1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/vk/GrVkCaps.h"
9
10 #include <memory>
11
12 #include "include/gpu/GrBackendSurface.h"
13 #include "include/gpu/vk/GrVkBackendContext.h"
14 #include "include/gpu/vk/GrVkExtensions.h"
15 #include "src/core/SkCompressedDataUtils.h"
16 #include "src/gpu/GrBackendUtils.h"
17 #include "src/gpu/GrProgramDesc.h"
18 #include "src/gpu/GrRenderTarget.h"
19 #include "src/gpu/GrRenderTargetProxy.h"
20 #include "src/gpu/GrShaderCaps.h"
21 #include "src/gpu/GrStencilSettings.h"
22 #include "src/gpu/GrUtil.h"
23 #include "src/gpu/KeyBuilder.h"
24 #include "src/gpu/SkGr.h"
25 #include "src/gpu/vk/GrVkGpu.h"
26 #include "src/gpu/vk/GrVkImage.h"
27 #include "src/gpu/vk/GrVkInterface.h"
28 #include "src/gpu/vk/GrVkRenderTarget.h"
29 #include "src/gpu/vk/GrVkTexture.h"
30 #include "src/gpu/vk/GrVkUniformHandler.h"
31 #include "src/gpu/vk/GrVkUtil.h"
32
33 #ifdef SK_BUILD_FOR_ANDROID
34 #include <sys/system_properties.h>
35 #endif
36
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)37 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
38 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
39 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
40 const GrVkExtensions& extensions, GrProtected isProtected)
41 : INHERITED(contextOptions) {
42 /**************************************************************************
43 * GrCaps fields
44 **************************************************************************/
45 fMipmapSupport = true; // always available in Vulkan
46 fNPOTTextureTileSupport = true; // always available in Vulkan
47 fReuseScratchTextures = true; //TODO: figure this out
48 fGpuTracingSupport = false; //TODO: figure this out
49 fOversizedStencilSupport = false; //TODO: figure this out
50 fDrawInstancedSupport = true;
51
52 fSemaphoreSupport = true; // always available in Vulkan
53 fFenceSyncSupport = true; // always available in Vulkan
54 fCrossContextTextureSupport = true;
55 fHalfFloatVertexAttributeSupport = true;
56
57 // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
58 fReadPixelsRowBytesSupport = true;
59 fWritePixelsRowBytesSupport = true;
60
61 fTransferFromBufferToTextureSupport = true;
62 fTransferFromSurfaceToBufferSupport = true;
63
64 fMaxRenderTargetSize = 4096; // minimum required by spec
65 fMaxTextureSize = 4096; // minimum required by spec
66
67 fDynamicStateArrayGeometryProcessorTextureSupport = true;
68
69 fTextureBarrierSupport = true;
70
71 fShaderCaps = std::make_unique<GrShaderCaps>();
72
73 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
74 isProtected);
75 }
76
77 namespace {
78 /**
79 * This comes from section 37.1.6 of the Vulkan spec. Format is
80 * (<bits>|<tag>)_<block_size>_<texels_per_block>.
81 */
82 enum class FormatCompatibilityClass {
83 k8_1_1,
84 k16_2_1,
85 k24_3_1,
86 k32_4_1,
87 k64_8_1,
88 kBC1_RGB_8_16_1,
89 kBC1_RGBA_8_16,
90 kETC2_RGB_8_16,
91 };
92 } // anonymous namespace
93
format_compatibility_class(VkFormat format)94 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
95 switch (format) {
96 case VK_FORMAT_B8G8R8A8_UNORM:
97 case VK_FORMAT_R8G8B8A8_UNORM:
98 case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
99 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
100 case VK_FORMAT_R8G8B8A8_SRGB:
101 case VK_FORMAT_R16G16_UNORM:
102 case VK_FORMAT_R16G16_SFLOAT:
103 return FormatCompatibilityClass::k32_4_1;
104
105 case VK_FORMAT_R8_UNORM:
106 return FormatCompatibilityClass::k8_1_1;
107
108 case VK_FORMAT_R5G6B5_UNORM_PACK16:
109 case VK_FORMAT_R16_SFLOAT:
110 case VK_FORMAT_R8G8_UNORM:
111 case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
112 case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
113 case VK_FORMAT_R16_UNORM:
114 return FormatCompatibilityClass::k16_2_1;
115
116 case VK_FORMAT_R16G16B16A16_SFLOAT:
117 case VK_FORMAT_R16G16B16A16_UNORM:
118 return FormatCompatibilityClass::k64_8_1;
119
120 case VK_FORMAT_R8G8B8_UNORM:
121 return FormatCompatibilityClass::k24_3_1;
122
123 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
124 return FormatCompatibilityClass::kETC2_RGB_8_16;
125
126 case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
127 return FormatCompatibilityClass::kBC1_RGB_8_16_1;
128
129 case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
130 return FormatCompatibilityClass::kBC1_RGBA_8_16;
131
132 default:
133 SK_ABORT("Unsupported VkFormat");
134 }
135 }
136
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const137 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
138 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
139 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
140 return false;
141 }
142
143 if (dstHasYcbcr || srcHasYcbcr) {
144 return false;
145 }
146
147 // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
148 // as image usage flags.
149 return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
150 }
151
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const152 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
153 bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
154 bool srcIsLinear, bool srcHasYcbcr) const {
155 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
156 // as image usage flags.
157 if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
158 !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
159 return false;
160 }
161
162 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
163 // resolved msaa though.
164 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
165 return false;
166 }
167
168 if (dstHasYcbcr || srcHasYcbcr) {
169 return false;
170 }
171
172 return true;
173 }
174
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const175 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
176 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
177 // The src surface must be multisampled.
178 if (srcSampleCnt <= 1) {
179 return false;
180 }
181
182 // The dst must not be multisampled.
183 if (dstSampleCnt > 1) {
184 return false;
185 }
186
187 // Surfaces must have the same format.
188 if (srcFormat != dstFormat) {
189 return false;
190 }
191
192 if (dstHasYcbcr || srcHasYcbcr) {
193 return false;
194 }
195
196 return true;
197 }
198
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const199 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
200 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
201 if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
202 return false;
203 }
204
205 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
206 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
207 // tracking of external or rectangle textures in GL? For now we don't create linear textures
208 // internally, and I don't believe anyone is wrapping them.
209 bool srcIsLinear = false;
210 bool dstIsLinear = false;
211
212 int dstSampleCnt = 0;
213 int srcSampleCnt = 0;
214 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
215 // Copying to or from render targets that wrap a secondary command buffer is not allowed
216 // since they would require us to know the VkImage, which we don't have, as well as need us
217 // to stop and start the VkRenderPass which we don't have access to.
218 if (rtProxy->wrapsVkSecondaryCB()) {
219 return false;
220 }
221 if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() &&
222 rtProxy->supportsVkInputAttachment()) {
223 dstSampleCnt = 1;
224 } else {
225 dstSampleCnt = rtProxy->numSamples();
226 }
227 }
228 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
229 // Copying to or from render targets that wrap a secondary command buffer is not allowed
230 // since they would require us to know the VkImage, which we don't have, as well as need us
231 // to stop and start the VkRenderPass which we don't have access to.
