1// Copyright 2015 Google Inc. All rights reserved. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// http://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15package android 16 17import ( 18 "encoding" 19 "fmt" 20 "reflect" 21 "runtime" 22 "strings" 23 24 "android/soong/bazel" 25 "android/soong/starlark_fmt" 26 27 "github.com/google/blueprint" 28 "github.com/google/blueprint/bootstrap" 29 "github.com/google/blueprint/proptools" 30) 31 32/* 33Example blueprints file containing all variant property groups, with comment listing what type 34of variants get properties in that group: 35 36module { 37 arch: { 38 arm: { 39 // Host or device variants with arm architecture 40 }, 41 arm64: { 42 // Host or device variants with arm64 architecture 43 }, 44 x86: { 45 // Host or device variants with x86 architecture 46 }, 47 x86_64: { 48 // Host or device variants with x86_64 architecture 49 }, 50 }, 51 multilib: { 52 lib32: { 53 // Host or device variants for 32-bit architectures 54 }, 55 lib64: { 56 // Host or device variants for 64-bit architectures 57 }, 58 }, 59 target: { 60 android: { 61 // Device variants (implies Bionic) 62 }, 63 host: { 64 // Host variants 65 }, 66 bionic: { 67 // Bionic (device and host) variants 68 }, 69 linux_bionic: { 70 // Bionic host variants 71 }, 72 linux: { 73 // Bionic (device and host) and Linux glibc variants 74 }, 75 linux_glibc: { 76 // Linux host variants (using non-Bionic libc) 77 }, 78 darwin: { 79 // Darwin host variants 80 }, 81 windows: { 82 // Windows host variants 83 }, 84 not_windows: { 85 // Non-windows host variants 86 }, 87 android_arm: { 88 // Any <os>_<arch> combination restricts to that os and arch 89 }, 90 }, 91} 92*/ 93 94// An Arch indicates a single CPU architecture. 95type Arch struct { 96 // The type of the architecture (arm, arm64, x86, or x86_64). 97 ArchType ArchType 98 99 // The variant of the architecture, for example "armv7-a" or "armv7-a-neon" for arm. 100 ArchVariant string 101 102 // The variant of the CPU, for example "cortex-a53" for arm64. 103 CpuVariant string 104 105 // The list of Android app ABIs supported by the CPU architecture, for example "arm64-v8a". 106 Abi []string 107 108 // The list of arch-specific features supported by the CPU architecture, for example "neon". 109 ArchFeatures []string 110} 111 112// String returns the Arch as a string. The value is used as the name of the variant created 113// by archMutator. 114func (a Arch) String() string { 115 s := a.ArchType.String() 116 if a.ArchVariant != "" { 117 s += "_" + a.ArchVariant 118 } 119 if a.CpuVariant != "" { 120 s += "_" + a.CpuVariant 121 } 122 return s 123} 124 125// ArchType is used to define the 4 supported architecture types (arm, arm64, x86, x86_64), as 126// well as the "common" architecture used for modules that support multiple architectures, for 127// example Java modules. 128type ArchType struct { 129 // Name is the name of the architecture type, "arm", "arm64", "x86", or "x86_64". 130 Name string 131 132 // Field is the name of the field used in properties that refer to the architecture, e.g. "Arm64". 133 Field string 134 135 // Multilib is either "lib32" or "lib64" for 32-bit or 64-bit architectures. 136 Multilib string 137} 138 139// String returns the name of the ArchType. 140func (a ArchType) String() string { 141 return a.Name 142} 143 144const COMMON_VARIANT = "common" 145 146var ( 147 archTypeList []ArchType 148 149 Arm = newArch("arm", "lib32") 150 Arm64 = newArch("arm64", "lib64") 151 X86 = newArch("x86", "lib32") 152 X86_64 = newArch("x86_64", "lib64") 153 154 Common = ArchType{ 155 Name: COMMON_VARIANT, 156 } 157) 158 159var archTypeMap = map[string]ArchType{} 160 161func newArch(name, multilib string) ArchType { 162 archType := ArchType{ 163 Name: name, 164 Field: proptools.FieldNameForProperty(name), 165 Multilib: multilib, 166 } 167 archTypeList = append(archTypeList, archType) 168 archTypeMap[name] = archType 169 return archType 170} 171 172// ArchTypeList returns a slice copy of the 4 supported ArchTypes for arm, 173// arm64, x86 and x86_64. 174func ArchTypeList() []ArchType { 175 return append([]ArchType(nil), archTypeList...) 176} 177 178// MarshalText allows an ArchType to be serialized through any encoder that supports 179// encoding.TextMarshaler. 180func (a ArchType) MarshalText() ([]byte, error) { 181 return []byte(a.String()), nil 182} 183 184var _ encoding.TextMarshaler = ArchType{} 185 186// UnmarshalText allows an ArchType to be deserialized through any decoder that supports 187// encoding.TextUnmarshaler. 188func (a *ArchType) UnmarshalText(text []byte) error { 189 if u, ok := archTypeMap[string(text)]; ok { 190 *a = u 191 return nil 192 } 193 194 return fmt.Errorf("unknown ArchType %q", text) 195} 196 197var _ encoding.TextUnmarshaler = &ArchType{} 198 199// OsClass is an enum that describes whether a variant of a module runs on the host, on the device, 200// or is generic. 201type OsClass int 202 203const ( 204 // Generic is used for variants of modules that are not OS-specific. 205 Generic OsClass = iota 206 // Device is used for variants of modules that run on the device. 207 Device 208 // Host is used for variants of modules that run on the host. 209 Host 210) 211 212// String returns the OsClass as a string. 213func (class OsClass) String() string { 214 switch class { 215 case Generic: 216 return "generic" 217 case Device: 218 return "device" 219 case Host: 220 return "host" 221 default: 222 panic(fmt.Errorf("unknown class %d", class)) 223 } 224} 225 226// OsType describes an OS variant of a module. 227type OsType struct { 228 // Name is the name of the OS. It is also used as the name of the property in Android.bp 229 // files. 230 Name string 231 232 // Field is the name of the OS converted to an exported field name, i.e. with the first 233 // character capitalized. 234 Field string 235 236 // Class is the OsClass of the OS. 237 Class OsClass 238 239 // DefaultDisabled is set when the module variants for the OS should not be created unless 240 // the module explicitly requests them. This is used to limit Windows cross compilation to 241 // only modules that need it. 242 DefaultDisabled bool 243} 244 245// String returns the name of the OsType. 246func (os OsType) String() string { 247 return os.Name 248} 249 250// Bionic returns true if the OS uses the Bionic libc runtime, i.e. if the OS is Android or 251// is Linux with Bionic. 252func (os OsType) Bionic() bool { 253 return os == Android || os == LinuxBionic 254} 255 256// Linux returns true if the OS uses the Linux kernel, i.e. if the OS is Android or is Linux 257// with or without the Bionic libc runtime. 258func (os OsType) Linux() bool { 259 return os == Android || os == Linux || os == LinuxBionic || os == LinuxMusl 260} 261 262// newOsType constructs an OsType and adds it to the global lists. 263func newOsType(name string, class OsClass, defDisabled bool, archTypes ...ArchType) OsType { 264 checkCalledFromInit() 265 os := OsType{ 266 Name: name, 267 Field: proptools.FieldNameForProperty(name), 268 Class: class, 269 270 DefaultDisabled: defDisabled, 271 } 272 osTypeList = append(osTypeList, os) 273 274 if _, found := commonTargetMap[name]; found { 275 panic(fmt.Errorf("Found Os type duplicate during OsType registration: %q", name)) 276 } else { 277 commonTargetMap[name] = Target{Os: os, Arch: CommonArch} 278 } 279 osArchTypeMap[os] = archTypes 280 281 return os 282} 283 284// osByName returns the OsType that has the given name, or NoOsType if none match. 285func osByName(name string) OsType { 286 for _, os := range osTypeList { 287 if os.Name == name { 288 return os 289 } 290 } 291 292 return NoOsType 293} 294 295var ( 296 // osTypeList contains a list of all the supported OsTypes, including ones not supported 297 // by the current build host or the target device. 298 osTypeList []OsType 299 // commonTargetMap maps names of OsTypes to the corresponding common Target, i.e. the 300 // Target with the same OsType and the common ArchType. 301 commonTargetMap = make(map[string]Target) 302 // osArchTypeMap maps OsTypes to the list of supported ArchTypes for that OS. 303 osArchTypeMap = map[OsType][]ArchType{} 304 305 // NoOsType is a placeholder for when no OS is needed. 306 NoOsType OsType 307 // Linux is the OS for the Linux kernel plus the glibc runtime. 308 Linux = newOsType("linux_glibc", Host, false, X86, X86_64) 309 // LinuxMusl is the OS for the Linux kernel plus the musl runtime. 310 LinuxMusl = newOsType("linux_musl", Host, false, X86, X86_64) 311 // Darwin is the OS for MacOS/Darwin host machines. 312 Darwin = newOsType("darwin", Host, false, Arm64, X86_64) 313 // LinuxBionic is the OS for the Linux kernel plus the Bionic libc runtime, but without the 314 // rest of Android. 315 LinuxBionic = newOsType("linux_bionic", Host, false, Arm64, X86_64) 316 // Windows the OS for Windows host machines. 317 Windows = newOsType("windows", Host, true, X86, X86_64) 318 // Android is the OS for target devices that run all of Android, including the Linux kernel 319 // and the Bionic libc runtime. 320 Android = newOsType("android", Device, false, Arm, Arm64, X86, X86_64) 321 322 // CommonOS is a pseudo OSType for a common OS variant, which is OsType agnostic and which 323 // has dependencies on all the OS variants. 324 CommonOS = newOsType("common_os", Generic, false) 325 326 // CommonArch is the Arch for all modules that are os-specific but not arch specific, 327 // for example most Java modules. 328 CommonArch = Arch{ArchType: Common} 329) 330 331// OsTypeList returns a slice copy of the supported OsTypes. 332func OsTypeList() []OsType { 333 return append([]OsType(nil), osTypeList...) 334} 335 336// Target specifies the OS and architecture that a module is being compiled for. 337type Target struct { 338 // Os the OS that the module is being compiled for (e.g. "linux_glibc", "android"). 339 Os OsType 340 // Arch is the architecture that the module is being compiled for. 341 Arch Arch 342 // NativeBridge is NativeBridgeEnabled if the architecture is supported using NativeBridge 343 // (i.e. arm on x86) for this device. 344 NativeBridge NativeBridgeSupport 345 // NativeBridgeHostArchName is the name of the real architecture that is used to implement 346 // the NativeBridge architecture. For example, for arm on x86 this would be "x86". 