032 		if (vlen == 0)
7033 			bpf_error(cstate, "malformed decnet address '%s'", s);
7034 	} else {
7035 		vlen = __pcap_atoin(s, &v);
7036 		if (vlen < 0)
7037 			bpf_error(cstate, "invalid IPv4 address '%s'", s);
7038 	}
7039 
7040 	switch (q.addr) {
7041 
7042 	case Q_DEFAULT:
7043 	case Q_HOST:
7044 	case Q_NET:
7045 		if (proto == Q_DECNET)
7046 			return gen_host(cstate, v, 0, proto, dir, q.addr);
7047 		else if (proto == Q_LINK) {
7048 			bpf_error(cstate, "illegal link layer address");
7049 		} else {
7050 			mask = 0xffffffff;
7051 			if (s == NULL && q.addr == Q_NET) {
7052 				/* Promote short net number */
7053 				while (v && (v & 0xff000000) == 0) {
7054 					v <<= 8;
7055 					mask <<= 8;
7056 				}
7057 			} else {
7058 				/* Promote short ipaddr */
7059 				v <<= 32 - vlen;
7060 				mask <<= 32 - vlen ;
7061 			}
7062 			return gen_host(cstate, v, mask, proto, dir, q.addr);
7063 		}
7064 
7065 	case Q_PORT:
7066 		if (proto == Q_UDP)
7067 			proto = IPPROTO_UDP;
7068 		else if (proto == Q_TCP)
7069 			proto = IPPROTO_TCP;
7070 		else if (proto == Q_SCTP)
7071 			proto = IPPROTO_SCTP;
7072 		else if (proto == Q_DEFAULT)
7073 			proto = PROTO_UNDEF;
7074 		else
7075 			bpf_error(cstate, "illegal qualifier of 'port'");
7076 
7077 		if (v > 65535)
7078 			bpf_error(cstate, "illegal port number %u > 65535", v);
7079 
7080 	    {
7081 		struct block *b;
7082 		b = gen_port(cstate, v, proto, dir);
7083 		gen_or(gen_port6(cstate, v, proto, dir), b);
7084 		return b;
7085 	    }
7086 
7087 	case Q_PORTRANGE:
7088 		if (proto == Q_UDP)
7089 			proto = IPPROTO_UDP;
7090 		else if (proto == Q_TCP)
7091 			proto = IPPROTO_TCP;
7092 		else if (proto == Q_SCTP)
7093 			proto = IPPROTO_SCTP;
7094 		else if (proto == Q_DEFAULT)
7095 			proto = PROTO_UNDEF;
7096 		else
7097 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7098 
7099 		if (v > 65535)
7100 			bpf_error(cstate, "illegal port number %u > 65535", v);
7101 
7102 	    {
7103 		struct block *b;
7104 		b = gen_portrange(cstate, v, v, proto, dir);
7105 		gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7106 		return b;
7107 	    }
7108 
7109 	case Q_GATEWAY:
7110 		bpf_error(cstate, "'gateway' requires a name");
7111 		/*NOTREACHED*/
7112 
7113 	case Q_PROTO:
7114 		return gen_proto(cstate, v, proto, dir);
7115 
7116 	case Q_PROTOCHAIN:
7117 		return gen_protochain(cstate, v, proto);
7118 
7119 	case Q_UNDEF:
7120 		syntax(cstate);
7121 		/*NOTREACHED*/
7122 
7123 	default:
7124 		abort();
7125 		/*NOTREACHED*/
7126 	}
7127 	/*NOTREACHED*/
7128 }
7129 
7130 #ifdef INET6
7131 struct block *
gen_mcode6(compiler_state_t * cstate,const char * s1,const char * s2,bpf_u_int32 masklen,struct qual q)7132 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
7133     bpf_u_int32 masklen, struct qual q)
7134 {
7135 	struct addrinfo *res;
7136 	struct in6_addr *addr;
7137 	struct in6_addr mask;
7138 	struct block *b;
7139 	uint32_t *a, *m;
7140 
7141 	/*
7142 	 * Catch errors reported by us and routines below us, and return NULL
7143 	 * on an error.
7144 	 */
7145 	if (setjmp(cstate->top_ctx))
7146 		return (NULL);
7147 
7148 	if (s2)
7149 		bpf_error(cstate, "no mask %s supported", s2);
7150 
7151 	res = pcap_nametoaddrinfo(s1);
7152 	if (!res)
7153 		bpf_error(cstate, "invalid ip6 address %s", s1);
7154 	cstate->ai = res;
7155 	if (res->ai_next)
7156 		bpf_error(cstate, "%s resolved to multiple address", s1);
7157 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7158 
7159 	if (masklen > sizeof(mask.s6_addr) * 8)
7160 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask.s6_addr) * 8));
7161 	memset(&mask, 0, sizeof(mask));
7162 	memset(&mask.s6_addr, 0xff, masklen / 8);
7163 	if (masklen % 8) {
7164 		mask.s6_addr[masklen / 8] =
7165 			(0xff << (8 - masklen % 8)) & 0xff;
7166 	}
7167 
7168 	a = (uint32_t *)addr;
7169 	m = (uint32_t *)&mask;
7170 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7171 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7172 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
7173 	}
7174 
7175 	switch (q.addr) {
7176 
7177 	case Q_DEFAULT:
7178 	case Q_HOST:
7179 		if (masklen != 128)
7180 			bpf_error(cstate, "Mask syntax for networks only");
7181 		/* FALLTHROUGH */
7182 
7183 	case Q_NET:
7184 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7185 		cstate->ai = NULL;
7186 		freeaddrinfo(res);
7187 		return b;
7188 
7189 	default:
7190 		bpf_error(cstate, "invalid qualifier against IPv6 address");
7191 		/*NOTREACHED*/
7192 	}
7193 }
7194 #endif /*INET6*/
7195 
7196 struct block *
gen_ecode(compiler_state_t * cstate,const char * s,struct qual q)7197 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7198 {
7199 	struct block *b, *tmp;
7200 
7201 	/*
7202 	 * Catch errors reported by us and routines below us, and return NULL
7203 	 * on an error.
7204 	 */
7205 	if (setjmp(cstate->top_ctx))
7206 		return (NULL);
7207 
7208 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7209 		cstate->e = pcap_ether_aton(s);
7210 		if (cstate->e == NULL)
7211 			bpf_error(cstate, "malloc");
7212 		switch (cstate->linktype) {
7213 		case DLT_EN10MB:
7214 		case DLT_NETANALYZER:
7215 		case DLT_NETANALYZER_TRANSPARENT:
7216 			tmp = gen_prevlinkhdr_check(cstate);
7217 			b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7218 			if (tmp != NULL)
7219 				gen_and(tmp, b);
7220 			break;
7221 		case DLT_FDDI:
7222 			b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7223 			break;
7224 		case DLT_IEEE802:
7225 			b = gen_thostop(cstate, cstate->e, (int)q.dir);
7226 			break;
7227 		case DLT_IEEE802_11:
7228 		case DLT_PRISM_HEADER:
7229 		case DLT_IEEE802_11_RADIO_AVS:
7230 		case DLT_IEEE802_11_RADIO:
7231 		case DLT_PPI:
7232 			b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7233 			break;
7234 		case DLT_IP_OVER_FC:
7235 			b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7236 			break;
7237 		default:
7238 			free(cstate->e);
7239 			cstate->e = NULL;
7240 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7241 			/*NOTREACHED*/
7242 		}
7243 		free(cstate->e);
7244 		cstate->e = NULL;
7245 		return (b);
7246 	}
7247 	bpf_error(cstate, "ethernet address used in non-ether expression");
7248 	/*NOTREACHED*/
7249 }
7250 
7251 void
sappend(struct slist * s0,struct slist * s1)7252 sappend(struct slist *s0, struct slist *s1)
7253 {
7254 	/*
7255 	 * This is definitely not the best way to do this, but the
7256 	 * lists will rarely get long.
7257 	 */
7258 	while (s0->next)
7259 		s0 = s0->next;
7260 	s0->next = s1;
7261 }
7262 
7263 static struct slist *
xfer_to_x(compiler_state_t * cstate,struct arth * a)7264 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7265 {
7266 	struct slist *s;
7267 
7268 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7269 	s->s.k = a->regno;
7270 	return s;
7271 }
7272 
7273 static struct slist *
xfer_to_a(compiler_state_t * cstate,struct arth * a)7274 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7275 {
7276 	struct slist *s;
7277 
7278 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
7279 	s->s.k = a->regno;
7280 	return s;
7281 }
7282 
7283 /*
7284  * Modify "index" to use the value stored into its register as an
7285  * offset relative to the beginning of the header for the protocol
7286  * "proto", and allocate a register and put an item "size" bytes long
7287  * (1, 2, or 4) at that offset into that register, making it the register
7288  * for "index".
7289  */
7290 static struct arth *
gen_load_internal(compiler_state_t * cstate,int proto,struct arth * inst,bpf_u_int32 size)7291 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7292     bpf_u_int32 size)
7293 {
7294 	int size_code;
7295 	struct slist *s, *tmp;
7296 	struct block *b;
7297 	int regno = alloc_reg(cstate);
7298 
7299 	free_reg(cstate, inst->regno);
7300 	switch (size) {
7301 
7302 	default:
7303 		bpf_error(cstate, "data size must be 1, 2, or 4");
7304 		/*NOTREACHED*/
7305 
7306 	case 1:
7307 		size_code = BPF_B;
7308 		break;
7309 
7310 	case 2:
7311 		size_code = BPF_H;
7312 		break;
7313 
7314 	case 4:
7315 		size_code = BPF_W;
7316 		break;
7317 	}
7318 	switch (proto) {
7319 	default:
7320 		bpf_error(cstate, "unsupported index operation");
7321 
7322 	case Q_RADIO:
7323 		/*
7324 		 * The offset is relative to the beginning of the packet
7325 		 * data, if we have a radio header.  (If we don't, this
7326 		 * is an error.)
7327 		 */
7328 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7329 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
7330 		    cstate->linktype != DLT_PRISM_HEADER)
7331 			bpf_error(cstate, "radio information not present in capture");
7332 
7333 		/*
7334 		 * Load into the X register the offset computed into the
7335 		 * register specified by "index".
7336 		 */
7337 		s = xfer_to_x(cstate, inst);
7338 
7339 		/*
7340 		 * Load the item at that offset.
7341 		 */
7342 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7343 		sappend(s, tmp);
7344 		sappend(inst->s, s);
7345 		break;
7346 
7347 	case Q_LINK:
7348 		/*
7349 		 * The offset is relative to the beginning of
7350 		 * the link-layer header.
7351 		 *
7352 		 * XXX - what about ATM LANE?  Should the index be
7353 		 * relative to the beginning of the AAL5 frame, so
7354 		 * that 0 refers to the beginning of the LE Control
7355 		 * field, or relative to the beginning of the LAN
7356 		 * frame, so that 0 refers, for Ethernet LANE, to
7357 		 * the beginning of the destination address?
7358 		 */
7359 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7360 
7361 		/*
7362 		 * If "s" is non-null, it has code to arrange that the
7363 		 * X register contains the length of the prefix preceding
7364 		 * the link-layer header.  Add to it the offset computed
7365 		 * into the register specified by "index", and move that
7366 		 * into the X register.  Otherwise, just load into the X
7367 		 * register the offset computed into the register specified
7368 		 * by "index".
7369 		 */
7370 		if (s != NULL) {
7371 			sappend(s, xfer_to_a(cstate, inst));
7372 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7373 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7374 		} else
7375 			s = xfer_to_x(cstate, inst);
7376 
7377 		/*
7378 		 * Load the item at the sum of the offset we've put in the
7379 		 * X register and the offset of the start of the link
7380 		 * layer header (which is 0 if the radio header is
7381 		 * variable-length; that header length is what we put
7382 		 * into the X register and then added to the index).
7383 		 */
7384 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7385 		tmp->s.k = cstate->off_linkhdr.constant_part;
7386 		sappend(s, tmp);
7387 		sappend(inst->s, s);
7388 		break;
7389 
7390 	case Q_IP:
7391 	case Q_ARP:
7392 	case Q_RARP:
7393 	case Q_ATALK:
7394 	case Q_DECNET:
7395 	case Q_SCA:
7396 	case Q_LAT:
7397 	case Q_MOPRC:
7398 	case Q_MOPDL:
7399 	case Q_IPV6:
7400 		/*
7401 		 * The offset is relative to the beginning of
7402 		 * the network-layer header.