232 if (rtProxy->wrapsVkSecondaryCB()) {
233 return false;
234 }
235 if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() &&
236 rtProxy->supportsVkInputAttachment()) {
237 srcSampleCnt = 1;
238 } else {
239 srcSampleCnt = rtProxy->numSamples();
240 }
241 }
242 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
243 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
244
245 bool dstHasYcbcr = false;
246 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
247 if (ycbcr->isValid()) {
248 dstHasYcbcr = true;
249 }
250 }
251
252 bool srcHasYcbcr = false;
253 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
254 if (ycbcr->isValid()) {
255 srcHasYcbcr = true;
256 }
257 }
258
259 VkFormat dstFormat, srcFormat;
260 SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
261 SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
262
263 return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
264 srcFormat, srcSampleCnt, srcHasYcbcr) ||
265 this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
266 srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
267 this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
268 srcFormat, srcSampleCnt, srcHasYcbcr);
269 }
270
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)271 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
272 VkStructureType type) {
273 // All Vulkan structs that could be part of the features chain will start with the
274 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
275 // so we can get access to the pNext for the next struct.
276 struct CommonVulkanHeader {
277 VkStructureType sType;
278 void* pNext;
279 };
280
281 void* pNext = features.pNext;
282 while (pNext) {
283 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
284 if (header->sType == type) {
285 return static_cast<T*>(pNext);
286 }
287 pNext = header->pNext;
288 }
289 return nullptr;
290 }
291
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)292 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
293 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
294 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
295 GrProtected isProtected) {
296 VkPhysicalDeviceProperties properties;
297 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
298
299 VkPhysicalDeviceMemoryProperties memoryProperties;
300 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
301
302 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
303
304 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
305 fSupportsSwapchain = true;
306 }
307
308 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
309 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
310 fSupportsPhysicalDeviceProperties2 = true;
311 }
312
313 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
314 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
315 fSupportsMemoryRequirements2 = true;
316 }
317
318 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
319 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
320 fSupportsBindMemory2 = true;
321 }
322
323 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
324 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
325 fSupportsMaintenance1 = true;
326 }
327
328 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
329 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
330 fSupportsMaintenance2 = true;
331 }
332
333 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
334 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
335 fSupportsMaintenance3 = true;
336 }
337
338 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
339 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
340 this->supportsMemoryRequirements2())) {
341 fSupportsDedicatedAllocation = true;
342 }
343
344 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
345 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
346 this->supportsPhysicalDeviceProperties2() &&
347 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
348 this->supportsDedicatedAllocation())) {
349 fSupportsExternalMemory = true;
350 }
351
352 #ifdef SK_BUILD_FOR_ANDROID
353 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
354 // do we don't explicitly require it here even the spec says it is required.
355 if (extensions.hasExtension(
356 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
357 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
358 this->supportsExternalMemory() &&
359 this->supportsBindMemory2()) {
360 fSupportsAndroidHWBExternalMemory = true;
361 fSupportsAHardwareBufferImages = true;
362 }
363 #endif
364
365 auto ycbcrFeatures =
366 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
367 features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
368 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
369 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
370 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
371 this->supportsMaintenance1() && this->supportsBindMemory2() &&
372 this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
373 fSupportsYcbcrConversion = true;
374 }
375
376 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
377 // will return a key of 0.
378 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
379
380 if ((isProtected == GrProtected::kYes) &&
381 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
382 fSupportsProtectedMemory = true;
383 fAvoidUpdateBuffers = true;
384 fShouldAlwaysUseDedicatedImageMemory = true;
385 }
386
387 if (extensions.hasExtension(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, 1)) {
388 fSupportsDRMFormatModifiers = true;
389 }
390
391 fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments;
392
393 // On desktop GPUs we have found that this does not provide much benefit. The perf results show
394 // a mix of regressions, some improvements, and lots of no changes. Thus it is no worth enabling
395 // this (especially with the rendering artifacts) on desktop.
396 //
397 // On Adreno devices we were expecting to see perf gains. But instead there were actually a lot
398 // of perf regressions and only a few perf wins. This needs some follow up with qualcomm since
399 // we do expect this to be a big win on tilers.
400 //
401 // On ARM devices we are seeing an average perf win of around 50%-60% across the board.
402 if (kARM_VkVendor == properties.vendorID) {
403 fPreferDiscardableMSAAAttachment = true;
404 fSupportsMemorylessAttachments = true;
405 }
406
407 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
408 this->initShaderCaps(properties, features);
409
410 if (kQualcomm_VkVendor == properties.vendorID) {
411 // A "clear" load for atlases runs faster on QC than a "discard" load followed by a
412 // scissored clear.
413 // On NVIDIA and Intel, the discard load followed by clear is faster.
414 // TODO: Evaluate on ARM, Imagination, and ATI.
415 fPreferFullscreenClears = true;
416 }
417
418 if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) {
419 // On discrete GPUs it can be faster to read gpu only memory compared to memory that is also
420 // mappable on the host.
421 fGpuOnlyBuffersMorePerformant = true;
422
423 // On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our
424 // cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped.
425 // Some discrete GPUs do not expose this special memory, however we still disable
426 // persistently mapped buffers for all of them since most GPUs with updated drivers do
427 // expose it. If this becomes an issue we can try to be more fine grained.
428 fShouldPersistentlyMapCpuToGpuBuffers = false;
429 }
430
431 if (kQualcomm_VkVendor == properties.vendorID) {
432 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
433 // even for small sizes.
434 fAvoidUpdateBuffers = true;
435 }
436
437 if (kQualcomm_VkVendor == properties.vendorID) {
438 // Adreno devices don't support push constants well
439 fMaxPushConstantsSize = 0;
440 }
441
442 fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance;
443 if (properties.vendorID == kQualcomm_VkVendor) {
444 // Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139
445 fNativeDrawIndirectSupport = false;
446 }
447
448 if (fNativeDrawIndirectSupport) {
449 fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount;
450 SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect);
451 }
452
453 #ifdef SK_BUILD_FOR_UNIX
454 if (kNvidia_VkVendor == properties.vendorID) {
455 // On nvidia linux we see a big perf regression when not using dedicated image allocations.
456 fShouldAlwaysUseDedicatedImageMemory = true;
457 }
458 #endif
459
460 this->initFormatTable(vkInterface, physDev, properties);
461 this->initStencilFormat(vkInterface, physDev);
462
463 if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) {
464 fMaxPerPoolCachedSecondaryCommandBuffers =
465 contextOptions.fMaxCachedVulkanSecondaryCommandBuffers;
466 }
467
468 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
469 this->applyDriverCorrectnessWorkarounds(properties);
470 }
471
472 this->finishInitialization(contextOptions);
473 }
474
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)475 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
476 #if defined(SK_BUILD_FOR_WIN)
477 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
478 fMustSyncCommandBuffersWithQueue = true;
479 }
480 #elif defined(SK_BUILD_FOR_ANDROID)
481 if (kImagination_VkVendor == properties.vendorID) {
482 fMustSyncCommandBuffersWithQueue = true;
483 }
484 #endif
485
486 // Defaults to zero since all our workaround checks that use this consider things "fixed" once
487 // above a certain api level. So this will just default to it being less which will enable
488 // workarounds.
489 int androidAPIVersion = 0;
490 #if defined(SK_BUILD_FOR_ANDROID)
491 char androidAPIVersionStr[PROP_VALUE_MAX];
492 int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr);
493 // Defaults to zero since most checks care if it is greater than a specific value. So this will
494 // just default to it being less.
495 androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr);
496 #endif
497
498 // Protected memory features have problems in Android P and earlier.
499 if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
500 if (androidAPIVersion <= 28) {
501 fSupportsProtectedMemory = false;
502 }
503 }
504
505 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
506 if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
507 fShouldAlwaysUseDedicatedImageMemory = true;
508 }
509
510 // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
511 // using only primary command buffers. We also see issues on the P30 running android 28.