347 NativeBridgeHostArchName string 348 // NativeBridgeRelativePath is the name of the subdirectory that will contain NativeBridge 349 // libraries and binaries. 350 NativeBridgeRelativePath string 351 352 // HostCross is true when the target cannot run natively on the current build host. 353 // For example, linux_glibc_x86 returns true on a regular x86/i686/Linux machines, but returns false 354 // on Mac (different OS), or on 64-bit only i686/Linux machines (unsupported arch). 355 HostCross bool 356} 357 358// NativeBridgeSupport is an enum that specifies if a Target supports NativeBridge. 359type NativeBridgeSupport bool 360 361const ( 362 NativeBridgeDisabled NativeBridgeSupport = false 363 NativeBridgeEnabled NativeBridgeSupport = true 364) 365 366// String returns the OS and arch variations used for the Target. 367func (target Target) String() string { 368 return target.OsVariation() + "_" + target.ArchVariation() 369} 370 371// OsVariation returns the name of the variation used by the osMutator for the Target. 372func (target Target) OsVariation() string { 373 return target.Os.String() 374} 375 376// ArchVariation returns the name of the variation used by the archMutator for the Target. 377func (target Target) ArchVariation() string { 378 var variation string 379 if target.NativeBridge { 380 variation = "native_bridge_" 381 } 382 variation += target.Arch.String() 383 384 return variation 385} 386 387// Variations returns a list of blueprint.Variations for the osMutator and archMutator for the 388// Target. 389func (target Target) Variations() []blueprint.Variation { 390 return []blueprint.Variation{ 391 {Mutator: "os", Variation: target.OsVariation()}, 392 {Mutator: "arch", Variation: target.ArchVariation()}, 393 } 394} 395 396func registerBp2buildArchPathDepsMutator(ctx RegisterMutatorsContext) { 397 ctx.BottomUp("bp2build-arch-pathdeps", bp2buildArchPathDepsMutator).Parallel() 398} 399 400// add dependencies for architecture specific properties tagged with `android:"path"` 401func bp2buildArchPathDepsMutator(ctx BottomUpMutatorContext) { 402 var module Module 403 module = ctx.Module() 404 405 m := module.base() 406 if !m.ArchSpecific() { 407 return 408 } 409 410 // addPathDepsForProps does not descend into sub structs, so we need to descend into the 411 // arch-specific properties ourselves 412 var properties []interface{} 413 for _, archProperties := range m.archProperties { 414 for _, archProps := range archProperties { 415 archPropValues := reflect.ValueOf(archProps).Elem() 416 // there are three "arch" variations, descend into each 417 for _, variant := range []string{"Arch", "Multilib", "Target"} { 418 // The properties are an interface, get the value (a pointer) that it points to 419 archProps := archPropValues.FieldByName(variant).Elem() 420 if archProps.IsNil() { 421 continue 422 } 423 // And then a pointer to a struct 424 archProps = archProps.Elem() 425 for i := 0; i < archProps.NumField(); i += 1 { 426 f := archProps.Field(i) 427 // If the value of the field is a struct (as opposed to a pointer to a struct) then step 428 // into the BlueprintEmbed field. 429 if f.Kind() == reflect.Struct { 430 f = f.FieldByName("BlueprintEmbed") 431 } 432 if f.IsZero() { 433 continue 434 } 435 props := f.Interface().(interface{}) 436 properties = append(properties, props) 437 } 438 } 439 } 440 } 441 addPathDepsForProps(ctx, properties) 442} 443 444// osMutator splits an arch-specific module into a variant for each OS that is enabled for the 445// module. It uses the HostOrDevice value passed to InitAndroidArchModule and the 446// device_supported and host_supported properties to determine which OsTypes are enabled for this 447// module, then searches through the Targets to determine which have enabled Targets for this 448// module. 449func osMutator(bpctx blueprint.BottomUpMutatorContext) { 450 var module Module 451 var ok bool 452 if module, ok = bpctx.Module().(Module); !ok { 453 // The module is not a Soong module, it is a Blueprint module. 454 if bootstrap.IsBootstrapModule(bpctx.Module()) { 455 // Bootstrap Go modules are always the build OS or linux bionic. 456 config := bpctx.Config().(Config) 457 osNames := []string{config.BuildOSTarget.OsVariation()} 458 for _, hostCrossTarget := range config.Targets[LinuxBionic] { 459 if hostCrossTarget.Arch.ArchType == config.BuildOSTarget.Arch.ArchType { 460 osNames = append(osNames, hostCrossTarget.OsVariation()) 461 } 462 } 463 osNames = FirstUniqueStrings(osNames) 464 bpctx.CreateVariations(osNames...) 465 } 466 return 467 } 468 469 // Bootstrap Go module support above requires this mutator to be a 470 // blueprint.BottomUpMutatorContext because android.BottomUpMutatorContext 471 // filters out non-Soong modules. Now that we've handled them, create a 472 // normal android.BottomUpMutatorContext. 473 mctx := bottomUpMutatorContextFactory(bpctx, module, false, false) 474 475 base := module.base() 476 477 // Nothing to do for modules that are not architecture specific (e.g. a genrule). 478 if !base.ArchSpecific() { 479 return 480 } 481 482 // Collect a list of OSTypes supported by this module based on the HostOrDevice value 483 // passed to InitAndroidArchModule and the device_supported and host_supported properties. 484 var moduleOSList []OsType 485 for _, os := range osTypeList { 486 for _, t := range mctx.Config().Targets[os] { 487 if base.supportsTarget(t) { 488 moduleOSList = append(moduleOSList, os) 489 break 490 } 491 } 492 } 493 494 // If there are no supported OSes then disable the module. 495 if len(moduleOSList) == 0 { 496 base.Disable() 497 return 498 } 499 500 // Convert the list of supported OsTypes to the variation names. 501 osNames := make([]string, len(moduleOSList)) 502 for i, os := range moduleOSList { 503 osNames[i] = os.String() 504 } 505 506 createCommonOSVariant := base.commonProperties.CreateCommonOSVariant 507 if createCommonOSVariant { 508 // A CommonOS variant was requested so add it to the list of OS variants to 509 // create. It needs to be added to the end because it needs to depend on the 510 // the other variants in the list returned by CreateVariations(...) and inter 511 // variant dependencies can only be created from a later variant in that list to 512 // an earlier one. That is because variants are always processed in the order in 513 // which they are returned from CreateVariations(...). 514 osNames = append(osNames, CommonOS.Name) 515 moduleOSList = append(moduleOSList, CommonOS) 516 } 517 518 // Create the variations, annotate each one with which OS it was created for, and 519 // squash the appropriate OS-specific properties into the top level properties. 520 modules := mctx.CreateVariations(osNames...) 521 for i, m := range modules { 522 m.base().commonProperties.CompileOS = moduleOSList[i] 523 m.base().setOSProperties(mctx) 524 } 525 526 if createCommonOSVariant { 527 // A CommonOS variant was requested so add dependencies from it (the last one in 528 // the list) to the OS type specific variants. 529 last := len(modules) - 1 530 commonOSVariant := modules[last] 531 commonOSVariant.base().commonProperties.CommonOSVariant = true 532 for _, module := range modules[0:last] { 533 // Ignore modules that are enabled. Note, this will only avoid adding 534 // dependencies on OsType variants that are explicitly disabled in their 535 // properties. The CommonOS variant will still depend on disabled variants 536 // if they are disabled afterwards, e.g. in archMutator if 537 if module.Enabled() { 538 mctx.AddInterVariantDependency(commonOsToOsSpecificVariantTag, commonOSVariant, module) 539 } 540 } 541 } 542} 543 544type archDepTag struct { 545 blueprint.BaseDependencyTag 546 name string 547} 548 549// Identifies the dependency from CommonOS variant to the os specific variants. 550var commonOsToOsSpecificVariantTag = archDepTag{name: "common os to os specific"} 551 552// Get the OsType specific variants for the current CommonOS variant. 553// 554// The returned list will only contain enabled OsType specific variants of the 555// module referenced in the supplied context. An empty list is returned if there 556// are no enabled variants or the supplied context is not for an CommonOS 557// variant. 558func GetOsSpecificVariantsOfCommonOSVariant(mctx BaseModuleContext) []Module { 559 var variants []Module 560 mctx.VisitDirectDeps(func(m Module) { 561 if mctx.OtherModuleDependencyTag(m) == commonOsToOsSpecificVariantTag { 562 if m.Enabled() { 563 variants = append(variants, m) 564 } 565 } 566 }) 567 return variants 568} 569 570var DarwinUniversalVariantTag = archDepTag{name: "darwin universal binary"} 571 572// archMutator splits a module into a variant for each Target requested by the module. Target selection 573// for a module is in three levels, OsClass, multilib, and then Target. 574// OsClass selection is determined by: 575// - The HostOrDeviceSupported value passed in to InitAndroidArchModule by the module type factory, which selects 576// whether the module type can compile for host, device or both. 577// - The host_supported and device_supported properties on the module. 578// If host is supported for the module, the Host and HostCross OsClasses are selected. If device is supported 579// for the module, the Device OsClass is selected. 580// Within each selected OsClass, the multilib selection is determined by: 581// - The compile_multilib property if it set (which may be overridden by target.android.compile_multilib or 582// target.host.compile_multilib). 583// - The default multilib passed to InitAndroidArchModule if compile_multilib was not set. 584// Valid multilib values include: 585// "both": compile for all Targets supported by the OsClass (generally x86_64 and x86, or arm64 and arm). 586// "first": compile for only a single preferred Target supported by the OsClass. This is generally x86_64 or arm64, 587// but may be arm for a 32-bit only build. 588// "32": compile for only a single 32-bit Target supported by the OsClass. 589// "64": compile for only a single 64-bit Target supported by the OsClass. 590// "common": compile a for a single Target that will work on all Targets supported by the OsClass (for example Java). 591// "common_first": compile a for a Target that will work on all Targets supported by the OsClass 592// (same as "common"), plus a second Target for the preferred Target supported by the OsClass 593// (same as "first"). This is used for java_binary that produces a common .jar and a wrapper 594// executable script. 