7403 		 * XXX - are there any cases where we want
7404 		 * cstate->off_nl_nosnap?
7405 		 */
7406 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7407 
7408 		/*
7409 		 * If "s" is non-null, it has code to arrange that the
7410 		 * X register contains the variable part of the offset
7411 		 * of the link-layer payload.  Add to it the offset
7412 		 * computed into the register specified by "index",
7413 		 * and move that into the X register.  Otherwise, just
7414 		 * load into the X register the offset computed into
7415 		 * the register specified by "index".
7416 		 */
7417 		if (s != NULL) {
7418 			sappend(s, xfer_to_a(cstate, inst));
7419 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7420 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7421 		} else
7422 			s = xfer_to_x(cstate, inst);
7423 
7424 		/*
7425 		 * Load the item at the sum of the offset we've put in the
7426 		 * X register, the offset of the start of the network
7427 		 * layer header from the beginning of the link-layer
7428 		 * payload, and the constant part of the offset of the
7429 		 * start of the link-layer payload.
7430 		 */
7431 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7432 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7433 		sappend(s, tmp);
7434 		sappend(inst->s, s);
7435 
7436 		/*
7437 		 * Do the computation only if the packet contains
7438 		 * the protocol in question.
7439 		 */
7440 		b = gen_proto_abbrev_internal(cstate, proto);
7441 		if (inst->b)
7442 			gen_and(inst->b, b);
7443 		inst->b = b;
7444 		break;
7445 
7446 	case Q_SCTP:
7447 	case Q_TCP:
7448 	case Q_UDP:
7449 	case Q_ICMP:
7450 	case Q_IGMP:
7451 	case Q_IGRP:
7452 	case Q_PIM:
7453 	case Q_VRRP:
7454 	case Q_CARP:
7455 		/*
7456 		 * The offset is relative to the beginning of
7457 		 * the transport-layer header.
7458 		 *
7459 		 * Load the X register with the length of the IPv4 header
7460 		 * (plus the offset of the link-layer header, if it's
7461 		 * a variable-length header), in bytes.
7462 		 *
7463 		 * XXX - are there any cases where we want
7464 		 * cstate->off_nl_nosnap?
7465 		 * XXX - we should, if we're built with
7466 		 * IPv6 support, generate code to load either
7467 		 * IPv4, IPv6, or both, as appropriate.
7468 		 */
7469 		s = gen_loadx_iphdrlen(cstate);
7470 
7471 		/*
7472 		 * The X register now contains the sum of the variable
7473 		 * part of the offset of the link-layer payload and the
7474 		 * length of the network-layer header.
7475 		 *
7476 		 * Load into the A register the offset relative to
7477 		 * the beginning of the transport layer header,
7478 		 * add the X register to that, move that to the
7479 		 * X register, and load with an offset from the
7480 		 * X register equal to the sum of the constant part of
7481 		 * the offset of the link-layer payload and the offset,
7482 		 * relative to the beginning of the link-layer payload,
7483 		 * of the network-layer header.
7484 		 */
7485 		sappend(s, xfer_to_a(cstate, inst));
7486 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7487 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7488 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7489 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7490 		sappend(inst->s, s);
7491 
7492 		/*
7493 		 * Do the computation only if the packet contains
7494 		 * the protocol in question - which is true only
7495 		 * if this is an IP datagram and is the first or
7496 		 * only fragment of that datagram.
7497 		 */
7498 		gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7499 		if (inst->b)
7500 			gen_and(inst->b, b);
7501 		gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7502 		inst->b = b;
7503 		break;
7504 	case Q_ICMPV6:
7505         /*
7506         * Do the computation only if the packet contains
7507         * the protocol in question.
7508         */
7509         b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7510         if (inst->b) {
7511             gen_and(inst->b, b);
7512         }
7513         inst->b = b;
7514 
7515         /*
7516         * Check if we have an icmp6 next header
7517         */
7518         b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7519         if (inst->b) {
7520             gen_and(inst->b, b);
7521         }
7522         inst->b = b;
7523 
7524 
7525         s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7526         /*
7527         * If "s" is non-null, it has code to arrange that the
7528         * X register contains the variable part of the offset
7529         * of the link-layer payload.  Add to it the offset
7530         * computed into the register specified by "index",
7531         * and move that into the X register.  Otherwise, just
7532         * load into the X register the offset computed into
7533         * the register specified by "index".
7534         */
7535         if (s != NULL) {
7536             sappend(s, xfer_to_a(cstate, inst));
7537             sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7538             sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7539         } else {
7540             s = xfer_to_x(cstate, inst);
7541         }
7542 
7543         /*
7544         * Load the item at the sum of the offset we've put in the
7545         * X register, the offset of the start of the network
7546         * layer header from the beginning of the link-layer
7547         * payload, and the constant part of the offset of the
7548         * start of the link-layer payload.
7549         */
7550         tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7551         tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7552 
7553         sappend(s, tmp);
7554         sappend(inst->s, s);
7555 
7556         break;
7557 	}
7558 	inst->regno = regno;
7559 	s = new_stmt(cstate, BPF_ST);
7560 	s->s.k = regno;
7561 	sappend(inst->s, s);
7562 
7563 	return inst;
7564 }
7565 
7566 struct arth *
gen_load(compiler_state_t * cstate,int proto,struct arth * inst,bpf_u_int32 size)7567 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7568     bpf_u_int32 size)
7569 {
7570 	/*
7571 	 * Catch errors reported by us and routines below us, and return NULL
7572 	 * on an error.
7573 	 */
7574 	if (setjmp(cstate->top_ctx))
7575 		return (NULL);
7576 
7577 	return gen_load_internal(cstate, proto, inst, size);
7578 }
7579 
7580 static struct block *
gen_relation_internal(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7581 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7582     struct arth *a1, int reversed)
7583 {
7584 	struct slist *s0, *s1, *s2;
7585 	struct block *b, *tmp;
7586 
7587 	s0 = xfer_to_x(cstate, a1);
7588 	s1 = xfer_to_a(cstate, a0);
7589 	if (code == BPF_JEQ) {
7590 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7591 		b = new_block(cstate, JMP(code));
7592 		sappend(s1, s2);
7593 	}
7594 	else
7595 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7596 	if (reversed)
7597 		gen_not(b);
7598 
7599 	sappend(s0, s1);
7600 	sappend(a1->s, s0);
7601 	sappend(a0->s, a1->s);
7602 
7603 	b->stmts = a0->s;
7604 
7605 	free_reg(cstate, a0->regno);
7606 	free_reg(cstate, a1->regno);
7607 
7608 	/* 'and' together protocol checks */
7609 	if (a0->b) {
7610 		if (a1->b) {
7611 			gen_and(a0->b, tmp = a1->b);
7612 		}
7613 		else
7614 			tmp = a0->b;
7615 	} else
7616 		tmp = a1->b;
7617 
7618 	if (tmp)
7619 		gen_and(tmp, b);
7620 
7621 	return b;
7622 }
7623 
7624 struct block *
gen_relation(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7625 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7626     struct arth *a1, int reversed)
7627 {
7628 	/*
7629 	 * Catch errors reported by us and routines below us, and return NULL
7630 	 * on an error.
7631 	 */
7632 	if (setjmp(cstate->top_ctx))
7633 		return (NULL);
7634 
7635 	return gen_relation_internal(cstate, code, a0, a1, reversed);
7636 }
7637 
7638 struct arth *
gen_loadlen(compiler_state_t * cstate)7639 gen_loadlen(compiler_state_t *cstate)
7640 {
7641 	int regno;
7642 	struct arth *a;
7643 	struct slist *s;
7644 
7645 	/*
7646 	 * Catch errors reported by us and routines below us, and return NULL
7647 	 * on an error.
7648 	 */
7649 	if (setjmp(cstate->top_ctx))
7650 		return (NULL);
7651 
7652 	regno = alloc_reg(cstate);
7653 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7654 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7655 	s->next = new_stmt(cstate, BPF_ST);
7656 	s->next->s.k = regno;
7657 	a->s = s;
7658 	a->regno = regno;
7659 
7660 	return a;
7661 }
7662 
7663 static struct arth *
gen_loadi_internal(compiler_state_t * cstate,bpf_u_int32 val)7664 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7665 {
7666 	struct arth *a;
7667 	struct slist *s;
7668 	int reg;
7669 
7670 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7671 
7672 	reg = alloc_reg(cstate);
7673 
7674 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7675 	s->s.k = val;
7676 	s->next = new_stmt(cstate, BPF_ST);
7677 	s->next->s.k = reg;
7678 	a->s = s;
7679 	a->regno = reg;
7680 
7681 	return a;
7682 }
7683 
7684 struct arth *
gen_loadi(compiler_state_t * cstate,bpf_u_int32 val)7685 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7686 {
7687 	/*
7688 	 * Catch errors reported by us and routines below us, and return NULL
7689 	 * on an error.
7690 	 */
7691 	if (setjmp(cstate->top_ctx))
7692 		return (NULL);
7693 
7694 	return gen_loadi_internal(cstate, val);
7695 }
7696 
7697 /*
7698  * The a_arg dance is to avoid annoying whining by compilers that
7699  * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7700  * It's not *used* after setjmp returns.
7701  */
7702 struct arth *
gen_neg(compiler_state_t * cstate,struct arth * a_arg)7703 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7704 {
7705 	struct arth *a = a_arg;
7706 	struct slist *s;
7707 
7708 	/*
7709 	 * Catch errors reported by us and routines below us, and return NULL
7710 	 * on an error.
7711 	 */
7712 	if (setjmp(cstate->top_ctx))
7713 		return (NULL);
7714 
7715 	s = xfer_to_a(cstate, a);
7716 	sappend(a->s, s);
7717 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7718 	s->s.k = 0;
7719 	sappend(a->s, s);
7720 	s = new_stmt(cstate, BPF_ST);
7721 	s->s.k = a->regno;
7722 	sappend(a->s, s);
7723 
7724 	return a;
7725 }
7726 
7727 /*
7728  * The a0_arg dance is to avoid annoying whining by compilers that
7729  * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7730  * It's not *used* after setjmp returns.
7731  */
7732 struct arth *
gen_arth(compiler_state_t * cstate,int code,struct arth * a0_arg,struct arth * a1)7733 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7734     struct arth *a1)
7735 {
7736 	struct arth *a0 = a0_arg;
7737 	struct slist *s0, *s1, *s2;
7738 
7739 	/*
7740 	 * Catch errors reported by us and routines below us, and return NULL
7741 	 * on an error.
7742 	 */
7743 	if (setjmp(cstate->top_ctx))
7744 		return (NULL);
7745 
7746 	/*
7747 	 * Disallow division by, or modulus by, zero; we do this here
7748 	 * so that it gets done even if the optimizer is disabled.
7749 	 *
7750 	 * Also disallow shifts by a value greater than 31; we do this
7751 	 * here, for the same reason.
7752 	 */
7753 	if (code == BPF_DIV) {
7754 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7755 			bpf_error(cstate, "division by zero");
7756 	} else if (code == BPF_MOD) {
7757 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7758 			bpf_error(cstate, "modulus by zero");
7759 	} else if (code == BPF_LSH || code == BPF_RSH) {
7760 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7761 			bpf_error(cstate, "shift by more than 31 bits");
7762 	}
7763 	s0 = xfer_to_x(cstate, a1);
7764 	s1 = xfer_to_a(cstate, a0);
7765 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7766 
7767 	sappend(s1, s2);
7768 	sappend(s0, s1);
7769 	sappend(a1->s, s0);
7770 	sappend(a0->s, a1->s);
7771 
7772 	free_reg(cstate, a0->regno);
7773 	free_reg(cstate, a1->regno);
7774 
7775 	s0 = new_stmt(cstate, BPF_ST);
7776 	a0->regno = s0->s.k = alloc_reg(cstate);
7777 	sappend(a0->s, s0);
7778 
7779 	return a0;
7780 }
7781 
7782 /*
7783  * Initialize the table of used registers and the current register.