512 if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
513 fPreferPrimaryOverSecondaryCommandBuffers = false;
514 // If we are using secondary command buffers our code isn't setup to insert barriers into
515 // the secondary cb so we need to disable support for them.
516 fTextureBarrierSupport = false;
517 fBlendEquationSupport = kBasic_BlendEquationSupport;
518 }
519
520 // We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier
521 // when trying to using discardable msaa attachments and loading from resolve. So we disable the
522 // feature for those devices.
523 if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) {
524 fPreferDiscardableMSAAAttachment = false;
525 fSupportsDiscardableMSAAForDMSAA = false;
526 }
527
528 // On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats
529 // produces answers that are much less accurate than expected/required. This forces full floats
530 // for some intermediate values to get acceptable results.
531 if (kARM_VkVendor == properties.vendorID) {
532 fShaderCaps->fColorSpaceMathNeedsFloat = true;
533 }
534
535 // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
536 // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
537 // of bound buffers so that we will rebind them on the next draw.
538 if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
539 fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
540 }
541
542 // On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using
543 // discardable msaa attachments. This causes the resolve to resolve uninitialized data from the
544 // msaa image into the resolve image.
545 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
546 fMustLoadFullImageWithDiscardableMSAA = true;
547 }
548
549 #ifdef SK_BUILD_FOR_UNIX
550 if (kIntel_VkVendor == properties.vendorID) {
551 // At least on our linux Debug Intel HD405 bot we are seeing issues doing read pixels with
552 // non-conherent memory. It seems like the device is not properly honoring the
553 // vkInvalidateMappedMemoryRanges calls correctly. Other linux intel devices seem to work
554 // okay. However, since I'm not sure how to target a specific intel devices or driver
555 // version I am going to stop all intel linux from using non-coherent memory. Currently we
556 // are not shipping anything on these platforms and the only real thing that will regress is
557 // read backs. If we find later we do care about this performance we can come back to figure
558 // out how to do a more narrow workaround.
559 fMustUseCoherentHostVisibleMemory = true;
560 }
561 #endif
562
563 ////////////////////////////////////////////////////////////////////////////
564 // GrCaps workarounds
565 ////////////////////////////////////////////////////////////////////////////
566
567 #ifdef SK_BUILD_FOR_ANDROID
568 // MSAA CCPR was slow on Android. http://skbug.com/9676
569 fDriverDisableMSAAClipAtlas = true;
570 #endif
571
572 if (kARM_VkVendor == properties.vendorID) {
573 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
574 }
575
576 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
577 if (kAMD_VkVendor == properties.vendorID) {
578 fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
579 }
580
581 // Adreno devices fail when trying to read the dest using an input attachment and texture
582 // barriers.
583 if (kQualcomm_VkVendor == properties.vendorID) {
584 fTextureBarrierSupport = false;
585 }
586
587 // On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and
588 // Mate 20x running android 9.
589 if (properties.vendorID == kARM_VkVendor && androidAPIVersion <= 28) {
590 fNativeDrawIndirectSupport = false;
591 }
592
593 ////////////////////////////////////////////////////////////////////////////
594 // GrShaderCaps workarounds
595 ////////////////////////////////////////////////////////////////////////////
596
597 if (kImagination_VkVendor == properties.vendorID) {
598 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
599 }
600 }
601
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)602 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
603 VkPhysicalDevice physDev,
604 const VkPhysicalDeviceProperties& properties,
605 const VkPhysicalDeviceMemoryProperties& memoryProperties,
606 const VkPhysicalDeviceFeatures2& features,
607 const GrVkExtensions& extensions) {
608 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
609 // need for us ever to support that amount, and it makes tests which tests all the vertex
610 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
611 // we ever find that need.
612 static const uint32_t kMaxVertexAttributes = 64;
613 fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes,
614 kMaxVertexAttributes);
615
616 // GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not
617 // program them). For now we just set this to true if the device uses standard locations, and
618 // return the standard locations back when queried.
619 if (properties.limits.standardSampleLocations) {
620 fSampleLocationsSupport = true;
621 }
622
623 if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
624 fConservativeRasterSupport = true;
625 }
626
627 fWireframeSupport = true;
628
629 // We could actually query and get a max size for each config, however maxImageDimension2D will
630 // give the minimum max size across all configs. So for simplicity we will use that for now.
631 fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
632 fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
633 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
634 fMaxTextureSize = std::min(fMaxTextureSize, 4096);
635 }
636
637 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
638 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
639
640 fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX);
641
642 // Assuming since we will always map in the end to upload the data we might as well just map
643 // from the get go. There is no hard data to suggest this is faster or slower.
644 fBufferMapThreshold = 0;
645
646 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
647
648 fOversizedStencilSupport = true;
649
650 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
651 this->supportsPhysicalDeviceProperties2()) {
652
653 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
654 blendProps.sType =
655 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
656 blendProps.pNext = nullptr;
657
658 VkPhysicalDeviceProperties2 props;
659 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
660 props.pNext = &blendProps;
661
662 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
663
664 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
665 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
666
667 auto blendFeatures =
668 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
669 features,
670 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
671 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
672 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
673 } else {
674 fBlendEquationSupport = kAdvanced_BlendEquationSupport;
675 }
676 }
677 }
678
679 if (kARM_VkVendor == properties.vendorID) {
680 fShouldCollapseSrcOverToSrcWhenAble = true;
681 }
682 }
683
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)684 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
685 const VkPhysicalDeviceFeatures2& features) {
686 GrShaderCaps* shaderCaps = fShaderCaps.get();
687 shaderCaps->fVersionDeclString = "#version 330\n";
688
689 // Vulkan is based off ES 3.0 so the following should all be supported
690 shaderCaps->fUsesPrecisionModifiers = true;
691 shaderCaps->fFlatInterpolationSupport = true;
692 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
693 // to be true with Vulkan as well.
694 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
695
696 shaderCaps->fSampleMaskSupport = true;
697
698 shaderCaps->fShaderDerivativeSupport = true;
699
700 // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
701 // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
702 shaderCaps->fRewriteMatrixVectorMultiply = (kARM_VkVendor == properties.vendorID);
703
704 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
705
706 shaderCaps->fIntegerSupport = true;
707 shaderCaps->fNonsquareMatrixSupport = true;
708 shaderCaps->fInverseHyperbolicSupport = true;
709 shaderCaps->fVertexIDSupport = true;
710 shaderCaps->fInfinitySupport = true;
711 shaderCaps->fNonconstantArrayIndexSupport = true;
712 shaderCaps->fBitManipulationSupport = true;
713
714 // Assume the minimum precisions mandated by the SPIR-V spec.
715 shaderCaps->fFloatIs32Bits = true;
716 shaderCaps->fHalfIs32Bits = false;
717
718 shaderCaps->fMaxFragmentSamplers = std::min(
719 std::min(properties.limits.maxPerStageDescriptorSampledImages,
720 properties.limits.maxPerStageDescriptorSamplers),
721 (uint32_t)INT_MAX);
722 }
723
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)724 bool stencil_format_supported(const GrVkInterface* interface,
725 VkPhysicalDevice physDev,
726 VkFormat format) {
727 VkFormatProperties props;
728 memset(&props, 0, sizeof(VkFormatProperties));
729 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
730 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
731 }
732
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)733 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
734 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
735 fPreferredStencilFormat = VK_FORMAT_S8_UINT;
736 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
737 fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT;
738 } else {
739 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
740 fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
741 }
742 }
743
format_is_srgb(VkFormat format)744 static bool format_is_srgb(VkFormat format) {
745 SkASSERT(GrVkFormatIsSupported(format));
746
747 switch (format) {
748 case VK_FORMAT_R8G8B8A8_SRGB:
749 return true;
750 default:
751 return false;
752 }
753 }
754
755 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
756 // frequently used to least to improve look up times in arrays.