595// 596// Once the list of Targets is determined, the module is split into a variant for each Target. 597// 598// Modules can be initialized with InitAndroidMultiTargetsArchModule, in which case they will be split by OsClass, 599// but will have a common Target that is expected to handle all other selected Targets via ctx.MultiTargets(). 600func archMutator(bpctx blueprint.BottomUpMutatorContext) { 601 var module Module 602 var ok bool 603 if module, ok = bpctx.Module().(Module); !ok { 604 if bootstrap.IsBootstrapModule(bpctx.Module()) { 605 // Bootstrap Go modules are always the build architecture. 606 bpctx.CreateVariations(bpctx.Config().(Config).BuildOSTarget.ArchVariation()) 607 } 608 return 609 } 610 611 // Bootstrap Go module support above requires this mutator to be a 612 // blueprint.BottomUpMutatorContext because android.BottomUpMutatorContext 613 // filters out non-Soong modules. Now that we've handled them, create a 614 // normal android.BottomUpMutatorContext. 615 mctx := bottomUpMutatorContextFactory(bpctx, module, false, false) 616 617 base := module.base() 618 619 if !base.ArchSpecific() { 620 return 621 } 622 623 os := base.commonProperties.CompileOS 624 if os == CommonOS { 625 // Make sure that the target related properties are initialized for the 626 // CommonOS variant. 627 addTargetProperties(module, commonTargetMap[os.Name], nil, true) 628 629 // Do not create arch specific variants for the CommonOS variant. 630 return 631 } 632 633 osTargets := mctx.Config().Targets[os] 634 image := base.commonProperties.ImageVariation 635 // Filter NativeBridge targets unless they are explicitly supported. 636 // Skip creating native bridge variants for non-core modules. 637 if os == Android && !(base.IsNativeBridgeSupported() && image == CoreVariation) { 638 639 var targets []Target 640 for _, t := range osTargets { 641 if !t.NativeBridge { 642 targets = append(targets, t) 643 } 644 } 645 646 osTargets = targets 647 } 648 649 // only the primary arch in the ramdisk / vendor_ramdisk / recovery partition 650 if os == Android && (module.InstallInRecovery() || module.InstallInRamdisk() || module.InstallInVendorRamdisk() || module.InstallInDebugRamdisk()) { 651 osTargets = []Target{osTargets[0]} 652 } 653 654 // Windows builds always prefer 32-bit 655 prefer32 := os == Windows 656 657 // Determine the multilib selection for this module. 658 force_first_on_device := mctx.Config().ForceMultilibFirstOnDevice() 659 multilib, extraMultilib := decodeMultilib(base, os, force_first_on_device) 660 661 // Convert the multilib selection into a list of Targets. 662 targets, err := decodeMultilibTargets(multilib, osTargets, prefer32) 663 if err != nil { 664 mctx.ModuleErrorf("%s", err.Error()) 665 } 666 667 // If the module is using extraMultilib, decode the extraMultilib selection into 668 // a separate list of Targets. 669 var multiTargets []Target 670 if extraMultilib != "" { 671 multiTargets, err = decodeMultilibTargets(extraMultilib, osTargets, prefer32) 672 if err != nil { 673 mctx.ModuleErrorf("%s", err.Error()) 674 } 675 } 676 677 // Recovery is always the primary architecture, filter out any other architectures. 678 // Common arch is also allowed 679 if image == RecoveryVariation { 680 primaryArch := mctx.Config().DevicePrimaryArchType() 681 targets = filterToArch(targets, primaryArch, Common) 682 multiTargets = filterToArch(multiTargets, primaryArch, Common) 683 } 684 685 // If there are no supported targets disable the module. 686 if len(targets) == 0 { 687 base.Disable() 688 return 689 } 690 691 // Convert the targets into a list of arch variation names. 692 targetNames := make([]string, len(targets)) 693 for i, target := range targets { 694 targetNames[i] = target.ArchVariation() 695 } 696 697 // Create the variations, annotate each one with which Target it was created for, and 698 // squash the appropriate arch-specific properties into the top level properties. 699 modules := mctx.CreateVariations(targetNames...) 700 for i, m := range modules { 701 addTargetProperties(m, targets[i], multiTargets, i == 0) 702 m.base().setArchProperties(mctx) 703 704 // Install support doesn't understand Darwin+Arm64 705 if os == Darwin && targets[i].HostCross { 706 m.base().commonProperties.SkipInstall = true 707 } 708 } 709 710 // Create a dependency for Darwin Universal binaries from the primary to secondary 711 // architecture. The module itself will be responsible for calling lipo to merge the outputs. 712 if os == Darwin { 713 if multilib == "darwin_universal" && len(modules) == 2 { 714 mctx.AddInterVariantDependency(DarwinUniversalVariantTag, modules[1], modules[0]) 715 } else if multilib == "darwin_universal_common_first" && len(modules) == 3 { 716 mctx.AddInterVariantDependency(DarwinUniversalVariantTag, modules[2], modules[1]) 717 } 718 } 719} 720 721// addTargetProperties annotates a variant with the Target is is being compiled for, the list 722// of additional Targets it is supporting (if any), and whether it is the primary Target for 723// the module. 724func addTargetProperties(m Module, target Target, multiTargets []Target, primaryTarget bool) { 725 m.base().commonProperties.CompileTarget = target 726 m.base().commonProperties.CompileMultiTargets = multiTargets 727 m.base().commonProperties.CompilePrimary = primaryTarget 728} 729 730// decodeMultilib returns the appropriate compile_multilib property for the module, or the default 731// multilib from the factory's call to InitAndroidArchModule if none was set. For modules that 732// called InitAndroidMultiTargetsArchModule it always returns "common" for multilib, and returns 733// the actual multilib in extraMultilib. 734func decodeMultilib(base *ModuleBase, os OsType, force_first_on_device bool) (multilib, extraMultilib string) { 735 // First check the "android.compile_multilib" or "host.compile_multilib" properties. 736 switch os.Class { 737 case Device: 738 multilib = String(base.commonProperties.Target.Android.Compile_multilib) 739 case Host: 740 multilib = String(base.commonProperties.Target.Host.Compile_multilib) 741 } 742 743 // If those aren't set, try the "compile_multilib" property. 744 if multilib == "" { 745 multilib = String(base.commonProperties.Compile_multilib) 746 } 747 748 // If that wasn't set, use the default multilib set by the factory. 749 if multilib == "" { 750 multilib = base.commonProperties.Default_multilib 751 } 752 753 // If a device is configured with multiple targets, this option 754 // force all device targets that prefer32 to be compiled only as 755 // the first target. 756 if force_first_on_device && os.Class == Device && (multilib == "prefer32" || multilib == "first_prefer32") { 757 multilib = "first" 758 } 759 760 if base.commonProperties.UseTargetVariants { 761 // Darwin has the concept of "universal binaries" which is implemented in Soong by 762 // building both x86_64 and arm64 variants, and having select module types know how to 763 // merge the outputs of their corresponding variants together into a final binary. Most 764 // module types don't need to understand this logic, as we only build a small portion 765 // of the tree for Darwin, and only module types writing macho files need to do the 766 // merging. 767 // 768 // This logic is not enabled for: 769 // "common", as it's not an arch-specific variant 770 // "32", as Darwin never has a 32-bit variant 771 // !UseTargetVariants, as the module has opted into handling the arch-specific logic on 772 // its own. 773 if os == Darwin && multilib != "common" && multilib != "32" { 774 if multilib == "common_first" { 775 multilib = "darwin_universal_common_first" 776 } else { 777 multilib = "darwin_universal" 778 } 779 } 780 781 return multilib, "" 782 } else { 783 // For app modules a single arch variant will be created per OS class which is expected to handle all the 784 // selected arches. Return the common-type as multilib and any Android.bp provided multilib as extraMultilib 785 if multilib == base.commonProperties.Default_multilib { 786 multilib = "first" 787 } 788 return base.commonProperties.Default_multilib, multilib 789 } 790} 791 792// filterToArch takes a list of Targets and an ArchType, and returns a modified list that contains 793// only Targets that have the specified ArchTypes. 794func filterToArch(targets []Target, archs ...ArchType) []Target { 795 for i := 0; i < len(targets); i++ { 796 found := false 797 for _, arch := range archs { 798 if targets[i].Arch.ArchType == arch { 799 found = true 800 break 801 } 802 } 803 if !found { 804 targets = append(targets[:i], targets[i+1:]...) 805 i-- 806 } 807 } 808 return targets 809} 810 811// archPropRoot is a struct type used as the top level of the arch-specific properties. It 812// contains the "arch", "multilib", and "target" property structs. It is used to split up the 813// property structs to limit how much is allocated when a single arch-specific property group is 814// used. The types are interface{} because they will hold instances of runtime-created types. 815type archPropRoot struct { 816 Arch, Multilib, Target interface{} 817} 818 819// archPropTypeDesc holds the runtime-created types for the property structs to instantiate to 820// create an archPropRoot property struct. 821type archPropTypeDesc struct { 822 arch, multilib, target reflect.Type 823} 824 825// createArchPropTypeDesc takes a reflect.Type that is either a struct or a pointer to a struct, and 826// returns lists of reflect.Types that contains the arch-variant properties inside structs for each 827// arch, multilib and target property. 828// 829// This is a relatively expensive operation, so the results are cached in the global 830// archPropTypeMap. It is constructed entirely based on compile-time data, so there is no need 831// to isolate the results between multiple tests running in parallel. 832func createArchPropTypeDesc(props reflect.Type) []archPropTypeDesc { 833 // Each property struct shard will be nested many times under the runtime generated arch struct, 834 // which can hit the limit of 64kB for the name of runtime generated structs. They are nested 835 // 97 times now, which may grow in the future, plus there is some overhead for the containing 836 // type. This number may need to be reduced if too many are added, but reducing it too far 837 // could cause problems if a single deeply nested property no longer fits in the name. 838 const maxArchTypeNameSize = 500 839 840 // Convert the type to a new set of types that contains only the arch-specific properties 841 // (those that are tagged with `android:"arch_variant"`), and sharded into multiple types 842 // to keep the runtime-generated names under the limit. 