7784  */
7785 static void
init_regs(compiler_state_t * cstate)7786 init_regs(compiler_state_t *cstate)
7787 {
7788 	cstate->curreg = 0;
7789 	memset(cstate->regused, 0, sizeof cstate->regused);
7790 }
7791 
7792 /*
7793  * Return the next free register.
7794  */
7795 static int
alloc_reg(compiler_state_t * cstate)7796 alloc_reg(compiler_state_t *cstate)
7797 {
7798 	int n = BPF_MEMWORDS;
7799 
7800 	while (--n >= 0) {
7801 		if (cstate->regused[cstate->curreg])
7802 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7803 		else {
7804 			cstate->regused[cstate->curreg] = 1;
7805 			return cstate->curreg;
7806 		}
7807 	}
7808 	bpf_error(cstate, "too many registers needed to evaluate expression");
7809 	/*NOTREACHED*/
7810 }
7811 
7812 /*
7813  * Return a register to the table so it can
7814  * be used later.
7815  */
7816 static void
free_reg(compiler_state_t * cstate,int n)7817 free_reg(compiler_state_t *cstate, int n)
7818 {
7819 	cstate->regused[n] = 0;
7820 }
7821 
7822 static struct block *
gen_len(compiler_state_t * cstate,int jmp,int n)7823 gen_len(compiler_state_t *cstate, int jmp, int n)
7824 {
7825 	struct slist *s;
7826 	struct block *b;
7827 
7828 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7829 	b = new_block(cstate, JMP(jmp));
7830 	b->stmts = s;
7831 	b->s.k = n;
7832 
7833 	return b;
7834 }
7835 
7836 struct block *
gen_greater(compiler_state_t * cstate,int n)7837 gen_greater(compiler_state_t *cstate, int n)
7838 {
7839 	/*
7840 	 * Catch errors reported by us and routines below us, and return NULL
7841 	 * on an error.
7842 	 */
7843 	if (setjmp(cstate->top_ctx))
7844 		return (NULL);
7845 
7846 	return gen_len(cstate, BPF_JGE, n);
7847 }
7848 
7849 /*
7850  * Actually, this is less than or equal.
7851  */
7852 struct block *
gen_less(compiler_state_t * cstate,int n)7853 gen_less(compiler_state_t *cstate, int n)
7854 {
7855 	struct block *b;
7856 
7857 	/*
7858 	 * Catch errors reported by us and routines below us, and return NULL
7859 	 * on an error.
7860 	 */
7861 	if (setjmp(cstate->top_ctx))
7862 		return (NULL);
7863 
7864 	b = gen_len(cstate, BPF_JGT, n);
7865 	gen_not(b);
7866 
7867 	return b;
7868 }
7869 
7870 /*
7871  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7872  * the beginning of the link-layer header.
7873  * XXX - that means you can't test values in the radiotap header, but
7874  * as that header is difficult if not impossible to parse generally
7875  * without a loop, that might not be a severe problem.  A new keyword
7876  * "radio" could be added for that, although what you'd really want
7877  * would be a way of testing particular radio header values, which
7878  * would generate code appropriate to the radio header in question.
7879  */
7880 struct block *
gen_byteop(compiler_state_t * cstate,int op,int idx,bpf_u_int32 val)7881 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
7882 {
7883 	struct block *b;
7884 	struct slist *s;
7885 
7886 	/*
7887 	 * Catch errors reported by us and routines below us, and return NULL
7888 	 * on an error.
7889 	 */
7890 	if (setjmp(cstate->top_ctx))
7891 		return (NULL);
7892 
7893 	switch (op) {
7894 	default:
7895 		abort();
7896 
7897 	case '=':
7898 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7899 
7900 	case '<':
7901 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7902 		return b;
7903 
7904 	case '>':
7905 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7906 		return b;
7907 
7908 	case '|':
7909 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7910 		break;
7911 
7912 	case '&':
7913 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7914 		break;
7915 	}
7916 	s->s.k = val;
7917 	b = new_block(cstate, JMP(BPF_JEQ));
7918 	b->stmts = s;
7919 	gen_not(b);
7920 
7921 	return b;
7922 }
7923 
7924 static const u_char abroadcast[] = { 0x0 };
7925 
7926 struct block *
gen_broadcast(compiler_state_t * cstate,int proto)7927 gen_broadcast(compiler_state_t *cstate, int proto)
7928 {
7929 	bpf_u_int32 hostmask;
7930 	struct block *b0, *b1, *b2;
7931 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7932 
7933 	/*
7934 	 * Catch errors reported by us and routines below us, and return NULL
7935 	 * on an error.
7936 	 */
7937 	if (setjmp(cstate->top_ctx))
7938 		return (NULL);
7939 
7940 	switch (proto) {
7941 
7942 	case Q_DEFAULT:
7943 	case Q_LINK:
7944 		switch (cstate->linktype) {
7945 		case DLT_ARCNET:
7946 		case DLT_ARCNET_LINUX:
7947 			return gen_ahostop(cstate, abroadcast, Q_DST);
7948 		case DLT_EN10MB:
7949 		case DLT_NETANALYZER:
7950 		case DLT_NETANALYZER_TRANSPARENT:
7951 			b1 = gen_prevlinkhdr_check(cstate);
7952 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7953 			if (b1 != NULL)
7954 				gen_and(b1, b0);
7955 			return b0;
7956 		case DLT_FDDI:
7957 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7958 		case DLT_IEEE802:
7959 			return gen_thostop(cstate, ebroadcast, Q_DST);
7960 		case DLT_IEEE802_11:
7961 		case DLT_PRISM_HEADER:
7962 		case DLT_IEEE802_11_RADIO_AVS:
7963 		case DLT_IEEE802_11_RADIO:
7964 		case DLT_PPI:
7965 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7966 		case DLT_IP_OVER_FC:
7967 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7968 		default:
7969 			bpf_error(cstate, "not a broadcast link");
7970 		}
7971  		/*NOTREACHED*/
7972 
7973 	case Q_IP:
7974 		/*
7975 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7976 		 * as an indication that we don't know the netmask, and fail
7977 		 * in that case.
7978 		 */
7979 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7980 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7981 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7982 		hostmask = ~cstate->netmask;
7983 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
7984 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7985 			      ~0 & hostmask, hostmask);
7986 		gen_or(b1, b2);
7987 		gen_and(b0, b2);
7988 		return b2;
7989 	}
7990 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7991 	/*NOTREACHED*/
7992 }
7993 
7994 /*
7995  * Generate code to test the low-order bit of a MAC address (that's
7996  * the bottom bit of the *first* byte).
7997  */
7998 static struct block *
gen_mac_multicast(compiler_state_t * cstate,int offset)7999 gen_mac_multicast(compiler_state_t *cstate, int offset)
8000 {
8001 	register struct block *b0;
8002 	register struct slist *s;
8003 
8004 	/* link[offset] & 1 != 0 */
8005 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8006 	b0 = new_block(cstate, JMP(BPF_JSET));
8007 	b0->s.k = 1;
8008 	b0->stmts = s;
8009 	return b0;
8010 }
8011 
8012 struct block *
gen_multicast(compiler_state_t * cstate,int proto)8013 gen_multicast(compiler_state_t *cstate, int proto)
8014 {
8015 	register struct block *b0, *b1, *b2;
8016 	register struct slist *s;
8017 
8018 	/*
8019 	 * Catch errors reported by us and routines below us, and return NULL
8020 	 * on an error.
8021 	 */
8022 	if (setjmp(cstate->top_ctx))
8023 		return (NULL);
8024 
8025 	switch (proto) {
8026 
8027 	case Q_DEFAULT:
8028 	case Q_LINK:
8029 		switch (cstate->linktype) {
8030 		case DLT_ARCNET:
8031 		case DLT_ARCNET_LINUX:
8032 			/* all ARCnet multicasts use the same address */
8033 			return gen_ahostop(cstate, abroadcast, Q_DST);
8034 		case DLT_EN10MB:
8035 		case DLT_NETANALYZER:
8036 		case DLT_NETANALYZER_TRANSPARENT:
8037 			b1 = gen_prevlinkhdr_check(cstate);
8038 			/* ether[0] & 1 != 0 */
8039 			b0 = gen_mac_multicast(cstate, 0);
8040 			if (b1 != NULL)
8041 				gen_and(b1, b0);
8042 			return b0;
8043 		case DLT_FDDI:
8044 			/*
8045 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8046 			 *
8047 			 * XXX - was that referring to bit-order issues?
8048 			 */
8049 			/* fddi[1] & 1 != 0 */
8050 			return gen_mac_multicast(cstate, 1);
8051 		case DLT_IEEE802:
8052 			/* tr[2] & 1 != 0 */
8053 			return gen_mac_multicast(cstate, 2);
8054 		case DLT_IEEE802_11:
8055 		case DLT_PRISM_HEADER:
8056 		case DLT_IEEE802_11_RADIO_AVS:
8057 		case DLT_IEEE802_11_RADIO:
8058 		case DLT_PPI:
8059 			/*
8060 			 * Oh, yuk.
8061 			 *
8062 			 *	For control frames, there is no DA.
8063 			 *
8064 			 *	For management frames, DA is at an
8065 			 *	offset of 4 from the beginning of
8066 			 *	the packet.
8067 			 *
8068 			 *	For data frames, DA is at an offset
8069 			 *	of 4 from the beginning of the packet
8070 			 *	if To DS is clear and at an offset of
8071 			 *	16 from the beginning of the packet
8072 			 *	if To DS is set.
8073 			 */
8074 
8075 			/*
8076 			 * Generate the tests to be done for data frames.
8077 			 *
8078 			 * First, check for To DS set, i.e. "link[1] & 0x01".
8079 			 */
8080 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8081 			b1 = new_block(cstate, JMP(BPF_JSET));
8082 			b1->s.k = 0x01;	/* To DS */
8083 			b1->stmts = s;
8084 
8085 			/*
8086 			 * If To DS is set, the DA is at 16.
8087 			 */
8088 			b0 = gen_mac_multicast(cstate, 16);
8089 			gen_and(b1, b0);
8090 
8091 			/*
8092 			 * Now, check for To DS not set, i.e. check
8093 			 * "!(link[1] & 0x01)".
8094 			 */
8095 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8096 			b2 = new_block(cstate, JMP(BPF_JSET));
8097 			b2->s.k = 0x01;	/* To DS */
8098 			b2->stmts = s;
8099 			gen_not(b2);
8100 
8101 			/*
8102 			 * If To DS is not set, the DA is at 4.
8103 			 */
8104 			b1 = gen_mac_multicast(cstate, 4);
8105 			gen_and(b2, b1);
8106 
8107 			/*
8108 			 * Now OR together the last two checks.  That gives
8109 			 * the complete set of checks for data frames.
8110 			 */
8111 			gen_or(b1, b0);
8112 
8113 			/*
8114 			 * Now check for a data frame.
8115 			 * I.e, check "link[0] & 0x08".
8116 			 */
8117 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8118 			b1 = new_block(cstate, JMP(BPF_JSET));
8119 			b1->s.k = 0x08;
8120 			b1->stmts = s;
8121 
8122 			/*
8123 			 * AND that with the checks done for data frames.
8124 			 */
8125 			gen_and(b1, b0);
8126 
8127 			/*
8128 			 * If the high-order bit of the type value is 0, this
8129 			 * is a management frame.
8130 			 * I.e, check "!(link[0] & 0x08)".
8131 			 */
8132 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8133 			b2 = new_block(cstate, JMP(BPF_JSET));
8134 			b2->s.k = 0x08;
8135 			b2->stmts = s;
8136 			gen_not(b2);
8137 
8138 			/*
8139 			 * For management frames, the DA is at 4.
8140 			 */
8141 			b1 = gen_mac_multicast(cstate, 4);
8142 			gen_and(b2, b1);
8143 
8144 			/*
8145 			 * OR that with the checks done for data frames.
8146 			 * That gives the checks done for management and
8147 			 * data frames.
8148 			 */
8149 			gen_or(b1, b0);
8150 
8151 			/*
8152 			 * If the low-order bit of the type value is 1,
8153 			 * this is either a control frame or a frame
8154 			 * with a reserved type, and thus not a
8155 			 * frame with an SA.
8156 			 *
8157 			 * I.e., check "!(link[0] & 0x04)".