757 static constexpr VkFormat kVkFormats[] = {
758 VK_FORMAT_R8G8B8A8_UNORM,
759 VK_FORMAT_R8_UNORM,
760 VK_FORMAT_B8G8R8A8_UNORM,
761 VK_FORMAT_R5G6B5_UNORM_PACK16,
762 VK_FORMAT_R16G16B16A16_SFLOAT,
763 VK_FORMAT_R16_SFLOAT,
764 VK_FORMAT_R8G8B8_UNORM,
765 VK_FORMAT_R8G8_UNORM,
766 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
767 VK_FORMAT_A2R10G10B10_UNORM_PACK32,
768 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
769 VK_FORMAT_R4G4B4A4_UNORM_PACK16,
770 VK_FORMAT_R8G8B8A8_SRGB,
771 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
772 VK_FORMAT_BC1_RGB_UNORM_BLOCK,
773 VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
774 VK_FORMAT_R16_UNORM,
775 VK_FORMAT_R16G16_UNORM,
776 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
777 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
778 VK_FORMAT_R16G16B16A16_UNORM,
779 VK_FORMAT_R16G16_SFLOAT,
780 };
781
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)782 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
783 #ifdef SK_DEBUG
784 for (size_t i = 0; i < kNumVkFormats; ++i) {
785 const auto& formatInfo = fFormatTable[i];
786 for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
787 const auto& ctInfo = formatInfo.fColorTypeInfos[j];
788 if (ctInfo.fColorType == colorType &&
789 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
790 bool found = false;
791 for (auto it = formats.begin(); it != formats.end(); ++it) {
792 if (kVkFormats[i] == *it) {
793 found = true;
794 }
795 }
796 SkASSERT(found);
797 }
798 }
799 }
800 #endif
801 int idx = static_cast<int>(colorType);
802 for (auto it = formats.begin(); it != formats.end(); ++it) {
803 const auto& info = this->getFormatInfo(*it);
804 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
805 if (info.fColorTypeInfos[i].fColorType == colorType) {
806 fColorTypeToFormatTable[idx] = *it;
807 return;
808 }
809 }
810 }
811 }
812
getFormatInfo(VkFormat format) const813 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
814 GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
815 return nonConstThis->getFormatInfo(format);
816 }
817
getFormatInfo(VkFormat format)818 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
819 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
820 "Size of VkFormats array must match static value in header");
821 for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
822 if (kVkFormats[i] == format) {
823 return fFormatTable[i];
824 }
825 }
826 static FormatInfo kInvalidFormat;
827 return kInvalidFormat;
828 }
829
initFormatTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)830 void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
831 const VkPhysicalDeviceProperties& properties) {
832 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
833 "Size of VkFormats array must match static value in header");
834
835 std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
836
837 // Go through all the formats and init their support surface and data GrColorTypes.
838 // Format: VK_FORMAT_R8G8B8A8_UNORM
839 {
840 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
841 auto& info = this->getFormatInfo(format);
842 info.init(interface, physDev, properties, format);
843 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
844 info.fColorTypeInfoCount = 2;
845 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
846 int ctIdx = 0;
847 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
848 {
849 constexpr GrColorType ct = GrColorType::kRGBA_8888;
850 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
851 ctInfo.fColorType = ct;
852 ctInfo.fTransferColorType = ct;
853 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
854 }
855 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
856 {
857 constexpr GrColorType ct = GrColorType::kRGB_888x;
858 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
859 ctInfo.fColorType = ct;
860 ctInfo.fTransferColorType = ct;
861 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
862 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
863 }
864 }
865 }
866
867 // Format: VK_FORMAT_R8_UNORM
868 {
869 constexpr VkFormat format = VK_FORMAT_R8_UNORM;
870 auto& info = this->getFormatInfo(format);
871 info.init(interface, physDev, properties, format);
872 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
873 info.fColorTypeInfoCount = 3;
874 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
875 int ctIdx = 0;
876 // Format: VK_FORMAT_R8_UNORM, Surface: kR_8
877 {
878 constexpr GrColorType ct = GrColorType::kR_8;
879 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
880 ctInfo.fColorType = ct;
881 ctInfo.fTransferColorType = ct;
882 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
883 }
884 // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
885 {
886 constexpr GrColorType ct = GrColorType::kAlpha_8;
887 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
888 ctInfo.fColorType = ct;
889 ctInfo.fTransferColorType = ct;
890 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
891 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
892 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
893 }
894 // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
895 {
896 constexpr GrColorType ct = GrColorType::kGray_8;
897 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
898 ctInfo.fColorType = ct;
899 ctInfo.fTransferColorType = ct;
900 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
901 ctInfo.fReadSwizzle = skgpu::Swizzle("rrr1");
902 }
903 }
904 }
905 // Format: VK_FORMAT_B8G8R8A8_UNORM
906 {
907 constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
908 auto& info = this->getFormatInfo(format);
909 info.init(interface, physDev, properties, format);
910 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
911 info.fColorTypeInfoCount = 1;
912 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
913 int ctIdx = 0;
914 // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
915 {
916 constexpr GrColorType ct = GrColorType::kBGRA_8888;
917 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
918 ctInfo.fColorType = ct;
919 ctInfo.fTransferColorType = ct;
920 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
921 }
922 }
923 }
924 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
925 {
926 constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
927 auto& info = this->getFormatInfo(format);
928 info.init(interface, physDev, properties, format);
929 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
930 info.fColorTypeInfoCount = 1;
931 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
932 int ctIdx = 0;
933 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
934 {
935 constexpr GrColorType ct = GrColorType::kBGR_565;
936 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
937 ctInfo.fColorType = ct;
938 ctInfo.fTransferColorType = ct;
939 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
940 }
941 }
942 }
943 // Format: VK_FORMAT_R16G16B16A16_SFLOAT
944 {
945 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
946 auto& info = this->getFormatInfo(format);
947 info.init(interface, physDev, properties, format);
948 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
949 info.fColorTypeInfoCount = 2;
950 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
951 int ctIdx = 0;
952 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
953 {
954 constexpr GrColorType ct = GrColorType::kRGBA_F16;
955 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
956 ctInfo.fColorType = ct;
957 ctInfo.fTransferColorType = ct;
958 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
959 }
960 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
961 {
962 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
963 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
964 ctInfo.fColorType = ct;
965 ctInfo.fTransferColorType = ct;
966 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
967 }
968 }
969 }
970 // Format: VK_FORMAT_R16_SFLOAT
971 {
972 constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
973 auto& info = this->getFormatInfo(format);
974 info.init(interface, physDev, properties, format);
975 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
976 info.fColorTypeInfoCount = 1;
977 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
978 int ctIdx = 0;
979 // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
980 {
981 constexpr GrColorType ct = GrColorType::kAlpha_F16;
982 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
983 ctInfo.fColorType = ct;
984 ctInfo.fTransferColorType = ct;
985 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
986 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
987 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
988 }
989 }
990 }
991 // Format: VK_FORMAT_R8G8B8_UNORM
992 {
993 constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
994 auto& info = this->getFormatInfo(format);
995 info.init(interface, physDev, properties, format);
996 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
997 info.fColorTypeInfoCount = 1;
998 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
999 int ctIdx = 0;
1000 // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
1001 {
1002 constexpr GrColorType ct = GrColorType::kRGB_888x;
1003 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1004 ctInfo.fColorType = ct;
1005 // The Vulkan format is 3 bpp so we must convert to/from that when transferring.