843 propShards, _ := proptools.FilterPropertyStructSharded(props, maxArchTypeNameSize, filterArchStruct) 844 845 // If the type has no arch-specific properties there is nothing to do. 846 if len(propShards) == 0 { 847 return nil 848 } 849 850 var ret []archPropTypeDesc 851 for _, props := range propShards { 852 853 // variantFields takes a list of variant property field names and returns a list the 854 // StructFields with the names and the type of the current shard. 855 variantFields := func(names []string) []reflect.StructField { 856 ret := make([]reflect.StructField, len(names)) 857 858 for i, name := range names { 859 ret[i].Name = name 860 ret[i].Type = props 861 } 862 863 return ret 864 } 865 866 // Create a type that contains the properties in this shard repeated for each 867 // architecture, architecture variant, and architecture feature. 868 archFields := make([]reflect.StructField, len(archTypeList)) 869 for i, arch := range archTypeList { 870 var variants []string 871 872 for _, archVariant := range archVariants[arch] { 873 archVariant := variantReplacer.Replace(archVariant) 874 variants = append(variants, proptools.FieldNameForProperty(archVariant)) 875 } 876 for _, cpuVariant := range cpuVariants[arch] { 877 cpuVariant := variantReplacer.Replace(cpuVariant) 878 variants = append(variants, proptools.FieldNameForProperty(cpuVariant)) 879 } 880 for _, feature := range archFeatures[arch] { 881 feature := variantReplacer.Replace(feature) 882 variants = append(variants, proptools.FieldNameForProperty(feature)) 883 } 884 885 // Create the StructFields for each architecture variant architecture feature 886 // (e.g. "arch.arm.cortex-a53" or "arch.arm.neon"). 887 fields := variantFields(variants) 888 889 // Create the StructField for the architecture itself (e.g. "arch.arm"). The special 890 // "BlueprintEmbed" name is used by Blueprint to put the properties in the 891 // parent struct. 892 fields = append([]reflect.StructField{{ 893 Name: "BlueprintEmbed", 894 Type: props, 895 Anonymous: true, 896 }}, fields...) 897 898 archFields[i] = reflect.StructField{ 899 Name: arch.Field, 900 Type: reflect.StructOf(fields), 901 } 902 } 903 904 // Create the type of the "arch" property struct for this shard. 905 archType := reflect.StructOf(archFields) 906 907 // Create the type for the "multilib" property struct for this shard, containing the 908 // "multilib.lib32" and "multilib.lib64" property structs. 909 multilibType := reflect.StructOf(variantFields([]string{"Lib32", "Lib64"})) 910 911 // Start with a list of the special targets 912 targets := []string{ 913 "Host", 914 "Android64", 915 "Android32", 916 "Bionic", 917 "Glibc", 918 "Musl", 919 "Linux", 920 "Host_linux", 921 "Not_windows", 922 "Arm_on_x86", 923 "Arm_on_x86_64", 924 "Native_bridge", 925 } 926 for _, os := range osTypeList { 927 // Add all the OSes. 928 targets = append(targets, os.Field) 929 930 // Add the OS/Arch combinations, e.g. "android_arm64". 931 for _, archType := range osArchTypeMap[os] { 932 targets = append(targets, GetCompoundTargetField(os, archType)) 933 934 // Also add the special "linux_<arch>", "bionic_<arch>" , "glibc_<arch>", and 935 // "musl_<arch>" property structs. 936 if os.Linux() { 937 target := "Linux_" + archType.Name 938 if !InList(target, targets) { 939 targets = append(targets, target) 940 } 941 } 942 if os.Linux() && os.Class == Host { 943 target := "Host_linux_" + archType.Name 944 if !InList(target, targets) { 945 targets = append(targets, target) 946 } 947 } 948 if os.Bionic() { 949 target := "Bionic_" + archType.Name 950 if !InList(target, targets) { 951 targets = append(targets, target) 952 } 953 } 954 if os == Linux { 955 target := "Glibc_" + archType.Name 956 if !InList(target, targets) { 957 targets = append(targets, target) 958 } 959 } 960 if os == LinuxMusl { 961 target := "Musl_" + archType.Name 962 if !InList(target, targets) { 963 targets = append(targets, target) 964 } 965 } 966 } 967 } 968 969 // Create the type for the "target" property struct for this shard. 970 targetType := reflect.StructOf(variantFields(targets)) 971 972 // Return a descriptor of the 3 runtime-created types. 973 ret = append(ret, archPropTypeDesc{ 974 arch: reflect.PtrTo(archType), 975 multilib: reflect.PtrTo(multilibType), 976 target: reflect.PtrTo(targetType), 977 }) 978 } 979 return ret 980} 981 982// variantReplacer converts architecture variant or architecture feature names into names that 983// are valid for an Android.bp file. 984var variantReplacer = strings.NewReplacer("-", "_", ".", "_") 985 986// filterArchStruct returns true if the given field is an architecture specific property. 987func filterArchStruct(field reflect.StructField, prefix string) (bool, reflect.StructField) { 988 if proptools.HasTag(field, "android", "arch_variant") { 989 // The arch_variant field isn't necessary past this point 990 // Instead of wasting space, just remove it. Go also has a 991 // 16-bit limit on structure name length. The name is constructed 992 // based on the Go source representation of the structure, so 993 // the tag names count towards that length. 994 995 androidTag := field.Tag.Get("android") 996 values := strings.Split(androidTag, ",") 997 998 if string(field.Tag) != `android:"`+strings.Join(values, ",")+`"` { 999 panic(fmt.Errorf("unexpected tag format %q", field.Tag)) 1000 } 1001 // don't delete path tag as it is needed for bp2build 1002 // these tags don't need to be present in the runtime generated struct type. 1003 values = RemoveListFromList(values, []string{"arch_variant", "variant_prepend"}) 1004 if len(values) > 0 && values[0] != "path" { 1005 panic(fmt.Errorf("unknown tags %q in field %q", values, prefix+field.Name)) 1006 } else if len(values) == 1 { 1007 // FIXME(b/200678898): This assumes that the only tag type when there's 1008 // `android:"arch_variant"` is `android` itself and thus clobbers others 1009 field.Tag = reflect.StructTag(`android:"` + strings.Join(values, ",") + `"`) 1010 } else { 1011 field.Tag = `` 1012 } 1013 1014 return true, field 1015 } 1016 return false, field 1017} 1018 1019// archPropTypeMap contains a cache of the results of createArchPropTypeDesc for each type. It is 1020// shared across all Contexts, but is constructed based only on compile-time information so there 1021// is no risk of contaminating one Context with data from another. 1022var archPropTypeMap OncePer 1023 1024// initArchModule adds the architecture-specific property structs to a Module. 1025func initArchModule(m Module) { 1026 1027 base := m.base() 1028 1029 if len(base.archProperties) != 0 { 1030 panic(fmt.Errorf("module %s already has archProperties", m.Name())) 1031 } 1032 1033 getStructType := func(properties interface{}) reflect.Type { 1034 propertiesValue := reflect.ValueOf(properties) 1035 t := propertiesValue.Type() 1036 if propertiesValue.Kind() != reflect.Ptr { 1037 panic(fmt.Errorf("properties must be a pointer to a struct, got %T", 1038 propertiesValue.Interface())) 1039 } 1040 1041 propertiesValue = propertiesValue.Elem() 1042 if propertiesValue.Kind() != reflect.Struct { 1043 panic(fmt.Errorf("properties must be a pointer to a struct, got a pointer to %T", 1044 propertiesValue.Interface())) 1045 } 1046 return t 1047 } 1048 1049 for _, properties := range m.GetProperties() { 1050 t := getStructType(properties) 1051 // Get or create the arch-specific property struct types for this property struct type. 1052 archPropTypes := archPropTypeMap.Once(NewCustomOnceKey(t), func() interface{} { 1053 return createArchPropTypeDesc(t) 1054 }).([]archPropTypeDesc) 1055 1056 // Instantiate one of each arch-specific property struct type and add it to the 1057 // properties for the Module. 1058 var archProperties []interface{} 1059 for _, t := range archPropTypes { 1060 archProperties = append(archProperties, &archPropRoot{ 1061 Arch: reflect.Zero(t.arch).Interface(), 1062 Multilib: reflect.Zero(t.multilib).Interface(), 1063 Target: reflect.Zero(t.target).Interface(), 1064 }) 1065 } 1066 base.archProperties = append(base.archProperties, archProperties) 1067 m.AddProperties(archProperties...) 1068 } 1069 1070} 1071 1072func maybeBlueprintEmbed(src reflect.Value) reflect.Value { 1073 // If the value of the field is a struct (as opposed to a pointer to a struct) then step 1074 // into the BlueprintEmbed field. 1075 if src.Kind() == reflect.Struct { 1076 return src.FieldByName("BlueprintEmbed") 1077 } else { 1078 return src 1079 } 1080} 1081 1082// Merges the property struct in srcValue into dst. 1083func mergePropertyStruct(ctx ArchVariantContext, dst interface{}, srcValue reflect.Value) { 1084 src := maybeBlueprintEmbed(srcValue).Interface() 1085 1086 // order checks the `android:"variant_prepend"` tag to handle properties where the 1087 // arch-specific value needs to come before the generic value, for example for lists of 1088 // include directories. 1089 order := func(property string, 1090 dstField, srcField reflect.StructField, 1091 dstValue, srcValue interface{}) (proptools.Order, error) { 1092 if proptools.HasTag(dstField, "android", "variant_prepend") { 1093 return proptools.Prepend, nil 1094 } else { 1095 return proptools.Append, nil 1096 } 1097 } 1098 1099 // Squash the located property struct into the destination property struct. 1100 err := proptools.ExtendMatchingProperties([]interface{}{dst}, src, nil, order) 1101 if err != nil { 1102 if propertyErr, ok := err.(*proptools.ExtendPropertyError); ok { 1103 ctx.PropertyErrorf(propertyErr.Property, "%s", propertyErr.Err.Error()) 1104 } else { 1105 panic(err) 1106 } 1107 } 1108} 1109 1110// Returns the immediate child of the input property struct that corresponds to 1111// the sub-property "field". 1112func getChildPropertyStruct(ctx ArchVariantContext, 1113 src reflect.Value, field, userFriendlyField string) (reflect.Value, bool) { 1114 1115 // Step into non-nil pointers to structs in the src value. 1116 if src.Kind() == reflect.Ptr { 1117 if src.IsNil() { 1118 return reflect.Value{}, false 1119 } 1120 src = src.Elem() 1121 } 1122 1123 // Find the requested field in the src struct. 