8158 			 */
8159 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8160 			b1 = new_block(cstate, JMP(BPF_JSET));
8161 			b1->s.k = 0x04;
8162 			b1->stmts = s;
8163 			gen_not(b1);
8164 
8165 			/*
8166 			 * AND that with the checks for data and management
8167 			 * frames.
8168 			 */
8169 			gen_and(b1, b0);
8170 			return b0;
8171 		case DLT_IP_OVER_FC:
8172 			b0 = gen_mac_multicast(cstate, 2);
8173 			return b0;
8174 		default:
8175 			break;
8176 		}
8177 		/* Link not known to support multicasts */
8178 		break;
8179 
8180 	case Q_IP:
8181 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8182 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8183 		gen_and(b0, b1);
8184 		return b1;
8185 
8186 	case Q_IPV6:
8187 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8188 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8189 		gen_and(b0, b1);
8190 		return b1;
8191 	}
8192 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8193 	/*NOTREACHED*/
8194 }
8195 
8196 struct block *
gen_ifindex(compiler_state_t * cstate,int ifindex)8197 gen_ifindex(compiler_state_t *cstate, int ifindex)
8198 {
8199 	register struct block *b0;
8200 
8201 	/*
8202 	 * Catch errors reported by us and routines below us, and return NULL
8203 	 * on an error.
8204 	 */
8205 	if (setjmp(cstate->top_ctx))
8206 		return (NULL);
8207 
8208 	/*
8209 	 * Only some data link types support ifindex qualifiers.
8210 	 */
8211 	switch (cstate->linktype) {
8212 	case DLT_LINUX_SLL2:
8213 		/* match packets on this interface */
8214 		b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8215 		break;
8216         default:
8217 #if defined(linux)
8218 		/*
8219 		 * This is Linux; we require PF_PACKET support.
8220 		 * If this is a *live* capture, we can look at
8221 		 * special meta-data in the filter expression;
8222 		 * if it's a savefile, we can't.
8223 		 */
8224 		if (cstate->bpf_pcap->rfile != NULL) {
8225 			/* We have a FILE *, so this is a savefile */
8226 			bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8227 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8228 			b0 = NULL;
8229 			/*NOTREACHED*/
8230 		}
8231 		/* match ifindex */
8232 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8233 		             ifindex);
8234 #else /* defined(linux) */
8235 		bpf_error(cstate, "ifindex not supported on %s",
8236 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8237 		/*NOTREACHED*/
8238 #endif /* defined(linux) */
8239 	}
8240 	return (b0);
8241 }
8242 
8243 /*
8244  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8245  * Outbound traffic is sent by this machine, while inbound traffic is
8246  * sent by a remote machine (and may include packets destined for a
8247  * unicast or multicast link-layer address we are not subscribing to).
8248  * These are the same definitions implemented by pcap_setdirection().
8249  * Capturing only unicast traffic destined for this host is probably
8250  * better accomplished using a higher-layer filter.
8251  */
8252 struct block *
gen_inbound(compiler_state_t * cstate,int dir)8253 gen_inbound(compiler_state_t *cstate, int dir)
8254 {
8255 	register struct block *b0;
8256 
8257 	/*
8258 	 * Catch errors reported by us and routines below us, and return NULL
8259 	 * on an error.
8260 	 */
8261 	if (setjmp(cstate->top_ctx))
8262 		return (NULL);
8263 
8264 	/*
8265 	 * Only some data link types support inbound/outbound qualifiers.
8266 	 */
8267 	switch (cstate->linktype) {
8268 	case DLT_SLIP:
8269 		b0 = gen_relation_internal(cstate, BPF_JEQ,
8270 			  gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8271 			  gen_loadi_internal(cstate, 0),
8272 			  dir);
8273 		break;
8274 
8275 	case DLT_IPNET:
8276 		if (dir) {
8277 			/* match outgoing packets */
8278 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8279 		} else {
8280 			/* match incoming packets */
8281 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8282 		}
8283 		break;
8284 
8285 	case DLT_LINUX_SLL:
8286 		/* match outgoing packets */
8287 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8288 		if (!dir) {
8289 			/* to filter on inbound traffic, invert the match */
8290 			gen_not(b0);
8291 		}
8292 		break;
8293 
8294 	case DLT_LINUX_SLL2:
8295 		/* match outgoing packets */
8296 		b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8297 		if (!dir) {
8298 			/* to filter on inbound traffic, invert the match */
8299 			gen_not(b0);
8300 		}
8301 		break;
8302 
8303 #ifdef HAVE_NET_PFVAR_H
8304 	case DLT_PFLOG:
8305 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8306 		    ((dir == 0) ? PF_IN : PF_OUT));
8307 		break;
8308 #endif
8309 
8310 	case DLT_PPP_PPPD:
8311 		if (dir) {
8312 			/* match outgoing packets */
8313 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8314 		} else {
8315 			/* match incoming packets */
8316 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8317 		}
8318 		break;
8319 
8320         case DLT_JUNIPER_MFR:
8321         case DLT_JUNIPER_MLFR:
8322         case DLT_JUNIPER_MLPPP:
8323 	case DLT_JUNIPER_ATM1:
8324 	case DLT_JUNIPER_ATM2:
8325 	case DLT_JUNIPER_PPPOE:
8326 	case DLT_JUNIPER_PPPOE_ATM:
8327         case DLT_JUNIPER_GGSN:
8328         case DLT_JUNIPER_ES:
8329         case DLT_JUNIPER_MONITOR:
8330         case DLT_JUNIPER_SERVICES:
8331         case DLT_JUNIPER_ETHER:
8332         case DLT_JUNIPER_PPP:
8333         case DLT_JUNIPER_FRELAY:
8334         case DLT_JUNIPER_CHDLC:
8335         case DLT_JUNIPER_VP:
8336         case DLT_JUNIPER_ST:
8337         case DLT_JUNIPER_ISM:
8338         case DLT_JUNIPER_VS:
8339         case DLT_JUNIPER_SRX_E2E:
8340         case DLT_JUNIPER_FIBRECHANNEL:
8341 	case DLT_JUNIPER_ATM_CEMIC:
8342 
8343 		/* juniper flags (including direction) are stored
8344 		 * the byte after the 3-byte magic number */
8345 		if (dir) {
8346 			/* match outgoing packets */
8347 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8348 		} else {
8349 			/* match incoming packets */
8350 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8351 		}
8352 		break;
8353 
8354 	default:
8355 		/*
8356 		 * If we have packet meta-data indicating a direction,
8357 		 * and that metadata can be checked by BPF code, check
8358 		 * it.  Otherwise, give up, as this link-layer type has
8359 		 * nothing in the packet data.
8360 		 *
8361 		 * Currently, the only platform where a BPF filter can
8362 		 * check that metadata is Linux with the in-kernel
8363 		 * BPF interpreter.  If other packet capture mechanisms
8364 		 * and BPF filters also supported this, it would be
8365 		 * nice.  It would be even better if they made that
8366 		 * metadata available so that we could provide it
8367 		 * with newer capture APIs, allowing it to be saved
8368 		 * in pcapng files.
8369 		 */
8370 #if defined(linux)
8371 		/*
8372 		 * This is Linux; we require PF_PACKET support.
8373 		 * If this is a *live* capture, we can look at
8374 		 * special meta-data in the filter expression;
8375 		 * if it's a savefile, we can't.
8376 		 */
8377 		if (cstate->bpf_pcap->rfile != NULL) {
8378 			/* We have a FILE *, so this is a savefile */
8379 			bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8380 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8381 			/*NOTREACHED*/
8382 		}
8383 		/* match outgoing packets */
8384 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8385 		             PACKET_OUTGOING);
8386 		if (!dir) {
8387 			/* to filter on inbound traffic, invert the match */
8388 			gen_not(b0);
8389 		}
8390 #else /* defined(linux) */
8391 		bpf_error(cstate, "inbound/outbound not supported on %s",
8392 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8393 		/*NOTREACHED*/
8394 #endif /* defined(linux) */
8395 	}
8396 	return (b0);
8397 }
8398 
8399 #ifdef HAVE_NET_PFVAR_H
8400 /* PF firewall log matched interface */
8401 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname)8402 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8403 {
8404 	struct block *b0;
8405 	u_int len, off;
8406 
8407 	/*
8408 	 * Catch errors reported by us and routines below us, and return NULL
8409 	 * on an error.
8410 	 */
8411 	if (setjmp(cstate->top_ctx))
8412 		return (NULL);
8413 
8414 	if (cstate->linktype != DLT_PFLOG) {
8415 		bpf_error(cstate, "ifname supported only on PF linktype");
8416 		/*NOTREACHED*/
8417 	}
8418 	len = sizeof(((struct pfloghdr *)0)->ifname);
8419 	off = offsetof(struct pfloghdr, ifname);
8420 	if (strlen(ifname) >= len) {
8421 		bpf_error(cstate, "ifname interface names can only be %d characters",
8422 		    len-1);
8423 		/*NOTREACHED*/
8424 	}
8425 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8426 	    (const u_char *)ifname);
8427 	return (b0);
8428 }
8429 
8430 /* PF firewall log ruleset name */
8431 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset)8432 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8433 {
8434 	struct block *b0;
8435 
8436 	/*
8437 	 * Catch errors reported by us and routines below us, and return NULL
8438 	 * on an error.
8439 	 */
8440 	if (setjmp(cstate->top_ctx))
8441 		return (NULL);
8442 
8443 	if (cstate->linktype != DLT_PFLOG) {
8444 		bpf_error(cstate, "ruleset supported only on PF linktype");
8445 		/*NOTREACHED*/
8446 	}
8447 
8448 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8449 		bpf_error(cstate, "ruleset names can only be %ld characters",
8450 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8451 		/*NOTREACHED*/
8452 	}
8453 
8454 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8455 	    (u_int)strlen(ruleset), (const u_char *)ruleset);
8456 	return (b0);
8457 }
8458 
8459 /* PF firewall log rule number */
8460 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr)8461 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8462 {
8463 	struct block *b0;
8464 
8465 	/*
8466 	 * Catch errors reported by us and routines below us, and return NULL
8467 	 * on an error.
8468 	 */
8469 	if (setjmp(cstate->top_ctx))
8470 		return (NULL);
8471 
8472 	if (cstate->linktype != DLT_PFLOG) {
8473 		bpf_error(cstate, "rnr supported only on PF linktype");
8474 		/*NOTREACHED*/
8475 	}
8476 
8477 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8478 		 (bpf_u_int32)rnr);
8479 	return (b0);
8480 }
8481 
8482 /* PF firewall log sub-rule number */
8483 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr)8484 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8485 {
8486 	struct block *b0;
8487 
8488 	/*
8489 	 * Catch errors reported by us and routines below us, and return NULL
8490 	 * on an error.
8491 	 */
8492 	if (setjmp(cstate->top_ctx))
8493 		return (NULL);
8494 
8495 	if (cstate->linktype != DLT_PFLOG) {
8496 		bpf_error(cstate, "srnr supported only on PF linktype");
8497 		/*NOTREACHED*/
8498 	}
8499 
8500 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8501 	    (bpf_u_int32)srnr);
8502 	return (b0);
8503 }
8504 
8505 /* PF firewall log reason code */
8506 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason)8507 gen_pf_reason(compiler_state_t *cstate, int reason)
8508 {
8509 	struct block *b0;
8510 
8511 	/*
8512 	 * Catch errors reported by us and routines below us, and return NULL
8513 	 * on an error.
8514 	 */
8515 	if (setjmp(cstate->top_ctx))
8516 		return (NULL);
8517 
8518 	if (cstate->linktype != DLT_PFLOG) {
8519 		bpf_error(cstate, "reason supported only on PF linktype");
8520 		/*NOTREACHED*/
8521 	}
8522 
8523 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8524 	    (bpf_u_int32)reason);
8525 	return (b0);
8526 }
8527 
8528 /* PF firewall log action */
8529 struct block *
gen_pf_action(compiler_state_t * cstate,int action)8530 gen_pf_action(compiler_state_t *cstate, int action)
8531 {
8532 	struct block *b0;
8533 
8534 	/*
8535 	 * Catch errors reported by us and routines below us, and return NULL
8536 	 * on an error.