1006 ctInfo.fTransferColorType = GrColorType::kRGB_888;
1007 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1008 }
1009 }
1010 }
1011 // Format: VK_FORMAT_R8G8_UNORM
1012 {
1013 constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
1014 auto& info = this->getFormatInfo(format);
1015 info.init(interface, physDev, properties, format);
1016 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1017 info.fColorTypeInfoCount = 1;
1018 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1019 int ctIdx = 0;
1020 // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
1021 {
1022 constexpr GrColorType ct = GrColorType::kRG_88;
1023 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1024 ctInfo.fColorType = ct;
1025 ctInfo.fTransferColorType = ct;
1026 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1027 }
1028 }
1029 }
1030 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
1031 {
1032 constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
1033 auto& info = this->getFormatInfo(format);
1034 info.init(interface, physDev, properties, format);
1035 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1036 info.fColorTypeInfoCount = 1;
1037 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1038 int ctIdx = 0;
1039 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
1040 {
1041 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
1042 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1043 ctInfo.fColorType = ct;
1044 ctInfo.fTransferColorType = ct;
1045 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1046 }
1047 }
1048 }
1049 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32
1050 {
1051 constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32;
1052 auto& info = this->getFormatInfo(format);
1053 info.init(interface, physDev, properties, format);
1054 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1055 info.fColorTypeInfoCount = 1;
1056 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1057 int ctIdx = 0;
1058 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102
1059 {
1060 constexpr GrColorType ct = GrColorType::kBGRA_1010102;
1061 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1062 ctInfo.fColorType = ct;
1063 ctInfo.fTransferColorType = ct;
1064 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1065 }
1066 }
1067 }
1068 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
1069 {
1070 constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
1071 auto& info = this->getFormatInfo(format);
1072 info.init(interface, physDev, properties, format);
1073 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1074 info.fColorTypeInfoCount = 1;
1075 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1076 int ctIdx = 0;
1077 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
1078 {
1079 constexpr GrColorType ct = GrColorType::kABGR_4444;
1080 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1081 ctInfo.fColorType = ct;
1082 ctInfo.fTransferColorType = ct;
1083 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1084 ctInfo.fReadSwizzle = skgpu::Swizzle::BGRA();
1085 ctInfo.fWriteSwizzle = skgpu::Swizzle::BGRA();
1086 }
1087 }
1088 }
1089
1090 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
1091 {
1092 constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
1093 auto& info = this->getFormatInfo(format);
1094 info.init(interface, physDev, properties, format);
1095 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1096 info.fColorTypeInfoCount = 1;
1097 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1098 int ctIdx = 0;
1099 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
1100 {
1101 constexpr GrColorType ct = GrColorType::kABGR_4444;
1102 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1103 ctInfo.fColorType = ct;
1104 ctInfo.fTransferColorType = ct;
1105 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1106 }
1107 }
1108 }
1109 // Format: VK_FORMAT_R8G8B8A8_SRGB
1110 {
1111 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
1112 auto& info = this->getFormatInfo(format);
1113 info.init(interface, physDev, properties, format);
1114 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1115 info.fColorTypeInfoCount = 1;
1116 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1117 int ctIdx = 0;
1118 // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
1119 {
1120 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
1121 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1122 ctInfo.fColorType = ct;
1123 ctInfo.fTransferColorType = ct;
1124 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1125 }
1126 }
1127 }
1128 // Format: VK_FORMAT_R16_UNORM
1129 {
1130 constexpr VkFormat format = VK_FORMAT_R16_UNORM;
1131 auto& info = this->getFormatInfo(format);
1132 info.init(interface, physDev, properties, format);
1133 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1134 info.fColorTypeInfoCount = 1;
1135 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1136 int ctIdx = 0;
1137 // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
1138 {
1139 constexpr GrColorType ct = GrColorType::kAlpha_16;
1140 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1141 ctInfo.fColorType = ct;
1142 ctInfo.fTransferColorType = ct;
1143 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1144 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
1145 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
1146 }
1147 }
1148 }
1149 // Format: VK_FORMAT_R16G16_UNORM
1150 {
1151 constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1152 auto& info = this->getFormatInfo(format);
1153 info.init(interface, physDev, properties, format);
1154 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1155 info.fColorTypeInfoCount = 1;
1156 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1157 int ctIdx = 0;
1158 // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1159 {
1160 constexpr GrColorType ct = GrColorType::kRG_1616;
1161 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1162 ctInfo.fColorType = ct;
1163 ctInfo.fTransferColorType = ct;
1164 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1165 }
1166 }
1167 }
1168 // Format: VK_FORMAT_R16G16B16A16_UNORM
1169 {
1170 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1171 auto& info = this->getFormatInfo(format);
1172 info.init(interface, physDev, properties, format);
1173 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1174 info.fColorTypeInfoCount = 1;
1175 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1176 int ctIdx = 0;
1177 // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1178 {
1179 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1180 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1181 ctInfo.fColorType = ct;
1182 ctInfo.fTransferColorType = ct;
1183 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1184 }
1185 }
1186 }
1187 // Format: VK_FORMAT_R16G16_SFLOAT
1188 {
1189 constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1190 auto& info = this->getFormatInfo(format);
1191 info.init(interface, physDev, properties, format);
1192 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1193 info.fColorTypeInfoCount = 1;
1194 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1195 int ctIdx = 0;
1196 // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1197 {
1198 constexpr GrColorType ct = GrColorType::kRG_F16;
1199 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1200 ctInfo.fColorType = ct;
1201 ctInfo.fTransferColorType = ct;
1202 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1203 }
1204 }
1205 }
1206 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1207 {
1208 constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1209 auto& info = this->getFormatInfo(format);
1210 if (fSupportsYcbcrConversion) {
1211 info.init(interface, physDev, properties, format);
1212 }
1213 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1214 info.fColorTypeInfoCount = 1;
1215 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1216 int ctIdx = 0;
1217 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1218 {
1219 constexpr GrColorType ct = GrColorType::kRGB_888x;
1220 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1221 ctInfo.fColorType = ct;
1222 ctInfo.fTransferColorType = ct;
1223 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1224 }
1225 }
1226 }
1227 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1228 {
1229 constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1230 auto& info = this->getFormatInfo(format);
1231 if (fSupportsYcbcrConversion) {
1232 info.init(interface, physDev, properties, format);
1233 }
1234 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1235 info.fColorTypeInfoCount = 1;
1236 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1237 int ctIdx = 0;
1238 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1239 {
1240 constexpr GrColorType ct = GrColorType::kRGB_888x;
1241 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1242 ctInfo.fColorType = ct;
1243 ctInfo.fTransferColorType = ct;
1244 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1245 }
1246 }
1247 }
1248 // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1249 {
1250 constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1251 auto& info = this->getFormatInfo(format);
1252 info.init(interface, physDev, properties, format);
1253 // Setting this to texel block size
1254 // No supported GrColorTypes.
1255 }
1256
1257 // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
1258 {
1259 constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
1260 auto& info = this->getFormatInfo(format);
1261 info.init(interface, physDev, properties, format);
1262 // Setting this to texel block size
1263 // No supported GrColorTypes.