1124 child := src.FieldByName(proptools.FieldNameForProperty(field)) 1125 if !child.IsValid() { 1126 ctx.ModuleErrorf("field %q does not exist", userFriendlyField) 1127 return reflect.Value{}, false 1128 } 1129 1130 if child.IsZero() { 1131 return reflect.Value{}, false 1132 } 1133 1134 return child, true 1135} 1136 1137// Squash the appropriate OS-specific property structs into the matching top level property structs 1138// based on the CompileOS value that was annotated on the variant. 1139func (m *ModuleBase) setOSProperties(ctx BottomUpMutatorContext) { 1140 os := m.commonProperties.CompileOS 1141 1142 for i := range m.archProperties { 1143 genProps := m.GetProperties()[i] 1144 if m.archProperties[i] == nil { 1145 continue 1146 } 1147 for _, archProperties := range m.archProperties[i] { 1148 archPropValues := reflect.ValueOf(archProperties).Elem() 1149 1150 targetProp := archPropValues.FieldByName("Target").Elem() 1151 1152 // Handle host-specific properties in the form: 1153 // target: { 1154 // host: { 1155 // key: value, 1156 // }, 1157 // }, 1158 if os.Class == Host { 1159 field := "Host" 1160 prefix := "target.host" 1161 if hostProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1162 mergePropertyStruct(ctx, genProps, hostProperties) 1163 } 1164 } 1165 1166 // Handle target OS generalities of the form: 1167 // target: { 1168 // bionic: { 1169 // key: value, 1170 // }, 1171 // } 1172 if os.Linux() { 1173 field := "Linux" 1174 prefix := "target.linux" 1175 if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1176 mergePropertyStruct(ctx, genProps, linuxProperties) 1177 } 1178 } 1179 1180 if os.Linux() && os.Class == Host { 1181 field := "Host_linux" 1182 prefix := "target.host_linux" 1183 if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1184 mergePropertyStruct(ctx, genProps, linuxProperties) 1185 } 1186 } 1187 1188 if os.Bionic() { 1189 field := "Bionic" 1190 prefix := "target.bionic" 1191 if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1192 mergePropertyStruct(ctx, genProps, bionicProperties) 1193 } 1194 } 1195 1196 if os == Linux { 1197 field := "Glibc" 1198 prefix := "target.glibc" 1199 if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1200 mergePropertyStruct(ctx, genProps, bionicProperties) 1201 } 1202 } 1203 1204 if os == LinuxMusl { 1205 field := "Musl" 1206 prefix := "target.musl" 1207 if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1208 mergePropertyStruct(ctx, genProps, bionicProperties) 1209 } 1210 } 1211 1212 // Handle target OS properties in the form: 1213 // target: { 1214 // linux_glibc: { 1215 // key: value, 1216 // }, 1217 // not_windows: { 1218 // key: value, 1219 // }, 1220 // android { 1221 // key: value, 1222 // }, 1223 // }, 1224 field := os.Field 1225 prefix := "target." + os.Name 1226 if osProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1227 mergePropertyStruct(ctx, genProps, osProperties) 1228 } 1229 1230 if os.Class == Host && os != Windows { 1231 field := "Not_windows" 1232 prefix := "target.not_windows" 1233 if notWindowsProperties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1234 mergePropertyStruct(ctx, genProps, notWindowsProperties) 1235 } 1236 } 1237 1238 // Handle 64-bit device properties in the form: 1239 // target { 1240 // android64 { 1241 // key: value, 1242 // }, 1243 // android32 { 1244 // key: value, 1245 // }, 1246 // }, 1247 // WARNING: this is probably not what you want to use in your blueprints file, it selects 1248 // options for all targets on a device that supports 64-bit binaries, not just the targets 1249 // that are being compiled for 64-bit. Its expected use case is binaries like linker and 1250 // debuggerd that need to know when they are a 32-bit process running on a 64-bit device 1251 if os.Class == Device { 1252 if ctx.Config().Android64() { 1253 field := "Android64" 1254 prefix := "target.android64" 1255 if android64Properties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1256 mergePropertyStruct(ctx, genProps, android64Properties) 1257 } 1258 } else { 1259 field := "Android32" 1260 prefix := "target.android32" 1261 if android32Properties, ok := getChildPropertyStruct(ctx, targetProp, field, prefix); ok { 1262 mergePropertyStruct(ctx, genProps, android32Properties) 1263 } 1264 } 1265 } 1266 } 1267 } 1268} 1269 1270// Returns the struct containing the properties specific to the given 1271// architecture type. These look like this in Blueprint files: 1272// arch: { 1273// arm64: { 1274// key: value, 1275// }, 1276// }, 1277// This struct will also contain sub-structs containing to the architecture/CPU 1278// variants and features that themselves contain properties specific to those. 1279func getArchTypeStruct(ctx ArchVariantContext, archProperties interface{}, archType ArchType) (reflect.Value, bool) { 1280 archPropValues := reflect.ValueOf(archProperties).Elem() 1281 archProp := archPropValues.FieldByName("Arch").Elem() 1282 prefix := "arch." + archType.Name 1283 return getChildPropertyStruct(ctx, archProp, archType.Name, prefix) 1284} 1285 1286// Returns the struct containing the properties specific to a given multilib 1287// value. These look like this in the Blueprint file: 1288// multilib: { 1289// lib32: { 1290// key: value, 1291// }, 1292// }, 1293func getMultilibStruct(ctx ArchVariantContext, archProperties interface{}, archType ArchType) (reflect.Value, bool) { 1294 archPropValues := reflect.ValueOf(archProperties).Elem() 1295 multilibProp := archPropValues.FieldByName("Multilib").Elem() 1296 return getChildPropertyStruct(ctx, multilibProp, archType.Multilib, "multilib."+archType.Multilib) 1297} 1298 1299func GetCompoundTargetField(os OsType, arch ArchType) string { 1300 return os.Field + "_" + arch.Name 1301} 1302 1303// Returns the structs corresponding to the properties specific to the given 1304// architecture and OS in archProperties. 1305func getArchProperties(ctx BaseMutatorContext, archProperties interface{}, arch Arch, os OsType, nativeBridgeEnabled bool) []reflect.Value { 1306 result := make([]reflect.Value, 0) 1307 archPropValues := reflect.ValueOf(archProperties).Elem() 1308 1309 targetProp := archPropValues.FieldByName("Target").Elem() 1310 1311 archType := arch.ArchType 1312 1313 if arch.ArchType != Common { 1314 archStruct, ok := getArchTypeStruct(ctx, archProperties, arch.ArchType) 1315 if ok { 1316 result = append(result, archStruct) 1317 1318 // Handle arch-variant-specific properties in the form: 1319 // arch: { 1320 // arm: { 1321 // variant: { 1322 // key: value, 1323 // }, 1324 // }, 1325 // }, 1326 v := variantReplacer.Replace(arch.ArchVariant) 1327 if v != "" { 1328 prefix := "arch." + archType.Name + "." + v 1329 if variantProperties, ok := getChildPropertyStruct(ctx, archStruct, v, prefix); ok { 1330 result = append(result, variantProperties) 1331 } 1332 } 1333 1334 // Handle cpu-variant-specific properties in the form: 1335 // arch: { 1336 // arm: { 1337 // variant: { 1338 // key: value, 1339 // }, 1340 // }, 1341 // }, 1342 if arch.CpuVariant != arch.ArchVariant { 1343 c := variantReplacer.Replace(arch.CpuVariant) 1344 if c != "" { 1345 prefix := "arch." + archType.Name + "." + c 1346 if cpuVariantProperties, ok := getChildPropertyStruct(ctx, archStruct, c, prefix); ok { 1347 result = append(result, cpuVariantProperties) 1348 } 1349 } 1350 } 1351 1352 // Handle arch-feature-specific properties in the form: 1353 // arch: { 1354 // arm: { 1355 // feature: { 1356 // key: value, 1357 // }, 1358 // }, 1359 // }, 1360 for _, feature := range arch.ArchFeatures { 1361 prefix := "arch." + archType.Name + "." + feature 1362 if featureProperties, ok := getChildPropertyStruct(ctx, archStruct, feature, prefix); ok { 1363 result = append(result, featureProperties) 1364 } 1365 } 1366 } 1367 1368 if multilibProperties, ok := getMultilibStruct(ctx, archProperties, archType); ok { 1369 result = append(result, multilibProperties) 1370 } 1371 1372 // Handle combined OS-feature and arch specific properties in the form: 1373 // target: { 1374 // bionic_x86: { 1375 // key: value, 1376 // }, 1377 // } 1378 if os.Linux() { 1379 field := "Linux_" + arch.ArchType.Name 1380 userFriendlyField := "target.linux_" + arch.ArchType.Name 1381 if linuxProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1382 result = append(result, linuxProperties) 1383 } 1384 } 1385 1386 if os.Bionic() { 1387 field := "Bionic_" + archType.Name 1388 userFriendlyField := "target.bionic_" + archType.Name 1389 if bionicProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1390 result = append(result, bionicProperties) 1391 } 1392 } 1393 1394 // Handle combined OS and arch specific properties in the form: 1395 // target: { 1396 // linux_glibc_x86: { 1397 // key: value, 1398 // }, 1399 // linux_glibc_arm: { 1400 // key: value, 1401 // }, 1402 // android_arm { 1403 // key: value, 1404 // }, 1405 // android_x86 { 1406 // key: value, 1407 // }, 1408 // }, 1409 field := GetCompoundTargetField(os, archType) 1410 userFriendlyField := "target." + os.Name + "_" + archType.Name 1411 if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1412 result = append(result, osArchProperties) 1413 } 1414 1415 if os == Linux { 1416 field := "Glibc_" + archType.Name 1417 userFriendlyField := "target.glibc_" + "_" + archType.Name 1418 if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1419 result = append(result, osArchProperties) 1420 } 1421 } 1422 1423 if os == LinuxMusl { 1424 field := "Musl_" + archType.Name 1425 userFriendlyField := "target.musl_" + "_" + archType.Name 1426 if osArchProperties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1427 result = append(result, osArchProperties) 1428 } 1429 } 1430 } 1431 1432 // Handle arm on x86 properties in the form: 1433 // target { 1434 // arm_on_x86 { 1435 // key: value, 1436 // }, 1437 // arm_on_x86_64 { 1438 // key: value, 1439 // }, 1440 // }, 1441 if os.Class == Device { 1442 if arch.ArchType == X86 && (hasArmAbi(arch) || 1443 hasArmAndroidArch(ctx.Config().Targets[Android])) { 1444 field := "Arm_on_x86" 1445 userFriendlyField := "target.arm_on_x86" 1446 if armOnX86Properties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1447 result = append(result, armOnX86Properties) 1448 } 1449 } 1450 if arch.ArchType == X86_64 && (hasArmAbi(arch) || 1451 hasArmAndroidArch(ctx.Config().Targets[Android])) { 1452 field := "Arm_on_x86_64" 1453 userFriendlyField := "target.arm_on_x86_64" 1454 if armOnX8664Properties, ok := getChildPropertyStruct(ctx, targetProp, field, userFriendlyField); ok { 1455 result = append(result, armOnX8664Properties) 1456 } 1457 } 1458 if os == Android && nativeBridgeEnabled { 1459 userFriendlyField := "Native_bridge" 1460 prefix := "target.native_bridge" 1461 if nativeBridgeProperties, ok := getChildPropertyStruct(ctx, targetProp, userFriendlyField, prefix); ok { 1462 result = append(result, nativeBridgeProperties) 1463 } 1464 } 1465 } 1466 1467 return result 1468} 1469 1470// Squash the appropriate arch-specific property structs into the matching top level property 1471// structs based on the CompileTarget value that was annotated on the variant. 