8537 	 */
8538 	if (setjmp(cstate->top_ctx))
8539 		return (NULL);
8540 
8541 	if (cstate->linktype != DLT_PFLOG) {
8542 		bpf_error(cstate, "action supported only on PF linktype");
8543 		/*NOTREACHED*/
8544 	}
8545 
8546 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8547 	    (bpf_u_int32)action);
8548 	return (b0);
8549 }
8550 #else /* !HAVE_NET_PFVAR_H */
8551 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname _U_)8552 gen_pf_ifname(compiler_state_t *cstate, const char *ifname _U_)
8553 {
8554 	/*
8555 	 * Catch errors reported by us and routines below us, and return NULL
8556 	 * on an error.
8557 	 */
8558 	if (setjmp(cstate->top_ctx))
8559 		return (NULL);
8560 
8561 	bpf_error(cstate, "libpcap was compiled without pf support");
8562 	/*NOTREACHED*/
8563 }
8564 
8565 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset _U_)8566 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset _U_)
8567 {
8568 	/*
8569 	 * Catch errors reported by us and routines below us, and return NULL
8570 	 * on an error.
8571 	 */
8572 	if (setjmp(cstate->top_ctx))
8573 		return (NULL);
8574 
8575 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8576 	/*NOTREACHED*/
8577 }
8578 
8579 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr _U_)8580 gen_pf_rnr(compiler_state_t *cstate, int rnr _U_)
8581 {
8582 	/*
8583 	 * Catch errors reported by us and routines below us, and return NULL
8584 	 * on an error.
8585 	 */
8586 	if (setjmp(cstate->top_ctx))
8587 		return (NULL);
8588 
8589 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8590 	/*NOTREACHED*/
8591 }
8592 
8593 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr _U_)8594 gen_pf_srnr(compiler_state_t *cstate, int srnr _U_)
8595 {
8596 	/*
8597 	 * Catch errors reported by us and routines below us, and return NULL
8598 	 * on an error.
8599 	 */
8600 	if (setjmp(cstate->top_ctx))
8601 		return (NULL);
8602 
8603 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8604 	/*NOTREACHED*/
8605 }
8606 
8607 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason _U_)8608 gen_pf_reason(compiler_state_t *cstate, int reason _U_)
8609 {
8610 	/*
8611 	 * Catch errors reported by us and routines below us, and return NULL
8612 	 * on an error.
8613 	 */
8614 	if (setjmp(cstate->top_ctx))
8615 		return (NULL);
8616 
8617 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8618 	/*NOTREACHED*/
8619 }
8620 
8621 struct block *
gen_pf_action(compiler_state_t * cstate,int action _U_)8622 gen_pf_action(compiler_state_t *cstate, int action _U_)
8623 {
8624 	/*
8625 	 * Catch errors reported by us and routines below us, and return NULL
8626 	 * on an error.
8627 	 */
8628 	if (setjmp(cstate->top_ctx))
8629 		return (NULL);
8630 
8631 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8632 	/*NOTREACHED*/
8633 }
8634 #endif /* HAVE_NET_PFVAR_H */
8635 
8636 /* IEEE 802.11 wireless header */
8637 struct block *
gen_p80211_type(compiler_state_t * cstate,bpf_u_int32 type,bpf_u_int32 mask)8638 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8639 {
8640 	struct block *b0;
8641 
8642 	/*
8643 	 * Catch errors reported by us and routines below us, and return NULL
8644 	 * on an error.
8645 	 */
8646 	if (setjmp(cstate->top_ctx))
8647 		return (NULL);
8648 
8649 	switch (cstate->linktype) {
8650 
8651 	case DLT_IEEE802_11:
8652 	case DLT_PRISM_HEADER:
8653 	case DLT_IEEE802_11_RADIO_AVS:
8654 	case DLT_IEEE802_11_RADIO:
8655 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8656 		break;
8657 
8658 	default:
8659 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8660 		/*NOTREACHED*/
8661 	}
8662 
8663 	return (b0);
8664 }
8665 
8666 struct block *
gen_p80211_fcdir(compiler_state_t * cstate,bpf_u_int32 fcdir)8667 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8668 {
8669 	struct block *b0;
8670 
8671 	/*
8672 	 * Catch errors reported by us and routines below us, and return NULL
8673 	 * on an error.
8674 	 */
8675 	if (setjmp(cstate->top_ctx))
8676 		return (NULL);
8677 
8678 	switch (cstate->linktype) {
8679 
8680 	case DLT_IEEE802_11:
8681 	case DLT_PRISM_HEADER:
8682 	case DLT_IEEE802_11_RADIO_AVS:
8683 	case DLT_IEEE802_11_RADIO:
8684 		break;
8685 
8686 	default:
8687 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8688 		/*NOTREACHED*/
8689 	}
8690 
8691 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8692 	    IEEE80211_FC1_DIR_MASK);
8693 
8694 	return (b0);
8695 }
8696 
8697 struct block *
gen_acode(compiler_state_t * cstate,const char * s,struct qual q)8698 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8699 {
8700 	struct block *b;
8701 
8702 	/*
8703 	 * Catch errors reported by us and routines below us, and return NULL
8704 	 * on an error.
8705 	 */
8706 	if (setjmp(cstate->top_ctx))
8707 		return (NULL);
8708 
8709 	switch (cstate->linktype) {
8710 
8711 	case DLT_ARCNET:
8712 	case DLT_ARCNET_LINUX:
8713 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8714 		    q.proto == Q_LINK) {
8715 			cstate->e = pcap_ether_aton(s);
8716 			if (cstate->e == NULL)
8717 				bpf_error(cstate, "malloc");
8718 			b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8719 			free(cstate->e);
8720 			cstate->e = NULL;
8721 			return (b);
8722 		} else
8723 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8724  		/*NOTREACHED*/
8725 
8726 	default:
8727 		bpf_error(cstate, "aid supported only on ARCnet");
8728 		/*NOTREACHED*/
8729 	}
8730 }
8731 
8732 static struct block *
gen_ahostop(compiler_state_t * cstate,const u_char * eaddr,int dir)8733 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8734 {
8735 	register struct block *b0, *b1;
8736 
8737 	switch (dir) {
8738 	/* src comes first, different from Ethernet */
8739 	case Q_SRC:
8740 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8741 
8742 	case Q_DST:
8743 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8744 
8745 	case Q_AND:
8746 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8747 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8748 		gen_and(b0, b1);
8749 		return b1;
8750 
8751 	case Q_DEFAULT:
8752 	case Q_OR:
8753 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8754 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8755 		gen_or(b0, b1);
8756 		return b1;
8757 
8758 	case Q_ADDR1:
8759 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8760  		/*NOTREACHED*/
8761 
8762 	case Q_ADDR2:
8763 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8764  		/*NOTREACHED*/
8765 
8766 	case Q_ADDR3:
8767 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8768  		/*NOTREACHED*/
8769 
8770 	case Q_ADDR4:
8771 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8772  		/*NOTREACHED*/
8773 
8774 	case Q_RA:
8775 		bpf_error(cstate, "'ra' is only supported on 802.11");
8776  		/*NOTREACHED*/
8777 
8778 	case Q_TA:
8779 		bpf_error(cstate, "'ta' is only supported on 802.11");
8780  		/*NOTREACHED*/
8781 	}
8782 	abort();
8783 	/*NOTREACHED*/
8784 }
8785 
8786 static struct block *
gen_vlan_tpid_test(compiler_state_t * cstate)8787 gen_vlan_tpid_test(compiler_state_t *cstate)
8788 {
8789 	struct block *b0, *b1;
8790 
8791 	/* check for VLAN, including QinQ */
8792 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8793 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8794 	gen_or(b0,b1);
8795 	b0 = b1;
8796 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8797 	gen_or(b0,b1);
8798 
8799 	return b1;
8800 }
8801 
8802 static struct block *
gen_vlan_vid_test(compiler_state_t * cstate,bpf_u_int32 vlan_num)8803 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8804 {
8805 	if (vlan_num > 0x0fff) {
8806 		bpf_error(cstate, "VLAN tag %u greater than maximum %u",
8807 		    vlan_num, 0x0fff);
8808 	}
8809 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8810 }
8811 
8812 static struct block *
gen_vlan_no_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8813 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8814     int has_vlan_tag)
8815 {
8816 	struct block *b0, *b1;
8817 
8818 	b0 = gen_vlan_tpid_test(cstate);
8819 
8820 	if (has_vlan_tag) {
8821 		b1 = gen_vlan_vid_test(cstate, vlan_num);
8822 		gen_and(b0, b1);
8823 		b0 = b1;
8824 	}
8825 
8826 	/*
8827 	 * Both payload and link header type follow the VLAN tags so that
8828 	 * both need to be updated.
8829 	 */
8830 	cstate->off_linkpl.constant_part += 4;
8831 	cstate->off_linktype.constant_part += 4;
8832 
8833 	return b0;
8834 }
8835 
8836 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8837 /* add v to variable part of off */
8838 static void
gen_vlan_vloffset_add(compiler_state_t * cstate,bpf_abs_offset * off,bpf_u_int32 v,struct slist * s)8839 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8840     bpf_u_int32 v, struct slist *s)
8841 {
8842 	struct slist *s2;
8843 
8844 	if (!off->is_variable)
8845 		off->is_variable = 1;
8846 	if (off->reg == -1)
8847 		off->reg = alloc_reg(cstate);
8848 
8849 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8850 	s2->s.k = off->reg;
8851 	sappend(s, s2);
8852 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8853 	s2->s.k = v;
8854 	sappend(s, s2);
8855 	s2 = new_stmt(cstate, BPF_ST);
8856 	s2->s.k = off->reg;
8857 	sappend(s, s2);
8858 }
8859 
8860 /*
8861  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8862  * and link type offsets first
8863  */
8864 static void
gen_vlan_patch_tpid_test(compiler_state_t * cstate,struct block * b_tpid)8865 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8866 {
8867 	struct slist s;
8868 
8869 	/* offset determined at run time, shift variable part */
8870 	s.next = NULL;
8871 	cstate->is_vlan_vloffset = 1;
8872 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8873 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8874 
8875 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
8876 	sappend(s.next, b_tpid->head->stmts);
8877 	b_tpid->head->stmts = s.next;
8878 }
8879 
8880 /*
8881  * patch block b_vid (VLAN id test) to load VID value either from packet
8882  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8883  */
8884 static void
gen_vlan_patch_vid_test(compiler_state_t * cstate,struct block * b_vid)8885 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8886 {
8887 	struct slist *s, *s2, *sjeq;
8888 	unsigned cnt;
8889 
8890 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8891 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8892 
8893 	/* true -> next instructions, false -> beginning of b_vid */
8894 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8895 	sjeq->s.k = 1;
8896 	sjeq->s.jf = b_vid->stmts;
8897 	sappend(s, sjeq);
8898 
8899 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8900 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8901 	sappend(s, s2);
8902 	sjeq->s.jt = s2;
8903 
8904 	/* Jump to the test in b_vid. We need to jump one instruction before
8905 	 * the end of the b_vid block so that we only skip loading the TCI
8906 	 * from packet data and not the 'and' instruction extractging VID.
8907 	 */
8908 	cnt = 0;
8909 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
8910 		cnt++;
8911 	s2 = new_stmt(cstate, JMP(BPF_JA));
8912 	s2->s.k = cnt - 1;
8913 	sappend(s, s2);
8914 
8915 	/* insert our statements at the beginning of b_vid */
8916 	sappend(s, b_vid->stmts);
8917 	b_vid->stmts = s;
8918 }
8919 
8920 /*
8921  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8922  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8923  * tag can be either in metadata or in packet data; therefore if the
8924  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8925  * header for VLAN tag. As the decision is done at run time, we need
8926  * update variable part of the offsets
8927  */
8928 static struct block *
gen_vlan_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8929 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8930     int has_vlan_tag)
8931 {
8932         struct block *b0, *b_tpid, *b_vid = NULL;
8933         struct slist *s;
8934 
8935         /* generate new filter code based on extracting packet
8936          * metadata */
8937         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8938         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8939 
8940         b0 = new_block(cstate, JMP(BPF_JEQ));
8941         b0->stmts = s;
8942         b0->s.k = 1;
8943 
8944 	/*
8945 	 * This is tricky. We need to insert the statements updating variable
8946 	 * parts of offsets before the traditional TPID and VID tests so
8947 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8948 	 * we do not want this update to affect those checks. That's why we
8949 	 * generate both test blocks first and insert the statements updating
8950 	 * variable parts of both offsets after that. This wouldn't work if
8951 	 * there already were variable length link header when entering this
8952 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
8953 	 */
8954 	b_tpid = gen_vlan_tpid_test(cstate);
8955 	if (has_vlan_tag)
8956 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
8957 
8958 	gen_vlan_patch_tpid_test(cstate, b_tpid);
8959 	gen_or(b0, b_tpid);
8960 	b0 = b_tpid;
8961 
8962 	if (has_vlan_tag) {
8963 		gen_vlan_patch_vid_test(cstate, b_vid);
8964 		gen_and(b0, b_vid);
8965 		b0 = b_vid;
8966 	}
8967 
8968         return b0;
8969 }
8970 #endif
8971 
8972 /*
8973  * support IEEE 802.1Q VLAN trunk over ethernet
8974  */
8975 struct block *
gen_vlan(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8976 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8977 {
8978 	struct	block	*b0;
8979 
8980 	/*
8981 	 * Catch errors reported by us and routines below us, and return NULL
8982 	 * on an error.