1264 }
1265
1266 // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
1267 {
1268 constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
1269 auto& info = this->getFormatInfo(format);
1270 info.init(interface, physDev, properties, format);
1271 // Setting this to texel block size
1272 // No supported GrColorTypes.
1273 }
1274
1275 ////////////////////////////////////////////////////////////////////////////
1276 // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1277 // are passed into the setColorType function indicates the priority in selecting which format
1278 // we use for a given GrcolorType.
1279
1280 this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
1281 this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
1282 this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1283 VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1284 this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
1285 this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
1286 this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
1287 VK_FORMAT_R8G8B8A8_UNORM });
1288 this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
1289 this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
1290 this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1291 this->setColorType(GrColorType::kBGRA_1010102, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 });
1292 this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
1293 this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
1294 this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
1295 this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1296 this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM });
1297 this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
1298 this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
1299 this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
1300 }
1301
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1302 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1303 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1304 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1305 *flags = *flags | kTexturable_Flag;
1306
1307 // Ganesh assumes that all renderable surfaces are also texturable
1308 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1309 *flags = *flags | kRenderable_Flag;
1310 }
1311 }
1312 // TODO: For Vk w/ VK_KHR_maintenance1 extension support, check
1313 // VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags
1314 // Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits
1315
1316 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1317 *flags = *flags | kBlitSrc_Flag;
1318 }
1319
1320 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1321 *flags = *flags | kBlitDst_Flag;
1322 }
1323 }
1324
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1325 void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
1326 VkPhysicalDevice physDev,
1327 const VkPhysicalDeviceProperties& physProps,
1328 VkFormat format) {
1329 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1330 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1331 VK_IMAGE_USAGE_SAMPLED_BIT |
1332 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1333 VkImageFormatProperties properties;
1334 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1335 format,
1336 VK_IMAGE_TYPE_2D,
1337 VK_IMAGE_TILING_OPTIMAL,
1338 usage,
1339 0, // createFlags
1340 &properties));
1341 VkSampleCountFlags flags = properties.sampleCounts;
1342 if (flags & VK_SAMPLE_COUNT_1_BIT) {
1343 fColorSampleCounts.push_back(1);
1344 }
1345 if (kImagination_VkVendor == physProps.vendorID) {
1346 // MSAA does not work on imagination
1347 return;
1348 }
1349 if (kIntel_VkVendor == physProps.vendorID) {
1350 // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1351 return;
1352 }
1353 if (flags & VK_SAMPLE_COUNT_2_BIT) {
1354 fColorSampleCounts.push_back(2);
1355 }
1356 if (flags & VK_SAMPLE_COUNT_4_BIT) {
1357 fColorSampleCounts.push_back(4);
1358 }
1359 if (flags & VK_SAMPLE_COUNT_8_BIT) {
1360 fColorSampleCounts.push_back(8);
1361 }
1362 if (flags & VK_SAMPLE_COUNT_16_BIT) {
1363 fColorSampleCounts.push_back(16);
1364 }
1365 // Standard sample locations are not defined for more than 16 samples, and we don't need more
1366 // than 16. Omit 32 and 64.
1367 }
1368
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1369 void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
1370 VkPhysicalDevice physDev,
1371 const VkPhysicalDeviceProperties& properties,
1372 VkFormat format) {
1373 VkFormatProperties props;
1374 memset(&props, 0, sizeof(VkFormatProperties));
1375 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1376 InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1377 InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1378 if (fOptimalFlags & kRenderable_Flag) {
1379 this->initSampleCounts(interface, physDev, properties, format);
1380 }
1381 }
1382
1383 // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
1384 // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
1385 // capability checks.
backend_format_is_external(const GrBackendFormat & format)1386 static bool backend_format_is_external(const GrBackendFormat& format) {
1387 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1388 SkASSERT(ycbcrInfo);
1389
1390 // All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
1391 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1392 #ifdef SK_DEBUG
1393 VkFormat vkFormat;
1394 SkAssertResult(format.asVkFormat(&vkFormat));
1395 SkASSERT(vkFormat == VK_FORMAT_UNDEFINED);
1396 #endif
1397 return true;
1398 }
1399 return false;
1400 }
1401
isFormatSRGB(const GrBackendFormat & format) const1402 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1403 VkFormat vkFormat;
1404 if (!format.asVkFormat(&vkFormat)) {
1405 return false;
1406 }
1407 if (backend_format_is_external(format)) {
1408 return false;
1409 }
1410
1411 return format_is_srgb(vkFormat);
1412 }
1413
isFormatTexturable(const GrBackendFormat & format,GrTextureType) const1414 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format, GrTextureType) const {
1415 VkFormat vkFormat;
1416 if (!format.asVkFormat(&vkFormat)) {
1417 return false;
1418 }
1419 if (backend_format_is_external(format)) {
1420 // We can always texture from an external format (assuming we have the ycbcr conversion
1421 // info which we require to be passed in).
1422 return true;
1423 }
1424 return this->isVkFormatTexturable(vkFormat);
1425 }
1426
isVkFormatTexturable(VkFormat format) const1427 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1428 const FormatInfo& info = this->getFormatInfo(format);
1429 return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1430 }
1431
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1432 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1433 int sampleCount) const {
1434 if (!this->isFormatRenderable(format, sampleCount)) {
1435 return false;
1436 }
1437 VkFormat vkFormat;
1438 if (!format.asVkFormat(&vkFormat)) {
1439 return false;
1440 }
1441 const auto& info = this->getFormatInfo(vkFormat);
1442 if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1443 return false;
1444 }
1445 return true;
1446 }
1447
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1448 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1449 VkFormat vkFormat;
1450 if (!format.asVkFormat(&vkFormat)) {
1451 return false;
1452 }
1453 return this->isFormatRenderable(vkFormat, sampleCount);
1454 }
1455
isFormatRenderable(VkFormat format,int sampleCount) const1456 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1457 return sampleCount <= this->maxRenderTargetSampleCount(format);
1458 }
1459
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1460 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1461 const GrBackendFormat& format) const {
1462 VkFormat vkFormat;
1463 if (!format.asVkFormat(&vkFormat)) {
1464 return 0;
1465 }
1466
1467 return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1468 }
1469
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1470 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1471 requestedCount = std::max(1, requestedCount);
1472
1473 const FormatInfo& info = this->getFormatInfo(format);
1474
1475 int count = info.fColorSampleCounts.count();
1476
1477 if (!count) {
1478 return 0;
1479 }
1480
1481 if (1 == requestedCount) {
1482 SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
1483 return 1;
1484 }
1485
1486 for (int i = 0; i < count; ++i) {
1487 if (info.fColorSampleCounts[i] >= requestedCount) {
1488 return info.fColorSampleCounts[i];
1489 }
1490 }
1491 return 0;
1492 }
1493
maxRenderTargetSampleCount(const GrBackendFormat & format) const1494 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1495 VkFormat vkFormat;
1496 if (!format.asVkFormat(&vkFormat)) {
1497 return 0;
1498 }
1499 return this->maxRenderTargetSampleCount(vkFormat);
1500 }
1501
maxRenderTargetSampleCount(VkFormat format) const1502 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1503 const FormatInfo& info = this->getFormatInfo(format);
1504
1505 const auto& table = info.fColorSampleCounts;
1506 if (!table.count()) {
1507 return 0;
1508 }
1509 return table[table.count() - 1];
1510 }
1511
align_to_4(size_t v)1512 static inline size_t align_to_4(size_t v) {
1513 switch (v & 0b11) {
1514 // v is already a multiple of 4.