1472func (m *ModuleBase) setArchProperties(ctx BottomUpMutatorContext) { 1473 arch := m.Arch() 1474 os := m.Os() 1475 1476 for i := range m.archProperties { 1477 genProps := m.GetProperties()[i] 1478 if m.archProperties[i] == nil { 1479 continue 1480 } 1481 1482 propStructs := make([]reflect.Value, 0) 1483 for _, archProperty := range m.archProperties[i] { 1484 propStructShard := getArchProperties(ctx, archProperty, arch, os, m.Target().NativeBridge == NativeBridgeEnabled) 1485 propStructs = append(propStructs, propStructShard...) 1486 } 1487 1488 for _, propStruct := range propStructs { 1489 mergePropertyStruct(ctx, genProps, propStruct) 1490 } 1491 } 1492} 1493 1494// determineBuildOS stores the OS and architecture used for host targets used during the build into 1495// config based on the runtime OS and architecture determined by Go and the product configuration. 1496func determineBuildOS(config *config) { 1497 config.BuildOS = func() OsType { 1498 switch runtime.GOOS { 1499 case "linux": 1500 if Bool(config.productVariables.HostMusl) { 1501 return LinuxMusl 1502 } 1503 return Linux 1504 case "darwin": 1505 return Darwin 1506 default: 1507 panic(fmt.Sprintf("unsupported OS: %s", runtime.GOOS)) 1508 } 1509 }() 1510 1511 config.BuildArch = func() ArchType { 1512 switch runtime.GOARCH { 1513 case "amd64": 1514 return X86_64 1515 default: 1516 panic(fmt.Sprintf("unsupported Arch: %s", runtime.GOARCH)) 1517 } 1518 }() 1519 1520} 1521 1522// Convert the arch product variables into a list of targets for each OsType. 1523func decodeTargetProductVariables(config *config) (map[OsType][]Target, error) { 1524 variables := config.productVariables 1525 1526 targets := make(map[OsType][]Target) 1527 var targetErr error 1528 1529 type targetConfig struct { 1530 os OsType 1531 archName string 1532 archVariant *string 1533 cpuVariant *string 1534 abi []string 1535 nativeBridgeEnabled NativeBridgeSupport 1536 nativeBridgeHostArchName *string 1537 nativeBridgeRelativePath *string 1538 } 1539 1540 addTarget := func(target targetConfig) { 1541 if targetErr != nil { 1542 return 1543 } 1544 1545 arch, err := decodeArch(target.os, target.archName, target.archVariant, target.cpuVariant, target.abi) 1546 if err != nil { 1547 targetErr = err 1548 return 1549 } 1550 nativeBridgeRelativePathStr := String(target.nativeBridgeRelativePath) 1551 nativeBridgeHostArchNameStr := String(target.nativeBridgeHostArchName) 1552 1553 // Use guest arch as relative install path by default 1554 if target.nativeBridgeEnabled && nativeBridgeRelativePathStr == "" { 1555 nativeBridgeRelativePathStr = arch.ArchType.String() 1556 } 1557 1558 // A target is considered as HostCross if it's a host target which can't run natively on 1559 // the currently configured build machine (either because the OS is different or because of 1560 // the unsupported arch) 1561 hostCross := false 1562 if target.os.Class == Host { 1563 var osSupported bool 1564 if target.os == config.BuildOS { 1565 osSupported = true 1566 } else if config.BuildOS.Linux() && target.os.Linux() { 1567 // LinuxBionic and Linux are compatible 1568 osSupported = true 1569 } else { 1570 osSupported = false 1571 } 1572 1573 var archSupported bool 1574 if arch.ArchType == Common { 1575 archSupported = true 1576 } else if arch.ArchType.Name == *variables.HostArch { 1577 archSupported = true 1578 } else if variables.HostSecondaryArch != nil && arch.ArchType.Name == *variables.HostSecondaryArch { 1579 archSupported = true 1580 } else { 1581 archSupported = false 1582 } 1583 if !osSupported || !archSupported { 1584 hostCross = true 1585 } 1586 } 1587 1588 targets[target.os] = append(targets[target.os], 1589 Target{ 1590 Os: target.os, 1591 Arch: arch, 1592 NativeBridge: target.nativeBridgeEnabled, 1593 NativeBridgeHostArchName: nativeBridgeHostArchNameStr, 1594 NativeBridgeRelativePath: nativeBridgeRelativePathStr, 1595 HostCross: hostCross, 1596 }) 1597 } 1598 1599 if variables.HostArch == nil { 1600 return nil, fmt.Errorf("No host primary architecture set") 1601 } 1602 1603 // The primary host target, which must always exist. 1604 addTarget(targetConfig{os: config.BuildOS, archName: *variables.HostArch, nativeBridgeEnabled: NativeBridgeDisabled}) 1605 1606 // An optional secondary host target. 1607 if variables.HostSecondaryArch != nil && *variables.HostSecondaryArch != "" { 1608 addTarget(targetConfig{os: config.BuildOS, archName: *variables.HostSecondaryArch, nativeBridgeEnabled: NativeBridgeDisabled}) 1609 } 1610 1611 // Optional cross-compiled host targets, generally Windows. 1612 if String(variables.CrossHost) != "" { 1613 crossHostOs := osByName(*variables.CrossHost) 1614 if crossHostOs == NoOsType { 1615 return nil, fmt.Errorf("Unknown cross host OS %q", *variables.CrossHost) 1616 } 1617 1618 if String(variables.CrossHostArch) == "" { 1619 return nil, fmt.Errorf("No cross-host primary architecture set") 1620 } 1621 1622 // The primary cross-compiled host target. 1623 addTarget(targetConfig{os: crossHostOs, archName: *variables.CrossHostArch, nativeBridgeEnabled: NativeBridgeDisabled}) 1624 1625 // An optional secondary cross-compiled host target. 1626 if variables.CrossHostSecondaryArch != nil && *variables.CrossHostSecondaryArch != "" { 1627 addTarget(targetConfig{os: crossHostOs, archName: *variables.CrossHostSecondaryArch, nativeBridgeEnabled: NativeBridgeDisabled}) 1628 } 1629 } 1630 1631 // Optional device targets 1632 if variables.DeviceArch != nil && *variables.DeviceArch != "" { 1633 // The primary device target. 1634 addTarget(targetConfig{ 1635 os: Android, 1636 archName: *variables.DeviceArch, 1637 archVariant: variables.DeviceArchVariant, 1638 cpuVariant: variables.DeviceCpuVariant, 1639 abi: variables.DeviceAbi, 1640 nativeBridgeEnabled: NativeBridgeDisabled, 1641 }) 1642 1643 // An optional secondary device target. 1644 if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" { 1645 addTarget(targetConfig{ 1646 os: Android, 1647 archName: *variables.DeviceSecondaryArch, 1648 archVariant: variables.DeviceSecondaryArchVariant, 1649 cpuVariant: variables.DeviceSecondaryCpuVariant, 1650 abi: variables.DeviceSecondaryAbi, 1651 nativeBridgeEnabled: NativeBridgeDisabled, 1652 }) 1653 } 1654 1655 // An optional NativeBridge device target. 1656 if variables.NativeBridgeArch != nil && *variables.NativeBridgeArch != "" { 1657 addTarget(targetConfig{ 1658 os: Android, 1659 archName: *variables.NativeBridgeArch, 1660 archVariant: variables.NativeBridgeArchVariant, 1661 cpuVariant: variables.NativeBridgeCpuVariant, 1662 abi: variables.NativeBridgeAbi, 1663 nativeBridgeEnabled: NativeBridgeEnabled, 1664 nativeBridgeHostArchName: variables.DeviceArch, 1665 nativeBridgeRelativePath: variables.NativeBridgeRelativePath, 1666 }) 1667 } 1668 1669 // An optional secondary NativeBridge device target. 1670 if variables.DeviceSecondaryArch != nil && *variables.DeviceSecondaryArch != "" && 1671 variables.NativeBridgeSecondaryArch != nil && *variables.NativeBridgeSecondaryArch != "" { 1672 addTarget(targetConfig{ 1673 os: Android, 1674 archName: *variables.NativeBridgeSecondaryArch, 1675 archVariant: variables.NativeBridgeSecondaryArchVariant, 1676 cpuVariant: variables.NativeBridgeSecondaryCpuVariant, 1677 abi: variables.NativeBridgeSecondaryAbi, 1678 nativeBridgeEnabled: NativeBridgeEnabled, 1679 nativeBridgeHostArchName: variables.DeviceSecondaryArch, 1680 nativeBridgeRelativePath: variables.NativeBridgeSecondaryRelativePath, 1681 }) 1682 } 1683 } 1684 1685 if targetErr != nil { 1686 return nil, targetErr 1687 } 1688 1689 return targets, nil 1690} 1691 1692// hasArmAbi returns true if arch has at least one arm ABI 1693func hasArmAbi(arch Arch) bool { 1694 return PrefixInList(arch.Abi, "arm") 1695} 1696 1697// hasArmAndroidArch returns true if targets has at least 1698// one arm Android arch (possibly native bridged) 1699func hasArmAndroidArch(targets []Target) bool { 1700 for _, target := range targets { 1701 if target.Os == Android && 1702 (target.Arch.ArchType == Arm || target.Arch.ArchType == Arm64) { 1703 return true 1704 } 1705 } 1706 return false 1707} 1708 1709// archConfig describes a built-in configuration. 1710type archConfig struct { 1711 arch string 1712 archVariant string 1713 cpuVariant string 1714 abi []string 1715} 1716 1717// getNdkAbisConfig returns the list of archConfigs that are used for bulding 1718// the API stubs and static libraries that are included in the NDK. These are 1719// built *without Neon*, because non-Neon is still supported and building these 1720// with Neon will break those users. 1721func getNdkAbisConfig() []archConfig { 1722 return []archConfig{ 1723 {"arm64", "armv8-a-branchprot", "", []string{"arm64-v8a"}}, 1724 {"arm", "armv7-a", "", []string{"armeabi-v7a"}}, 1725 {"x86_64", "", "", []string{"x86_64"}}, 1726 {"x86", "", "", []string{"x86"}}, 1727 } 1728} 1729 1730// getAmlAbisConfig returns a list of archConfigs for the ABIs supported by mainline modules. 1731func getAmlAbisConfig() []archConfig { 1732 return []archConfig{ 1733 {"arm64", "armv8-a", "", []string{"arm64-v8a"}}, 1734 {"arm", "armv7-a-neon", "", []string{"armeabi-v7a"}}, 1735 {"x86_64", "", "", []string{"x86_64"}}, 1736 {"x86", "", "", []string{"x86"}}, 1737 } 1738} 1739 1740// decodeArchSettings converts a list of archConfigs into a list of Targets for the given OsType. 1741func decodeAndroidArchSettings(archConfigs []archConfig) ([]Target, error) { 1742 var ret []Target 1743 1744 for _, config := range archConfigs { 1745 arch, err := decodeArch(Android, config.arch, &config.archVariant, 1746 &config.cpuVariant, config.abi) 1747 if err != nil { 1748 return nil, err 1749 } 1750 1751 ret = append(ret, Target{ 1752 Os: Android, 1753 Arch: arch, 1754 }) 1755 } 1756 1757 return ret, nil 1758} 1759 1760// decodeArch converts a set of strings from product variables into an Arch struct. 