8983 	 */
8984 	if (setjmp(cstate->top_ctx))
8985 		return (NULL);
8986 
8987 	/* can't check for VLAN-encapsulated packets inside MPLS */
8988 	if (cstate->label_stack_depth > 0)
8989 		bpf_error(cstate, "no VLAN match after MPLS");
8990 
8991 	/*
8992 	 * Check for a VLAN packet, and then change the offsets to point
8993 	 * to the type and data fields within the VLAN packet.  Just
8994 	 * increment the offsets, so that we can support a hierarchy, e.g.
8995 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8996 	 * VLAN 100.
8997 	 *
8998 	 * XXX - this is a bit of a kludge.  If we were to split the
8999 	 * compiler into a parser that parses an expression and
9000 	 * generates an expression tree, and a code generator that
9001 	 * takes an expression tree (which could come from our
9002 	 * parser or from some other parser) and generates BPF code,
9003 	 * we could perhaps make the offsets parameters of routines
9004 	 * and, in the handler for an "AND" node, pass to subnodes
9005 	 * other than the VLAN node the adjusted offsets.
9006 	 *
9007 	 * This would mean that "vlan" would, instead of changing the
9008 	 * behavior of *all* tests after it, change only the behavior
9009 	 * of tests ANDed with it.  That would change the documented
9010 	 * semantics of "vlan", which might break some expressions.
9011 	 * However, it would mean that "(vlan and ip) or ip" would check
9012 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9013 	 * checking only for VLAN-encapsulated IP, so that could still
9014 	 * be considered worth doing; it wouldn't break expressions
9015 	 * that are of the form "vlan and ..." or "vlan N and ...",
9016 	 * which I suspect are the most common expressions involving
9017 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
9018 	 * would really want, now, as all the "or ..." tests would
9019 	 * be done assuming a VLAN, even though the "or" could be viewed
9020 	 * as meaning "or, if this isn't a VLAN packet...".
9021 	 */
9022 	switch (cstate->linktype) {
9023 
9024 	case DLT_EN10MB:
9025 	case DLT_NETANALYZER:
9026 	case DLT_NETANALYZER_TRANSPARENT:
9027 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9028 		/* Verify that this is the outer part of the packet and
9029 		 * not encapsulated somehow. */
9030 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9031 		    cstate->off_linkhdr.constant_part ==
9032 		    cstate->off_outermostlinkhdr.constant_part) {
9033 			/*
9034 			 * Do we need special VLAN handling?
9035 			 */
9036 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9037 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9038 				    has_vlan_tag);
9039 			else
9040 				b0 = gen_vlan_no_bpf_extensions(cstate,
9041 				    vlan_num, has_vlan_tag);
9042 		} else
9043 #endif
9044 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9045 			    has_vlan_tag);
9046                 break;
9047 
9048 	case DLT_IEEE802_11:
9049 	case DLT_PRISM_HEADER:
9050 	case DLT_IEEE802_11_RADIO_AVS:
9051 	case DLT_IEEE802_11_RADIO:
9052 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9053 		break;
9054 
9055 	default:
9056 		bpf_error(cstate, "no VLAN support for %s",
9057 		      pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9058 		/*NOTREACHED*/
9059 	}
9060 
9061         cstate->vlan_stack_depth++;
9062 
9063 	return (b0);
9064 }
9065 
9066 /*
9067  * support for MPLS
9068  *
9069  * The label_num_arg dance is to avoid annoying whining by compilers that
9070  * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9071  * It's not *used* after setjmp returns.
9072  */
9073 struct block *
gen_mpls(compiler_state_t * cstate,bpf_u_int32 label_num_arg,int has_label_num)9074 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9075     int has_label_num)
9076 {
9077 	volatile bpf_u_int32 label_num = label_num_arg;
9078 	struct	block	*b0, *b1;
9079 
9080 	/*
9081 	 * Catch errors reported by us and routines below us, and return NULL
9082 	 * on an error.
9083 	 */
9084 	if (setjmp(cstate->top_ctx))
9085 		return (NULL);
9086 
9087         if (cstate->label_stack_depth > 0) {
9088             /* just match the bottom-of-stack bit clear */
9089             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9090         } else {
9091             /*
9092              * We're not in an MPLS stack yet, so check the link-layer
9093              * type against MPLS.
9094              */
9095             switch (cstate->linktype) {
9096 
9097             case DLT_C_HDLC: /* fall through */
9098             case DLT_EN10MB:
9099             case DLT_NETANALYZER:
9100             case DLT_NETANALYZER_TRANSPARENT:
9101                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9102                     break;
9103 
9104             case DLT_PPP:
9105                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9106                     break;
9107 
9108                     /* FIXME add other DLT_s ...
9109                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
9110                      * leave it for now */
9111 
9112             default:
9113                     bpf_error(cstate, "no MPLS support for %s",
9114                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9115                     /*NOTREACHED*/
9116             }
9117         }
9118 
9119 	/* If a specific MPLS label is requested, check it */
9120 	if (has_label_num) {
9121 		if (label_num > 0xFFFFF) {
9122 			bpf_error(cstate, "MPLS label %u greater than maximum %u",
9123 			    label_num, 0xFFFFF);
9124 		}
9125 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9126 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9127 		    0xfffff000); /* only compare the first 20 bits */
9128 		gen_and(b0, b1);
9129 		b0 = b1;
9130 	}
9131 
9132         /*
9133          * Change the offsets to point to the type and data fields within
9134          * the MPLS packet.  Just increment the offsets, so that we
9135          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9136          * capture packets with an outer label of 100000 and an inner
9137          * label of 1024.
9138          *
9139          * Increment the MPLS stack depth as well; this indicates that
9140          * we're checking MPLS-encapsulated headers, to make sure higher
9141          * level code generators don't try to match against IP-related
9142          * protocols such as Q_ARP, Q_RARP etc.
9143          *
9144          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
9145          */
9146         cstate->off_nl_nosnap += 4;
9147         cstate->off_nl += 4;
9148         cstate->label_stack_depth++;
9149 	return (b0);
9150 }
9151 
9152 /*
9153  * Support PPPOE discovery and session.
9154  */
9155 struct block *
gen_pppoed(compiler_state_t * cstate)9156 gen_pppoed(compiler_state_t *cstate)
9157 {
9158 	/*
9159 	 * Catch errors reported by us and routines below us, and return NULL
9160 	 * on an error.
9161 	 */
9162 	if (setjmp(cstate->top_ctx))
9163 		return (NULL);
9164 
9165 	/* check for PPPoE discovery */
9166 	return gen_linktype(cstate, ETHERTYPE_PPPOED);
9167 }
9168 
9169 struct block *
gen_pppoes(compiler_state_t * cstate,bpf_u_int32 sess_num,int has_sess_num)9170 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9171 {
9172 	struct block *b0, *b1;
9173 
9174 	/*
9175 	 * Catch errors reported by us and routines below us, and return NULL
9176 	 * on an error.
9177 	 */
9178 	if (setjmp(cstate->top_ctx))
9179 		return (NULL);
9180 
9181 	/*
9182 	 * Test against the PPPoE session link-layer type.
9183 	 */
9184 	b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9185 
9186 	/* If a specific session is requested, check PPPoE session id */
9187 	if (has_sess_num) {
9188 		if (sess_num > 0x0000ffff) {
9189 			bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9190 			    sess_num, 0x0000ffff);
9191 		}
9192 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9193 		gen_and(b0, b1);
9194 		b0 = b1;
9195 	}
9196 
9197 	/*
9198 	 * Change the offsets to point to the type and data fields within
9199 	 * the PPP packet, and note that this is PPPoE rather than
9200 	 * raw PPP.
9201 	 *
9202 	 * XXX - this is a bit of a kludge.  See the comments in
9203 	 * gen_vlan().
9204 	 *
9205 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
9206 	 * PPPoE header, followed by a PPP packet.
9207 	 *
9208 	 * There is no HDLC encapsulation for the PPP packet (it's
9209 	 * encapsulated in PPPoES instead), so the link-layer type
9210 	 * starts at the first byte of the PPP packet.  For PPPoE,
9211 	 * that offset is relative to the beginning of the total
9212 	 * link-layer payload, including any 802.2 LLC header, so
9213 	 * it's 6 bytes past cstate->off_nl.
9214 	 */
9215 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9216 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9217 	    cstate->off_linkpl.reg);
9218 
9219 	cstate->off_linktype = cstate->off_linkhdr;
9220 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9221 
9222 	cstate->off_nl = 0;
9223 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
9224 
9225 	return b0;
9226 }
9227 
9228 /* Check that this is Geneve and the VNI is correct if
9229  * specified. Parameterized to handle both IPv4 and IPv6. */
9230 static struct block *
gen_geneve_check(compiler_state_t * cstate,struct block * (* gen_portfn)(compiler_state_t *,u_int,int,int),enum e_offrel offrel,bpf_u_int32 vni,int has_vni)9231 gen_geneve_check(compiler_state_t *cstate,
9232     struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9233     enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9234 {
9235 	struct block *b0, *b1;
9236 
9237 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9238 
9239 	/* Check that we are operating on version 0. Otherwise, we
9240 	 * can't decode the rest of the fields. The version is 2 bits
9241 	 * in the first byte of the Geneve header. */
9242 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9243 	gen_and(b0, b1);
9244 	b0 = b1;
9245 
9246 	if (has_vni) {
9247 		if (vni > 0xffffff) {
9248 			bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9249 			    vni, 0xffffff);
9250 		}
9251 		vni <<= 8; /* VNI is in the upper 3 bytes */
9252 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9253 		gen_and(b0, b1);
9254 		b0 = b1;
9255 	}
9256 
9257 	return b0;
9258 }
9259 
9260 /* The IPv4 and IPv6 Geneve checks need to do two things:
9261  * - Verify that this actually is Geneve with the right VNI.
9262  * - Place the IP header length (plus variable link prefix if
9263  *   needed) into register A to be used later to compute
9264  *   the inner packet offsets. */
9265 static struct block *
gen_geneve4(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9266 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9267 {
9268 	struct block *b0, *b1;
9269 	struct slist *s, *s1;
9270 
9271 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9272 
9273 	/* Load the IP header length into A. */
9274 	s = gen_loadx_iphdrlen(cstate);
9275 
9276 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9277 	sappend(s, s1);
9278 
9279 	/* Forcibly append these statements to the true condition
9280 	 * of the protocol check by creating a new block that is
9281 	 * always true and ANDing them. */
9282 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9283 	b1->stmts = s;
9284 	b1->s.k = 0;
9285 
9286 	gen_and(b0, b1);
9287 
9288 	return b1;
9289 }
9290 
9291 static struct block *
gen_geneve6(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9292 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9293 {
9294 	struct block *b0, *b1;
9295 	struct slist *s, *s1;
9296 
9297 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9298 
9299 	/* Load the IP header length. We need to account for a
9300 	 * variable length link prefix if there is one. */
9301 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9302 	if (s) {
9303 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9304 		s1->s.k = 40;
9305 		sappend(s, s1);
9306 
9307 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9308 		s1->s.k = 0;
9309 		sappend(s, s1);
9310 	} else {
9311 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
9312 		s->s.k = 40;
9313 	}
9314 
9315 	/* Forcibly append these statements to the true condition
9316 	 * of the protocol check by creating a new block that is
9317 	 * always true and ANDing them. */
9318 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9319 	sappend(s, s1);
9320 
9321 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9322 	b1->stmts = s;
9323 	b1->s.k = 0;
9324 
9325 	gen_and(b0, b1);
9326 
9327 	return b1;
9328 }
9329 
9330 /* We need to store three values based on the Geneve header::
9331  * - The offset of the linktype.