1515 case 0: return v;
1516 // v is a multiple of 2 but not 4.
1517 case 2: return 2 * v;
1518 // v is not a multiple of 2.
1519 default: return 4 * v;
1520 }
1521 }
1522
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1523 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1524 const GrBackendFormat& surfaceFormat,
1525 GrColorType srcColorType) const {
1526 VkFormat vkFormat;
1527 if (!surfaceFormat.asVkFormat(&vkFormat)) {
1528 return {GrColorType::kUnknown, 0};
1529 }
1530
1531 // We don't support the ability to upload to external formats or formats that require a ycbcr
1532 // sampler. In general these types of formats are only used for sampling in a shader.
1533 if (backend_format_is_external(surfaceFormat) || GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1534 return {GrColorType::kUnknown, 0};
1535 }
1536
1537 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1538 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1539
1540 const auto& info = this->getFormatInfo(vkFormat);
1541 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1542 const auto& ctInfo = info.fColorTypeInfos[i];
1543 if (ctInfo.fColorType == surfaceColorType) {
1544 return {ctInfo.fTransferColorType, offsetAlignment};
1545 }
1546 }
1547 return {GrColorType::kUnknown, 0};
1548 }
1549
surfaceSupportsReadPixels(const GrSurface * surface) const1550 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1551 const GrSurface* surface) const {
1552 if (surface->isProtected()) {
1553 return SurfaceReadPixelsSupport::kUnsupported;
1554 }
1555 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1556 auto texImage = tex->textureImage();
1557 if (!texImage) {
1558 return SurfaceReadPixelsSupport::kUnsupported;
1559 }
1560 // We can't directly read from a VkImage that has a ycbcr sampler.
1561 if (texImage->ycbcrConversionInfo().isValid()) {
1562 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1563 }
1564 // We can't directly read from a compressed format
1565 if (GrVkFormatIsCompressed(texImage->imageFormat())) {
1566 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1567 }
1568 return SurfaceReadPixelsSupport::kSupported;
1569 } else if (auto rt = surface->asRenderTarget()) {
1570 if (rt->numSamples() > 1) {
1571 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1572 }
1573 return SurfaceReadPixelsSupport::kSupported;
1574 }
1575 return SurfaceReadPixelsSupport::kUnsupported;
1576 }
1577
transferColorType(VkFormat vkFormat,GrColorType surfaceColorType) const1578 GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const {
1579 const auto& info = this->getFormatInfo(vkFormat);
1580 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1581 if (info.fColorTypeInfos[i].fColorType == surfaceColorType) {
1582 return info.fColorTypeInfos[i].fTransferColorType;
1583 }
1584 }
1585 return GrColorType::kUnknown;
1586 }
1587
onSurfaceSupportsWritePixels(const GrSurface * surface) const1588 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1589 if (auto rt = surface->asRenderTarget()) {
1590 return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1591 }
1592 // We can't write to a texture that has a ycbcr sampler.
1593 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1594 auto texImage = tex->textureImage();
1595 if (!texImage) {
1596 return false;
1597 }
1598 // We can't directly read from a VkImage that has a ycbcr sampler.
1599 if (texImage->ycbcrConversionInfo().isValid()) {
1600 return false;
1601 }
1602 }
1603 return true;
1604 }
1605
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1606 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1607 const GrBackendFormat& format) const {
1608 VkFormat vkFormat;
1609 if (!format.asVkFormat(&vkFormat)) {
1610 return false;
1611 }
1612 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1613 SkASSERT(ycbcrInfo);
1614
1615 if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1616 // Format may be undefined for external images, which are required to have YCbCr conversion.
1617 if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
1618 return true;
1619 }
1620 return false;
1621 }
1622
1623 const auto& info = this->getFormatInfo(vkFormat);
1624 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1625 if (info.fColorTypeInfos[i].fColorType == ct) {
1626 return true;
1627 }
1628 }
1629 return false;
1630 }
1631
onGetDefaultBackendFormat(GrColorType ct) const1632 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const {
1633 VkFormat format = this->getFormatFromColorType(ct);
1634 if (format == VK_FORMAT_UNDEFINED) {
1635 return {};
1636 }
1637 return GrBackendFormat::MakeVk(format);
1638 }
1639
onSupportsDynamicMSAA(const GrRenderTargetProxy * rtProxy) const1640 bool GrVkCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const {
1641 // We must be able to use the rtProxy as an input attachment to load into the discardable msaa
1642 // attachment. Also the rtProxy should have a sample count of 1 so that it can be used as a
1643 // resolve attachment.
1644 return this->supportsDiscardableMSAAForDMSAA() &&
1645 rtProxy->supportsVkInputAttachment() &&
1646 rtProxy->numSamples() == 1;
1647 }
1648
renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget * rt) const1649 bool GrVkCaps::renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget* rt) const {
1650 return rt->resolveAttachment() &&
1651 rt->resolveAttachment()->supportsInputAttachmentUsage() &&
1652 ((rt->numSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1653 (rt->numSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1654 }
1655
programInfoWillUseDiscardableMSAA(const GrProgramInfo & programInfo) const1656 bool GrVkCaps::programInfoWillUseDiscardableMSAA(const GrProgramInfo& programInfo) const {
1657 return programInfo.targetHasVkResolveAttachmentWithInput() &&
1658 programInfo.numSamples() > 1 &&
1659 ((programInfo.targetsNumSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1660 (programInfo.targetsNumSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1661 }
1662
getBackendFormatFromCompressionType(SkImage::CompressionType compressionType) const1663 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1664 SkImage::CompressionType compressionType) const {
1665 switch (compressionType) {
1666 case SkImage::CompressionType::kNone:
1667 return {};
1668 case SkImage::CompressionType::kETC2_RGB8_UNORM:
1669 if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
1670 return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1671 }
1672 return {};
1673 case SkImage::CompressionType::kBC1_RGB8_UNORM:
1674 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
1675 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
1676 }
1677 return {};
1678 case SkImage::CompressionType::kBC1_RGBA8_UNORM:
1679 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
1680 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
1681 }
1682 return {};
1683 }
1684
1685 SkUNREACHABLE;
1686 }
1687
onGetReadSwizzle(const GrBackendFormat & format,GrColorType colorType) const1688 skgpu::Swizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format,
1689 GrColorType colorType) const {
1690 VkFormat vkFormat;
1691 SkAssertResult(format.asVkFormat(&vkFormat));
1692 const auto* ycbcrInfo = format.getVkYcbcrConversionInfo();
1693 SkASSERT(ycbcrInfo);
1694 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1695 // We allow these to work with any color type and never swizzle. See
1696 // onAreColorTypeAndFormatCompatible.
1697 return skgpu::Swizzle{"rgba"};
1698 }
1699
1700 const auto& info = this->getFormatInfo(vkFormat);
1701 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1702 const auto& ctInfo = info.fColorTypeInfos[i];
1703 if (ctInfo.fColorType == colorType) {
1704 return ctInfo.fReadSwizzle;
1705 }
1706 }
1707 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1708 (int)colorType, (int)vkFormat);
1709 return {};
1710 }
1711
getWriteSwizzle(const GrBackendFormat & format,GrColorType colorType) const1712 skgpu::Swizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format,
1713 GrColorType colorType) const {
1714 VkFormat vkFormat;
1715 SkAssertResult(format.asVkFormat(&vkFormat));
1716 const auto& info = this->getFormatInfo(vkFormat);
1717 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1718 const auto& ctInfo = info.fColorTypeInfos[i];
1719 if (ctInfo.fColorType == colorType) {
1720 return ctInfo.fWriteSwizzle;
1721 }
1722 }
1723 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1724 (int)colorType, (int)vkFormat);
1725 return {};
1726 }
1727
onGetDstSampleFlagsForProxy(const GrRenderTargetProxy * rt) const1728 GrDstSampleFlags GrVkCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const {
1729 bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy();
1730 // TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call
1731 // references whether the resolve is supported as an input attachment. We need to add a check to
1732 // allow checking the color attachment (msaa or not) supports input attachment specifically.