1761func decodeArch(os OsType, arch string, archVariant, cpuVariant *string, abi []string) (Arch, error) { 1762 // Verify the arch is valid 1763 archType, ok := archTypeMap[arch] 1764 if !ok { 1765 return Arch{}, fmt.Errorf("unknown arch %q", arch) 1766 } 1767 1768 a := Arch{ 1769 ArchType: archType, 1770 ArchVariant: String(archVariant), 1771 CpuVariant: String(cpuVariant), 1772 Abi: abi, 1773 } 1774 1775 // Convert generic arch variants into the empty string. 1776 if a.ArchVariant == a.ArchType.Name || a.ArchVariant == "generic" { 1777 a.ArchVariant = "" 1778 } 1779 1780 // Convert generic CPU variants into the empty string. 1781 if a.CpuVariant == a.ArchType.Name || a.CpuVariant == "generic" { 1782 a.CpuVariant = "" 1783 } 1784 1785 if a.ArchVariant != "" { 1786 if validArchVariants := archVariants[archType]; !InList(a.ArchVariant, validArchVariants) { 1787 return Arch{}, fmt.Errorf("[%q] unknown arch variant %q, support variants: %q", archType, a.ArchVariant, validArchVariants) 1788 } 1789 } 1790 1791 if a.CpuVariant != "" { 1792 if validCpuVariants := cpuVariants[archType]; !InList(a.CpuVariant, validCpuVariants) { 1793 return Arch{}, fmt.Errorf("[%q] unknown cpu variant %q, support variants: %q", archType, a.CpuVariant, validCpuVariants) 1794 } 1795 } 1796 1797 // Filter empty ABIs out of the list. 1798 for i := 0; i < len(a.Abi); i++ { 1799 if a.Abi[i] == "" { 1800 a.Abi = append(a.Abi[:i], a.Abi[i+1:]...) 1801 i-- 1802 } 1803 } 1804 1805 // Set ArchFeatures from the arch type. for Android OS, other os-es do not specify features 1806 if os == Android { 1807 if featureMap, ok := androidArchFeatureMap[archType]; ok { 1808 a.ArchFeatures = featureMap[a.ArchVariant] 1809 } 1810 } 1811 1812 return a, nil 1813} 1814 1815// filterMultilibTargets takes a list of Targets and a multilib value and returns a new list of 1816// Targets containing only those that have the given multilib value. 1817func filterMultilibTargets(targets []Target, multilib string) []Target { 1818 var ret []Target 1819 for _, t := range targets { 1820 if t.Arch.ArchType.Multilib == multilib { 1821 ret = append(ret, t) 1822 } 1823 } 1824 return ret 1825} 1826 1827// getCommonTargets returns the set of Os specific common architecture targets for each Os in a list 1828// of targets. 1829func getCommonTargets(targets []Target) []Target { 1830 var ret []Target 1831 set := make(map[string]bool) 1832 1833 for _, t := range targets { 1834 if _, found := set[t.Os.String()]; !found { 1835 set[t.Os.String()] = true 1836 ret = append(ret, commonTargetMap[t.Os.String()]) 1837 } 1838 } 1839 1840 return ret 1841} 1842 1843// FirstTarget takes a list of Targets and a list of multilib values and returns a list of Targets 1844// that contains zero or one Target for each OsType, selecting the one that matches the earliest 1845// filter. 1846func FirstTarget(targets []Target, filters ...string) []Target { 1847 // find the first target from each OS 1848 var ret []Target 1849 hasHost := false 1850 set := make(map[OsType]bool) 1851 1852 for _, filter := range filters { 1853 buildTargets := filterMultilibTargets(targets, filter) 1854 for _, t := range buildTargets { 1855 if _, found := set[t.Os]; !found { 1856 hasHost = hasHost || (t.Os.Class == Host) 1857 set[t.Os] = true 1858 ret = append(ret, t) 1859 } 1860 } 1861 } 1862 return ret 1863} 1864 1865// decodeMultilibTargets uses the module's multilib setting to select one or more targets from a 1866// list of Targets. 1867func decodeMultilibTargets(multilib string, targets []Target, prefer32 bool) ([]Target, error) { 1868 var buildTargets []Target 1869 1870 switch multilib { 1871 case "common": 1872 buildTargets = getCommonTargets(targets) 1873 case "common_first": 1874 buildTargets = getCommonTargets(targets) 1875 if prefer32 { 1876 buildTargets = append(buildTargets, FirstTarget(targets, "lib32", "lib64")...) 1877 } else { 1878 buildTargets = append(buildTargets, FirstTarget(targets, "lib64", "lib32")...) 1879 } 1880 case "both": 1881 if prefer32 { 1882 buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...) 1883 buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...) 1884 } else { 1885 buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib64")...) 1886 buildTargets = append(buildTargets, filterMultilibTargets(targets, "lib32")...) 1887 } 1888 case "32": 1889 buildTargets = filterMultilibTargets(targets, "lib32") 1890 case "64": 1891 buildTargets = filterMultilibTargets(targets, "lib64") 1892 case "first": 1893 if prefer32 { 1894 buildTargets = FirstTarget(targets, "lib32", "lib64") 1895 } else { 1896 buildTargets = FirstTarget(targets, "lib64", "lib32") 1897 } 1898 case "first_prefer32": 1899 buildTargets = FirstTarget(targets, "lib32", "lib64") 1900 case "prefer32": 1901 buildTargets = filterMultilibTargets(targets, "lib32") 1902 if len(buildTargets) == 0 { 1903 buildTargets = filterMultilibTargets(targets, "lib64") 1904 } 1905 case "darwin_universal": 1906 buildTargets = filterMultilibTargets(targets, "lib64") 1907 // Reverse the targets so that the first architecture can depend on the second 1908 // architecture module in order to merge the outputs. 1909 reverseSliceInPlace(buildTargets) 1910 case "darwin_universal_common_first": 1911 archTargets := filterMultilibTargets(targets, "lib64") 1912 reverseSliceInPlace(archTargets) 1913 buildTargets = append(getCommonTargets(targets), archTargets...) 1914 default: 1915 return nil, fmt.Errorf(`compile_multilib must be "both", "first", "32", "64", "prefer32" or "first_prefer32" found %q`, 1916 multilib) 1917 } 1918 1919 return buildTargets, nil 1920} 1921 1922func (m *ModuleBase) getArchPropertySet(propertySet interface{}, archType ArchType) interface{} { 1923 archString := archType.Field 1924 for i := range m.archProperties { 1925 if m.archProperties[i] == nil { 1926 // Skip over nil properties 1927 continue 1928 } 1929 1930 // Not archProperties are usable; this function looks for properties of a very specific 1931 // form, and ignores the rest. 1932 for _, archProperty := range m.archProperties[i] { 1933 // archPropValue is a property struct, we are looking for the form: 1934 // `arch: { arm: { key: value, ... }}` 1935 archPropValue := reflect.ValueOf(archProperty).Elem() 1936 1937 // Unwrap src so that it should looks like a pointer to `arm: { key: value, ... }` 1938 src := archPropValue.FieldByName("Arch").Elem() 1939 1940 // Step into non-nil pointers to structs in the src value. 1941 if src.Kind() == reflect.Ptr { 1942 if src.IsNil() { 1943 continue 1944 } 1945 src = src.Elem() 1946 } 1947 1948 // Find the requested field (e.g. arm, x86) in the src struct. 1949 src = src.FieldByName(archString) 1950 1951 // We only care about structs. 1952 if !src.IsValid() || src.Kind() != reflect.Struct { 1953 continue 1954 } 1955 1956 // If the value of the field is a struct then step into the 1957 // BlueprintEmbed field. The special "BlueprintEmbed" name is 1958 // used by createArchPropTypeDesc to embed the arch properties 1959 // in the parent struct, so the src arch prop should be in this 1960 // field. 1961 // 1962 // See createArchPropTypeDesc for more details on how Arch-specific 1963 // module properties are processed from the nested props and written 1964 // into the module's archProperties. 1965 src = src.FieldByName("BlueprintEmbed") 1966 1967 // Clone the destination prop, since we want a unique prop struct per arch. 1968 propertySetClone := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() 1969 1970 // Copy the located property struct into the cloned destination property struct. 1971 err := proptools.ExtendMatchingProperties([]interface{}{propertySetClone}, src.Interface(), nil, proptools.OrderReplace) 1972 if err != nil { 1973 // This is fine, it just means the src struct doesn't match the type of propertySet. 1974 continue 1975 } 1976 1977 return propertySetClone 1978 } 1979 } 1980 // No property set was found specific to the given arch, so return an empty 1981 // property set. 1982 return reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() 1983} 1984 1985// getMultilibPropertySet returns a property set struct matching the type of 1986// `propertySet`, containing multilib-specific module properties for the given architecture. 1987// If no multilib-specific properties exist for the given architecture, returns an empty property 1988// set matching `propertySet`'s type. 1989func (m *ModuleBase) getMultilibPropertySet(propertySet interface{}, archType ArchType) interface{} { 1990 // archType.Multilib is lowercase (for example, lib32) but property struct field is 1991 // capitalized, such as Lib32, so use strings.Title to capitalize it. 1992 multiLibString := strings.Title(archType.Multilib) 1993 1994 for i := range m.archProperties { 1995 if m.archProperties[i] == nil { 1996 // Skip over nil properties 1997 continue 1998 } 1999 2000 // Not archProperties are usable; this function looks for properties of a very specific 2001 // form, and ignores the rest. 2002 for _, archProperties := range m.archProperties[i] { 2003 // archPropValue is a property struct, we are looking for the form: 2004 // `multilib: { lib32: { key: value, ... }}` 2005 archPropValue := reflect.ValueOf(archProperties).Elem() 2006 2007 // Unwrap src so that it should looks like a pointer to `lib32: { key: value, ... }` 2008 src := archPropValue.FieldByName("Multilib").Elem() 2009 2010 // Step into non-nil pointers to structs in the src value. 2011 if src.Kind() == reflect.Ptr { 2012 if src.IsNil() { 2013 // Ignore nil pointers. 2014 continue 2015 } 2016 src = src.Elem() 2017 } 2018 2019 // Find the requested field (e.g. lib32) in the src struct. 2020 src = src.FieldByName(multiLibString) 2021 2022 // We only care about valid struct pointers. 2023 if !src.IsValid() || src.Kind() != reflect.Ptr || src.Elem().Kind() != reflect.Struct { 2024 continue 2025 } 2026 2027 // Get the zero value for the requested property set. 2028 propertySetClone := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() 2029 2030 // Copy the located property struct into the "zero" property set struct. 