9332  * - The offset of the end of the Geneve header.
9333  * - The offset of the end of the encapsulated MAC header. */
9334 static struct slist *
gen_geneve_offsets(compiler_state_t * cstate)9335 gen_geneve_offsets(compiler_state_t *cstate)
9336 {
9337 	struct slist *s, *s1, *s_proto;
9338 
9339 	/* First we need to calculate the offset of the Geneve header
9340 	 * itself. This is composed of the IP header previously calculated
9341 	 * (include any variable link prefix) and stored in A plus the
9342 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
9343 	 * header). */
9344 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9345 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9346 
9347 	/* Stash this in X since we'll need it later. */
9348 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9349 	sappend(s, s1);
9350 
9351 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
9352 	 * store it. */
9353 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9354 	s1->s.k = 2;
9355 	sappend(s, s1);
9356 
9357 	cstate->off_linktype.reg = alloc_reg(cstate);
9358 	cstate->off_linktype.is_variable = 1;
9359 	cstate->off_linktype.constant_part = 0;
9360 
9361 	s1 = new_stmt(cstate, BPF_ST);
9362 	s1->s.k = cstate->off_linktype.reg;
9363 	sappend(s, s1);
9364 
9365 	/* Load the Geneve option length and mask and shift to get the
9366 	 * number of bytes. It is stored in the first byte of the Geneve
9367 	 * header. */
9368 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9369 	s1->s.k = 0;
9370 	sappend(s, s1);
9371 
9372 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9373 	s1->s.k = 0x3f;
9374 	sappend(s, s1);
9375 
9376 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9377 	s1->s.k = 4;
9378 	sappend(s, s1);
9379 
9380 	/* Add in the rest of the Geneve base header. */
9381 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9382 	s1->s.k = 8;
9383 	sappend(s, s1);
9384 
9385 	/* Add the Geneve header length to its offset and store. */
9386 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9387 	s1->s.k = 0;
9388 	sappend(s, s1);
9389 
9390 	/* Set the encapsulated type as Ethernet. Even though we may
9391 	 * not actually have Ethernet inside there are two reasons this
9392 	 * is useful:
9393 	 * - The linktype field is always in EtherType format regardless
9394 	 *   of whether it is in Geneve or an inner Ethernet frame.
9395 	 * - The only link layer that we have specific support for is
9396 	 *   Ethernet. We will confirm that the packet actually is
9397 	 *   Ethernet at runtime before executing these checks. */
9398 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9399 
9400 	s1 = new_stmt(cstate, BPF_ST);
9401 	s1->s.k = cstate->off_linkhdr.reg;
9402 	sappend(s, s1);
9403 
9404 	/* Calculate whether we have an Ethernet header or just raw IP/
9405 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9406 	 * and linktype by 14 bytes so that the network header can be found
9407 	 * seamlessly. Otherwise, keep what we've calculated already. */
9408 
9409 	/* We have a bare jmp so we can't use the optimizer. */
9410 	cstate->no_optimize = 1;
9411 
9412 	/* Load the EtherType in the Geneve header, 2 bytes in. */
9413 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9414 	s1->s.k = 2;
9415 	sappend(s, s1);
9416 
9417 	/* Load X with the end of the Geneve header. */
9418 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9419 	s1->s.k = cstate->off_linkhdr.reg;
9420 	sappend(s, s1);
9421 
9422 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
9423 	 * end of this check, we should have the total length in X. In
9424 	 * the non-Ethernet case, it's already there. */
9425 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9426 	s_proto->s.k = ETHERTYPE_TEB;
9427 	sappend(s, s_proto);
9428 
9429 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9430 	sappend(s, s1);
9431 	s_proto->s.jt = s1;
9432 
9433 	/* Since this is Ethernet, use the EtherType of the payload
9434 	 * directly as the linktype. Overwrite what we already have. */
9435 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9436 	s1->s.k = 12;
9437 	sappend(s, s1);
9438 
9439 	s1 = new_stmt(cstate, BPF_ST);
9440 	s1->s.k = cstate->off_linktype.reg;
9441 	sappend(s, s1);
9442 
9443 	/* Advance two bytes further to get the end of the Ethernet
9444 	 * header. */
9445 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9446 	s1->s.k = 2;
9447 	sappend(s, s1);
9448 
9449 	/* Move the result to X. */
9450 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9451 	sappend(s, s1);
9452 
9453 	/* Store the final result of our linkpl calculation. */
9454 	cstate->off_linkpl.reg = alloc_reg(cstate);
9455 	cstate->off_linkpl.is_variable = 1;
9456 	cstate->off_linkpl.constant_part = 0;
9457 
9458 	s1 = new_stmt(cstate, BPF_STX);
9459 	s1->s.k = cstate->off_linkpl.reg;
9460 	sappend(s, s1);
9461 	s_proto->s.jf = s1;
9462 
9463 	cstate->off_nl = 0;
9464 
9465 	return s;
9466 }
9467 
9468 /* Check to see if this is a Geneve packet. */
9469 struct block *
gen_geneve(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9470 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9471 {
9472 	struct block *b0, *b1;
9473 	struct slist *s;
9474 
9475 	/*
9476 	 * Catch errors reported by us and routines below us, and return NULL
9477 	 * on an error.
9478 	 */
9479 	if (setjmp(cstate->top_ctx))
9480 		return (NULL);
9481 
9482 	b0 = gen_geneve4(cstate, vni, has_vni);
9483 	b1 = gen_geneve6(cstate, vni, has_vni);
9484 
9485 	gen_or(b0, b1);
9486 	b0 = b1;
9487 
9488 	/* Later filters should act on the payload of the Geneve frame,
9489 	 * update all of the header pointers. Attach this code so that
9490 	 * it gets executed in the event that the Geneve filter matches. */
9491 	s = gen_geneve_offsets(cstate);
9492 
9493 	b1 = gen_true(cstate);
9494 	sappend(s, b1->stmts);
9495 	b1->stmts = s;
9496 
9497 	gen_and(b0, b1);
9498 
9499 	cstate->is_geneve = 1;
9500 
9501 	return b1;
9502 }
9503 
9504 /* Check that the encapsulated frame has a link layer header
9505  * for Ethernet filters. */
9506 static struct block *
gen_geneve_ll_check(compiler_state_t * cstate)9507 gen_geneve_ll_check(compiler_state_t *cstate)
9508 {
9509 	struct block *b0;
9510 	struct slist *s, *s1;
9511 
9512 	/* The easiest way to see if there is a link layer present
9513 	 * is to check if the link layer header and payload are not
9514 	 * the same. */
9515 
9516 	/* Geneve always generates pure variable offsets so we can
9517 	 * compare only the registers. */
9518 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
9519 	s->s.k = cstate->off_linkhdr.reg;
9520 
9521 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9522 	s1->s.k = cstate->off_linkpl.reg;
9523 	sappend(s, s1);
9524 
9525 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9526 	b0->stmts = s;
9527 	b0->s.k = 0;
9528 	gen_not(b0);
9529 
9530 	return b0;
9531 }
9532 
9533 static struct block *
gen_atmfield_code_internal(compiler_state_t * cstate,int atmfield,bpf_u_int32 jvalue,int jtype,int reverse)9534 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9535     bpf_u_int32 jvalue, int jtype, int reverse)
9536 {
9537 	struct block *b0;
9538 
9539 	switch (atmfield) {
9540 
9541 	case A_VPI:
9542 		if (!cstate->is_atm)
9543 			bpf_error(cstate, "'vpi' supported only on raw ATM");
9544 		if (cstate->off_vpi == OFFSET_NOT_SET)
9545 			abort();
9546 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9547 		    0xffffffffU, jtype, reverse, jvalue);
9548 		break;
9549 
9550 	case A_VCI:
9551 		if (!cstate->is_atm)
9552 			bpf_error(cstate, "'vci' supported only on raw ATM");
9553 		if (cstate->off_vci == OFFSET_NOT_SET)
9554 			abort();
9555 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9556 		    0xffffffffU, jtype, reverse, jvalue);
9557 		break;
9558 
9559 	case A_PROTOTYPE:
9560 		if (cstate->off_proto == OFFSET_NOT_SET)
9561 			abort();	/* XXX - this isn't on FreeBSD */
9562 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9563 		    0x0fU, jtype, reverse, jvalue);
9564 		break;
9565 
9566 	case A_MSGTYPE:
9567 		if (cstate->off_payload == OFFSET_NOT_SET)
9568 			abort();
9569 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9570 		    0xffffffffU, jtype, reverse, jvalue);
9571 		break;
9572 
9573 	case A_CALLREFTYPE:
9574 		if (!cstate->is_atm)
9575 			bpf_error(cstate, "'callref' supported only on raw ATM");
9576 		if (cstate->off_proto == OFFSET_NOT_SET)
9577 			abort();
9578 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9579 		    0xffffffffU, jtype, reverse, jvalue);
9580 		break;
9581 
9582 	default:
9583 		abort();
9584 	}
9585 	return b0;
9586 }
9587 
9588 static struct block *
gen_atmtype_metac(compiler_state_t * cstate)9589 gen_atmtype_metac(compiler_state_t *cstate)
9590 {
9591 	struct block *b0, *b1;
9592 
9593 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9594 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9595 	gen_and(b0, b1);
9596 	return b1;
9597 }
9598 
9599 static struct block *
gen_atmtype_sc(compiler_state_t * cstate)9600 gen_atmtype_sc(compiler_state_t *cstate)
9601 {
9602 	struct block *b0, *b1;
9603 
9604 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9605 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9606 	gen_and(b0, b1);
9607 	return b1;
9608 }
9609 
9610 static struct block *
gen_atmtype_llc(compiler_state_t * cstate)9611 gen_atmtype_llc(compiler_state_t *cstate)
9612 {
9613 	struct block *b0;
9614 
9615 	b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9616 	cstate->linktype = cstate->prevlinktype;
9617 	return b0;
9618 }
9619 
9620 struct block *
gen_atmfield_code(compiler_state_t * cstate,int atmfield,bpf_u_int32 jvalue,int jtype,int reverse)9621 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9622     bpf_u_int32 jvalue, int jtype, int reverse)
9623 {
9624 	/*
9625 	 * Catch errors reported by us and routines below us, and return NULL
9626 	 * on an error.
9627 	 */
9628 	if (setjmp(cstate->top_ctx))
9629 		return (NULL);
9630 
9631 	return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9632 	    reverse);
9633 }
9634 
9635 struct block *
gen_atmtype_abbrev(compiler_state_t * cstate,int type)9636 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9637 {
9638 	struct block *b0, *b1;
9639 
9640 	/*
9641 	 * Catch errors reported by us and routines below us, and return NULL
9642 	 * on an error.
9643 	 */
9644 	if (setjmp(cstate->top_ctx))
9645 		return (NULL);
9646 
9647 	switch (type) {
9648 
9649 	case A_METAC:
9650 		/* Get all packets in Meta signalling Circuit */
9651 		if (!cstate->is_atm)
9652 			bpf_error(cstate, "'metac' supported only on raw ATM");
9653 		b1 = gen_atmtype_metac(cstate);
9654 		break;
9655 
9656 	case A_BCC:
9657 		/* Get all packets in Broadcast Circuit*/
9658 		if (!cstate->is_atm)
9659 			bpf_error(cstate, "'bcc' supported only on raw ATM");
9660 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9661 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9662 		gen_and(b0, b1);
9663 		break;
9664 
9665 	case A_OAMF4SC:
9666 		/* Get all cells in Segment OAM F4 circuit*/
9667 		if (!cstate->is_atm)
9668 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9669 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9670 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9671 		gen_and(b0, b1);
9672 		break;
9673 
9674 	case A_OAMF4EC:
9675 		/* Get all cells in End-to-End OAM F4 Circuit*/
9676 		if (!cstate->is_atm)
9677 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9678 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9679 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9680 		gen_and(b0, b1);
9681 		break;
9682 
9683 	case A_SC:
9684 		/*  Get all packets in connection Signalling Circuit */
9685 		if (!cstate->is_atm)
9686 			bpf_error(cstate, "'sc' supported only on raw ATM");
9687 		b1 = gen_atmtype_sc(cstate);
9688 		break;
9689 
9690 	case A_ILMIC:
9691 		/* Get all packets in ILMI Circuit */
9692 		if (!cstate->is_atm)
9693 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
9694 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9695 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9696 		gen_and(b0, b1);
9697 		break;
9698 
9699 	case A_LANE:
9700 		/* Get all LANE packets */
9701 		if (!cstate->is_atm)
9702 			bpf_error(cstate, "'lane' supported only on raw ATM");
9703 		b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9704 
9705 		/*
9706 		 * Arrange that all subsequent tests assume LANE
9707 		 * rather than LLC-encapsulated packets, and set
9708 		 * the offsets appropriately for LANE-encapsulated
9709 		 * Ethernet.