1733 if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) {
1734 return GrDstSampleFlags::kRequiresTextureBarrier | GrDstSampleFlags::kAsInputAttachment;
1735 }
1736 return GrDstSampleFlags::kNone;
1737 }
1738
computeFormatKey(const GrBackendFormat & format) const1739 uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
1740 VkFormat vkFormat;
1741 SkAssertResult(format.asVkFormat(&vkFormat));
1742
1743 #ifdef SK_DEBUG
1744 // We should never be trying to compute a key for an external format
1745 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1746 SkASSERT(ycbcrInfo);
1747 SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
1748 #endif
1749
1750 // A VkFormat has a size of 64 bits.
1751 return (uint64_t)vkFormat;
1752 }
1753
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1754 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1755 GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1756 GrColorType dstColorType) const {
1757 VkFormat vkFormat;
1758 if (!srcBackendFormat.asVkFormat(&vkFormat)) {
1759 return {GrColorType::kUnknown, 0};
1760 }
1761
1762 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1763 return {GrColorType::kUnknown, 0};
1764 }
1765
1766 SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
1767 if (compression != SkImage::CompressionType::kNone) {
1768 return { SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
1769 : GrColorType::kRGBA_8888, 0 };
1770 }
1771
1772 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1773 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1774
1775 const auto& info = this->getFormatInfo(vkFormat);
1776 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1777 const auto& ctInfo = info.fColorTypeInfos[i];
1778 if (ctInfo.fColorType == srcColorType) {
1779 return {ctInfo.fTransferColorType, offsetAlignment};
1780 }
1781 }
1782 return {GrColorType::kUnknown, 0};
1783 }
1784
getFragmentUniformBinding() const1785 int GrVkCaps::getFragmentUniformBinding() const {
1786 return GrVkUniformHandler::kUniformBinding;
1787 }
1788
getFragmentUniformSet() const1789 int GrVkCaps::getFragmentUniformSet() const {
1790 return GrVkUniformHandler::kUniformBufferDescSet;
1791 }
1792
addExtraSamplerKey(skgpu::KeyBuilder * b,GrSamplerState samplerState,const GrBackendFormat & format) const1793 void GrVkCaps::addExtraSamplerKey(skgpu::KeyBuilder* b,
1794 GrSamplerState samplerState,
1795 const GrBackendFormat& format) const {
1796 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1797 if (!ycbcrInfo) {
1798 return;
1799 }
1800
1801 GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
1802
1803 constexpr size_t numInts = (sizeof(key) + 3) / 4;
1804 uint32_t tmp[numInts];
1805 memcpy(tmp, &key, sizeof(key));
1806
1807 for (size_t i = 0; i < numInts; ++i) {
1808 b->add32(tmp[i]);
1809 }
1810 }
1811
1812 /**
1813 * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
1814 * the information needed to differentiate one pipeline from another.
1815 *
1816 * The GrProgramDesc contains all the information need to create the actual shaders for the
1817 * pipeline.
1818 *
1819 * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
1820 * pipline. This includes stencil settings, blending information, render pass format, draw face
1821 * information, and primitive type. Note that some state is set dynamically on the pipeline for
1822 * each draw and thus is not included in this descriptor. This includes the viewport, scissor,
1823 * and blend constant.
1824 */
makeDesc(GrRenderTarget * rt,const GrProgramInfo & programInfo,ProgramDescOverrideFlags overrideFlags) const1825 GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt,
1826 const GrProgramInfo& programInfo,
1827 ProgramDescOverrideFlags overrideFlags) const {
1828 GrProgramDesc desc;
1829 GrProgramDesc::Build(&desc, programInfo, *this);
1830
1831 skgpu::KeyBuilder b(desc.key());
1832
1833 // This will become part of the sheared off key used to persistently cache
1834 // the SPIRV code. It needs to be added right after the base key so that,
1835 // when the base-key is sheared off, the shearing code can include it in the
1836 // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
1837 // GrVkPipelineStateBuilder.cpp).
1838 b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
1839
1840 GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
1841 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
1842 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
1843 }
1844 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
1845 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
1846 }
1847
1848 bool needsResolve = this->programInfoWillUseDiscardableMSAA(programInfo);
1849
1850 bool forceLoadFromResolve =
1851 overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass;
1852 SkASSERT(!forceLoadFromResolve || needsResolve);
1853
1854 GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
1855 if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) {
1856 loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
1857 }
1858
1859 if (rt) {
1860 GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
1861
1862 SkASSERT(!needsResolve || (vkRT->resolveAttachment() &&
1863 vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
1864
1865 bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled();
1866 // TODO: support failure in getSimpleRenderPass
1867 auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags,
1868 loadFromResolve);
1869 SkASSERT(rp);
1870 rp->genKey(&b);
1871
1872 #ifdef SK_DEBUG
1873 if (!rp->isExternal()) {
1874 // This is to ensure ReconstructAttachmentsDescriptor keeps matching
1875 // getSimpleRenderPass' result
1876 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1877 GrVkRenderPass::AttachmentFlags attachmentFlags;
1878 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1879 &attachmentsDescriptor,
1880 &attachmentFlags);
1881 SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags,
1882 loadFromResolve));
1883 }
1884 #endif
1885 } else {
1886 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1887 GrVkRenderPass::AttachmentFlags attachmentFlags;
1888 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1889 &attachmentsDescriptor,
1890 &attachmentFlags);
1891
1892 // kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which
1893 // will always go through the above 'rt' path (i.e., we can always pass 0 as the final
1894 // parameter to GenKey).
1895 GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags,
1896 loadFromResolve, 0);
1897 }
1898
1899 GrStencilSettings stencil = programInfo.nonGLStencilSettings();
1900 stencil.genKey(&b, true);
1901
1902 programInfo.pipeline().genKey(&b, *this);
1903 b.add32(programInfo.numSamples());
1904
1905 // Vulkan requires the full primitive type as part of its key
1906 b.add32(programInfo.primitiveTypeKey());
1907
1908 b.flush();
1909 return desc;
1910 }
1911
getExtraSurfaceFlagsForDeferredRT() const1912 GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const {
1913 // We always create vulkan RT with the input attachment flag;
1914 return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment;
1915 }
1916
getPushConstantStageFlags() const1917 VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const {
1918 VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
1919 return stageFlags;
1920 }
1921
1922 #if GR_TEST_UTILS
getTestingCombinations() const1923 std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
1924 std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
1925 { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1926 { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
1927 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
1928 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
1929 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1930 { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
1931 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1932 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
1933 { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
1934 { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
1935 { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
1936 { GrColorType::kBGRA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)},
1937 { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1938 { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
1939 { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1940 { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1941 { GrColorType::kAlpha_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
1942 { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
1943 { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
1944 { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
1945 // These two compressed formats both have an effective colorType of kRGB_888x
1946 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
1947 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
1948 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK) },
1949 };
1950
1951 return combos;
1952 }
1953 #endif
1954