2031 err := proptools.ExtendMatchingProperties([]interface{}{propertySetClone}, src.Interface(), nil, proptools.OrderReplace) 2032 2033 if err != nil { 2034 // This is fine, it just means the src struct doesn't match. 2035 continue 2036 } 2037 2038 return propertySetClone 2039 } 2040 } 2041 2042 // There were no multilib properties specifically matching the given archtype. 2043 // Return zeroed value. 2044 return reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() 2045} 2046 2047// ArchVariantContext defines the limited context necessary to retrieve arch_variant properties. 2048type ArchVariantContext interface { 2049 ModuleErrorf(fmt string, args ...interface{}) 2050 PropertyErrorf(property, fmt string, args ...interface{}) 2051} 2052 2053// ArchVariantProperties represents a map of arch-variant config strings to a property interface{}. 2054type ArchVariantProperties map[string]interface{} 2055 2056// ConfigurationAxisToArchVariantProperties represents a map of bazel.ConfigurationAxis to 2057// ArchVariantProperties, such that each independent arch-variant axis maps to the 2058// configs/properties for that axis. 2059type ConfigurationAxisToArchVariantProperties map[bazel.ConfigurationAxis]ArchVariantProperties 2060 2061// GetArchVariantProperties returns a ConfigurationAxisToArchVariantProperties where the 2062// arch-variant properties correspond to the values of the properties of the 'propertySet' struct 2063// that are specific to that axis/configuration. Each axis is independent, containing 2064// non-overlapping configs that correspond to the various "arch-variant" support, at this time: 2065// arches (including multilib) 2066// oses 2067// arch+os combinations 2068// 2069// For example, passing a struct { Foo bool, Bar string } will return an interface{} that can be 2070// type asserted back into the same struct, containing the config-specific property value specified 2071// by the module if defined. 2072// 2073// Arch-specific properties may come from an arch stanza or a multilib stanza; properties 2074// in these stanzas are combined. 2075// For example: `arch: { x86: { Foo: ["bar"] } }, multilib: { lib32: {` Foo: ["baz"] } }` 2076// will result in `Foo: ["bar", "baz"]` being returned for architecture x86, if the given 2077// propertyset contains `Foo []string`. 2078func (m *ModuleBase) GetArchVariantProperties(ctx ArchVariantContext, propertySet interface{}) ConfigurationAxisToArchVariantProperties { 2079 // Return value of the arch types to the prop values for that arch. 2080 axisToProps := ConfigurationAxisToArchVariantProperties{} 2081 2082 // Nothing to do for non-arch-specific modules. 2083 if !m.ArchSpecific() { 2084 return axisToProps 2085 } 2086 2087 dstType := reflect.ValueOf(propertySet).Type() 2088 var archProperties []interface{} 2089 2090 // First find the property set in the module that corresponds to the requested 2091 // one. m.archProperties[i] corresponds to m.GetProperties()[i]. 2092 for i, generalProp := range m.GetProperties() { 2093 srcType := reflect.ValueOf(generalProp).Type() 2094 if srcType == dstType { 2095 archProperties = m.archProperties[i] 2096 axisToProps[bazel.NoConfigAxis] = ArchVariantProperties{"": generalProp} 2097 break 2098 } 2099 } 2100 2101 if archProperties == nil { 2102 // This module does not have the property set requested 2103 return axisToProps 2104 } 2105 2106 archToProp := ArchVariantProperties{} 2107 // For each arch type (x86, arm64, etc.) 2108 for _, arch := range ArchTypeList() { 2109 // Arch properties are sometimes sharded (see createArchPropTypeDesc() ). 2110 // Iterate over ever shard and extract a struct with the same type as the 2111 // input one that contains the data specific to that arch. 2112 propertyStructs := make([]reflect.Value, 0) 2113 for _, archProperty := range archProperties { 2114 archTypeStruct, ok := getArchTypeStruct(ctx, archProperty, arch) 2115 if ok { 2116 propertyStructs = append(propertyStructs, archTypeStruct) 2117 } 2118 multilibStruct, ok := getMultilibStruct(ctx, archProperty, arch) 2119 if ok { 2120 propertyStructs = append(propertyStructs, multilibStruct) 2121 } 2122 } 2123 2124 // Create a new instance of the requested property set 2125 value := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() 2126 2127 archToProp[arch.Name] = mergeStructs(ctx, propertyStructs, value) 2128 } 2129 axisToProps[bazel.ArchConfigurationAxis] = archToProp 2130 2131 osToProp := ArchVariantProperties{} 2132 archOsToProp := ArchVariantProperties{} 2133 2134 linuxStructs := getTargetStructs(ctx, archProperties, "Linux") 2135 bionicStructs := getTargetStructs(ctx, archProperties, "Bionic") 2136 hostStructs := getTargetStructs(ctx, archProperties, "Host") 2137 hostLinuxStructs := getTargetStructs(ctx, archProperties, "Host_linux") 2138 hostNotWindowsStructs := getTargetStructs(ctx, archProperties, "Not_windows") 2139 2140 // For android, linux, ... 2141 for _, os := range osTypeList { 2142 if os == CommonOS { 2143 // It looks like this OS value is not used in Blueprint files 2144 continue 2145 } 2146 osStructs := make([]reflect.Value, 0) 2147 2148 osSpecificStructs := getTargetStructs(ctx, archProperties, os.Field) 2149 if os.Class == Host { 2150 osStructs = append(osStructs, hostStructs...) 2151 } 2152 if os.Linux() { 2153 osStructs = append(osStructs, linuxStructs...) 2154 } 2155 if os.Bionic() { 2156 osStructs = append(osStructs, bionicStructs...) 2157 } 2158 if os.Linux() && os.Class == Host { 2159 osStructs = append(osStructs, hostLinuxStructs...) 2160 } 2161 2162 if os == LinuxMusl { 2163 osStructs = append(osStructs, getTargetStructs(ctx, archProperties, "Musl")...) 2164 } 2165 if os == Linux { 2166 osStructs = append(osStructs, getTargetStructs(ctx, archProperties, "Glibc")...) 2167 } 2168 2169 osStructs = append(osStructs, osSpecificStructs...) 2170 2171 if os.Class == Host && os != Windows { 2172 osStructs = append(osStructs, hostNotWindowsStructs...) 2173 } 2174 osToProp[os.Name] = mergeStructs(ctx, osStructs, propertySet) 2175 2176 // For arm, x86, ... 2177 for _, arch := range osArchTypeMap[os] { 2178 osArchStructs := make([]reflect.Value, 0) 2179 2180 // Auto-combine with Linux_ and Bionic_ targets. This potentially results in 2181 // repetition and select() bloat, but use of Linux_* and Bionic_* targets is rare. 2182 // TODO(b/201423152): Look into cleanup. 2183 if os.Linux() { 2184 targetField := "Linux_" + arch.Name 2185 targetStructs := getTargetStructs(ctx, archProperties, targetField) 2186 osArchStructs = append(osArchStructs, targetStructs...) 2187 } 2188 if os.Bionic() { 2189 targetField := "Bionic_" + arch.Name 2190 targetStructs := getTargetStructs(ctx, archProperties, targetField) 2191 osArchStructs = append(osArchStructs, targetStructs...) 2192 } 2193 if os == LinuxMusl { 2194 targetField := "Musl_" + arch.Name 2195 targetStructs := getTargetStructs(ctx, archProperties, targetField) 2196 osArchStructs = append(osArchStructs, targetStructs...) 2197 } 2198 if os == Linux { 2199 targetField := "Glibc_" + arch.Name 2200 targetStructs := getTargetStructs(ctx, archProperties, targetField) 2201 osArchStructs = append(osArchStructs, targetStructs...) 2202 } 2203 2204 targetField := GetCompoundTargetField(os, arch) 2205 targetName := fmt.Sprintf("%s_%s", os.Name, arch.Name) 2206 targetStructs := getTargetStructs(ctx, archProperties, targetField) 2207 osArchStructs = append(osArchStructs, targetStructs...) 2208 2209 archOsToProp[targetName] = mergeStructs(ctx, osArchStructs, propertySet) 2210 } 2211 } 2212 2213 axisToProps[bazel.OsConfigurationAxis] = osToProp 2214 axisToProps[bazel.OsArchConfigurationAxis] = archOsToProp 2215 return axisToProps 2216} 2217 2218// Returns a struct matching the propertySet interface, containing properties specific to the targetName 2219// For example, given these arguments: 2220// propertySet = BaseCompilerProperties 2221// targetName = "android_arm" 2222// And given this Android.bp fragment: 2223// target: 2224// android_arm: { 2225// srcs: ["foo.c"], 2226// } 2227// android_arm64: { 2228// srcs: ["bar.c"], 2229// } 2230// } 2231// This would return a BaseCompilerProperties with BaseCompilerProperties.Srcs = ["foo.c"] 2232func getTargetStructs(ctx ArchVariantContext, archProperties []interface{}, targetName string) []reflect.Value { 2233 var propertyStructs []reflect.Value 2234 for _, archProperty := range archProperties { 2235 archPropValues := reflect.ValueOf(archProperty).Elem() 2236 targetProp := archPropValues.FieldByName("Target").Elem() 2237 targetStruct, ok := getChildPropertyStruct(ctx, targetProp, targetName, targetName) 2238 if ok { 2239 propertyStructs = append(propertyStructs, targetStruct) 2240 } else { 2241 return []reflect.Value{} 2242 } 2243 } 2244 2245 return propertyStructs 2246} 2247 2248func mergeStructs(ctx ArchVariantContext, propertyStructs []reflect.Value, propertySet interface{}) interface{} { 2249 // Create a new instance of the requested property set 2250 value := reflect.New(reflect.ValueOf(propertySet).Elem().Type()).Interface() 2251 2252 // Merge all the structs together 2253 for _, propertyStruct := range propertyStructs { 2254 mergePropertyStruct(ctx, value, propertyStruct) 2255 } 2256 2257 return value 2258} 2259 2260func printArchTypeStarlarkDict(dict map[ArchType][]string) string { 2261 valDict := make(map[string]string, len(dict)) 2262 for k, v := range dict { 2263 valDict[k.String()] = starlark_fmt.PrintStringList(v, 1) 2264 } 2265 return starlark_fmt.PrintDict(valDict, 0) 2266} 2267 2268func printArchTypeNestedStarlarkDict(dict map[ArchType]map[string][]string) string { 2269 valDict := make(map[string]string, len(dict)) 2270 for k, v := range dict { 2271 valDict[k.String()] = starlark_fmt.PrintStringListDict(v, 1) 2272 } 2273 return starlark_fmt.PrintDict(valDict, 0) 2274} 2275 2276func StarlarkArchConfigurations() string { 2277 return fmt.Sprintf(` 2278_arch_to_variants = %s 2279 2280_arch_to_cpu_variants = %s 2281 2282_arch_to_features = %s 2283 2284_android_arch_feature_for_arch_variant = %s 2285 2286arch_to_variants = _arch_to_variants 2287arch_to_cpu_variants = _arch_to_cpu_variants 2288arch_to_features = _arch_to_features 2289android_arch_feature_for_arch_variants = _android_arch_feature_for_arch_variant 2290`, printArchTypeStarlarkDict(archVariants), 2291 printArchTypeStarlarkDict(cpuVariants), 2292 printArchTypeStarlarkDict(archFeatures), 2293 printArchTypeNestedStarlarkDict(androidArchFeatureMap), 2294 ) 2295} 2296