9710 		 *
9711 		 * We assume LANE means Ethernet, not Token Ring.
9712 		 */
9713 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9714 		    cstate->off_payload + 2,	/* Ethernet header */
9715 		    -1);
9716 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9717 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
9718 		cstate->off_nl = 0;			/* Ethernet II */
9719 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
9720 		break;
9721 
9722 	case A_LLC:
9723 		/* Get all LLC-encapsulated packets */
9724 		if (!cstate->is_atm)
9725 			bpf_error(cstate, "'llc' supported only on raw ATM");
9726 		b1 = gen_atmtype_llc(cstate);
9727 		break;
9728 
9729 	default:
9730 		abort();
9731 	}
9732 	return b1;
9733 }
9734 
9735 /*
9736  * Filtering for MTP2 messages based on li value
9737  * FISU, length is null
9738  * LSSU, length is 1 or 2
9739  * MSU, length is 3 or more
9740  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9741  */
9742 struct block *
gen_mtp2type_abbrev(compiler_state_t * cstate,int type)9743 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9744 {
9745 	struct block *b0, *b1;
9746 
9747 	/*
9748 	 * Catch errors reported by us and routines below us, and return NULL
9749 	 * on an error.
9750 	 */
9751 	if (setjmp(cstate->top_ctx))
9752 		return (NULL);
9753 
9754 	switch (type) {
9755 
9756 	case M_FISU:
9757 		if ( (cstate->linktype != DLT_MTP2) &&
9758 		     (cstate->linktype != DLT_ERF) &&
9759 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9760 			bpf_error(cstate, "'fisu' supported only on MTP2");
9761 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9762 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9763 		    0x3fU, BPF_JEQ, 0, 0U);
9764 		break;
9765 
9766 	case M_LSSU:
9767 		if ( (cstate->linktype != DLT_MTP2) &&
9768 		     (cstate->linktype != DLT_ERF) &&
9769 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9770 			bpf_error(cstate, "'lssu' supported only on MTP2");
9771 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9772 		    0x3fU, BPF_JGT, 1, 2U);
9773 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9774 		    0x3fU, BPF_JGT, 0, 0U);
9775 		gen_and(b1, b0);
9776 		break;
9777 
9778 	case M_MSU:
9779 		if ( (cstate->linktype != DLT_MTP2) &&
9780 		     (cstate->linktype != DLT_ERF) &&
9781 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9782 			bpf_error(cstate, "'msu' supported only on MTP2");
9783 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9784 		    0x3fU, BPF_JGT, 0, 2U);
9785 		break;
9786 
9787 	case MH_FISU:
9788 		if ( (cstate->linktype != DLT_MTP2) &&
9789 		     (cstate->linktype != DLT_ERF) &&
9790 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9791 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9792 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9793 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9794 		    0xff80U, BPF_JEQ, 0, 0U);
9795 		break;
9796 
9797 	case MH_LSSU:
9798 		if ( (cstate->linktype != DLT_MTP2) &&
9799 		     (cstate->linktype != DLT_ERF) &&
9800 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9801 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9802 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9803 		    0xff80U, BPF_JGT, 1, 0x0100U);
9804 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9805 		    0xff80U, BPF_JGT, 0, 0U);
9806 		gen_and(b1, b0);
9807 		break;
9808 
9809 	case MH_MSU:
9810 		if ( (cstate->linktype != DLT_MTP2) &&
9811 		     (cstate->linktype != DLT_ERF) &&
9812 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9813 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9814 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9815 		    0xff80U, BPF_JGT, 0, 0x0100U);
9816 		break;
9817 
9818 	default:
9819 		abort();
9820 	}
9821 	return b0;
9822 }
9823 
9824 /*
9825  * The jvalue_arg dance is to avoid annoying whining by compilers that
9826  * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9827  * It's not *used* after setjmp returns.
9828  */
9829 struct block *
gen_mtp3field_code(compiler_state_t * cstate,int mtp3field,bpf_u_int32 jvalue_arg,int jtype,int reverse)9830 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9831     bpf_u_int32 jvalue_arg, int jtype, int reverse)
9832 {
9833 	volatile bpf_u_int32 jvalue = jvalue_arg;
9834 	struct block *b0;
9835 	bpf_u_int32 val1 , val2 , val3;
9836 	u_int newoff_sio;
9837 	u_int newoff_opc;
9838 	u_int newoff_dpc;
9839 	u_int newoff_sls;
9840 
9841 	/*
9842 	 * Catch errors reported by us and routines below us, and return NULL
9843 	 * on an error.
9844 	 */
9845 	if (setjmp(cstate->top_ctx))
9846 		return (NULL);
9847 
9848 	newoff_sio = cstate->off_sio;
9849 	newoff_opc = cstate->off_opc;
9850 	newoff_dpc = cstate->off_dpc;
9851 	newoff_sls = cstate->off_sls;
9852 	switch (mtp3field) {
9853 
9854 	case MH_SIO:
9855 		newoff_sio += 3; /* offset for MTP2_HSL */
9856 		/* FALLTHROUGH */
9857 
9858 	case M_SIO:
9859 		if (cstate->off_sio == OFFSET_NOT_SET)
9860 			bpf_error(cstate, "'sio' supported only on SS7");
9861 		/* sio coded on 1 byte so max value 255 */
9862 		if(jvalue > 255)
9863 		        bpf_error(cstate, "sio value %u too big; max value = 255",
9864 		            jvalue);
9865 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
9866 		    jtype, reverse, jvalue);
9867 		break;
9868 
9869 	case MH_OPC:
9870 		newoff_opc += 3;
9871 
9872 		/* FALLTHROUGH */
9873         case M_OPC:
9874 	        if (cstate->off_opc == OFFSET_NOT_SET)
9875 			bpf_error(cstate, "'opc' supported only on SS7");
9876 		/* opc coded on 14 bits so max value 16383 */
9877 		if (jvalue > 16383)
9878 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
9879 		            jvalue);
9880 		/* the following instructions are made to convert jvalue
9881 		 * to the form used to write opc in an ss7 message*/
9882 		val1 = jvalue & 0x00003c00;
9883 		val1 = val1 >>10;
9884 		val2 = jvalue & 0x000003fc;
9885 		val2 = val2 <<6;
9886 		val3 = jvalue & 0x00000003;
9887 		val3 = val3 <<22;
9888 		jvalue = val1 + val2 + val3;
9889 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
9890 		    jtype, reverse, jvalue);
9891 		break;
9892 
9893 	case MH_DPC:
9894 		newoff_dpc += 3;
9895 		/* FALLTHROUGH */
9896 
9897 	case M_DPC:
9898 	        if (cstate->off_dpc == OFFSET_NOT_SET)
9899 			bpf_error(cstate, "'dpc' supported only on SS7");
9900 		/* dpc coded on 14 bits so max value 16383 */
9901 		if (jvalue > 16383)
9902 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
9903 		            jvalue);
9904 		/* the following instructions are made to convert jvalue
9905 		 * to the forme used to write dpc in an ss7 message*/
9906 		val1 = jvalue & 0x000000ff;
9907 		val1 = val1 << 24;
9908 		val2 = jvalue & 0x00003f00;
9909 		val2 = val2 << 8;
9910 		jvalue = val1 + val2;
9911 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
9912 		    jtype, reverse, jvalue);
9913 		break;
9914 
9915 	case MH_SLS:
9916 		newoff_sls += 3;
9917 		/* FALLTHROUGH */
9918 
9919 	case M_SLS:
9920 	        if (cstate->off_sls == OFFSET_NOT_SET)
9921 			bpf_error(cstate, "'sls' supported only on SS7");
9922 		/* sls coded on 4 bits so max value 15 */
9923 		if (jvalue > 15)
9924 		         bpf_error(cstate, "sls value %u too big; max value = 15",
9925 		             jvalue);
9926 		/* the following instruction is made to convert jvalue
9927 		 * to the forme used to write sls in an ss7 message*/
9928 		jvalue = jvalue << 4;
9929 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
9930 		    jtype, reverse, jvalue);
9931 		break;
9932 
9933 	default:
9934 		abort();
9935 	}
9936 	return b0;
9937 }
9938 
9939 static struct block *
gen_msg_abbrev(compiler_state_t * cstate,int type)9940 gen_msg_abbrev(compiler_state_t *cstate, int type)
9941 {
9942 	struct block *b1;
9943 
9944 	/*
9945 	 * Q.2931 signalling protocol messages for handling virtual circuits
9946 	 * establishment and teardown
9947 	 */
9948 	switch (type) {
9949 
9950 	case A_SETUP:
9951 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9952 		break;
9953 
9954 	case A_CALLPROCEED:
9955 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9956 		break;
9957 
9958 	case A_CONNECT:
9959 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9960 		break;
9961 
9962 	case A_CONNECTACK:
9963 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9964 		break;
9965 
9966 	case A_RELEASE:
9967 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9968 		break;
9969 
9970 	case A_RELEASE_DONE:
9971 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9972 		break;
9973 
9974 	default:
9975 		abort();
9976 	}
9977 	return b1;
9978 }
9979 
9980 struct block *
gen_atmmulti_abbrev(compiler_state_t * cstate,int type)9981 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9982 {
9983 	struct block *b0, *b1;
9984 
9985 	/*
9986 	 * Catch errors reported by us and routines below us, and return NULL
9987 	 * on an error.
9988 	 */
9989 	if (setjmp(cstate->top_ctx))
9990 		return (NULL);
9991 
9992 	switch (type) {
9993 
9994 	case A_OAM:
9995 		if (!cstate->is_atm)
9996 			bpf_error(cstate, "'oam' supported only on raw ATM");
9997 		/* OAM F4 type */
9998 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9999 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10000 		gen_or(b0, b1);
10001 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10002 		gen_and(b0, b1);
10003 		break;
10004 
10005 	case A_OAMF4:
10006 		if (!cstate->is_atm)
10007 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
10008 		/* OAM F4 type */
10009 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10010 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10011 		gen_or(b0, b1);
10012 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10013 		gen_and(b0, b1);
10014 		break;
10015 
10016 	case A_CONNECTMSG:
10017 		/*
10018 		 * Get Q.2931 signalling messages for switched
10019 		 * virtual connection
10020 		 */
10021 		if (!cstate->is_atm)
10022 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10023 		b0 = gen_msg_abbrev(cstate, A_SETUP);
10024 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10025 		gen_or(b0, b1);
10026 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
10027 		gen_or(b0, b1);
10028 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10029 		gen_or(b0, b1);
10030 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
10031 		gen_or(b0, b1);
10032 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10033 		gen_or(b0, b1);
10034 		b0 = gen_atmtype_sc(cstate);
10035 		gen_and(b0, b1);
10036 		break;
10037 
10038 	case A_METACONNECT:
10039 		if (!cstate->is_atm)
10040 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10041 		b0 = gen_msg_abbrev(cstate, A_SETUP);
10042 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10043 		gen_or(b0, b1);
10044 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
10045 		gen_or(b0, b1);
10046 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
10047 		gen_or(b0, b1);
10048 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10049 		gen_or(b0, b1);
10050 		b0 = gen_atmtype_metac(cstate);
10051 		gen_and(b0, b1);
10052 		break;
10053 
10054 	default:
10055 		abort();
10056 	}
10057 	return b1;
10058 }
10059